SUAVE: Extending VHDL for High-Level System Modeling

Peter Ashenden University of Adelaide Visiting Scholar at University of Cincinnati

This work is partially supported by Wright Laboratory under USAF contract F33615-95-C-1638.

- Verilog
 - originally proprietary simulator input language
 - influences (maybe) from C, Fortran
- VHDL
 - originated in VHSIC program
 - development sponsored by DoD, then IEEE
 - influences from Ada
 - similar requirements and development process

24 April, 1997

Peter Ashenden — SUAVE

Architectures

- Architecture: implementation of an entity - can have alternative architectures for an entity
- Structural architecture
 - instances of entities interconnected with signals
- Behavioral architecture
 - process statements that implement an algorithm
 - processes respond to value changes in signals
 - processes schedule value changes on signals

24 April, 1997

Peter Ashenden — SUAVE

Objective VHDL Classes		
type complex is	class	
class attrib	ute re, im : real;	
function arg	g return real;	
for variable procedu end for;	u re clear_to_zero;	
for signal procedu end signal;	u re clear_to_zero;	
end class comp	lex;	
variable c : com	ıplex;	
 c.clear_to_zero;		
24 April, 1997	Peter Ashenden — SUAVE	19

Obje	Objective VHDL Classes		
type complex is cla	ass body		
function arg r	eturn real is;		
for variable procedur begin	e clear_to_zero is		
•	0.0; im := 0.0;		
	edure clear_to_zero;		
for signal procedur begin	e clear_to_zero is		
	0.0; im <= 0.0;		
end signal;	edure clear_to_zero;		
end class complex	ς;		
24 April, 1997	Peter Ashenden — SUAVE	20	

Conclusions

- VHDL needs improvement for high-level modeling
 - enhance abstraction, encapsulation
 - add inheritance, genericity
- Improvement across modeling domain
 - maintain support for synthesis
- Coherent integration with existing language
- OO is part of the solution, not a panacea

24 April, 1997

Peter Ashenden — SUAVE

37