SUAVE: Extending VHDL for
High-Level System Modeling

Peter Ashenden
University of Adelaide
Visiting Scholar at
University of Cincinnati

Thiswork is partially supported by Wright Laboratory
under USAF contract F33615-95-C-1638.

In aNutshdll ...

VHDL is a standard hardware description
language

VHDL is good, but not good enough
We’'re going to make it better!

— at what it's already good for

— and for modeling large complex systems

SUAVE: SAVANT and University of
Adelaide VHDL Extensions

24 April, 1997 Peter Ashenden — SUAVE 2

Outline

0 What isVHDL?
e What is wrong with it?
* How other people want to fix it ...

 How we are going to fix it ...
— If it ain’t broke ...

24 April, 1997 Peter Ashenden — SUAVE 3

Hardware Modeling

» Errors cost time and money
» Modeling: building a virtual system
— Specification
— Verification through simulation
— Synthesis
» Model at different levels of abstraction
— System level, register transfer level, gate level

24 April, 1997 Peter Ashenden — SUAVE 4

Modeling Languages

» Verilog
— originally proprietary simulator input language
— influences (maybe) from C, Fortran
* VHDL
— originated in VHSIC program
— development sponsored by DoD, then IEEE

— influences from Ada
* similar requirements and development process

24 April, 1997 Peter Ashenden — SUAVE 5

Entities

 Entity: basic hardware module
— specifies interface of the module

entity multiplexer is
generic (Tpd : delay_length);

port (sel:in bit;
in0, inl1: in bit;
z : out bit);
end entity multiplexer;

24 April, 1997 Peter Ashenden — SUAVE 6

Architectures

 Architecture: implementation of an entity
— can have alternative architectures for an entity
 Structural architecture
— instances of entities interconnected with signals
» Behavioral architecture
— process statements that implement an algorithm
— processes respond to value changes in signals
— processes schedule value changes on signals

24 April, 1997 Peter Ashenden — SUAVE 7

Structural Example

architecture structural of multiplexer is in0

signal sel_n, temp0, templ : bit; 2
begin sel

sel_inv : entity gate_lib.inverter(basic) In1

port map (sel, sel_n);

and_0 : entity gate_lib.and2(basic)
port map (in0, sel_n, temp0);

and_1 : entity gate_lib.and2(basic)
port map (inl, sel, templ);

or_result : entity gate_lib.or2(basic)
port map (tempO, templ, z);

end architecture structural;

24 April, 1997 Peter Ashenden — SUAVE 8

Behavioral Example

architecture behavioral of multiplexer is
begin
mux_behav : process is
begin
case sel is
when ‘0’ =>
z <=in0 after Tpd;
when ‘1" =>
z <=inl after Tpd;
end case;
wait on sel, in0, in1;
end process mux_behav;

end architecture behavioral;

24 April, 1997 Peter Ashenden — SUAVE 9

Behavioral Modeling

concurrent processes communicating
through signals

logic modeling types

— bit, multi-valued logic (‘0’, ‘1’, ‘'Z’, ‘X, ...)
“abstract” user-defined types

— integer, floating point, physical, enumeration
— array, record, access (pointers), file

24 April, 1997 Peter Ashenden — SUAVE 10

sequential code in subprograms & processes

v

Packages

e Collection of declarations
— eg, types, subprograms, etc.
— package declaration: publicly visible
— package body: separate & private

» Can be used to define an abstract data type

24 April, 1997 Peter Ashenden — SUAVE 11

Package Example

package test_queues is
use work.tests.all;
constant max_size : positive := 100;

type queue_array is array (0 to max_size — 1) of test;
type queue is record

head, tail : natural range 0 to max_size —1;

size : natural range 0 to max_size;

the_buffer : queue_array;
end record queue;

function is_empty (Q : queue) return boolean;

procedure add (Q : in out queue; item : in test);

procedure remove (Q : in out queue; item : out test);
end package test_queues;

24 April, 1997 Peter Ashenden — SUAVE 12

Package Example

package body test_queues is

function is_empty (Q : queue) return boolean is
begin

return Q.size = 0;
end function is_empty;

procedure add (Q : in out queue; item:intest)is.. .;
procedure remove (Q : in out queue; item : out test)is .. .;
end package body test_queues;

24 April, 1997 Peter Ashenden — SUAVE 13

Outline

 What is VHDL?
[0 What is wrong with it?
* How other people want to fix it ...

 How we are going to fix it ...
— If it ain’t broke ...

24 April, 1997 Peter Ashenden — SUAVE 14

High-Level Modeling Support

* Need ADTs to manage complexity
— VHDL has poor encapsulation

* Need inheritance to classify abstractions
and for re-use

— VHDL has no form of inheritance
* Need late binding to support evolution

— VHDL has only ad-hoc polymorphism
* subprogram overloading

24 April, 1997 Peter Ashenden — SUAVE 15

High-Level Modeling Support

* Need dynamic process creation to model
dynamic reactive systems
— VHDL has static process creation

* Need abstract communication

— VHDL communication is via “hardware”
signals

24 April, 1997 Peter Ashenden — SUAVE 16

Outline

* What is VHDL?
e What is wrong with it?
[0 How other people want to fix it ...

* How we are going to fix it ...
— If it ain’t broke ...

24 April, 1997 Peter Ashenden — SUAVE 17

Object-Oriented VHDL

e Add classes, like C++

— provide encapsulation and inheritance

— Willis et al; Radetzkiet al (Objective VHDL)

— replicates encapsulation mechanism (packages)

— hiding state causes difficulties for signal objects
* Programming by extension, like Ada-95

— Mills; Schumacher & Nebel

— tagged records, derivation, class-wide types/ops

24 April, 1997 Peter Ashenden — SUAVE 18

Objective VHDL Classes

type complex is class
class attribute re, im : real,
function arg return real,

for variable
procedure clear_to_zero;
end for;

for signal
procedure clear_to_zero;
end signal;

end class complex;
variable ¢ : complex;

c.clear_to_zero;

24 April, 1997 Peter Ashenden — SUAVE

19

Objective VHDL Classes

type complex is class body
function arg return realis . . .;

for variable
procedure clear_to_zero is
begin
re:=0.0; im:=0.0;
end procedure clear_to_zero;
end for;

for signal
procedure clear_to_zero is
begin
re <= 0.0; im<=0.0;
end procedure clear_to_zero;
end signal;

end class complex;

24 April, 1997 Peter Ashenden — SUAVE

20

Entity Classes & Inheritance

entity gated_mux is new multiplexer with
port (enable : in bit); -- other ports inherited
end entity gated_mux;

24 April, 1997 Peter Ashenden — SUAVE 21

Entities and Communication

entity memory is
operation read (address : in natural) return word;

operation write (address : in natural;
data : in word);

end entity memory;

24 April, 1997 Peter Ashenden — SUAVE 22

Outline

* What is VHDL?
e What is wrong with it?
* How other people want to fix it ...

[1 How we are going to fix it ...
— If it ain’t broke ...

24 April, 1997 Peter Ashenden — SUAVE

23

L anguage Design Principles

» Simplicity of mechanism
» Orthogonality of mechanism
— with clearly defined interactions
* Integration with existing
— semantic mechanisms
— syntax
— language philosophies

24 April, 1997 Peter Ashenden — SUAVE

24

|ssues. Concurrency & OO

Orthogonal aspects
Could add process types
— allows dynamic instantiation & termination

Alternative communication models

— monitors

— message passing on static channels (CSP)
— RPC, rendezvous (Ada)

Comm’s interface part of entity interface

24 April, 1997 Peter Ashenden — SUAVE 25

| ssues: Entities & Inheritance

e Don’t touch it!

» Too hard to extend encapsulated behavior
— hacking at the innards

» Composition hierarchy is usually ok
— cf. “is-a” hierarchy

24 April, 1997 Peter Ashenden — SUAVE 26

|ssues: Data Modeling

Go all out here!

Borrow from Ada-95

— tagged types, derivation
Strengthen encapsulation
— private types in packages
Genericity

Stylistic integration

24 April, 1997 Peter Ashenden — SUAVE 27

Tagged Types

» Record type that can be extended

type instruction is tagged record
opcode : opcode_type;
end record instruction;

type ALU_instruction is new instruction with
srcl, src2, dest : reg_number;
end record ALU _instruction;

type mem_instruction is abstract new instruction with
base_reg : reg_number;
offset : integer,

end record mem_instruction;

24 April, 1997 Peter Ashenden — SUAVE 28

Primitive Operations

» Define subprograms that operate on a type

» Derived type inherits operations
— can override and augment

procedure check op (instr : instruction; .. .);
procedure perform_op (instr : instruction);

procedure perform_op (instr : ALU_instruction);

24 April, 1997 Peter Ashenden — SUAVE 29

Class-Wide Types

- instruction’Class denotes hierarchy of types
derived from instruction

» Polymorphism, dynamic dispatching
signal current_instr : instruction’Class;

perform_op (current_instr);

24 April, 1997 Peter Ashenden — SUAVE 30

Encapsulation: Private Parts

1®

24 April, 1997 Peter Ashenden — SUAVE 31

Encapsulation: Private Types

package test_queues is
use work.tests.all;
type queue is private;
function is_empty (Q : queue) return boolean;

private
constant max_size : positive := 100;
type queue_array is array (0 to max_size — 1) of test;
type queue is record
head, tail : natural range 0 to max_size — 1;
size : natural range 0 to max_size;

the_buffer : queue_array;
end record queue;

end package test_queues;

24 April, 1997 Peter Ashenden — SUAVE 32

Generic ADTs

package queues is
generic (max_size : positive; type element is private);

type queue is private;
function is_empty (Q : queue) return boolean;

private

type queue_array is array (0 to max_size — 1) of element;
type queue is record

end record queue;
end package queues;

package test_queues is new queues
generic map (max_size => 100, element => work.tests.test);

24 April, 1997 Peter Ashenden — SUAVE 33

Generic Entities

entity multiplexer is

generic (Tpd : delay_length;
type data is private);

port (sel :in bit;
in0, inl : in data;
Z :out data);

end entity multiplexer;

24 April, 1997 Peter Ashenden — SUAVE 34

Generic Entities

entity multiplexer is

generic (Tpd : delay_length;
type data is private;
type selector is (<>);
choose_0 : selector);

port (sel:in selector;
in0, inl : in data;
Z :out data);

end entity multiplexer;

24 April, 1997 Peter Ashenden — SUAVE

35

Generic Entities

architecture behavioral of multiplexer is
begin
mux_behav : process is
begin
case selis
when choose 0 =>
z <=in0 after Tpd;
when others =>
z <=inl after Tpd;
end case;
wait on sel, in0, in1;
end process mux_behav;

end architecture behavioral;

24 April, 1997 Peter Ashenden — SUAVE

36

Conclusions

VHDL needs improvement for high-level
modeling

— enhance abstraction, encapsulation

— add inheritance, genericity

Improvement across modeling domain

— maintain support for synthesis

Coherent integration with existing language

OO is part of the solution, not a panacea

24 April, 1997 Peter Ashenden — SUAVE 37

