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ABSTRACT

This paper reviews proposals for extensions to VHDL to support high-level modeling and places them
within ataxonomy that describes the modeling requirements they address. Many of the proposalsfocus
on object-oriented extensions, whereas this paper argues that extension of VHDL to support high-level
modeling requires abroader review. The paper presents adetailed discussion of issuesto be considered
inadding high-level modeling extensionsto VHDL, including concurrency and communication, abstrac-
tion using entity interfaces, object-oriented data modeling, encapsulation, signa assignment semantics,
shared variables, multiple inheritance, genericity and synthesis. Emphasisis placed on the importance
of designing simple orthogonal semantic mechanisms that interact in well defined ways, and that inte-

grate cleanly with exisiting language features.
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1. INTRODUCTION

In recent years, as the complexity of hardware systems has increased, designers have been forced to in-
cludehigh-level modeling asastageinthedesign flow. Specifyingand simulating systemsat ahighlevel

of abstraction allows morereliable capture of requirements and more extensive exploration of thedesign
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space. High-level modeling and rel ated activities have the potential to reduce devel opment time and cost.
However, in order to support high-level modeling, adesign language must alow specification of dataand
behavior in an abstract manner [41]. It should not force the designer to make design decisions that are
better deferred tolater inthe design flow. For example, it should not forcethe designer to choosebetween
a hardware and a software implementation too early, or to specify adetailed communications protocol

before partitioning the design.

Idedly, adesign language should allow the designer to span the spectrum of abstraction from high-level
down to implementation (invoking compilers or synthesis tools to redlize the final implementation). It
isdesirableto asingle design languagesthroughout the design flow, avoiding interface- and equival ence-
checking problemsthat otherwisearise. VHDL [28], asit currently stands, is ahardware description lan-
guage that is well-suited to modeling small- to medium-scale systems at levels of abstraction up to
register-transfer level. However, it has some serious shortcomings when used for modeling large-scale
systems or systems at a high level of abstraction. In order to remedy these shortcomings, complexity-
management and abstraction techniques that have been used successfully in programming languages

should be reviewed as candidates for extensionsto VHDL.

An important devel opment in the software engineering community is the movement towards object-ori-
entation as a means of managing the complexity inherent in large software systems. Object-orientation
allows a design space to be partitioned into manageabl e pieces with well-constrained interactions, and
facilitatesthe reuse and evol ution of modules. According to Booch, “object orientation involvestheele-
ments of data abstraction, encapsulation, and inheritance with polymorphism” in alanguage [8, page
181]. Theideas denoted by thesetermsare clearly defined and illustrated by Booch [7] and have bere-

viewed extensively by other authors, so we do not include any detailed discussion here.

Giventhe success of object-oriented techniquesin the softwaredomain, it isappropriateto consider their
inclusion in ahardware description language such as VHDL. We expect that the use of object-oriented
techniquesin hardware description languages will hel p designers manage complexity, improvetheir pro-
ductivity, and improve the reliability of the design process. However, object-oriented extensions should
not be viewed as a panacea. Object-orientation focusses mainly on abstraction over dataand the related
operations, and does not address issues such as concurrency and communication. Successful extension

of VHDL to support high-level modeling requires a broader review of these and other issues.

Our aimin this paper is not to present or support any particular extension to VHDL. Instead, wereview
previous proposals for extensions and attempt to categorize them to enable detailed anaysis and discus-

sion. Our categorization is based on the semantics of each proposal, insofar as the semantics are elabo-



rated in each proposal. We attempt to identify some pitfalls that can trap unwary players and show that
many of the previously proposed extensionsencounter the pitfallsand viol ate princi ples of good language
design.

When considering extensions to a hardware description language, it is necessary to identify therequire-
ments of the language users, and to ensure that proposed extensions meet these requirements. Bergé et
al [6] report on asurvey of several European tel ecommuni cation companiesand system housesto discov-
er their requirementsof adesign language. In particular, therespondents wereasked toidentify their cur-

rent problems using VHDL and their expectations for object-oriented VHDL. The responses reported

WEre:

S totarget ahigher level of abstraction for modeling,

S tosimplify and speed up the process of specification,

S to ease the addition of new functionality,

S toimprove the functional vaidation process,

S toimprove the degree of reusability,

S toimprove capability for documentation,

S toincrease automation in the design flow,

S toimprove consistency with object-oriented notations or languages used in hardware/software

codesign, and

S toimprove ease of learning and application.

The proposalsfor extension to VHDL surveyed in this paper meet these requirementsto varying degrees.

The remainder of this paper is organized asfollows. Section 2 presents some genera principlesfor lan-
guage desi gn that weargue shoul d be adhered to when devel oping proposal sfor languageextension. Sec-

tion 3 presents a taxonomy of approaches to high-level modeing extensions to VHDL and places



previously published proposals within the taxonomy. Section 4 discusses arange of issues that must be
considered when designing high-level modeling extensionsto VHDL and discussestheway in which pre-
vious proposal s address theissues (or, in some cases, fail to addressthem). Finaly, Section 5 concludes
with adiscussion of our plansto devel op high-level modeling extensionsto VHDL—hopefully avoiding

the pitfalls along the way.

2. LANGUAGE DESIGN PRINCIPLES

The design of a programming language or a hardware description language is adifficult task. Sincethe
language isthe vehiclefor expression of design intent, a good language can greetly help the design pro-
cess, whereas a poor language can significantly hinder it. A language should conform to a set of ideals
or philosophiesto makeit coherent, easy to learn, and easy to read and understand. Thisiswhat Brooks
refersto as “conceptual integrity” [9]. We present here some views on language design principles that
lead to high-quality languages. While many of these principles may appear to be common sense or gener-
a “motherhood and applepie” statements, it isimportant to bear them in mind throughout the language
design process. They are all too often overlooked, particularly when language design is conducted by
acommitteeof diverseinterests. AsBrooksnotes, “ Conceptual integrity doesrequirethat asystemreflect

asingle philosophy and that the specification as seen by the user flow from afew minds’ [9, page 49].

2.1 Design of Semantics

The foremost principleisthat language design should focus on semantics first and syntax second. The
semantics of language features embody the meaning of the features, and determine what design intent
can be expressed in the language. The benefits of a semantics-based language design methodology are
illustrated by Tennent [46]. He comments that a methodological approach based on semanticsis “in-
tended to help a designer cope with the detailed problems of achieving consistency, completenes, and
regularity in the design of specific language features,” and “has the effect of drawing [the designer’s]
attention to deeper structural issues’ inalanguage. Syntax, on the other hand, isthe concrete expression
of semantic features. While poor syntax may obfuscate the design intent, it does not prohibit expression

of theintent. Good syntax design alowsthedesigner to think about and communicatedesignintent clear-

ly.

2.2 Simplicity of Mechanism

In determining semantic features to be included in alanguage, sufficient simple semantic mechanisms
should be preferred over more complicated genera sol utions; the simple mechanisms can then be used

to build application-specific solutions. The semantic mechanisms should, asmuch aspossible, be ortho-



gona to each other. AsHoare suggests[26], “concentrate on one feature at atime,” and “reject any that
aremutually inconsistent.” By choosing simple orthogona semantic mechanisms, interaction between
mechanismsisreduced and easier to understand. Simplicity of mechanism and reduced interaction make

it easier for tool builders to optimize their implementation of language features.

2.3 Design of Extensions

When extending an existing language, the preceding principles shoul d be applied to the extensions. Sim-
ple semantic mechanisms should be chosen to augment the existing mechanisms, not to replace them.
The new features should conform to the same design philosophiesthat werefollowed in the origina 1an-
guage design so as to maintain architectural coherence. Careful consideration must be given to interac-
tions between new features and existing features. While the semantics of new features are of primary
concern, integration of new syntax isa soimportant. Extensionsshouldaim for stylistic consistency with
theexisting language. New featuresthat arejust syntactic rewritesof existing features (“ syntactic sugar”)
should only beincluded if they significantly enhance the expressiveness of the language. As Wirth puts

it [49], “distinguish . . . between what is essential and what ephemeral.”

3. TAXONOMY OF PREVIOUSLY PROPOSED EXTENSIONS

Previous proposals for extending VHDL for high-level modeling have been couched in terms of object-
oriented extensi ons, and havefocussed on threeareas of language usage: datamodeling, structural model-
ing, and concurrency and communication (sometimes referred to as “ system-level modeling”). These
areas are also reviewed by Dunlop [16]. Table 1 summarizes the approaches adopted by each of the pre-
viously proposed extensions. Wediscuss the conceptsin more detail in thefollowing sections. Notethat
the examples shown in this and subsequent sections areintended only toillustrate the concepts. No con-

crete language proposa isimplied.



Table1l. Summary of proposals for object-oriented extensionsto VHDL.

Proposal Data Modeling Structural Modeling Concurrency and Com-
munication
Mills[36] Ada-95 approach (tagged tagged entity/architecture
type with single inherit-  with multiple inheritance
ance)
Schumacher and Nebel ~ Ada-95 approach (tagged
[42] type with single inherit-
ance)
Dunlop [17] illustrates general con-
cepts using Ada-95 ap-
proach
Williset al [48] class-based with multiple implicit: class typesfor
inheritance shared variables have

monitor semantics

Objective VHDL: Ra- class-based with single  entity classeswith single
detzki et al [39] inheritance inheritance

Ecker [18] tagged entity/architecture
with multiple inheritance

Ramesh [40] entity classes with inher-
itance (only single inher-
itance illustrated)

Mills[37] inheritance via configura-
tion
Vista OO-VHDL: Swamy entity classeswith inher-  entity classes with oper-
et al [45] itance (only single inher-  ations (modified monitor
itance illustrated) semantics); inheritance
(only single inheritance
illustrated)
Benzakki and Djafri [5] entity classes with multi-  entity classes with oper-
ple inheritance ations (modified monitor
semantics); multiplein-
heritance
Cabanisetal [11] class-based with oper-

ations (concurrent in-
vocation with ad hoc con-
currency control); multi-
ple inheritance

3.1 Extensionsfor Data Modeling

Object-oriented extensions for data modeling address the way in which data values are described in a
model. Currently, VHDL provides atype system similar to that of Ada, but with some simplifications.
Proposalsfor extending VHDL suggest that this simplified type system isinsufficient for modeling data
with complex structure. They arguethat object-oriented techniques for expressing datashould beincor-
porated into VHDL to support modeling at ahigh level of abstraction. In particular, language features
to support inheritance and polymorphism should be added, sincethey are key featuresto support object-



oriented programming. Two main approaches have been canvassed for object-oriented datamodelingin

VHDL.: programming by extension and class-based.

Programming by Extension The programming by extension approach involves adopting features of
Ada95 [32], andisthebasisof proposalsby Mills [36], and Schumacher and Nebel [42]. Dunlop [17]
asoillustratesthegeneral conceptsof object-oriented datamodeling using thisapproach. It invol vesfirst-
ly defining aparent typeasatagged record, with primitive operationson the parent typedefined assubpro-
gramsthat include aparameter of the parent type. For example, the following code defines aparent type

that represents a general CPU instruction and two operations on instructions:

type instruction is tagged record
opcode : opcode_type;
end record;

procedure check_opcode (instr : in instruction; . ..);

procedure perform_op (instr : in instruction );

Next, the parent typeisrefined by deriving anew typewith additional record elements. Whilethederived
type inherits the primitive operations of the parent type, the operations can be replaced with aternative
implementations. In addition, new primitive operations may be defined for the derived type. For exam-

ple, aregister-mode AL U instruction may be defined as arefinement of ageneral instruction, asfollows:

type register_alu_instruction is new instruction
with record
dest, srcl, src2 : reg_number;
end record;

procedure perform_op (instr : in register_alu_instruction );

The operation check_opcode isinherited and can be applied to va ues of thederived type. Theoperation

perform_op is replaced with a new version that is specific to values of the derived type.

Inthe Ada-95 approach, the hierarchy of derived typesformstheinheritance hierarchy required in object-
oriented programming. Theterm classis used to refer to the tree of types derived from a given parent
type. Polymorphic typing comesfrom declaration of objects of unconstrained classtypes, denoted using

the attribute 'class. For example:

procedure execute (instr : in instruction’class; . . . );

Theformal parameter of this procedureis polymorphic, and may take avalue of typeinstruction or of any

type derived from instruction. Thus, within the procedure, the call



perform_op (instr);

requires adynamic check of the tag associated with the actual parameter value to determine the type of
theactual parameter. Thetypeof theactual parameter determineswhich procedureiscalled. Thisprocess
iscaled “digpatching” or “late binding,” asthe type of the actua parameter is bound at run-time rather
than being statically determined.

Classes Theclass-based approach to object-oriented datamodeling extensionsin VHDL isinfluenced
by Java [21], C++ [44] and their predecessors (notably, Simula [13]). This approach is followed by
Williset al [48], Objective VHDL [39], VistaOO-VHDL [45], Benzakki and Djafri [5], and Cabanis
et al [11]. The approach involves the definition of classes that encapsulate the definitions of data and
operations of objects. A class may inherit encapsulated data and operations from another class. Thein-
heriting classis called asubclass and the parent is called the superclass. Asan example, theinstruction
type shown above might be defined as follows (using a VHDL -like style of expression, approximately

mirroring C++ semantics):

type instruction is class
opcode : opcode_type;
procedure check_opcode (.. .);
procedure perform_op;
end class;

A vaue of thistype contains an encapsulated opcode vauethat can be operated upon only by the proce-
duresdefinedintheclass. These procedures are often called “methods” or “operations.” A subclassrep-

resenting register-mode AL U instructions might then be defined as:

type register_alu_instruction is instruction class
dest, srcl, src2 : reg_number;
procedure perform_op;
end class;

Theopcode valueand thecheck _opcode operation areinherited from the superclassinstruction, whereas
the perform_op operation isoverridden by anew versionin thesubclass. Objectsare created asinstances

of these class types, and operations are invoked by naming a particular instance. For example:
variable instr_reg : instruction;
instr_reg.perform_op;

Theencapsulated valuefor theinstance of the classisimplicitly availablefor useintheperform_op opera-

tion. The object denoted by instr_reg may be amember of theinstruction class or one of its subclasses.



Thus, theinvocation of the perform_op operation may require dynamic dispatching depending on the par-

ticular class of the object.

While anumber of proposals are based on this approach, only Willis et al [48] and Radetzki et al [39]
limit their discussion to its use for datamodeling. Other proposals (cited later in this section) extend its
useto system-level modeling. The driving motivation for incorporating classesin alanguage definition
isto provide direct language support for the principles of object-orientation in asingle language feature.
Hence, aclassisaunit of abstraction, encapsulation, modularity, hierarchy (throughinheritance) and typ-

ing in this approach.

3.2 Extensionsfor Structural Modeling

Object-oriented extensionsfor structural modeling addresstheissue of reuse of hardware designstoform
new designs. Design entitiesareviewed anal ogously to classes, with component i nstances being obj ects.
The generic constants and ports defined in adesign entity are properties of objects. The proposed exten-
sionsfor structural modeling identifiedin Table 1 suggest that new design entities can bederived by inher-
iting generics and ports from aparent entity and adding new genericsand ports. 1n addition, the process
statements and component instances from the parent architecture body are inherited, and new processes

and component instances are added to the derived architecture body.

There appear to betwo approachesto object-oriented structural modeling, paralleling thetwo approaches
to datamodeling. However, the differences, insofar as they are described in the proposals, are syntactic
rather than semantics-based. One approach, proposed by both Mills[36] and Ecker [18], involvesusing
the keyword “tagged” to identify an entity or architecture that can beinherited. The approach proposed
for Objective VHDL [39] issimilar, but omitsthe keyword “tagged” and allowsany entity to beinherited.
Although the finer details of syntax vary between the proposas, an illustrative exampleis:

entity counter is tagged
port ( clk, out_en : in bit; q: out std_logic_vector );
end entity counter;

architecture behavioral of counter is tagged
signal count : natural;
begin

increment : process (clk) is
begin
if clk’event and clk =1’ then
count ;= (count + 1) mod 2**g’length;
end if;
end process increment;

drive :
g <= To_vector(count) when out_en ='1" else
(others =>'Z’);

end architecture behavioral;



Here, the ports clk and q are properties of the entity that can beinherited, and the statements increment

and drive are the properties of the architecture that can be inherited.

The proposal suse thekeyword “ new” to specify inheritanceinto aderived entity or architecture. Ecker’s
proposal does not clearly indicate whether an inheriting architecture inherits from a parent architecture
of the parent entity, or from aternative architectures of the derived entity. Examples of both cases appear
in the proposa without comment on the distinction. The Mills' proposals and Objective VHDL, on the
other hand, clearly indicate that aderived architectureinheritsfrom anominated architecture of the parent

entity. For example (not using syntax of either proposd):

entity resettable_counter is new counter with
port (reset:in bit);
end entity resettable_counter;

architecture resettable_behavioral of resettable counter is new behavioral with
begin

increment : process ( clk, reset ) is
begin

end process increment;

end architecture resettable behavioral;

The derived entity adds the port reset to those inherited from the parent entity. The derived architecture
inherits theinterna signal count and the statement drive from the parent architecture, and overrides the

statement increment with a modified version.

Theother approach to structural modeling, proposed by Ramesh [40], basically usesthe keyword “ class”
in place of “tagged” to indicateinheritance, but is otherwisethe same. The underlying semanticsarein-
heritance of generics and portsin the entity declarations and inheritance of concurrent statementsin the

architecture bodies.

Mills[37] dso proposes asemantically similar alternative, where inheritanceis specified in the binding
indication of a configuration declaration or configuration specification, rather than in an entity or archi-
tecturedeclaration. The difficulty with thisapproach isthat the binding is performed during el aboration
rather than during analysis. Hence, aninheriting design entity isunableto refer to ports, signalsand other
items declared in a parent design entity. This lack of visibility significantly limits the way in which an
inheriting design entity can extend or refinetheimplemention of the parent. Inorder toavoid suchlimita
tions, it might be possibl eto defer analysis of aninheriting design entity until elaborationtime. However,
to do so would be significantly at variance with the existing philosophy of early, separate anaysis and

error detection.
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3.3 Concurrency and Communication Extensions

Object-oriented extensionsfor system-level modeling addressthefact that the communi cation model im-
plied by signalsand portsin VHDL isinappropriate for abstract designsin which the inter-module com-
munication protocols are not yet defined. In the early design stages, a system can be modeled as a
collection of communicating concurrent processesthat request operations of oneanother and transfer data
(often represented by abstract tokens) between one another. Thedetail ed representation of data, theparti-
tioning into hardware or software modules, and the sequencing and timing of communication over con-

crete interconnections are design decisions deferred to alater stage in the design flow.

Proposed extensionsto VHDL for system-level modeling are based on an object-oriented approach, and
seek to represent the system as a set of concurrent objects that communicate by invoking operationsin
other abjects. Theintention isto use object-oriented techniques to improve the devel opment process at
thisearly stageinthelifecycle. Weidentify two distinct approachesthat have been proposed for extending
VHDL inthisarea. Thefirst approach involves extending the notion of an entity, viewing it as aform
of classand adding operationsthat can beinvoked by processes. For example (using no particular propos-
er's syntax):
entity class elevator is
operation call ( floor : floor_number );

operation where_are_you return floor_number;
end entity class;

entity class elevator_with_fire_service is
new elevator with
operation set_emergency_mode;
operation clear_emergency_mode;
end entity class;

The first entity class defines operations to call an elevator to a specified floor and to query the location
of an elevator. The second entity class inherits these operations, and defines new operationsto set and

clear and emergency operating mode. A model might instantiate elevator objects as follows:

object normal_elevator : elevator;
object emergency_elevator : elevator_with_fire_service;

A process within the model might invoke operations as follows:

emergency_elevator_location := emergency_elevator.where_are_you;
emergency_elevator.set_emergency_mode;
emergency_elevator.call ( ground_level );

TheVistaOO-VHDL language described by Swamy et al [45], and the proposal by Benzakki and Djafri

[5] follow thisapproach. These proposalsalso address structural modeling, but motivate their extensions
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by system-level modeling needs. We discuss a number of problemswith this approach and with the par-
ticular proposalsin Sections 4.1 and 4.2.

The second approach to extensions for system-level modeling involves adding aclass concept to thelan-
guage, asdescribed abovefor datamodeling, and addressing theissue of concurrency control for multiple
processesaccessing an object. Theproposal by Williset al [48] implicitly addressesthisissue by making
classestake on the characteristics of monitorswhen instantiated as shared objects. 1n such cases, mutua
exclusion is enforced for concurrent access to a shared object. The proposal by Cabanis et al [11], on
the other hand, permits concurrent accessto ashared object. It addresses concurrency control by provid-
ing some predicates that the designer can use to determine whether concurrent access is occurring and
thus control program flow (for example, by busy-waiting). Objective VHDL [39] does not include ex-
plicitlanguage extensionsfor concurrency. Rather, it suggestsaway of using classesto encapsulate com-
munication protocols implemented using signals and ports. We discuss the use of object-oriented

techniques for system-level modeling further in Section 4.

4. ISSUESFOR HIGH-LEVEL MODELING EXTENSIONSTO VHDL

One of our guiding principles for language extension mentioned earlier concernsintegration of new fea-
tures with existing features. Thus, if we are to consider new features for VHDL to support high-level
modeling, we need to identify existing featuresthat relate to high-level modeling. With thisin mind, we
can clearly seethat VHDL aready includes many features that relate to the principles cited by Booch as
necessary for object-orientation. Subprograms, entities, and packages support abstraction and encapsula
tion (albeit weak encapsulation in the case of packages); and overloading providesalimited, ad-hocform
of polymorphism. Intheterminology of Wegner [47], thesefeaturesare sufficient for VHDL to becalled
“object-based.”

The main issues that are not addressed by the existing language for high-level modeling are a more dy-
namic concurrent process model; amore abstract form of communi cation between concurrent processes;
inheritance-based hierarchy (for datatypes and hardware structures); theform of dynamic polymorphism
that goes with inheritance (namely, dynamic binding); a stronger form of abstraction and encapsul ation
for abstract datatypes (ADTSs); and amoreflexible form of static polymorphism, such asthat represented
by genericsin Ada. Wemaintain that language extensionsto support high-level modeling should address
these issues without subverting or replacing existing language features. Furthermore, there should be
aclear separation of concerns between languagefeatures, so that agiven feature does not attempt to serve
multiple underlying modeling requirements. Theinteractions between |anguage features should be well

defined and understandabl e to language users.
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4.1 Concurrency and Object-Oriented Extensions

One central issuethat is not adequately addressed by previous proposalsis the rel ationship between ob-
ject-oriented extensionsand the concurrency and communi cation featuresinthelanguage. Thereisalong
history of concurrent language design [2] and, morerecently, concurrent object-oriented language design
[1]. Inconsidering therelationship between object-oriented features and concurrency, Lim and Johnson

suggest that

“Designing featuresfor concurrency in OOP languagesisnot much different from that of other kinds
of languages—concurrency is orthogonal to OOP at thelowest level of abstraction. OOP or not, all
the traditional problemsin concurrent programming still remain. However, at the highest levels of
abstraction, OOP can alleviate the concurrency problem . . . by hiding concurrency inside reusable
abstractions.” [35]

We concur with thisview, and believethat it applies equally to adding object-oriented featuresto the con-
current language VHDL. We suggest that the conceptua model for concurrency and communication
should be considered first, then features for object-orientation relating to concurrency and communica-
tion should be designed to integrate with the chosen conceptual model and with existing language fea-

tures.

Concurrency Models

VHDL aready has a concurrency model, based on statically instantiated processes communicating and
synchronizing viastatically declared signals. Processes expressthebehaviour of amodul e, and the exter-
na signa s sensed and driven by the processes embody theinterfaceto themodule. An entity declaration
expresses an abstraction of amodul€ s behavior by presenting the interface in terms of input and output

ports.

Two main problemswith theexi sting languagefeatures arisewhen attempting high-level modeling. First,
the static process structureisinflexible, making it difficult to model such subsystems as multi-threaded
serversin aclient/server system. Such servers, which may ultimately be implemented in software, dy-
namically create threads of control to concurrently handle multiple incoming requests for transactions.
Without the ability to dynamically create threads, interleaving the concurrent transactions becomes
cumbersome. The second problem, discussed in Section 3.3, isthat communicationusing VHDL signals
isat toolow aleve of abstraction. A signa in VHDL isintended to model aphysical connection between

hardware modules, and represents the trgjectory of values on the connection over time. When modeling
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a ahigher level, communication should simply model interaction of processes, possibly with datatrans-

fer and possibly with synchronization.

Schumacher and Nebel [43] present a survey of langauges in widespread use for high-level modeling.
A number of them, including Statecharts[23], Estelle[10, 31] and SDL [33, 38], are based on aconceptu-
al model of processbehavior described using an extended finite-statemachine notation. (Thehierarchica
statemachinesused in Statechartsarea so adopted inthemorerecently proposed Uniform Modeling Lan-
guage (UML) [8].) Processesare staticdly instantiated in Statecharts, whereasin Estelle and SDL they
can be dynamically instantiated as part of an action associated with a state transition. In al three lan-
guages, the communication structureis statically specified. In Statecharts, communication takes place
through actionsin one state machine triggering eventsin other statemachines. In Estelleand SDL, com-
muni cation takestheform of buffered asynchronous message passing. Estellea so alowsaform of com-
munication viashared variables, and SDL a so alows synchronous remote procedure call (much likethe
rendezvous of Ada). Schumacher and Nebel also identify CSP [25] and its derivative OCCAM [30] as
languages used for high-level modeling. In these languages, the conceptual model of process behavior
isasequentual thread of program execution. Processesarestatically instantiated, and communicateusing

unbuffered synchronous message passing on statically instantiated, typed communication channels.

From thisbrief review of concurrency and communication featuresin other languages, it can be seen that
there are arange of alternative models. Processes can be statically instantiated, or may be dynamically
instantiated and terminated. Communication can take the form of message passing, remote procedure
cal, or through shared data. For the message passing aternative, messages may be sent via statically
instantiated channels or to named destination processes. Further, message passing may be buffered and

asynchronous, or may be unbuffered and synchronous.

Given that VHDL processes currently express behavior using sequential statements like those of pro-
gramming languages, it would seem most appropriate to keep thisform, rather than adopting someform
of extended finite-state machine model. In those cases where a state machine formulation of behavior
is clearest, the states and transitions can be readily expressed using sequential code. However, it is not
immediately clear what combination of concurrency and communication features are most appropriate
for high-level modeling, so we leave this as an areafor further research. Animportant consideration in
choosing among the aternatives is to maintain compatibility and conceptual integrity with the existing

language.

As anillustration of a possible extension to the concurrency and communication model of VHDL, we

consider aconceptua model inwhich processesmay bedynamically instanti ated and communicateusing
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remoteprocedurecall. Thisistheapproachtakenin Ada, so weborrow someAdafeaturesfor thisillustra-
tion. Consider aclient/server system in which aclient requests transaction of the server, and the server
handles multiple transactions concurrently. In order to alow transaction to proceed concurrently, each
transaction is handled by an agent process created dynamically by the server. The server might be de-

scribed as follows:

server : process is
entry request_transaction (. . .);

type server_agent is process
entry request_transaction (. . .);

end process server_agent;
type server_agent_ref is access server_agent;

begin
loop
accept request_transaction (.. .) do
transaction_agent := new server_agent;
requeue transaction_agent.request_transaction;
end accept;
end loop;
end process server;

Theserver process repeatedly acceptsrequeststo perform atransaction. For eachrequest, it createsanew
instanceof theserver_agent processtype, and forwardstheclient’ srequest to thenew instance. Theserv-

er isthen free to accept the next request while the agent processes the previous request.

Object-Orientation

A number of the proposal sfor extensionsto VHDL [5, 6, 11, 45] suggest that object-oriented classesare
the most appropriate mechanism for abstract system-level modeling. Whileit istrue that classes can be
used to model hardware systems, as demonstrated by Kumar et al [34], the class-based approach gives
riseto significant problems. Indeed, Kumar et al state that they “use C++ to demonstrate the usefulness
of object-oriented techniques, not to provide arguments for or against its use in hardware modeling and
design.” It is unfortunate that the term “message passing” is often used to denote method invocation,
since that causes confusion with true message passing between active concurrent objects; thus leading

to a confusion between object-oriented features and concurrency features.

The chief problem with using classes asthefocus of modeling concurrent systemsisthat classes aredata-
centric. Tousethemin thiscontext forcesamonitor-based approach to concurrency. Monitorswerefirst
proposed as a concurrency mechanism by Hoare [24], and many of the subsequent concurrent language

proposals arose out of the difficultiesinherent in the monitor approach [2], in particul ar, the difficulties
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arising from nested monitor calls. It may bethat the monitors paradigm does not match the way system-
level designersview systems at an abstract level. The fact that many of the system-level description lan-
guages mentioned in Section NO TAG are process-based and use message passing suggests that the
message-passing paradigm may be more appropriate.

Webelievethat it isinappropriateto prejudice the language extension process by assuming aclass-based
solution for system-level modeling at the outset. Classes may be appropriate for datamodeling, but the
abstract concurrency issues should be dealt with orthogonaly. Classes may then be used to provide en-

capsulation and inheritance for whatever concurrency model is chosen.

4.2 Entitiesand Object-Oriented Extensions

Two of the proposals for object-oriented extensionsto VHDL suggest extending the concept of adesign
entity to include aspects of classes. VistaOO-VHDL [45] provides EntityObjects, which extend entities
by allowing inclusion of publicly visible procedures called operations. Benzakki and Djaffri [5] aso
propose addition of operations, but to ordinary entities as an aternative to ports. Both proposals alow

derived entities to inherit from parent entities.

We have a number of criticisms of these proposas. Both proposals suffer from the problems of using
classes to model concurrent objects (as discussed above) and subvert the concept of design entities by
using them for this purpose. Design entities, as alanguage construct, are intended to model instantiable
modules, and to abstract over and encapsul ate structure (expressed in terms of component instances) and/
or behaviour (expressed in terms of processes that are sensitive to and assign to signals). Benzakki and
Djaffri at |east preservethe view of an entity as a statically instantiable module with a declared interface
and an encapsul ated implementation. Our main criticism of that proposal isits poorly conceived concur-

rency control.

VistaOO-VHDL, on the other hand, significantly complicates the semantics of design entities and com-
ponent instances by the way in which it alows dynamic use of the name of an EntityObject instance.
It providesatypecalled EO_Handle that denotes aname of an EntityObject instance. Vauesof thetype
may be passed as parameters and transmitted using signals. Themain problemisthat EO_Handle values
are not typed with the signature of the designated EntityObject. Thus, when anayzing an operation call,
it isnot possible to check statically that the EntityObject has the required operation. This violates the
strong type-checking philosophy of VHDL, and allows more design errorsto pass through the devel op-
ment process to run-time. It alsoimposes run-time overhead in checking for correct use of an EntityOb-

ject. Furthermore, it violates the encapsulation of an object’simplementation. Through a design error
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or poor coding practice, an object might export an EntityObject that provides operationsthat exposeim-
plementation details that are supposed to be hidden. These characteristics of the extension violate the
principles of object-oriented design described by Booch and others, and viol atethelanguage design prin-
cipleof coherencewith the baselanguage. Swamy et al notethat they were“ guided by one god: provid-
ing the language to modelers as quickly as possible” ( [45, page 19]. Perhaps undue haste may have

compromised their language design process.

Our view isthat the existing semantics of entities, architectures, components, component instantiation,
port interfaces, sighal assignment, and signal sensitivity are central to VHDL as a hardware description
language and are what distinguish it from conventional programming languages. The entity declaration
serves to define an abstract interface for the communication mechanism implemented by amodule. If
classfeatures are added to the language and monitor calls used for interprocess communication, then the
monitor interface should be seen as a new aspect of an entity interface. The encapsulation of theimple-
mentation should remain strong. Alternatively, if some other form of concurrency and communication
is added, an abstraction for its communication mechanism should be added to the entity interface with
strong encapsulation. Thisis an orthogonal issue to adding inheritance to design entities for structura
modeling, as discussed in Section 3.

4.3 Object-Oriented Extensionsfor Data Modeling

In Section 3, weidentified two approachesfor object-oriented extensionsfor datamodeling: the program-
ming by extension approach as seenin Ada-95, and the class-based approach. Inaconventional program-
ming language, the choice between the two might be seen asamatter of taste. However, in VHDL, there
aresomestronger considerations. In both approaches, adeclared typerepresents aset of objects; thetype
iseither atagged record type or aclass. Objects of thetype arethen instantiated. Inaconventional pro-
gramming language, the only kinds of objectsthat can be created are constants (immutabl e storage | oca-
tions) or variables (mutable storage locations).1 Assignment to avariableis relatively straightforward.
In the Ada-95 modél, it involves computing avalue of the type and invoking the assignment operator to
modify the content of the storagelocation. In the class-based model, the name of thelocation isencapsu-
lated by the class definition, so assignment involvesinvoking amethod that has accessto thename. The
method then computes values and modifiesthe storagelocation. (Notethat thisisdifferent from assign-
ment of referencesto an object, wherethe value assigned isthe name of the storage location and thetype

of the valueis areference type.)

1. Weview afile, in the abstract sense, asavariable. Itisamutablelocation in secondary storage. Itstypeisasequence of
values, and it can be read and updated using atomic read and write operations.
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Whileboth of theseapproachescantranslatedirectly into VHDL for constantsand variables, itisnot clear
how they translatefor signals. Oneof themainreasonsfor consi dering object-orientationisto all ow spec-
ification of abstract datatypes (ADTSs), and it seems reasonabl e to expect to be able to define signa's of
anADT. Thedifficulty isthat signal assignment semanticsin VHDL are considerably moreinvolved than

just updating storagelocations. Any object oriented-extension for datamodeling must addressthisissue.

In an Ada-95 approach, the a signa name used on the left-hand side of asigna assignment statement
denotesthetrajectory storedinadriver for thesignal. Vauesof the correct subtype can be assigned direct-
ly using the signa assignment operator. The mechanism for constructing ADTs under an Ada-95 ap-
proach involves passing objects of the type to and from operation subprograms. Different kinds of
parametersare used for variableand signal objects, so the procedure can determinewhether tousevariable

or signal assignment. For example, using the instruction type discussed previously:

signal current_instr : instruction;

procedure force_nop (signal instr : out instruction) is
begin

instr <= nop_instruction;
end procedure;

Dunlop [17] illustrates an Ada-95 approach, and proposes a sol ution to the problem of asignal’ s subtype

changing while part of the signal is being waited on.

Intheclass-based approach, thestateof an ADT isencapsul ated with the operationsandisonly accessible
withintheimplementation of theoperations. Inconventiona programming languages, thestateisusually
represented by variables, and the operations use variabl e assignment to modify the state. In an extended
VHDL, it might at first seem appropriate to allow an ADT to encapsulate asignal. In that case, signa
assignment should be used to update the state. A corollary is that there should be two kinds of ADTSs:
one for variable objects, containing state in the form of variables; and one for signal objects, containing
statein theform of signas. Thiswould require substantia duplication, since, in many cases, objects of

both kinds would be required.

Toillustrate this problem, consider adigital signal processing (DSP) system which manipul ates values
of acomplex-number ADT. Function unitswithinthe DSP system communicate compl ex-number values
between one another over signa's, and store complex-number valuesinternally invariables. To deal with
thesetwo cases, amodel must providean ADT that encapsul atesacompl ex-number signal, and aseparate
ADT that encapsul atesacomplex-number variable. Assignment totheencapsul ated statewithintheADT

implementations must be does with signal assignment in the former ADT, and with variable assignment
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inthelatter ADT. Operations such as addition, conjugation, etc., would be essentially duplicated in the
two implementations. Without duplication of the ADTsin this manner, the strong encapsul ation of the
internal stateinthe ADT would bebroken. Such duplicationisevidentin ObjectiveVHDL [39], although
that language does provide a mechanism for factoring out parts of a class that are common to variable

and signal instances.

A better way of incorporating classesisto constrain the encapsul ated state to take the form of variables.
Thesigna assignment operation would then use the variabl e assignment and equality operations defined
for the ADT to update and compare valuesin transactionson signal drivers. Similarly, the signal update
algorithm would use the variable assignment and equality operations to compute driving and effective

values and to determine the occurrence of events on signals.

While both an Ada-95 approach and a class-based approach are feasible, an Ada-95 approach may work
out more nesatly within the existing framework of VHDL. In particular, since VHDL aready includes
featuresfor defining types and operationsin packages, an Ada-95 approach would simply involve an ex-
tension of these features. A class-based approach, on the other hand, would involve duplication of these
features, unnecessarily increasing the complexity of thelanguage semantics. Pursuing the programming

by extension approach will add to the language complexity, but to afar lesser extent.

4.4 Encapsulation

Abstract data types (ADTS) are a central language feature for managing language complexity on large
systems. AnADT isdefined by aset of valuesand aset of operationsfor manipul ating thevalue. Impor-
tantly, the concreteimplementation details of the ADT arehidden. A user of the ADT may only manipu-
late val ues through the provided operations.

VHDL provides a partia facility for defining ADTS, based on the package features of Ada. In Ada, an
ADT isdefined by declaring aprivatetypein apackage, a ong with subprogramsthat perform the opera-
tionsonthe ADT. Theinterna structure of the type is visible only within the package and can only be
mani pul ated by operationsin the packagebody; itisnot visibleto usersof thetypeoutsideof the package.
Unlike Ada, however, VHDL does not provide a means of hiding the concrete details of atype declared
in apackage. Thus, an ADT defined in VHDL is only encapsulated by convention—it is assumed that

the user will only manipulate the val ues through the operations provided in the package.

Anearly draft of theVHDL-93 standard included proposed featuresfor defining privatetypesin packages

[27]. Theissueismore complicated than in Ada, sincethere are more restrictions on the ways in which
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different typesmay beused. For example, an accesstype may not be used asthetypeof asigna inVHDL.
Thus, if a private type happens to have a concrete redlization as an access type, a problem arises when
auser attemptsto usethetypefor asignal. If theuser isprevented fromdoing so, informationiseffectively
“leaked” about the concreteimpl ementation, thusviol ating the supposed encapsulation. Thereareana o-
gous difficulties in Ada, which are handled by specifying limitations on the use of a private type. The
draft VHDL-93 proposal followed this approach, but the features were dropped from the final standard.
Webelievethat it isimportant to revisit thisissue, as strong encapsulation is necessary for successful im-
plementation of ADTSs, which, in turn, are necessary for high-level modeling.

Since ADTsform the basis for abject-oriented modeling, any language featuresincluded must al so sup-
port inheritance. Of issuehereisthetension betweeninformation hiding from usersof an ADT, and mak-
ing information visibleto derived ADTs. In C++, thisis addressed by the notion of “friend” classesand
“restricted” methodsin classes. Information that isrestricted is hidden from normal users, but isvisible
to sub-classesthat refinethe ADT. In Ada-95, theissueis addressed by hierarchical packages, in which
private partsarevisibleto child packages. Thus, whichever approachisfollowed inextensionstoVHDL,

there are models to follow in other languages.

45 Shared Variables

VHDL-93 includes shared variables, which are accessible to multiple processes. The current language
definition does not specify concurrency control semantics for concurrent access. However, the 1076a
Working Group has proposed amonitor-based sol ution to concurrency control [29]. This proposal forms
the basis for the class-based extension suggested by Willis et al [48]. They suggest that concurrency
control be implicit, involving mutual exclusion in the case of multiple processes concurrently caling
monitor operations. Inthe case of aclassinstance being nested within aprocess, no concurrency control
is needed.

The use of classesfor datamodeling need not, however, imply their use as monitorsfor shared variables.
It may be more appropriate to distinguish between the language features used for object-oriented data
modeling and those used for concurrency control. Thisisthe approach takenin Ada-95, in which tagged
and derived types are used for datamaodeling and protected types (aform of monitor) are used for concur-

rency control. For example:
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type shared_instruction is protected

type instr_ptr is access instruction’class;
variable instr : instr_ptr;

function get_instr return instruction’class;
procedure put_instr
( new_instr : instruction’class );

end protected shared_instruction;

In this example, the tagged type instruction and its derivatives and the class-wide type instruction’class
areused to model theinstruction set asdescribed in previoussections. Theprotected typeshared_instruc-
tion provides a means of creating a shared variable representing an instruction that can be accessed by
several processes viathe subprograms get_instr and put_instr. For a given shared variable of thistype,
only one process at atime can activate either of the subprograms. Hence mutually exclusive access to
the encapsulated variableisensured. The exampleillustratesthe separation of concernsinto datamodel -

ing aspects (based on tagged types and derivation), and concurrency control aspects (protected types).

An alternative approach may beto adopt classes for datamodeling and to allow monitors to encapsulate
instances of classesor any other datatypes. Thisisanother casewhere concurrency issues and object-ori-
entation should be dealt with orthogonally.

4.6 MultipleInheritance

There appearsto belittle agreement whether object-oriented extensionsto VHDL should alow multiple
inheritance or only singleinheritance. This parallelsthe debatein the programming language communi-
ty. According to Booch, “multipleinheritance[is] like a parachute: you don’t aways need it, but when
you do, you' rereally happy to haveit on hand” [7, page 124]. The decision between single and multiple
inheritance may ultimately beasecondary consideration. The Ada-95 “programming by extension” style
of data modeling does not support multiple inheritance, so if it is adopted without modification into
VHDL, single inheritance would result. However, the effects of multipleinheritance can be achievedin
Ada-95 by using the programming by extension features in combination with other features. The tech-
niquesareoutlinedin[4]. If aclass-based approachisadopted, the C++ or Javamodel for multipleinheri-
tance may prove an appropriate model to follow. It is not clear how strong the case is for multiple
inheritance in a hardware description language such as VHDL. Implementation costs, added language

complexity, integration with other language features, and complexity of use may be important factors.

4.7 Genericity

Thereisanother aspect of object-oriented extensionsto VHDL that isorthogonal to the issues addressed

previously, namely genericity. Thisisan aspect of polymorphic typing. The inheritance mechanisms
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included in the proposalscited allow expression of “is-a’ classification hierarchies, but do not adequately
deal with“is-part-of” hierarchies. For that, an additional mechanism, such asgenericsin Adaor template
classesin C++, isneeded. Ashenden and Wilsey [3] suggest an extensionto VHDL packagedeclarations,
based on generic packagesin Ada, to alow expression of generic ADTs. Theidea of generic typesand
generic subprograms could also be used in combination with the proposed data modeling and structure
modeling extensionsto alow generic classesor genericentities. Thiswouldbeuseful to describecontain-
er classesthat arenot bound to aparticular contained type. For example, alist of objects might bedefined

as

type listis class
generic (type element_type is private );

procedure add ( element : element_type );
end class;

Genericity would a so beuseful to describefunctional unitswhich can operateon avariety of related types

of data. For example, ashift register that shifts an array of objects might be defined as:

entity shift_reg is
generic (type item is private; type index is (<>);
type vector is array (index) of item );
port ( shift_clk : in bit; data in: in item;
data_out : out vector );
end entity;

4.8 Synthess

VHDL was originally conceived as a hardware design language, without being specifically oriented to-
ward either simulation or synthesis. However, synthesisis an increasingly important part of the design
flow. Early synthesistoolswerenot ableto deal with many of thelanguage constructsthat wereat alevel
of abstraction much above basic hardware devices. Behavioral synthesis tools devel oped more recently
areableto deal withlarger subsets of languagefeatures, allowing synthesisto beused earlier inthedesign
flow. If new high-level modeling features are to be added to VHDL, the synthesizability of the features

must be considered.

The rationale for adding new features for data modeling and system-level modeling is to aid modeling
at ahigh level of abstraction, abovethe level at which synthesiswould be used. Indeed, thereisinterest
in using new features for system-level design even before hardware/software partitioning has been per-
formed. Hence, it can be argued that high-level modeling features need not be synthesizable. However,
thisview ignoresthe ongoing devel opment of behaviora synthesistechnology [12, 14, 20] and hardware/
softwareco-synthesisstudies[15, 19, 22]. Furthermore, new featuresadded to support high-level model -
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ing arelikely tobe useful for modeling at lower level s of abstraction aswell. Hence, their synthesizability
using current synthesistechnology isanimportantissue. |gnoring theissue of synthesizability when con-
sidering language extensions may ultimately make synthesizability much more difficult. For example,
allowing dynamic communication of entity instance names (asin Vista OO-VHDL [45]) may prohibit
synthesis of method invocation, whereas constrai ning method invocation to statically determined entity

instances may make synthesis tractable.

Synthesis of proposed object-oriented extensions for structural modeling is less problematic, provided
all binding can be performed when the model iselaborated. For example, if adesign entity inheritsports,
processesand component i nstances, el aboration of the design entity woul d i nvol ve successive el aboration
of the ancestorsin theinheritancelattice. Thiswould create a static collection of nets and processes (ho

different from the current situation) that would then be synthesized using existing techniques.

5. CONCLUSION

Thispaper containsan in-depth survey of the previous proposal sfor introduci ng obj ect-ori ented and high-
level modeling extensionsinto VHDL. These previous proposals are categorized into three areas based
on themodeling requirementsthey address: datamodeling, structural modeling, and abstract system-lev-
el moddling. Our anaysis shows that, while there is much agreement between the proposals, many of
them lack depth of consideration of semanticissues. In particular, they lack generality of applicability
to awide range of modeling problems, and do not integrate consistently with existing language mecha-

nisms.

In this paper we have & so identified a number of issuesto be addressed when considering extension to
VHDL. We emphasize theimportance of a semantics-based approach to extensions and present our per-
spective on what i ssues are most important when studying semanticissuesfor possible extension. Exten-
sionsfor VHDL (or for that matter, any language) should manifest themsel vesin semantic and syntactic
structuresthat are consistent with the existing language structure. Merely bolting “your favoritelanguage
construct” onto the side of an existing language is not only foolish, but likely to destroy the language
semantics. Furthermore, expecting a single language construct to solve the vast array of system-level
modeling problemsal so leadsto disappointment. Webelievethat acollective of several, carefully crafted
language extensions can be made to migrate VHDL from its current object-based structure to an object-
oriented structure suitablefor high-level modeling. Wefurther believethat these structures will enhance
the existing encapsul ation and abstraction facilitiesof VHDL inwaysthat will expand VHDL'sexisting
strengths throughout the entire range of its modeling use. The value of this approach is demonstrated
in the extension of Adafrom Ada-83 to Ada95. Asstated inthe Ada-9X Rationae [4]:
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“Rather than providing anumber of new language features to directly solve each identified applica-
tion problem, the extracapability of Ada9X isprovided by afew primitivelanguage building bl ocks.
I'n combination, these building blocks enable programmers to solve more application problems effi-

ciently and productively.”

In performing our analysis of proposals and issues, it has become clear that object-orientation can arise
from asinglelanguagefeature, such asclasses, or from theinteraction of anumber of features. (Thelatter
approachisillustrated by Ada-95.) Whichever approachischosen, language extensions must bedesigned
tointegrate cleanly with the semanti c mechani sms and the syntax of the existing language. Furthermore,
it isnot sufficient to simply adopt featuresfrom programming languages. Rather, onemust carefully con-
sider theinteraction of aproposed extension with the existing hardware modeling constructsin VHDL,
such as signals and signal assignment. Consideration must also be given to designing a coherent set of
extensions that are not motivated solely by requirementsfor system-level modeling. For example, while
theintroduction of privatetypesand generictypeswould strengthen the encapsul ation and polymorphism
featuresrequired for object-orientation, they would beof general valueinthelanguagefor other modeling
tasks.

Aboveall, it must be bornein mind that VHDL isadesign automation language. Asthe scope of design
automation advances, the language must advance to keep track. However, those advances must not be
at the expense of existing uses of thelanguage. The expressiveness of the language for specifying hard-
ware systems must be maintained. Due consideration must also be given to theimpact of language exten-
sionsonanalysis, simulation, and synthesis. Thelanguage semanticsareal ready complex. By designing
extensionsthat cleanly integrate with the existing language, we reduce the additional complexity for se-
mantic analysis. Likewise, simulation capacity and performanceis dready an issue for tool designers
and users. Language extensionsthat impose significant and pervasive run-time burden are unacceptable.
Synthesis technology isnow extending to thelevel of behaviora synthesis. Language extensions should
not preclude synthesis of high-level modeling constructs by relying exclusively on run-time binding

mechanisms.

Lastly, we believe that the ongoing dia ogue in the literature focussing on object-oriented extensions to
VHDL istoo narrow. Thefocus should be on the broader i ssues of language extensionsto better support
awide range of modeling requirements. The language should become abject-oriented only insofar as

such extensions might include features for object-oriented programming and modeling.
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