Proc. VIUF Spring *97 Conference,

Santa Clara, CA (April 1997), pp. 109-118.

Considerations on Object-Oriented Extensions to VHDL"

Peter J. Ashenden

Dept. of Computer Science
The University of Adelaide
Adelaide, SA 5005
Australia

Abstract

This paper reviews proposals for object-oriented exten-
sions to VHDL and places them within a taxonomy
based on the modeling requirements they address. The
paper also presents a detailed discussion of issues to be
considered in adding object-oriented extensions to
VHDL, including concurrency, abstraction using entity
interfaces, signal assignment semantics, shared vari-
ables, multiple inheritance, genericity and synthesis.
Emphasis is placed on the importance of designing sim-
ple orthogonal semantic mechanisms that interact in
well defined ways, and that integrate cleanly with ex-
isiting language features.

1. Introduction

In recent years, the software engineering community
has moved towards object-orientation as a means of
managing the complexity inherent in large software
systems. Object-orientation allows a design space to be
partitioned into manageable pieces with well-
constrained interactions, and facilitates the reuse and
evolution of modules. According to Booch, “object ori-
entation involves the elements of data abstraction, en-
capsulation, and inheritance with polymorphism” in a
language ([9], page 181). The ideas denoted by these
terms are clearly defined and illustrated by Booch [8]
and have be reviewed extensively by other authors, so
we do not include any detailed discussion here.

We strongly believe that hardware design using a
hardware design language is the same intellectual pro-
cess as software design; consequently the complexity
management techniques that are used in software de-
sign should also be used in hardware design. Object-

Philip A. Wilsey

Dept. of ECECS, PO Box 210030
University of Cincinnati
Cincinnati, OH 45221-0030
USA

oriented design is one such technique. Hence, it is
appropriate to consider object-oriented techniques in a
hardware description language such as VHDL. Hard-
ware systems are complex, being composed of many in-
teracting components and incurring lifecycles and
generations. We expect that the use of object-oriented
techniques in hardware description languages will help
designers manage complexity, improve their productiv-
ity, and improve the reliability of the design process. In-
deed these expectations are expressed as requirements
by the IEEE DASC OO-VHDL Study Group [7].

Our aim in this paper is not to present or support any
particular object-oriented extension to VHDL. Instead,
we review previous proposals for extensions and at-
tempt to categorize them so that they are better under-
stood. Our categorization is based on the semantics of
each proposal, insofar as the semantics are elaborated
in each proposal. We attempt to identify some pitfalls
that can trap unwary players and show that many of the
previously proposed extensions encounter the pitfalls
and violate principles of good language design.

The remainder of this paper is organized as follows.
Section 2 presents some general principles for language
design that we argue should be adhered to when devel-
oping proposals for language extension. Section 3 pres-
ents a taxonomy of approaches to object-oriented
extensions to VHDL and places previously published
proposals within the taxonomy. Section 4 discusses a
range of issues that must be considered when designing
object-oriented extensions to VHDL and discusses the
way in which previous proposals address the issues (or,
in some cases, fail to address them). Finally, Section 5
concludes with a discussion of our plans to develop ob-
ject-oriented extensions to VHDL—hopefully avoiding
the pitfalls along the way.

* This work was partially supported by Wright Laboratory under USAF contract F33615-95-C-1638.

2. Language Design Principles

The design of a programming language or a hardware
description language is a difficult task. Since the lan-
guage is the vehicle for expression of design intent, a
good language can greatly help the design process,
whereas a poor language can significantly hinder it. A
language should conform to a set of ideals or philoso-
phies to make it coherent, easy to learn and understand.
We present here some views on language design prin-
ciples that lead to high quality languages. While many
of these principles may appear to be common sense or
general “motherhood and apple pie” statements, it is
important to bear them in mind throughout the language
design process. They are all too often overlooked, par-
ticularly when language design is conducted by a com-
mittee of diverse interests.

Design of Semantics

The foremost principle is that language design should
focus on semantics first and syntax second. The seman-
tics of language features embody the meaning of the
features, and determine what design intent can be ex-
pressed in the language. Syntax is the concrete denota-
tion. While poor syntax may obfuscate the design
intent, it does not prohibit expression of the intent.

Simplicity of Mechanism

In determining semantic features to be included in a lan-
guage, simple semantic mechanisms should be chosen
in preference to more complicated general solutions.
The semantic mechanisms should, as much as possible,
be orthogonal to each other. As Hoare suggests [17],
“concentrate on one feature at a time,” and “reject any
that are mutually inconsistent.” By choosing simple
orthogonal semantic mechanisms, interaction between
mechanisms is reduced and easier to understand. This
also makes it easier for tool builders to optimize their
implementation of language features.

Design of Extensions

When extending an existing language, the preceding
principles should be applied to the extensions. Simple
semantic mechanisms should be chosen to augment the
existing mechanisms, not to replace them. The new fea-
tures should conform to the same design philosophies
that were followed in the original language design so as
to maintain architectural coherence, or, as Brooks [10]
calls it, “conceptual integrity.” Careful consideration
must be given to interactions between new features and

existing features. While the semantics of new features
are of primary concern, integration of new syntax is also
important. Extensions should aim for stylistic consis-
tency with the existing language. New features that are
just syntactic rewrites of existing features (“syntactic
sugar”) should only be included if they significantly en-
hance the expressiveness of the language. As Wirth
puts it [28], “distinguish ... between what is essential
and what ephemeral.”

3. Taxonomy of Extensions and Previous
Proposals

Previous proposals for object-oriented extensions to
VHDL have focussed on three areas of language usage:
data modeling, structural modeling, and system-level
modeling. These areas are also reviewed by Dunlop
[12]. Table 1 summarizes the approaches adopted by
each of the previously proposed extensions. We discuss
the concepts in more detail in the following sections.
Note that the examples shown in this and subsequent
sections are intended only to illustrate the concepts. No
concrete language proposal is implied.

Extensions for Data Modeling

Object-oriented extensions for data modeling address
the way in which data values are described in a model.
Currently, VHDL provides a type system similar to that
of Ada, but with some simplifications. The suggestion
is that this is insufficient for modeling data with com-
plex structure in hardware models at a high-level of ab-
straction, and that object-oriented techniques for
expressing data should be incorporated into VHDL.

Two main approaches have been canvassed for ob-
ject-oriented data modeling in VHDL. The first ap-
proach involves adopting the “programming by
extension” features of Ada-95 [4], and is the basis of
proposals by Mills [21], and Schumacher and Nebel
[24]. Dunlop [13] also illustrates the general concepts
of object-oriented data modeling using this approach.
The approach involves defining a base type as a tagged
record, and deriving subtypes by extending tagged re-
cord types with new record elements. For example:

type instruction is tagged record
opcode : opcode_type;
end record;

type register_alu_instruction is new instruction
with record
dest, src1, src2 : reg_number;
end record;

Proposal Data Modeling

Structural Modeling

System-Level Modeling

Mills [21]
with single inheritance)

Schumacher and Nebel [24]
with single inheritance)

Dunlop [13] illustrates general concepts

using Ada-95 approach

Willis et al [27] class-based with multiple in-

heritance
Ecker [14]

Ramesh [23]

Mills [22]
Swamy et al [25]

Benzakki and Djafri [6]

Cabanis et al [11]

Ada-95 approach (tagged type

Ada-95 approach (tagged type tagged entity/architecture with

multiple inheritance

tagged entity/architecture with
multiple inheritance

entity classes with inheritance
(only single inheritance illus-
trated)

inheritance via configuration

entity classes with inheritance
(only single inheritance illus-
trated)

entity classes with multiple in-
heritance

implicit: class types for shared
variables have monitor se-
mantics

entity classes with operations
(modified monitor semantics);
inheritance (only single inher-
itance illustrated)

entity classes with operations
(modified monitor semantics);
multiple inheritance

class-based with operations
(concurrent invocation with ad
hoc concurrency control);
multiple inheritance

Table 1. Summary of proposals for object-oriented extensions to VHDL.

The hierarchy of derived types forms the inheritance
hierarchy required in object-oriented programming.
Other aspects, including abstraction and modularity,
come from existing language features, notably package
declarations. Polymorphic typing comes from declara-
tion of procedures with parameters of unconstrained
class types. For example:

procedure decode (instr : in instruction’class; ...);

The type of an actual parameter may be bound at run-
time rather than being statically determined. The main
weakness of this approach stems from the poor encap-
sulation features of VHDL packages. This could be im-
proved by adopting the stronger encapsulation features
of Ada, based on private types within packages.

The second approach to object-oriented data model-
ing is influenced by C++ and its predecessors, and in-
volves definition of classes, which encapsulate the
definitions of data and operations of objects. As an ex-
ample, the instruction types might be defined as:

type instruction is class

opcode : opcode_type;

procedure decode (...);

end class;

type register_alu_instruction is instruction class

dest, src1, src2 : reg_number;

procedure decode (...);

end class;

While a number of proposals are based on this ap-
proach, only Willis et al [27] limit their discussion to its
use for data modeling. Other proposals (cited later in
this section) extend its use to system-level modeling.
The driving motivation for incorporating classes in a
language definition is to provide direct language sup-
port for the principles of object-orientation in a single
language feature. Hence, a class is a unit of abstraction,
encapsulation, modularity, hierarchy (through inheri-
tance) and typing in this approach.

Extensions for Structural Modeling

Object-oriented extensions for structural modeling ad-
dress the issue of reuse of hardware designs to form new
designs. Design entities are viewed analogously to
classes, with component instances being objects. The
generic constants and ports defined in a design entity
are properties of objects. The proposed extensions for
structural modeling identified in Table 1 suggest that
new design entities can be derived by inheriting gener-
ics and ports from a parent entity and adding new gener-
ics and ports. In addition, the process statements and
component instances from the parent architecture body
are inherited, and new processes and component
instances are added to the derived architecture body.

There appear to be two approaches to object-oriented
structural modeling, paralleling the two approaches to
data modeling. However, the differences, insofar as
they are described in the proposals, are syntactic rather
than semantics-based. One approach, proposed by both
Mills [21] and Ecker [14], involves using the keyword
“tagged” to identify an entity or architecture that can be
inherited, and the keyword “new” to specify inheritance
into a derived entity or architecture. For example:

entity counter is tagged
port (clk : in bit; q: out bit_vector);
end entity counter;

entity resettable_counter is new counter with
port (reset : in bit);
end entity resettable_counter;

The other approach, proposed by Ramesh [23], basi-
cally uses the keyword “class” in place of “tagged” to
indicate inheritance, but is otherwise the same. The un-
derlying semantics are inheritance of generics and ports
in the entity declarations and inheritance of concurrent
statements in the architecture bodies.

Mills [22] proposes a semantically similar alterna-
tive, in which inheritance is specified in the binding in-
dication of a configuration declaration or configuration
specification, rather than in an entity or architecture
declaration. The difficulty with this approach is that the
binding is performed during elaboration rather than
during analysis. Hence, an inheriting design entity is
unable to refer to ports, signals and other items declared
in a parent design entity. This significantly limits the
way in which an inheriting design entity can extend or
refine the implemention of the parent.

Extensions for System-Level Modeling

Object-oriented extensions for system-level modeling
address the fact that the communication model implied
by signals and ports in VHDL is inappropriate for ab-
stract designs in which the inter-module communica-
tion protocols are not yet defined. In the early design
stages, a system may be modeled as a collection of com-
municating concurrent processes that request opera-
tions of one another and transfer data (often represented
by abstract tokens) between one another. The detailed
representation of data, the partitioning into hardware or
software modules, and the sequencing of communica-
tion over concrete interconnections are design deci-
sions deferred to a later stage in the design flow.

Proposed object-oriented extensions to VHDL for
system-level modeling seek to represent the system as
a set of objects that communicate by invoking opera-
tions in other objects. The intention is to use object-ori-
ented techniques to improve the development process
at this early stage in the lifecycle. We identify two dis-
tinct proposed approaches to extending VHDL in this
area. The first approach involves extending the notion
of an entity, viewing it as a form of class and adding op-
erations that can be invoked by processes. For example:

entity class elevator is
operation call (floor : floor_number);
operation where_are_you return floor_number;
end entity class;

entity class elevator_with_fire_service is
new elevator with
operation set_emergency_mode;
operation clear_emergency_mode;
end entity class;

The Vista OO-VHDL language described by Swamy
et al [25], and the proposal by Benzakki and Djafri [6]
follow this approach. These proposals also address
structural modeling, but motivate their extensions by
system-level modeling needs.

The second approach involves adding a class concept
to the language, as described above for data modeling,
and addressing the issue of concurrency control for
multiple processes accessing an object. The proposal
by Willis et al [27] implicitly addresses this issue by
making classes take on the characteristics of monitors
when instantiated as shared objects. In such cases,
mutual exclusion is enforced for concurrent access to a
shared object. The proposal by Cabanis et al [11], on
the other hand permits concurrent access to a shared ob-
ject. It addresses concurrency control by providing

some predicates that the designer can use to determine
whether concurrent access is occurring and thus control
program flow (for example, by busy-waiting). We dis-
cuss the use of object-oriented techniques for system-
level modeling further in Section 4.

4. Issues for OO Extensions to VHDL

One of our guiding principles for language extension
mentioned earlier is integration of new features with ex-
isting features. Thus, if we are to consider new features
to support object-oriented techniques, we need to iden-
tify existing features that relate to object-oriented tech-
niques. VHDL already includes many features that we
can relate to the principles cited by Booch as necessary
for object-orientation. Subprograms, entities and pack-
ages support abstraction and encapsulation (albeit weak
encapsulation in the case of packages); and overloading
provides a limited, ad-hoc form of polymorphism.
These features are sufficient for VHDL to be called “ob-
ject-based” in the terminology of Wegner [26].

The main issues that are not addressed by the existing
language are a stronger form of abstraction and encap-
sulation for abstract data types; inheritance-based hier-
archy (for data types and hardware structures); and the
form of polymorphism that goes with inheritance
(namely, dynamic binding of parameter types). We
maintain that language extensions to support object-
orientation should address these issues without subvert-
ing or replacing existing language features.

Concurrency and Object-Oriented Extensions

One central issue that is not adequately addressed by
previous proposals is the relationship between object-
oriented extensions and the concurrency and commu-
nication features in the language. There is a long
history of concurrent language design [3] and, more re-
cently, concurrent object-oriented language design [2].
VHDL already has a concurrency model, based on stati-
cally instantiated processes communicating and syn-
chronizing via signals. A number of the proposals for
extensions [6, 7, 11, 25] suggest that object-oriented
classes are more appropriate for abstract system-level
modeling. While it is true that classes can be used to
model hardware systems, as demonstrated by Kumar et
al [19], it is not necessarily the best way. (Indeed, Ku-
mar et al state that they “use C++ to demonstrate the
usefulness of object-oriented techniques, not to provide
arguments for or against its use in hardware modeling
and design.”) It is unfortunate that the term “message
passing” is often used to denote method invocation,
since that causes confusion with true message passing

between active concurrent objects; thus leading to a
confusion between object-oriented features and con-
currency features.

In considering the relationship between object-ori-
ented features and concurrency, Lim and Johnson sug-
gest that

“Designing features for concurrency in OOP lan-
guages is not much different from that of other
kinds of languages—concurrency is orthogonal to
OOQP at the lowest level of abstraction. OOP or
not, all the traditional problems in concurrent pro-
gramming still remain. However, at the highest
levels of abstraction, OOP can alleviate the con-
currency problem ... by hiding concurrency inside
reusable abstractions.” [20]

We concur with this view, and believe that it applies
equally to adding object-oriented features to VHDL,
which is a concurrent language. The problem with us-
ing classes as the focus of modeling concurrent systems
is that classes are data-centric. To use them in this con-
text forces a monitor-based approach to concurrency.
Monitors were first proposed as a concurrency mecha-
nism by Hoare [15], and many of the subsequent con-
current language proposals arose out of the difficulties
inherent in the monitor approach [3]. It may be that the
monitors paradigm does not match the way system-
level designers view systems at an abstract level. For
example, a paradigm based on CSP [16] may be closer
to the way many system-level designers think. An ex-
tension for CSP-based concurrency might allow defini-
tion of message channels and provide operations to send
and receive messages on channels. For example:

channel elevator_call : floor_number;
channel elevator_location : floor_number;

elevator : process is
begin

receive calling_floor from elevator_call;
send current_floor to elevator_location;

end process;

Here, elevator_call and elevator_location are message
passing channels through which processes communi-
cate. The receive and send operations in the elevator
process are synchronous message-passing events, in
which a value of the designated type is passed from
sender to receiver. CSP message passing, as illustrated
in this example, abstracts over the details of protocols
for transferring data using VHDL signals.

Another alternative paradigm might be communicat-
ing hierarchical state machines, such as that used in the

Uniform Modeling Language (UML) [9]. We believe
that it is inappropriate to prejudice the language exten-
sion process by assuming a class-based solution for sys-
tem-level modeling at the outset. Classes may be
appropriate for data modeling, but the abstract con-
currency issues should be dealt with orthogonally.
Classes may then be used to provide encapsulation and
inheritance for whatever concurrency model is chosen.

Entities and Object-Oriented Extensions

Two of the proposals for object-oriented extensions to
VHDL suggest extending the concept of a design entity
to include aspects of classes. Swamy et al [25] propose
EntityObjects, which extend entities by allowing inclu-
sion of publicly visible procedures called operations.
Benzakki and Djaffri [6] also propose addition of opera-
tions, but to ordinary entities as an alternative to ports.
Both proposals allow derived entities to inherit from
parent entities.

We have a number of criticisms of these proposals.
Both proposals suffer from the problems of using
classes to model concurrent objects (as discussed
above) and subvert the concept of design entities by us-
ing them for this purpose. Design entities, as a language
construct, are intended to model instantiable modules,
and to abstract over and encapsulate structure (ex-
pressed in terms of component instances) and/or beha-
viour (expressed in terms of processes that are sensitive
to and assign to signals). Benzakki and Djaffri at least
preserve the view of an entity as a statically instantiable
module with a declared interface and an encapsulated
implementation. Our main criticism of that proposal is
its poorly conceived concurrency control. Swamy et al,
on the other hand, significantly complicate the seman-
tics of design entities and component instances by the
way in which they allow dynamic use of the name of an
EntityObject instance. Their scheme violates the en-
capsulation of the implementation of an entity, and is
type-unsafe. These characteristics of the extension vio-
late the principles of object-oriented design described
by Booch and others, and violate the language design
principle of coherence with the base language.

Our view is that the existing semantics of entities, ar-
chitectures, components, component instantiation, port
interfaces, signal assignment and signal sensitivity are
central to VHDL as a hardware description language,
and are what distinguish it from conventional program-
ming languages. The entity declaration serves to define
an abstract interface for the communication mechanism
implemented by a module. If class features are added
to the language and monitor calls used for interprocess
communication, then the monitor interface should be

seen as a new aspect of an entity interface. The encap-
sulation of the implementation should remain strong.
Alternatively, if some other form of concurrency and
communication is added, an abstraction for its commu-
nication mechanism should be added to the entity inter-
face with strong encapsulation. This is an orthogonal
issue to adding inheritance to design entities for struc-
tural modeling, as discussed in Section 3.

Object-Oriented Extensions for Data Modeling

In Section 3, we identified two approaches for object-
oriented extensions for data modeling: the “program-
ming by extension” approach as seen in Ada-95, and the
class-based approach. In a conventional programming
language, the choice between the two might be seen as
a matter of taste. However, in VHDL, there are some
stronger considerations. In both approaches, we de-
clare a type to represent a set of objects; the type is ei-
ther a tagged record type or a class. We then instantiate
the type to create objects. In a conventional program-
ming language, the only kinds of objects we can create
are constants (immutable storage locations) or vari-
ables (mutable storage locations). Assignment to a
variable is relatively straightforward. In the Ada-95
model, it involves computing a value of the type and in-
voking the assignment operator to modify the content
of the storage location. In the class-based model, the
name of the location is encapsulated by the class defini-
tion, so assignment involves invoking a method that has
access to the name. The method then computes values
and modifies the storage location. (Note that this is dif-
ferent from assignment of references to an object,
where the value assigned is the name of the storage
location and the type of the value is a reference type.)

While both of these approaches can translate directly
into VHDL for constants and variables, it is not clear
how they translate for signals. One of the main reasons
for considering object-orientation is to allow specifica-
tion of abstract data types, and it seems reasonable to
expect to be able to define signals of an abstract data
type. The difficulty is that signal assignment semantics
in VHDL are considerably more involved than just up-
dating storage locations. Any object oriented-exten-
sion for data modeling must address this issue.

In the Ada-95 approach, the name of a signal repre-
sents its stored trajectory, and values of the correct sub-
type can be assigned directly using the signal
assignment operator. The mechanism for constructing
abstract data types under the Ada-95 approach involves
passing objects of the type to and from operation sub-
programs. Different kinds of parameters are used for
variable and signal objects, so the procedure can deter-

mine whether to use variable or signal assignment. For
example, using the instruction type from above:

signal current_instr : instruction;

procedure force_nop (signalinstr: outinstruction) is
begin

instr <= nop_instruction;
end procedure;

Dunlop [13] illustrates the Ada-95 approach, and pro-
poses a solution to the problem of a signal’s subtype
changing while part of the signal is being waited on.

In the class-based approach, the state of an abstract
data type is encapsulated with the operations, and is
only accessible within the implementation of the opera-
tions. In conventional programming languages, the
state is usually represented by variables, and the opera-
tions use variable assignment to modify the state. In an
extended VHDL, the state of a signal of an abstract data
type should be the signal’s trajectory, and signal assign-
ment should be used to update the state. This implies
that there should be two kinds of abstract data types, one
for variable objects and one for signal objects. It is not
clear how the specification of state within a class and as-
signment within operations can be constrained to be
consistent with the instantiated use of the class as a vari-
able or a signal. Consequently, the Ada-95 approach
may work out more neatly within the existing language
framework.

Shared Variables

VHDL-93 includes shared variables, which are accessi-
ble to multiple processes. The current language defini-
tion does not specify concurrency control semantics for
concurrent access. However, the 1076a Working Group
has proposed a monitor-based solution to concurrency
control [18]. This proposal forms the basis for the class-
based extension suggested by Willis et al [27]. They
suggest that concurrency control be implicit, involving
mutual exclusion in the case of multiple processes call-
ing monitor operations concurrently. In the case of a
class instance being nested within a process, no con-
currency control is needed.

The use of classes for data modeling need not, how-
ever, imply their use as monitors for shared variables.
It may be more appropriate to distinguish between the
language features used for object-oriented data model-
ing and those used for concurrency control. This is the
approach taken in Ada-95, in which tagged and derived
types are used for data modeling and protected types (a

form of monitor) are used for concurrency control. For
example:

type shared_instruction is protected

type instr_ptr is access instruction’class;
variable instr : instr_ptr;
function get_instr return instruction’class;
procedure put_instr

(new_instr : instruction’class);

end protected,;

An alternative approach may be to adopt classes for
data modeling and to allow monitors to encapsulate
instances of classes or any other data types. This is
another case where concurrency issues and object-ori-
entation should be dealt with orthogonally.

Multiple Inheritance

There appears to be little agreement whether object-ori-
ented extensions to VHDL should allow multiple inher-
itance or only single inheritance. This parallels the
debate in the programming language community. Ac-
cording to Booch, “multiple inheritance [is] like a para-
chute: you don’t always need it, but when you do,
you’re really happy to have it on hand” ([8], page 124).
The decision between single and multiple inheritance
may ultimately be a secondary consideration. The
Ada-95 style of data modeling does not support multi-
ple inheritance, so if the Ada-95 style is adopted with-
out modification into VHDL, single inheritance would
result. If a class-based approach is adopted, the C++
model for multiple inheritance may prove an appropri-
ate model to follow. It is not clear how strong the case
is for multiple inheritance in a hardware description
language such as VHDL. Implementation costs may be
an important factor.

Genericity

There is another aspect of object-oriented extensions to
VHDL that is orthogonal to the issues addressed pre-
viously, namely genericity. This is an aspect of poly-
morphic typing. The inheritance mechanisms included
in the proposals cited allow expression of “is-a” classi-
fication hierarchies, but do not adequately deal with “is-
part-of” hierarchies. For that, an additional
mechanism, such as generics in Ada or template classes
in C++, is needed. Ashenden and Wilsey [5] suggest an
extension to VHDL package declarations, based on ge-
neric packages in Ada, to allow expression of generic
abstract data types. The idea of generic types and ge-
neric subprograms could also be used in combination
with the proposed data modeling and structure model-
ing extensions to allow generic classes or generic enti-

ties. This would be useful to describe container classes
that are not bound to a particular contained type. For
example, a list of objects might be defined as:

type list is class
generic (type element_type is private);

.;;rocedure add (element : element_type);

end class;

Genericity would also be useful to describe function-
al units which can operate on a variety of related types
of data. For example, a shift register that shifts an array
of objects might be defined as:

entity shift_reg is
generic (type item is private; type index s (<>);
type vector is array (index) of item);
port (shift_clk : in bit; data_in : in item;
data_out : out vector);
end entity;

Synthesis

VHDL was originally conceived as a hardware design
language, without being specifically oriented toward
either simulation or synthesis. However, synthesis is an
increasingly important part of the design flow. Early
synthesis tools were not able to deal with many of the
language constructs that were at a level of abstraction
much above basic hardware devices. Behavioral syn-
thesis tools developed more recently are able to deal
with larger subsets of language features, allowing syn-
thesis to be used earlier in the design flow. If object-ori-
ented features are to be added to VHDL, the
synthesizability of the features must be considered.

The rationale for adding object-oriented features for
data modeling and system-level modeling is to aid mo-
deling at a high level of abstraction, above the level at
which synthesis would be used. Indeed, there is interest
in using object-oriented features for system-level de-
sign even before hardware/software partitioning has
been performed. Hence, it can be argued that object-
oriented features need not be synthesizable. However,
this view ignores the ongoing development of behavior-
al synthesis technology. Ignoring the issue of synthesiz-
ability when considering language extensions may
ultimately make synthesizability much more difficult.
For example, allowing dynamic communication of en-
tity instance names (as in the proposal by Swami et al
[25]) may prohibit synthesis of method invocation,
whereas constraining method invocation to statically
determined entity instances may make synthesis tracta-
ble.

Synthesis of proposed object-oriented extensions for
structural modeling is less problematic, provided all
binding can be performed when the model is elaborated.
For example, if a design entity inherits ports, processes
and component instances, elaboration of the design en-
tity would involve successive elaboration of the ances-
tors in the inheritance lattice. This would create a static
collection of nets and processes that would then be syn-
thesized using existing techniques.

5. Conclusion

This paper contains an in-depth survey of the previous
proposals for introducing object-oriented extensions
into VHDL. These previous proposals are categorized
into three areas based on the modeling requirements
they address: data modeling, structural modeling, and
abstract system-level modeling. Our analysis shows
that, while there is much agreement between the pro-
posals, many of them lack depth of consideration of se-
mantic issues. In particular, they lack generality of
applicability to a wide range of modeling problems, and
do not integrate consistently with existing language
mechanisms.

In this paper we have also identified a number of is-
sues to be addressed when considering object-oriented
extension to VHDL. We emphasize the importance of
a semantics-based approach to extensions and present
our perspective on what issues are most important when
studying semantic issues for possible extension. Exten-
sions for VHDL (or for that matter, any language)
should manifest themselves in semantic and syntactic
structures that are consistent with the existing language
structure. Merely bolting “your favorite language
construct” onto the side of an existing language is not
only foolish, but likely to destroy the language seman-
tics. Furthermore, expecting a single language
construct to solve the vast array of system-level model-
ing problems also leads to disappointment. We believe
that a collective of several, carefully crafted, language
extensions can be made to migrate VHDL from its cur-
rent object-based structure to an object-oriented struc-
ture. We further believe that these structures will
enhance the existing encapsulation and abstraction fa-
cilities of VHDL in ways that will expand VHDL’s ex-
isting strengths throughout the entire range of its
modeling use. The value of this approach is demon-
strated in the extension of Ada from Ada-83 to Ada-95.
As stated in the Ada-9X Rationale [1]:

“Rather than providing a number of new language
features to directly solve each identified applica-
tion problem, the extra capability of Ada 9Xis pro-
vided by a few primitive language building blocks.
In combination, these building blocks enable pro-

grammers to solve more application problems effi-
ciently and productively.”

In performing our analysis of proposals and issues, it
has become clear that object-orientation can arise from
a single language feature, such as classes, or from the
interaction of a number of features. (The latter approach
is illustrated by Ada-95.) Whichever approach is cho-
sen, language extensions must be designed to integrate
cleanly with the semantic mechanisms and the syntax
of the existing language. It is not sufficient simply to
adopt features from programming languages. It is nec-
essary to consider their interaction with the existing
hardware modeling constructs in VHDL, such as sig-
nals and signal assignment. Furthermore, consideration
should be given to designing a coherent set of exten-
sions that are not motivated solely by requirements for
system-level modeling. For example, introduction of
private types and generic types would strengthen the en-
capsulation and polymorphism features required for ob-
ject-orientation, and would be of general value in the
language for other modeling tasks.

Above all, it must be borne in mind that VHDL is a
design automation language. As the scope of design au-
tomation advances, the language must advance to keep
track. However, those advances must not be at the ex-
pense of existing uses of the language. The expressive-
ness of the language for specifying hardware systems
must be maintained. Due consideration must also be
given to the impact of language extensions on analysis,
simulation and synthesis. The language semantics are
already complex. By designing extensions that cleanly
integrate with the existing language, we reduce the
additional complexity for semantic analysis. Likewise,
simulation capacity and performance is already an issue
for tool designers and users. Language extensions that
impose significant and pervasive run-time burden are
unacceptable. Synthesis technology is now extending
to the level of behavioral synthesis. Language exten-
sions should not preclude synthesis of object-oriented
constructs by relying exclusively on run-time binding
mechanisms.

Lastly, we believe that the ongoing dialogue in the lit-
erature focussing on object-oriented extensions to
VHDL is too narrow. The focus should be on the broad-
er issues of language extensions to better support a wide
range of modeling requirements. The language should
become object-oriented only insofar as such extensions
might include features for object-oriented program-
ming and modeling.

References

[1] Ada 9X Mapping/Revision Team, Ada 9X Ratio-
nale, Intermetrics, Cambridge, MA (1994).

[2] Agha, G., “Concurrent Object-Oriented Program-
ming,” CACM, Vol. 33, No. 9 (September 1990),
pp. 125-141.

[3] Andrews, G. R., and Schneider, F. B., “Concepts
and Notations for Concurrent Programming,”
ACM Computing Surveys, Vol. 15, No. 1 (March
1983), pp. 1-43.

[4] ANSI/ISO, Ada 9X Reference Manual, ISO/IEC
Standard 8652, Intermetrics, Cambridge, MA
(1994).

[5] Ashenden, P. J., and Wilsey, P. A., “Polymorphic
Abstract Data Types in VHDL,” Proc.
ICEHDL 95, Las Vegas, NV (1995), pp. 35-39.

[6] Benzakki, J., and Djaffri, B., “Object Oriented Ex-
tensions to VHDL, the LaMI Proposal,” Proc.
CHDL ’97, Toledo, Spain (forthcoming, 1997).

[7] Bergé, J. M., Nebel, W. and Putzke, W., Require-
ments and Design Objectives for an Object-Ori-
ented Extension of VHDL (OO-VHDL), 1EEE
DASC OO-VHDL Study Group working paper,
ftp://vhdl.org/vi/oovhdl/papers/dod_aug96.rtf
(1996).

[8] Booch, G., Object-Oriented Analysis and Design
with Applications, Benjamin/Cummins, Redwood
City, CA (1994).

[9] Booch, G., The Best of Booch, SIGS Books and
Multimedia, New York, NY (1996).

[10] Brooks, F. The Mythical Man-Month, Addison-
Wesley, Reading, MA (1975).

[11] Cabanis, D., and Medhat, S., “Classification-Ori-
entation for VHDL: A Specification,” Proc. VIUF
Spring '96 Conference, Santa Clara, CA (February
1996), pp. 265-274.

[12] Dunlop, D. D., “Object-Oriented Extensions to
VHDL,” Proc. VIUF Fall 94 Conference,
McLean, VA (1994), pp. 5.1-5.9.

[13] Dunlop, D. D., VHDL “Structure Varying” Signals
and OO Extensions to the VHDL Type System,
IEEE DASC OO-VHDL Study Group working pa-
per, ftp://vhdl.org/vi/oovhdl/papers/structure—
varying—signals.txt (1995).

[14] Ecker, W., “An Object-Oriented View of Structur-
al VHDL Description,” Proc. VIUF Spring 96
Conference, Santa Clara, CA (February 1996),
pp- 255-264.

[15] Hoare, C. A. R., “Monitors: An Operating System
Structuring Concept,” CACM, Vol. 17, No. 10
(October 1974), pp. 549-557.

[16] Hoare, C. A. R., “Communicating Sequential Pro-
cesses,” CACM, Vol.21, No.1l (November
1978), pp. 934-941.

[17] Hoare, C. A. R., “Hints on Programming Lan-
guage Design, in Hoare, C. A. R., and Jones, C. B.,
(ed.), Essays in Computing Science, Prentice Hall,
Herts, UK (1989), pp. 193-216.

[18] IEEE DASCP1076a Working Group, Shared Vari-
able Language Change Specification (PAR
1076A), http://vhdl.org/vi/svwg/lcs/Ics.htm
(1996).

[19] Kumar, S., Aylor, J. H., Johnson, B. W., and Wulf,
W. A,, “Object-Oriented Techniques in Hardware
Design,” [EEE Computer, Vol. 9, No. 6 (June
1994), pp. 64-70.

[20] Lim, J. and Johnson, R. E., “The Heart of Object-
Oriented Concurrent Programming,” Proc. ACM
SIGPLAN Workshop on Object-Based Concurrent
Programming, ACM SIGPLAN Notices, Vol. 24,
No. 4 (April 1989), pp. 165-167.

[21] Mills, M. T., Proposed Object Oriented Program-
ming (OOP) Enhancements to the Very High Speed
Integrated Circuits (VHSIC) Hardware Descrip-
tion Language (VHDL), Tech. Report WL-
TR-5025, Wright Laboratory, Dayton, OH
(August 1993).

[22] Mills, M. T., A Minor Syntax Change to VHDL
Yields Major Object Oriented Benefits, unpub-
lished paper, ftp://vhdl.org/vi/oovhdl/papers/
mills.oct.95.ps (1995).

[23] Ramesh, C. R., “Object Orienting VHDL for Com-
ponent Modeling,” Proc. VIUF Fall 94 Confer-
ence, McLean, VA (1994), pp. 5.17-5.28.

[24] Schumacher, G., and Nebel, W., “Inheritance Con-
cept for Signals in Object-Oriented Extensions to
VHDL,” Proc. Euro-DAC ’95 with Euro-
VHDL °95, Brighton, UK (1995).

[25] Swamy, S., Molin, A., and Covnot, B., “O0O-
VHDL: Object-Oriented Extensions to VHDL,”
IEEE Computer, Vol. 28, No. 10 (October 1995),
pp- 18-26.

[26] Wegner, P., “Dimensions of Object-Based Lan-
guage Design,” Proc. OOPSLA °87 in ACM SIG-
PLAN Notices, Vol. 22, No. 12 (December 1987),
pp- 168-182.

[27] Willis, J. C., Bailey, S. A., and Newschutz, R., “A
Proposal for Minimally Extending VHDL to
Achieve Data Encapsulation, Late Binding and
Multiple Inheritance,” Proc. VIUF Fall *94 Con-
ference, McLean, VA (1994), pp. 5.31-5.38.

[28] Wirth, N., “From Programming Language Design
to Computer Construction,” CACM, Vol. 28,
No. 2 (February 1985), pp. 160-164.

