
Accepted for publication in Proceedings of the 1999 International Hardware
Description Languages Conference and Exhibit (HDLCON ’99).

1

Communication and Synchronization Using Bounded Channels in SUAVE*

Peter J. Ashenden and Robert Esser
Department of Computer Science
University of Adelaide, SA 5005

Australia
petera@cs.adelaide.edu.au
esser@cs.adelaide.edu.au

Philip A. Wilsey
Dept. ECECS, PO Box 210030

University of Cincinnati
Cincinnati, OH 45221-0030

USA
phil.wilsey@uc.edu

Abstract

This paper described improvements to the abstract inter-
process communication features added to VHDL as part of
the SUAVE language design. Channel type declarations
are extended to allow specification of bounded message
buffers. This allows the designer to choose between asyn-
chronous or synchronous message passing semantics. The
latter makes models more amenable to formal verification
based on state-space exploration. The language is also ex-
tended to allow specification of timeout intervals in select
statements. This change makes the language more widely
applicable, including for description of telecommunication
protocols.

1. Introduction

As the complexity of integrated hardware and software sys-
tems increases, system-level design languages are becom-
ing increasingly important. Such languages rely on
abstraction as the key to managing complexity. Designers
focus first on the abstract properties of a system in various
domains and devise a systems architecture that will satisfy
the requirements placed on the system. The domains under
consideration include behavior, structure, performance,
physical arrangement and packaging, power consumption,
thermal, cost, and so on. In each domain, abstraction is
used to focus on the major aspects of the system and minor
detail is ignored. Judicious choice of abstractions makes
architectural design and analysis tractable, and aids subse-
quent partitioning and refinement of the system design.

Hardware description languages focus on describing
systems in the behavioral and structural domains. How-
ever, due to their origin as languages for hardware design,

they frequently do not include strong capabilities for ab-
stracting over data and for describing complex interactions.
For example, in Verilog [12, 18], data types are closely
bound to their binary representation, and signalling be-
tween modules includes aspects of electrical implementa-
tion. VHDL [1, 11], on the other hand, allows more
abstract expression of data, and its type system is similar to
that of conventional programming languages. However, its
signalling features are still closely bound to electrical im-
plementation.

To remedy these deficiencies, we have developed exten-
sions to VHDL to improve its support for system-level mo-
deling [2, 4–7]. These extensions are based on the
requirement in a system-level description language for ab-
straction of data, concurrency, communication and timing.
The mechanisms added to the language to support abstrac-
tion in these areas include:

object-oriented data types,

type generics,

process declarations, with static and dynamic instantia-
tion, and

message-passing communication on channels.

This paper focuses on the last of these mechanisms. The
communications mechanisms originally proposed pro-
vided asynchronous message passing on channel with un-
bounded buffer capacity. While this is appropriate for
some modeling applications, other applications find syn-
chronous communication or communication with bounded
buffering more appropriate. Furthermore, formal proof of
properties and refinements of communicating system are
more readily achieved when synchronous communication
or bounded buffering is used. Another deficiency in the
original proposal was the lack of a mechanism to specify
timeouts in communication statements. Such mechanisms

* This work was partially supported by a grant from Motorola Australia Software Centre.



2

are widely used in description of communication proto-
cols, and its omission from SUAVE reduces the language’s
applicability in that area.

In this paper, we generalize the communication mecha-
nisms of SUAVE to allow specification of buffer capacity
of channels and specification of timeouts in communica-
tion statements. Section 2 reviews the communication
mechanisms in the previous proposal and discusses the
problems that arise. Section 3 presents revised mecha-
nisms for describing channels, including mechanisms for
specifying buffering capacity, and discusses the implica-
tions for formal proof of model properties. Section 4 pres-
ents revised communication statements, including a
mechanism for specifying timeouts, and compares the
mechanism with features of SDL [13]. We summarize and
draw conclusions in Section 5.

2. SUAVE’s Existing Features for Abstract
Communication

In a previous paper [3], we identified a number of issues in-
fluencing our design of communication mechanisms in
SUAVE. Based on a consideration of these issues, we chose
asynchronous message passing as the communication
paradigm. Messages are transferred between processes
over named, typed communication channels. Channels
may be connected to multiple receiving processes, allow-
ing a form of multicast communication.

2.1 Channel types and objects

A model that uses channels must first declare the necessary
channel types using channel type declarations. The syntax
rule is

channel_type_definition ::=
channel of subtype_indication

| null channel

One or more channels may be declared using a channel
declaration. The syntax rule is:

channel_declaration ::=
channel identifier_list : subtype_indication ;

Channel declarations may appear within entity declara-
tions, architecture bodies, block statements, generate state-
ments, and package declarations. The subtype indication
in the channel declaration denotes a channel type.

A channel is analogous to a signal, except that informa-
tion is transferred using the send and receive message pass-
ing operations (described below). There is no notion of
resolution of multiple source values, nor of specific times
at which values occur on channels. A channel object de-
notes a first-in/first-out buffer of messages. When the
channel object is created, the buffer is initially empty.

SUAVE also allows interface channels, which may ap-
pear as formal ports of design entities, components or
blocks, or as formal channel parameters of subprograms.
The syntax rule is:

interface_channel_declaration ::=
channel identifier_list : [ mode ] subtype_indication

The mode, if present, is one of in or out, and the subtype
indication denotes a channel type. An in mode channel
may be used to receive messages, and an out mode channel
may be used to send messages.

SUAVE provides mechanisms based on access types for
dynamically creating channels in order to communicate
with dynamically created processes. An access type may
be declared to have a channel type as its designated type.
Such an access type is called an access-to-channel type. A
channel may be dynamically allocated using an allocator
with a subtype indication denoting a channel type. The ac-
cess value returned by the allocator designates the newly
allocated channel.

2.2 Communication Statements

SUAVE extends the set of sequential statements to include
send statements, receive statements and select statements.
A send statement adds a message to the buffer of a channel.
The syntax rule is:

send_statement ::=
[ label : ] send [ expression ] to channel_name ;

The expression is disallowed if the channel is of a null
channel type. Otherwise, the expression is required and de-
notes the value to be sent as a message. If the channel is of
a null channel type, a data-less message is sent. Execution
of a send statement involves adding the message to the tail
of the message buffer of the named channel. The process
executing the send statement then continues executing. If
multiple processes execute send statements to the same
channel concurrently, the order in which the messages are
added to the message buffer is not defined. (It is imple-
mentation dependent.)
A process accepts a message from a channel using a receive
statement. The syntax rule is:

receive_statement ::=
[ label : ] receive [ target ] from channel_name ;

The target is disallowed if the channel is of a null channel
type, otherwise it is required. The target must denote a va-
riable name or an aggregate of variable names. Execution
of a receive statement involves examining the message
buffer of the named channel. If the message buffer is
empty, the process suspends until a message arrives. When
there is a message available, it is removed from the buffer.
If the channel is not of a null channel type, the value of the
message is assigned to the target using the same rules as va-
riable assignment.



3

If multiple processes can read a message channel, all
processes receive each message sent to the channel. Fur-
thermore, all processes receive the messages from the
channel in the same order. An implementation may
achieve this effect either by providing one message buffer
for the channel, from which each process copies message
values, or by replicating the message buffer at each process.

A process may choose between a number of channels for
message reception using a select statement. The syntax
rules are:

select_statement ::=
[ select_label : ]

select
[ guard ] receive_alternative

{ or
[ guard ] receive_alternative }

[ else
sequence_of_statements ]

end select [ select_label ] ;

guard ::= when condition =>

receive_alternative ::=
receive_statement [ sequence_of_statements ]

A select statement allows non-deterministic choice be-
tween alternative sources for message reception. Each re-
ceive alternative may be guarded by a boolean condition;
a guarded alternative may only be chosen if the guard is
true.

Execution of the select statement consists firstly of ev-
aluating the guard conditions. An alternative is said to be
open if it has no guard, or if its guard evaluates to true. If
no alternative is open and the select statement has an else
clause, the statements in the else clause are executed, thus
completing execution of the select statement. It is an error
if no alternative is open and there is no else clause.

If there are open alternatives for which the channels
named in the corresponding receive statements have buf-
fered messages, one of the open alternatives is chosen arbi-
trarily. The receive statement is executed, followed by
execution of the sequence of statements (if present), com-
pleting execution of the select statement.

If there are open alternatives but none of the channels
named in the corresponding receive statements have buf-
fered messages, execution depends on whether the select
statement has an else clause. If there is an else clause, the
statements in it are executed, completing execution of the
select statement. Otherwise, the process blocks until a
message arrives on one of the channels named in the receive
statements of the open alternatives. Execution then pro-
ceeds as described in the previous paragraph. The guard
conditions are not re-evaluated while the process is blocked
or when a message arrives.

2.3 Deficiencies in the Existing Features

While our previous proposal was based on an analysis of is-
sues affecting design of communication mechanisms, there
are two areas in which improvements can be made. The
first relates to the specification of unbounded buffering in
channels. Our decision to provide unbounded buffering
was influenced by our survey of previous system-level de-
scription languages, a number of which provided un-
bounded buffering (SDL included). Furthermore, we
observed that bounded buffering and synchronous com-
munication could be expressed with unbounded-buffered
communication using a combination of buffer components
and handshaking synchronization. However, it appears
that this decision has adverse consequences for formal veri-
fication of models. The main problem is that the state space
of a model that uses unbounded buffers is potentially infi-
nite. An important class of formal verification techniques
is based on state-space exploration [10, 15, 17], including
those embodied in automatic verification tools [9, 14, 16];
verification using these tools is intractable when “state-
space explosion” occurs. Hence it is desirable to allowspe-
cification of buffer bounds for channels so that formal
verification techniques and tools can be brought to bear on
complex and safety-critical designs.

The second area in which our previous proposal can be
improved relates to provision of mechanisms for specifying
timeouts on communication statements. Many communi-
cation protocol specifications include timeouts as a means
of dealing with unreliable communication media. For ex-
ample, if a receiver does not receive an expected message
within a specified interval, it ceases to wait for the message
and takes some recovery action. Languages such as SDL,
used to specify communications protocols, include mecha-
nisms for describing communication with timeouts. Since
description of communications protocols is an important
application area, it is desirable to include a timeout mecha-
nism in the communication features of SUAVE.

In order to illustrate these mechanisms, we present here
an overview of the techniques used in SDL. Systems are
represented in SDL as asynchronously communicating, ex-
tended finite state machines. Each extended finite state ma-
chine (SDL process) contains a single input buffer of
unbounded capacity into which all messages from all input
signal routes from other processes are received. Message
input is always the first statement of a state transition, and
may be followed by tasks that can change the state of local
variables, decision nodes in which different actions can be
executed depending on the current state, and output state-
ments where messages are sent via output signal routes to
other processes.

In a particular SDL state, a process may attempt to re-
ceive a number of different messages. Since messages are
received from the process’s input buffer, they are received
(unless explicitly changed) in the order in which they ar-



4

Figure 1. An SDL process using timers for mes-
sage timeout.

set(100, 
timer a)

wait

control data timer_a

reset 
(timer a)

reset 
(timer a)

set(100, 
timer a)

retry

start 
Data

start 
Control

control data wait

timer timer_a;

rive. Messages are consumed and ignored if, in a particular
state, they are not explicitly defined as being inputs of the
that state or defined to be ‘saved.’

A timer in SDL is defined to be local to a process. It also
acts as a process, in that when it expires it sends a message
to the enclosing process’s input buffer. The timer can be
set and reset by task statements. A side effect of the reset
statement is that the enclosing process’s input buffer is
purged of all expiry messages to ensure that no expiry mes-
sage can be subsequently received.

Message timeout in a particular state is thus implem-
ented by defining a timer and setting it to a particular time-
out value in all state transitions that end in the state. If a
message arrives at the input buffer before the timer has ex-
pired, the message will be received by the process, which
may then reset the timer. Otherwise a timer-expiry mes-
sage will be generated, causing the transition in which the
timer expiry message is received.

Figure 1 shows an example of an SDL process that uses
a timer for message timeout. In the initial state, the process
sets a timer calledtimer_a, then enters the statewait to await
message reception. If the process receives adata or control
message, the process resets the timer and sends the ap-
propriate output message. If, on the other hand, the process
receives a timer expiry message fromtimer_a, the process
sends aretry message, sets the timer again, and returns to
thewait state.

3. Bounded Channels

In order to meet the need for specifying bounds on sizes of
channel message buffers, we have revised the way in which
channels are declared in SUAVE. We considered two ap-
proaches: allowing specification of buffer size in a channel

type declaration, and allowing specification of buffer size
in individual channel object declarations.

The first approach, which we chose for our language de-
sign, involves all channels of a given type having the same
buffer size. If different channels carrying the same mes-
sage type must have different buffer sizes, they must be de-
clared to be of different channel types.

The alternative approach, which we rejected, allowsdif-
ferent channels of the same type to have different buffer
sizes. However, this introduces complications in associa-
tion of actual channels with formal channels of process in-
stances or component instances. If a buffer size is specified
for a formal channel, it may conflict with a different size
specified for the associated actual channel. Any properties
of the process or component inferred from its formal chan-
nel size may be invalidated by associating with the formal
channel an actual channel with different buffer size. In par-
ticular, proofs relating to blocking and synchronization at
communication statements may be invalidated. One pos-
sible solution to this problem is to require that the actual
channel have the same buffer size as the formal channel, but
this is effectively the same as the simpler approach of spe-
cifying the buffer size in the channel type declaration.
Another possible solution is to prohibit specification of
buffer size in the formal channel declaration and to derive
the size from the actual channel. However, this removes
opportunities for proof of properties of the process or com-
ponent.

Given our choice to specify the buffer size in the channel
type, we then considered possible interaction with the ex-
isting VHDL mechanism of type constraints. It appeared
desirable to allow unconstrained channel types whose
buffer sizes are not determined, and to use constraints to
specify actual buffer sizes of channel subtypes. This
mechanism would allow definition of formal channel ports
whose buffer sizes are determined either from generic con-
stants or from the buffer sizes of the associated actual chan-
nel objects.

Our initial attempt to design language features based on
this approach used unconstrained channel types to denote
channels with unbounded buffers, and to allow declaration
of unconstrained channel objects. However, this caused
two problems. The first problem wasan inconsistency with
other unconstrained and constrained types, such as array
types. VHDL prohibits declaration of objects of other un-
constrained types, since the storage to be allocated to such
an object cannot be determined when the object is elabo-
rated. The second problem arose from the rules for deter-
mining constraints for interface channels. Currently in
VHDL, when a constrainedactual object is associated with
an unconstrained formal object, the formal object takes on
the constraints of the actual object. In the case of interface
channel objects, this would mean that a formal channel
with an unbounded buffer would take on the buffer bounds
of the actual channel. The implication for the processsend-



5

ing to the formal channel would be that, whereas it would
appear that the process could not block on a send statement
(due to the unbounded buffering specified in the formal
channel type), the process might in fact block (due to the
bounded buffering of the actual channel type). This contra-
diction of possible inferences about process behavior is un-
desirable.

The key to resolving these problems was the realization
that unbounded and bounded channels are significantly dif-
ferent in nature, distinguished by the potential of a sender
to block (as discussed in Section 3.1), and that constraints
should only apply to bounded channels. Hence, the ap-
proach we settled on was to allow specification of three
classes of channel types: unbounded, unconstrained
bounded, and constrained bounded. The existing VHDL
constraint mechanisms are applicable in the last two
classes. We took care in the language design to avoid intro-
ducing exceptions to the constraint and subtype rules and
to provide mechanisms that allow modular and composi-
tional reasoning about process behavior.

The revised syntax rules covering channel types are:

channel_type_definition ::=
unbounded_channel_definition

| unconstrained_bounded_channel_definition
| constrained_bounded_channel_definition

unbounded_channel_definition ::=
channel of subtype_indication

| null channel

unconstrained_bounded_channel_definition ::=
channel buffer <> of subtype_indication

| null channel buffer <>

constrained_bounded_channel_definition ::=
channel buffer_constraint of subtype_indication

| null channel buffer_constraint

buffer_constraint::=
buffer simple_expression

The existing VHDL syntax rule for constraints is also mo-
dified to include buffer constraints:

constraint ::=
range_constraint

| index_constraint
| buffer_constraint

A buffer constraint may only be used in a subtype in-
dication denoting a subtype of an unconstrained bounded
channel type or in a constrained bounded channel defini-
tion. The simple expression in a buffer constraint must be
a non-negative integer; it determines the buffer size for
channels of the channel type or subtype. We also allow use

of the ’length attribute to determine the buffer size for a
constrained bounded channel type or an object of a con-
strained bounded channel type.
Example

-- unbounded channel type
type acknowledgment_channel is null channel;

-- constrained bounded channel types
type blocking_request_channel is

channel buffer 4 of request_message;
type bigger_request_channel is

channel buffer 2 * blocking_request_channel’length
of request_message;

-- unconstrained bounded channel type
type result_channel is

channel buffer <> of request_message;
-- constrained bounded channel type
subtype blocking_result_channel is

result_channel buffer 2;

——
The rules covering declaration of channel objects are

largely unchanged from our original proposal. However, a
restriction on the subtype indication in a channel-object
declaration is that it denote an unbounded channel type or
a constrained bounded channel type. A declared channel
object may not be of an unconstrained bounded channel
type. (This corresponds to the existing VHDL rules gov-
erning use of unconstrained types.)
Example

channel acknowledgment : acknowledgment_channel;
channel request : blocking_request_channel;
channel result_1 : result_channel buffer 1;
channel result_2 : blocking_result_channel;

——
The static semantic rules covering declaration of inter-

face channel objects are extended as follows. A formal
interface channel can be declared of any of the three classes
of channel types. Where the formal channel is of an un-
bounded channel type, the associated actual channel must
also be of an unbounded channel type. This ensures that,
if inferences are made about process behaviour based on
the premise that sending to the formal channel does not
block, those inferences remain valid independent of char-
acteristics of the actual channel. Where a formal channel
is of a constrained bounded channel type or subtype, the as-
sociated actual channel must be of the same constrained
bounded channel type or subtype, and have the same buffer
size as the formal channel. Where a formal channel is of
an unconstrained bounded channel type, the actual channel
must be of a constrained subtype of the formal’s type, and
the buffer size of the formal channel is inferred from the
buffer size of the actual channel.
Example

In the following model fragment,pipe_link is an uncon-
strained bounded channel type. The processpipe_stage



6

has a generic constant size that is used to specify the buffer
sizes for the formal input and output channel ports. Use of
the generic constant in this way ensures that the channels
have the same buffer size. The channel objects link1 and
link2 are declared to be of an anonymous subtype of
pipe_link, with buffer size link_buffer_size. In the process
instance stage1, the generic constant is given the value
link_buffer_size, and so the two channel ports assume that
value for their buffer sizes. Hence the association with the
actual channel objects is legal, since they have the same
buffer sizes. This scheme is analogous to the way in which
generics and signal ports of unconstrained array types are
often used in standard VHDL.

type pipe_link is channel buffer <> of link_data;

process pipe_stage is
generic ( size : natural );
port ( channel link_in : in pipe_link buffer size;

channel link_out : out pipe_link buffer size );
end process pipe_stage;

channel link1, link2 : pipe_link buffer link_buffer_size;
...

stage1 : process pipe_stage
generic map ( size => link_buffer_size )
port map ( link_in => link1, link_out => link2 );

——

3.1 Communication Statements and Blocking

The introduction of bounded buffering in communication
channels now implies that a sender might block upon exe-
cution of a send statement. This occurs if the message
buffer of the target channel is full. More precisely, if the
target channel has buffer sizen, a sender blocks if there is
a receiver on the channel for which
number of sent messages – number of received messages

= n
The sender remains blocked until all receivers have re-
ceived the first of the previous n sent messages. In the case
where the message buffer is unbounded, the sender never
blocks. However, an implementation may run out of buffer
capacity and thus not be able to continue execution of the
model. In the case where the message buffer size is zero,
synchronous communication results, with blocking se-
mantics similar to those of CSP [8]. A sender blocks at a
send statement unless all receivers are already blocked
waiting for a message to arrive on the channel. Message
transfer occurs directly between the sender and the re-
ceiver(s) only when all have arrived at their respective com-
munication statements. Hence, the communication event
forms a barrier at which the communicating parties syn-
chronize.

In our previous language design, we only included re-
ceive alternatives in select statements, since they were the
only communication statements at which a process could

block. Since a process can block at a send statement in our
revised language design, it is appropriate to extend the se-
lect statement to allow inclusion of send statements. The
revised syntax rules are:

select_statement ::=
[ select_label : ]

select
[ guard ] select_alternative

{ or
[ guard ] select_alternative }

[ else
sequence_of_statements ]

end select [ select_label ] ;

guard ::= when condition =>

select_alternative ::=
receive_alternative

| send_alternative

receive_alternative ::=
receive_statement [ sequence_of_statements ]

send_alternative ::=
send_statement [ sequence_of_statements ]

(Further revisions to the select statement are described in
Section 4.) The dynamic semantics of the revised form of
select statement are similar to the semantics described in
Section 2.2. Determination of open alternatives is identi-
cal. Choice of an open alternative for execution now de-
pends on whether the alternative is a receive alternative or
a send alternative. A receive alternative can be executed if
there is a message in the message buffer of the source chan-
nel, or, in the case of a channel with a buffer size of zero,
if there is a sender waiting to send to the channel. A send
alternative can be executed if the message buffer of the
target channel is not full, or, in the case of a channel with
a buffer size of zero, if all of the receivers of the channel are
waiting to receive from the channel. If none of the open se-
lect alternatives can be executed immediately, the process
blocks until one of the open select alternatives can be exe-
cuted. (As described in Section 4, this differs slightly from
the semantics of our original proposal.)
Example

The following example illustrates inclusion of blocking
send and receive alternatives in a select statement. The pro-
cess models a network interface that accepts packets from
a source and forwards them in a stream over a network.
Flow control is modeled by the finite buffer size of the
channel type (packet_stream_channel) representing the
network stream. The network is assumed to be unreliable,
so the receiver (not shown), periodically sends acknow-
ledgment messages that include the sequence number of
the last correctly received packet. The network interface



7

process saves packets until they have been been acknow-
ledged. If an acknowledgment message indicates incorrect
reception of a packet, the network interface process resets
the packet save buffer back to the last correctly received
packet and retries sending from the incorrectly received
packet.

type packet_source_channel is
channel buffer 0 of packet_type;

type packet_stream_channel is
channel buffer window_size of packet_type;

type ack_stream_channel is
channel buffer 1 of ack_type;

process network_interface is
port ( channel packet_source :

in packet_source_channel;
channel packet_stream :

out packet_stream_channel;
channel ack_stream :

in ack_stream_channel );
. . .

begin
select

not full(save_buffer) =>
receive incoming from packet_source;
insert(incoming, save_buffer);

or
send next_outgoing(save_buffer)

to packet_stream
advance(save_buffer);

or
receive (ok, last_seq_no) from ack_stream
if ok then

reclaim(last_seq_no, save_buffer);
else

reset(last_seq_no, save_buffer);
end if;

end select;
end process network_interface;

——

4. Timeouts for Message Reception

We address the lack of a timeout mechanism in the com-
munication features of SUAVE by extending the select
statement to include a timeout alternative. The revised syn-
tax rule, extended beyond that described in Section 3, is:

select_statement ::=
[ select_label : ]

select
[ guard ] select_alternative

{ or
[ guard ] select_alternative }

[ or
timeout_alternative ]

[ else

sequence_of_statements ]
end select [ select_label ] ;

timeout_alternative ::=
timeout_guard sequence_of_statements

timeout_guard ::=after time_expression =>

The timeout alternative, if present, specifies the maxi-
mum amount of time for which the process will remain
blocked waiting for an open select alternative to be exe-
cuted. If the process remains blocked for the specified time
after commencing execution of the select statement, the
process resumes and executes the sequence of statements
in the timeout alternative, thus completing execution of the
select statement. If the timeout alternative is omitted, the
process may block indefinitely.
Example

The following statements show how a real-time process
might request information from a server. If the server does
not respond before the process’s deadline, the process pro-
ceeds without the response.

send request_details to server_request;
select

receive response_info from server_response;
act_on(response_info);

or after 10 ms =>
act_on(default_info);

end select;

——
Addition of the timeout alternative to the select state-

ment caused us to reconsider the semantics of theelse
clause, and in particular, to consider the meaning of includ-
ing both a timeout alternative and anelse clause in a given
select statement. In our previous proposal, theelse clause
is essentially overloaded with two semantic mechanisms.
It is used to handle the case of no alternatives being open,
and also to handle the case of no open select alternatives
being immediately ready to execute. The previous propo-
sal did not provide a means of distinguishing between these
cases.

The introduction of the timeout clause in this proposal
allows us to provide cleaner semantics for theelse clause
and to differentiate between the two cases just mentioned.
We thus revise the semantics of theelse clause as follows.
As before, if no select alternative isopen and theelse clause
is present, the statements in theelse clause are executed,
completing execution of the select statement. It is an error
if no select alternative is open and there is noelse clause.
If there are open select alternatives but none of them is
ready to be executed immediately, the process blocks. In
that case, if there is a timeout clause, it determines the
maximum amount of time for which the process will re-
main blocked. If the timeout clause has a timeout interval
of 0 fs, the process will resume on the next simulation
cycle.



8

Example
The following example illustrates the use of a timeout

alternative in a select statement to choose an alternative ac-
tion when an output channel is full. The model describes
a lossy message source for a network system. The system
(not shown here) has an input channel that can accept mes-
sages at a given maximum rate. The channel has a bounded
buffer to absorb bursts of messages that arrive at a greater
rate. However, if the buffer capacity is exceeded, the mes-
sage source discards messages.

type bounded_channel is
channel buffer max_size of message_type;

process message_source is
port ( channel message_stream :

out bounded_channel );

variable next_message : message_type;

begin
. . . -- construct next message in stream
select

send next_message to message_stream;
. . . -- log successful send

or after 0 fs =>
. . . -- log loss of message from stream

end select;
end process message_source;

——
While the timeout mechanism we propose is similar to

the use of SDL timers described in Section 2.3, there are
important differences. SDL timers are very general, and
can also be used for generating events that occur at particu-
lar times. However, their use for message timeouts requires
careful insertion of timer-set statements in all state trans-
itions that end in the state in which a timeout is required,
and timer-reset statements in all non-timeout state trans-
itions from the state. By contrast, the timeout mechanism
proposed for SUAVE is significantly simpler to use, and
hence less prone to erroneous use. Other timing applica-
tions, such as measurement of message interarrival times,
can be implemented using standardVHDL f eatures such as
wait statements, calls to the function “now” and variables
of type “time.“

5. Conclusion

Design at the system level requires use of abstraction to
manage complexity. SUAVE extends VHDL to provide a
more abstract form of communication between processes
and components in a model. Our revised language design
for communication features provides greater scope for for-
mal verification of high-level models. The addition of
timeout features also makes the language applicable to a
wider class of modeling problems, including modeling of
telecommunication protocols. In revising our language de-
sign, we have continued to avoid bias towards hardware or
software refinement of designs. This is a significant

strength of the language, allowing it to be used to express
behavior and structure of a system before partitioning into
hardware and software. Thus the language continues to
support exploration of hardware/software trade-offs and
hardware/software co-design, though now for a wider
range of applications.

Work is in progress to implement the language exten-
sions within the SAVANT framework [19], and validation
experiments are planned, involving use of the language by
industrial partners for real-world designs.

References

[1] P. J. Ashenden,The Designer’s Guide to VHDL. San
Francisco, CA: Morgan Kaufmann, 1996.

[2] P. J. Ashenden and P. A. Wilsey, Proposed Extensions
to VHDL for Abstraction of Concurrency and Com-
munication, Dept. Computer Science, University of
Adelaide, Technical Report TR-97-11, 1997.

[3] P. J. Ashenden and P. A. Wilsey, “Considerations on
System-Level Behavioural and Structural Modeling
Extensions to VHDL,”Proceedings of VHDL Inter-
national Users Forum Spring 1998 Conference,
Santa Clara, CA, pp. 42–50, 1998.

[4] P. J. Ashenden and P. A. Wilsey, “Extensions to
VHDL for Abstraction of Concurrency and Com-
munication,” Proceedings of Sixth International
Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems (MAS-
COTS ’98), Montreal, Canada, pp. 301–308, 1998.

[5] P. J. Ashenden, P. A. Wilsey, and D. E. Martin,
“Reuse Through Genericity in SUAVE,”Proceed-
ings of VHDL International Users Forum Fall 1997
Conference, Arlington, VA, pp. 170–177, 1997.

[6] P. J. Ashenden, P. A. Wilsey, and D. E. Martin,
SUAVE: A Proposal for Extensions to VHDL for
High-Level Modeling, Dept. Computer Science,
University of Adelaide, Technical Report TR-97-07,
ftp://ftp.cs.adelaide.edu.au/pub/VHDL/TR-exten-
sions.pdf, 1997.

[7] P. J. Ashenden, P. A. Wilsey, and D. E. Martin,
“SUAVE: Painless Extension for an Object-Oriented
VHDL,” Proceedings of VHDL International Users
Forum Fall 1997 Conference, Arlington, VA, pp.
60–67, 1997.

[8] C. A. R. Hoare,Communicating Sequential Pro-
cesses. London: Prentice Hall, 1985.

[9] G. J. Holzmann, “The Model Checker Spin,”IEEE
Transactions on Software Engineering, vol. 23, no.
5, pp. 279–295, 1997.

[10] G. J. Holzmann, “State Compression in Spin,”Pro-
ceedings of Third Spin Workshop, 1997.

[11] IEEE, Standard VHDL Language Reference Manu-
al. Standard 1076-1993, New York, NY: IEEE, 1993.



9

[12] IEEE, Standard Verilog Hardware Description Lan-
guage Reference Manual. Standard 1364-1995, New
York, NY: IEEE, 1995.

[13] ITU, Specification and Description Language
(SDL). Revised Recommendation Z.100, 1992.

[14] A. Parashkevov and J. Yantchev, “ARC—A Verifica-
tion Tool for Concurrent Systems,”Proceedings of
Third Australasian Parallel and Real-Time Confer-
ence, Brisbane, Australia, 1996.

[15] A. Parashkevov and J. Yantchev, “Space Efficient
Reachability Analysis Through Use of Pseudo-Root
States,”Proceedings of Third International Work-
shop on Tools and Algorithms for the Construction
and Analysis of Systems, TACAS’97, Twente, The
Netherlands, 1997.

[16] A. W. Roscoe, “Modelling and verifying key-ex-
change protocols using CSP and FDR,”Proceedings
of IEEE Symposium on Foundations of Secure Sys-
tems, 1995.

[17] A. W. Roscoe, P. H. B. Gardiner, M. H. Goldsmith, J.
R. Hulance, D. M. Jackson, and J. B. Scattergood,
“Hierarchical compression for model-checking CSP
or How to check 1020 dining philosophers for dead-
lock,” Proceedings of First International Workshop
on Tools and Algorithms for the Construction and
Analysis of Systems, TACAS’95, Aarhus, Denmark,
pp. 133–152, 1995.

[18] D. E. Thomas and P. R. Moorby,The Verilog Hard-
ware Description Language, Third ed. Boston, MA:
Kluwer Academic Publishers, 1996.

[19] P. A. Wilsey, D. E. Martin, and K. Subramani, “SAV-
ANT/TyVIS/warped: Components for the Analysis
and Simulation ofVHDL,” Proceedings of VHDL
International User’s Forum Spring 1998 Confer-
ence, Santa Clara, CA, pp. 195–201, 1998.


