
6th International Workshop on High-Level Synthesis, 1992 Laguna Nigel, Ca.

Symbolic Veri�cation of Sequential Circuits Synthesized

with CALLAS
1; 2

Extended Summary

Thomas Filkorn Michael Payer3 Peter Warkentin

Siemens Corporate Research and Development

Otto-Hahn-Ring 6

D-8000 Munich 83, Germany

Abstract

We present a solution to the veri�cation pro-
blem of high-level synthesis. The high-level
synthesis system CALLAS takes as input an
algorithmic speci�cation, in VHDL, and pro-
duces as output an EDIF netlist. Both, the
speci�cation and the generated netlist can be
interpreted as �nite state machine descripti-
ons. Then, in this context, the veri�cation
problem is reduced to proving the behavioral
equivalence of both machines. For this equiva-
lence proof we use the symbolic veri�er of the
CVE System (CVE = Circuit Veri�cation En-
vironment). Recent improvements of the ve-
ri�er allowed equivalence proofs of machines
with up to 260 binary state variables.

1 Introduction

In this paper, we address the problem of verify-
ing high-level synthesis [17]. By veri�cation we
mean to establish the behavioral equivalence
of the input design speci�cation and the low

1This research was partially supported by JESSI

AC-8
26th InternationalWorkshop on High-Level Synthe-

sis, Laguna Nigel, CA, U.S.A., 1992
3Email: payer@zfe.siemens.de

level hardware description which is synthesi-
zed.

High-level synthesis systems are on their
way out of the research labs into industrial use.
These systems synthesize complex sequential
circuits which cannot be validated with simu-
lation. On the other hand, a typical high-level
synthesis systems contains several 10K lines of
code and such its correctness cannot be pro-
ven.

Our approach exploits advances in symbolic
state machine veri�cation [6, 8]. With recent
improvements of the system described by Fil-
korn in [8] we could verify sequential circuits
with up to 260 binary state variables. The ba-
sic idea of this paper is to interpret the original
high-level speci�cation, usually in behavioral
VHDL [14], as a �nite state machine and to
verify with algorithmicmethods that the origi-
nal �nite state machine and the synthesized �-
nite state machine are behaviorally equivalent.
With this technique we obtain a rigorous proof
for the equivalence of speci�cation and imple-
mentation; moreover, the equivalence proof is
completely automatic and does not require any
user interaction.

Corella et al. [5] use a theorem prover for
the veri�cation problem in high-level synthe-

1



6th International Workshop on High-Level Synthesis, 1992 Laguna Nigel, Ca.

sis. The authors propose to exploit informa-
tion generated by the high-level synthesis sy-
stem HIS [3] to guide the proof process. In
particular, the VHDL speci�cation is back an-
notated with the generated schedule. The
circuit, including both the controller and the
data path, is then veri�ed against the speci�-
cation annotated with the schedule. This ap-
proach has one drawback: It relies upon the
correctness of the generated schedule.

McFarland [16] and Camposano [2] prove
the correctness of certain behavior preserving
transformations used in high-level synthesis.
This idea helps to achieve \correctness by con-
struction" but can neither prove the correct-
ness of the synthesis system nor the correct-
ness of the synthesized circuit.

Claesen et al. [4, 10] present the SFG-
Tracing methodology for veri�cation of MOS
layouts generated by CATHEDRAL-II. SFG-
Tracing relates the algorithmic signals in the
speci�cation to their occurrence in space and
time in the implementation and can deal with
circuits of up to 32000 transistors. The se-
mantics of the implementation is extracted by
a switch-level symbolic simulation.

We use the symbolic veri�cation system
CVE [9, 19] to verify the SIEMENS synthe-
sis system CALLAS [7]. CALLAS accepts a
VHDL subset with a well de�ned state ma-
chine semantics. This state machine must
show the same behavior as the synthesized se-
quential circuit and, hence, can be checked
with a state machine veri�er.

Fig. 1 gives an overview of the interplay of
synthesis, simulation, and veri�cation. The
synthesis system CALLAS processes a VHDL
speci�cation and generates an EDIF netlist
and a VHDL structural description of the syn-
thesized sequential circuit. This way, both
the behavioral speci�cation and the synthe-
sized structure can be compared vith a con-
ventional simulator. The same VHDL speci-
�cation is also transformed into a �nite state
machine description in Prolog. This transfor-

mation preserves the semantics of the original
description. The symbolic veri�cation system
CVE is then used to verify the behavioral equi-
valence of both generated descriptions.

Section 2 gives an overview about the Sie-
mens synthesis system CALLAS. In Section 3
we brie
y describe the VHDL subset used and
explain how a VHDL process is interpreted as
a �nite state machine. In Section 4 we present
some �rst encouraging results. In Section 5,
�nally, we discuss further work and directions
for future research.

2 CALLAS Overview

CALLAS supports the synthesis of combina-
tional and sequential circuits. For a detailed
description of the synthesis system the reader
is referred to [7, 15, 18].

CALLAS maps the algorithmic description
onto a synchronous, digital circuit which is se-
parated into a data part and a control part.
The synthesized circuit behaves as a Moore-
type �nite state machine; any path from an
input port to an output port of the circuit is
cut by at least one register.

In a �rst step global data-
ow analysis tech-
niques [1] are used to compile the behavi-
oral description into an initial data-
ow graph
(DFG) and an initial control graph(CG). The
DFG represents a register-transfer level net-
list of the data part; the CG represents a state
transition graph storing the behavior of the
control part of the synthesized circuit.

Designers like to see a relation between the
algorithmic description and the synthesized
circuit. Thus, CALLAS maps the algorith-
mic description onto an initial structure wi-
thout resource constraints. This structure is
iteratively improved with various optimizati-
ons that may be applied in an arbitrary se-
quence. The designer can rely on an auto-
mated optimization or can guide the synthesis
process interactively.

2



6th International Workshop on High-Level Synthesis, 1992 Laguna Nigel, Ca.

(SIMULATION)(VERIFICATION)

Design Compiler
SYNOPSYS

VANTAGE

VHDL

CVE CALLAS

RT-VHDLEDIF

Figure 1: Overview of the Veri�cation System

An initial allocation is done by a simple one-
to-one mapping of operations onto functional
units. These units are connected in a ma-
ximally parallel and maximally chained way.
Con
icting assignments to variables of the be-
havioral description caused by if, case or loop
constructs are resolved by multiplexors. Re-
gisters are inserted to cut feedback loops and
to control the reading and writing of interface
signals.

CALLAS uses enable registers. Reading of
an input signal is implemented as loading of
an input register. Writing of an output si-
gnal enables an output latch. This imple-
mentation is consistent with the semantics of
the VHDL subset supported by CALLAS [11].
The CALLAS VHDL subset supports the wait
until construct, which is related to a unique
clock signal, to express timing speci�cations.
The wait until construct may be used at any
location in the program and arbitrarily often.
With an algorithmic speci�cation as above the
interface timing is completely determined (in
terms of clock cycles). This concept allows to
check the correctness of the algorithmic speci-
�cation by simulation or a formal veri�cation.
The algorithmic architecture of a design en-
tity to be synthesized may be replaced by the
register-transfer architecture after synthesis.

Our subset disables the speci�cation of
asynchronous circuits or of Mealy beha-

vior [18]. CALLAS includes various transfor-
mations on the DFG and CG to achieve the
speci�ed interface timing and to optimize the
area and delay of the �nal circuit. Testability
aspects are also considered. The fault coverage
of the synthesized circuits is very high (>98 %
for most examples).
The essential transformations on the inter-

nal control and data-
ow graph include ti-
ming relevant optimizations such as removal
of super
uous edges in the CG (false path
analysis), removal of unnecessary data trans-
fers between registers, and control graph re-
duction [18]. Area and delay optimizations
comprise register minimization, operator sha-
ring, multiplexor optimization [20], arithmetic
and logic transformations [7], optimization of
the data-part/controller interface, 
attening
of complex functional units, and partitioning
and logic minimization.

3 State Machine Semantics

of the CALLAS VHDL

Subset

CALLAS uses a subset of VHDL [14] with
a well de�ned semantics as speci�cation lan-
guage. For the purpose of this paper we des-
cribe a more restrictive subset.
A CALLAS-speci�cation is written in a sub-

3



6th International Workshop on High-Level Synthesis, 1992 Laguna Nigel, Ca.

set of behavioral VHDL where the clock and
reset signals are considered as special input si-
gnals. A speci�cation must consist of a single
process whose statements are the usual control
constructs such as if-then-else, while, etc., and
constructs for expressions and assignment. We
distinguish between variables and signals. A
signal can only appear in the process body if
it has been de�ned in the entity description.
The data types are bit �elds of arbitrary but
�nite length with the natural semantics of ope-
rations on these data types.

Explicit wait statements are not allowed;
instead, they have to be hidden by the use of a
special prede�ned cycl procedure (see Fig. 2)
which deals with the input signals reset and
clk. This cycl procedure is used to de�ne the
timing behavior of the speci�cation and makes
the process sensitive to the clk signal. The
cycl procedure guarantees that a signal of the
speci�cation can only change at rising clock
edges.

This \cycl" procedure is used to de�ne the
timing behavior of the speci�cation in terms of
clock cycles. The process is sensitive only to
the \clk" signal. The \cycl" procedure gua-
rantees that a signal of the speci�cation can
only change at rising clock edges. (In fact,
\cycl" is a VHDL procedure which deals with
the clock and the synchronous reset signals
of the circuit and hides the \wait until (clk
= '1')" statement |which is sensitive to the
clock| from the user.)

The process body has to be encapsulated in
the structure shown in Fig. 3. This construc-
tion is mandatory and is used for the correct
handling of the synchronous reset.

Fig. 4 shows a speci�cation of the counter
benchmark [12]. Observe, that the sequence
of operations in a VHDL speci�cation resumes
in the beginning after having reached the end.

When simulated, such a speci�cation beha-
ves as a Moore-type �nite state machine; Fi-
gure 5 symbolizes the input/output behavior
of such an FSM.

1 cycl(reset, clk, 1);

2 i f (reset = '1') then

3 else

4 outest_loop: loop

5

6 -- <process body>

7

8 exit outest_loop when (reset = '1');

9

10 end loop outest_loop;

11 end i f ;

Figure 3: Gross Structure of a CALLAS Pro-
cess Body

The inputs of the �nite state machine are
given by the input signals1 of the entity and
the outputs by the output signals, respectively.
The state of the �nite state machine is de-

termined by the position of the statement that
the simulator will process next and by the va-
lues of all variables and output signals2 at that
position. The next state is determined by the
position of the next statement to be processed
and by the new values of the a�ected variables
and output signals. The value of a variable or
output signal (of the entity) is determined by
the statement to be executed in the current
position. The state set contains one additio-
nal component which \stores" the previous va-
lue of the input signal \clk". This mechanism
is needed to react on the rising edge of the
clock. Finally, the output (of the �nite state
machine) is given by those state components
that represent the output signals. In the se-
quel we describe how this �nite state machine
is actually generated.
To make the transformation process more

explicit, we �rst transform the control con-
structs and the implicit loop of the process into
an equivalent program in some algorithmic

1To be more precise, when we speak of \the input

signals" then we mean all possible combinations of va-

lues of the input signals.
2Here we mean the output signals listed in the en-

tity description.

4



6th International Workshop on High-Level Synthesis, 1992 Laguna Nigel, Ca.

1 procedure cycl (signal reset, clk : in bit; n : in natural) i s

2 begin

3 for i in 1 to n loop

4 wait unt i l (clk = '1'); exit when (reset = '1'); end loop;

5 end;

Figure 2: The Prede�ned cycl Procedure

language with goto, unconditional goto and la-
bels for the targets of the goto statements. Se-
condly, we label each unlabeled statement (see
Fig. 4).

Finally, we have
to take care of the WAIT UNTIL (clk = '1');

and EXIT WHEN (reset = '1') constructs of
the cycl procedure. The VHDL process is sen-
sitive to the rising edge of the clock signal, i.e.,
signals may change at these events; moreover,
processing is halted until this event occurs. We
simply introduce one additional internal varia-
ble last clk and model a call to the cycl pro-
cedure as shown in Fig. 6.

The signal assignments, denoted by \<=",
of the transformed program do not yet have
the semantics of the original speci�cation: The
output signals change their value with every
state transition. We solve this problem as fol-
lows:

We interpret the signal assignments just like
variable assignments and construct the corre-
sponding Moore-type machine in the obvious
way.

Now observe that input signals can only
change at a clock transition from '0' to '1' and
then remain stable until the next \rising edge"
of the clock signal; i.e., at some point of a sym-
bolic simulation of this �nite state machine the
state does not change anymore. These states
become the states of the �nal �nite state ma-
chine. The transition function of the �nal �-
nite state machine is then determined by the
composition of the transition functions of the
original machine. The �nal machine can be
computed by a �xpoint iteration.

We have described the construction of the

�nite state machine rather informally; a detai-
led formulation is left to a subsequent paper.
A similar approach has been described by Hou
et al. in [13]. The \explicit synchronous mo-
del" is very close to our micro machine; the
\implicit synchronous model" corresponds to
our macro machine.

Observe, that the output signals always
change at the right time and at most once per
cycle, which conforms to the VHDL seman-
tics as de�ned in the VHDL language reference
manual [14].

4 Results

To show the feasibility of our approach, we
present some real-time measures for the veri-
�cation process in Table 2. The experiments
were made on a Siemens workstation WS 30-
450, which has approximately twice the speed
of a SUN 3/60 and on a SPARC2, respectively.
The veri�er and the transformation process
make extensive use of BDDs. A memory limit
of 12 MB was su�cient to store the BDDs.

We have formulated several be-
havioral (algorithmic-level) benchmarks, na-
mely PREFETCH, Tra�c Light Controller

(TLC), Greatest CommonDivisor (GCD), and
COUNT in the CALLAS VHDL-subset. We
simulated the designs with the VANTAGE si-
mulator and synthesized with CALLAS. For
logic optimization and mapping onto the Sie-
mens library Advancell D we used the SYNO-
PSYS Design Compiler.
Table 1 summarizes the complexity of the

behavioral speci�cations in terms of lines of
code (loc), word length of the data part (wl),

5



6th International Workshop on High-Level Synthesis, 1992 Laguna Nigel, Ca.

1 l ib rary callas;

2 use callas.callas.a l l ;

3

4 entity count i s

5 port (

6 reset : in bit; -- declare(input, [reset], bit),

7 clk : in bit; -- declare(input, [clk], bit),

8 countin : in bit_vector (3 downto 0); -- declare(input, [countin], bit_vector(3 downto 0)),

9 up : in bit; -- declare(input, [up], bit),

10 count : in bit; -- declare(input, [count], bit),

11 countout : out bit_vector (3 downto 0) );-- declare(output, [countout], bit_vector(3 downto 0)),

12 end count;

13

14 architecture be of count i s

15 begin

16 p: process

17 variable i : bit_vector (3 downto 0); -- declare(variable, [i], bit_vector(3 downto 0)),

18 constant cnull4 : bit_vector := "0000"; -- declare(constant, [cnull4], bit_vector, 0000),

19 constant cone4 : bit_vector := "0001"; -- declare(constant, [cone4], bit_vector, 0001),

20 begin

21 i := cnull4; -- label(21), i := cnull4,

22 countout <= cnull4; -- label(22), countout <= cnull4,

23 cycl(reset, clk, 1); -- label(23), iteGoto((clk = 1) and (last_clk \= 1), 24, 23),

24 i f (reset = '1') then -- label(24), iteGoto(reset = 1, 39, 25),

25 else -- label(25), nop,

26 outest_loop: loop

27 i f (count = '0') then -- label(27), iteGoto(count = 0, 28, 29),

28 i := countin; -- label(28), i := countin,

29 e l s i f (up = '1') then -- label(29), iteGoto(up = 1, 30, 32),

30 i := i + cone4; -- label(30), i := i + cone4,

31 else -- label(31), goto(33),

32 i := i - cone4; -- label(32), i := i - cone4,

33 end i f ; -- label(33), nop,

34 countout <= i; -- label(34), countout <= i,

35 cycl(reset, clk, 1); -- label(35), iteGoto((clk = 1) and (last_clk \= 1), 36, 35),

36 exit outest_loop when(reset = '1'); -- label(36), iteGoto(reset = 1, 38, 37),

37 end loop outest_loop; -- label(37), goto(27),

38 end i f ; -- label(38), nop,

39 end process; -- label(39), goto(21),

40 end be; -- label(99), end

Figure 4: Correspondance of Speci�cation and Intermediate Form

6



6th International Workshop on High-Level Synthesis, 1992 Laguna Nigel, Ca.

cycle 1 2 3 � � �

clock " " "

- x x x
in - x x x

- x x x

- x x x x
out - x x x x

- x x x x

- x x x x x x x x x x
others - x x x x x x x x x x

- x x x x x x x x x x

Figure 5: I/O-Behavior of a VHDL speci�cation.

label(x), iteGoto((clk = 1) and (last_clk \= 1), y, x),

label(y), iteGoto(reset = 1, z, u),

label(z), goto <restart>

label(u), goto <continue>

Figure 6: Modelling of the cycl Procedure

number of variables and signals (var), num-
ber of loops (loop), number of if/case con-
structs (if/case), and the maximum nesting.
The three columns labeled \FG Format" show
the number of nodes, variables, and paths in
the CALLAS internal representation, the so-
called 
ow graph, are listed in Table 1. The
CALLAS VHDL frontend inserts several ad-
ditional variables in order to resolve expres-
sions and to meet the semantics of reading
and writing VHDL interface signals [11]. The
two rightmost columns \FSM1" and \FSM2"
show the (uncritical) time needed to construct
the CVE-internal BDD representation of the
VHDL speci�cation; here \FSM1" lists the
time for the construction of the �rst �nite state
machine and \FSM2" lists the time for the �x-
point iteration, respectively.

Table 2 lists the size of the synthesized de-
signs (Siemens library Advancell D) and the
veri�cation runtime for di�erent structural op-
timizations.

In our VHDL formulation of the PRE-

FETCH benchmark the variables and signals
have a total of 260 bits. To generate the �rst
symbolic �nite state machine which does not
yet respect the VHDL semantics takes 9s. The
�xpoint iteration which results in the �nal �-
nite state machines needs 53s (Table 1). The
synthesized circuit contains 163 D-FlipFlops
and between 216 and 226 combinational ga-
tes (2-input multiplexors, inverters, 2- and 3-
input nands, etc., not shown in Table 2.) The
EDIF netlist is transformed into the internal
CVE representation in approx. 55s. Finally,
the (positive) behavioral equivalence check ta-
kes between 467s and 552s (Table 2). Thus the
whole proof runs in about 9.5 minutes.

In particular, from the TLC entries in Ta-
ble 2 it can be seen that the veri�cation pro-
cess is slower for more optimized designs; of
major in
uence here is the number of registers.

The veri�cation of the 4-bit GCD-design ta-
kes about 2200s; this example exhibits the \in-
formation content" of the output signals as
another important factor for the runtime; the

7



6th International Workshop on High-Level Synthesis, 1992 Laguna Nigel, Ca.

Alg. VHDL speci�cation FG format cpu (s)

Design loc wl var loop if/case nest node var path FSM1 FSM2

COUNT 38 4 7 1 3 3 25 12 6 0.7 1.5

PREFETCH 52 32 12 2 2 2 44 20 5 9.0 53.0

TLC 93 2 7 7 5 2 93 28 52 2.2 14.0

GCD 49 4 8 3 2 3 35 14 5 1.3 5.8

Table 1: Complexity of Benchmark Designs. (Lines of VHDL code, word length, number of
variables, loops, if/case nodes; maximal nesting depth, number of FG nodes, FG variables,
paths through the FG; time for construction of the �rst �nite state machine, time for �xpoint
iteration (SPARC2).)

Final Design Veri�cation
Design opt cpu (s) Mem.

reg cells grids E2BDD Verif. MB

min 11 38 246 6 9 0.4
noopt 12 41 266 6 9 0.4

COUNT1 optm 12 41 266 6 9 0.4
optom 12 42 272 6 9 0.4
optrom 12 42 272 6 9 0.4
optromF 12 41 267 6 9 0.4

min 163 379 2904 55 552 12
noopt 163 379 2903 55 552 12

PREFETCH2 optm 163 474 3429 56 462 12
optom 163 473 3426 56 481 12
optrom 163 476 3430 56 481 12
optromF 163 389 2913 55 467 12

min 33 191 1012 16 454 8
noopt 33 191 1012 16 451 8

TLC1 optm 33 198 1021 16 451 8
optom 33 190 993 16 554 8
optrom 16 139 666 15 686 8
optromF 16 131 615 15 796 8

GCD1 optrom 15 110 549 13 2184 12
1SYNOPSYS Version 2.0a 2SYNOPSYS Version 2.2a

Table 2: Size of Synthesized Designs and Veri�cation Runtime. (Number of register bits,
number of cells, and cell area of the �nal design after logic optimization and technology mapping
(Siemens library Advancell D); cpu time (Siemens WS30-540/SPARC2) for EDIF to BDD
translation and veri�cation (SPARC2) in seconds; memory usage for translation and veri�cation
in mbytes.)

8



6th International Workshop on High-Level Synthesis, 1992 Laguna Nigel, Ca.

more an output signal depends on the internal
states of the machine the faster is the veri�-
cation. In our GCD-design the output does
not show any changes until the �nal result is
computed.

5 Conclusions

In this paper we have described a new solu-
tion for the veri�cation problem of high-level
synthesis. We model the high-level speci�ca-
tion and the CALLAS synthesis result as �nite
state machines and then use the algorithmic
veri�er CVE to prove the behavioral equiva-
lence of both machines. Our solution is con-
ceptually very simple; it has become compu-
tationally feasible with recent advantages in
�nite state machine veri�cation. Currently we
are able to verify sequential circuits with up
to 260 binary state variables. We expect that
this number will grow considerably over the
next years.

Among other examples, we have presented
the veri�cation of the PREFETCH benchmark
as an example. Here, the complete equivalence
check took about 9.5 minutes of cpu time.

In the near future we plan to extend the ve-
ri�able CALLAS VHDL subset. Currently we
do not exploit that CALLAS synthesizes a se-
parate control �nite state machine and data
path. Additional enhancements to our solu-
tion can be achieved if we use such information
as the mapping of variables onto data path re-
gisters. This information is provided by CAL-
LAS but currently not used.

To call for the state machine equivalence of
both descriptions is too restrictive: A high-
level speci�cation should be interpreted as a
generic description of a whole set of �nite state
machines. Then the veri�cation problem of
high-level synthesis can be relaxed to an equi-
valence proof of the synthesis result and one

member of the generic set.

Acknowledgments

Many colleagues at Siemens Corporate Rese-
arch were involved in the CALLAS and CVE
systems. We thank Wolgang Ecker and Stef-
fen Rumler for the helpful discussions of the
VHDL semantics.

References

[1] A.V. Aho, R. Sethi, and J.D. Ullman.
Compilers: Principles, Techniques and

Tools. Addison-Wesley, 1986.

[2] R. Camposano. Behavior-preserving
transformations in high-level synthesis. In
M. Leeser and G. Browne, editors, Hard-
ware Speci�cation, Veri�cation and Syn-

thesis: Mathematical Aspects, pages 106{
128, New York, 1989. Springer-Verlag.
LNCS, Vol. 408.

[3] R. Camposano, R.A. Bergamaschi,
C. Haynes, M. Payer, and S. Wu. High-

Level VLSI Synthesis, chapter The IBM
High-Level Synthesis System, pages 79{
104. Kluwer Academic Publishers, Nor-
well, MA, 1991. R. Camposano and W.
Wolf, editors.

[4] L. Claesen, F. Proesmans, E. Verlind,
and H. De Man. SFG-tracing, a me-
thodology for the automatic veri�cation
of MOS transistor level implementations
from high level behavioral speci�cations.
In P. A. Subrahmanyam, editor, Proc.

ACM-SIGDA International Workshop on

Formal Methods in VLSI Design, 1991.

[5] F. Corella, R. Camposano, R. Bergama-
schi, and M. Payer. Veri�cation of syn-
chronous circuits obtained from algorith-
mic speci�cations. In D. Borrione and
R. Waxman, editors, CHDL 91 - Compu-

ter Hardware Description Languages and

their Applications, pages 209{227, Mar-
seille, France, April 1991.

9



6th International Workshop on High-Level Synthesis, 1992 Laguna Nigel, Ca.

[6] O. Coudert, C. Berthet, and J.C. Madre.
Veri�cation of synchronous sequential
machines based on symbolic execution. In
J. Sifakis, editor, Automatic Veri�cation

Methods for Finite State Systems, Greno-
ble, June 1989. LNCS Vol. 407.

[7] P. Duzy, H. Kr�amer, M. Neher, M. Pilsl,
W. Rosenstiel, and T. Wecker. CALLAS -
conversion of algorithms to library adap-
table structures. In VLSI'89, pages 197{
208, Munich, Germany, August 1989. El-
sevier.

[8] Th. Filkorn. A method for symbolic veri�-
cation of synchronous circuits. In D. Bor-
rione and R. Waxman, editors, CHDL 91

- Computer Hardware Description Lan-

guages and their Application, pages 229{
239, Marseille, France, April 1991.

[9] Th. Filkorn, R. Schmid, E. Tid�en, and
P. Warkentin. Experiences from a large
industrial circuit design application. In
Proc. of the 1991 International Logic Pro-

gramming Symposium, San Diego, Octo-
ber 1991.

[10] M. Genoe, L. Claesen, E. Verlind, F. Pro-
esmans, and H. De Man. Illustration
of the SFG-tracing multi-level behavioral
veri�cation methodology, by the correct-
ness proof of a high to low level synthesis
application in CATHEDRAL-II. In Proc.

IEEE International Conference on Com-

puter Design: VLSI in Computers & Pro-

cessors, ICCD-91, Cambridge MA, pages
338{341, October 1991.

[11] W. Glunz and G. Umbreit. VHDL for
high-level synthesis of digital systems.
In Proc. of 1st European Conference on

VHDL Methods, 1990.

[12] Benchmarks for the 5th Internatio-
nal Workshop on High-Level Synthe-
sis. Available through electronic mail at
HLSW@decwrl.dec.com, 1991.

[13] P.-P. Hou, R.M. Owens, and M.J. Irwin.
High-level speci�cation and synthesis of
sequential logic modules. In D. Borrione
and R. Waxman, editors, CHDL 91 -

Computer Hardware Description Langua-

ges and their Application, pages 131{142,
Marseille, France, April 1991.

[14] The Institute of Electrical and Electro-
nical Engineers, Inc., New York. Stan-

dard VHDL Language Reference Manual,
1988.

[15] M. Koster, M. Geiger, and P. Duzy.
ASIC design using the high-level syn-
thesis system CALLAS: A case study.
In Proc. ICCD'90, pages 141{146, Cam-
bridge, Ma., September 1990.

[16] M.C. McFarland. A practical application
of veri�cation to high level synthesis. In
Proc. Workshop on Formal Methods in

VLSI Design, 1991.

[17] M.C. McFarland, A.C. Parker, and
R. Camposano. The high-level synthe-
sis of digital systems. Proceedings of the

IEEE, 78(2):301{318, February 1990.

[18] A. Stoll and P. Duzy. High-level synthe-
sis from VHDL with exact timing cons-
traints. In Proc. 29th DAC, 1992.

[19] Erik Tid�en and Richard Schmid. Ve-
rifying ASICs by symbolic simulation.
In Proc. EUROASIC 90, pages 461{473,
1990.

[20] N. Wehn, J. Biesenack, and M. Pilsl. A
new approach to multiplexor minimiza-
tion in the CALLAS synthesis environ-
ment. In A. Halaas and P.B. Denyer, edi-
tors, Proc. VLSI91, pages 203{213, 1991.

10


