
VHDL-Translation

for

BDD-Based Formal Veri�cation
�

Copyright c
1994 by Siemens AG. All rights reserved.

J�org Lohse, J�org Bormann, Michael Payer, and Gerd Venzl

Siemens Corporate R&D

D-81730 Munich

Germany

e-mail: Joerg.Lohse@zfe.siemens.de

Abstract

We describe a novel approach to trans-

late a reasonably large subset of VHDL

into BDD's. The VDHL subset was cho-

sen to include the commonly used syn-

thesis subsets but is strictly based on

the simulation semantics required by [2].

Our results signi�cantly improve on the

previously reported ones [5]. We also in-

vestigate the inherent complexity of de-

aling with the VHDL semantics as op-

posed to translating netlists into BDD-

based FSM's.

1 Introduction

Formal veri�cation techniques have pro-

ven to be powerful in detecting errors

in early design phases when �xes are

still inexpensive. Equivalence checking

of sequential designs as well as symbo-

lic model checking are techniques used

in formal veri�cation. For these techni-

ques, the designs are represented as �nite

state machines using binary decision dia-

grams [1, 3] for the state transition and

output functions.

An increasing number of digital hard-

ware designs are currently written in

VHDL and compiled into netlists using

synthesis tools. Designers in industry

�Partially funded by the European Commu-

nity, grant JESSI AC-8.

usually work in tight schedules and thus

do not have the time to translate their

circuits from VHDL into another lan-

guage (e. g. SMV [6]) needed for formal

veri�cation. Moreover, such a transla-

tion task would be error-prone if perfor-

med manually. We solve this problem

by providing a translator from VHDL

into BDD-based �nite state machines

(FSM's). This way, the designer can feed

his/her designs right as they are into for-

mal veri�cation tools. The veri�cation

tool we translate the VHDL for also gives

feedback in terms of VHDL by providing

counter examples as VHDL test-benches

which can be exercised right with any

VHDL-simulator [10].

Formal veri�cation gives results that

are equivalent to exhaustive simulation.

Therefore, our translator strictly relies

on the VHDL semantics as speci�ed

in [2] in terms of simulation. In other

words, it does not | in contrast to syn-

thesis tools | treat language items like

wait-statements or sensitivity lists di�e-

rently from the VHDL semantics. Also,

unlike [7] there is no requirement to have

a synchronous design and to mark clock

pins with attributes.

The �nite state machine extraction of

VHDL processes has been shown for syn-

thesis [4]. An early translator of a VHDL

subset into BDD's was presented by Fil-

korn et. al. [5]. This translator represen-

1

ENTITY delay IS

PORT(input: bit; output: OUT bit);

END;

ARCHITECTURE simple OF delay IS

BEGIN

output <= TRANSPORT input AFTER 1 sec;

END simple;

Figure 1: Delay-Element in VHDL.

ted the control
ow within processes as

state transitions in BDD's and computed

their �xed points with BDD's. This �xed

point computation of processes only wor-

ked for processes with a small number of

statements. In this paper, we describe

a di�erent approach that overcomes this

limitation by treating the control
ow se-

parately from the data
ow: The con-

trol
ow is represented in graphs with

branching conditions and state transiti-

ons represented with BDD's. It also does

not require state encoding of sequential

statements and �xed point computation

for processes.

2 VHDL Subset Repre-

sentable in FSM's

In this section the subset of VHDL used

for formal veri�cation is described. The

main restriction is introduced by the �-

nite (i. e. �xed at translation time) num-

ber of states. In VHDL, data types

like access types (pointers) and �les al-

low to model data of virtually unlimited

size. VHDL designs using these data ty-

pes principally cannot be translated into

FSM's.

Delay is another language item that

cannot be fully represented in a �nite

state machine: As an example of this,

consider the following VHDL model of a

delay element (Figure 1).

At any given time, the value at the

output of this delay element is its input's

value of 1 second ago. Represented as

an FSM, this delay element must store

all input values that can occur in one

second. According to [2], VHDL imple-

mentations must provide for the worst

case in which the input can toggle every

femtosecond, 1015 times a second. Since

it is unreasonable to represent 1015 pos-

sible projected values for the output,

we conclude that VHDL's timing cannot

be reasonably represented as �nite state

machines. Any other decision, e. g. to re-

strict the time of input changes as done

in [9], wouldmean formal veri�cation not

to be equivalent to exhaustive simulation

anymore.

2.1 Processes and Signals

VHDL models behavior in terms of pro-

cesses that communicate via signals. At

any given time, each process is in one

of two possible states: either running or

suspended. When all processes are sus-

pended, the signal's values are updated

and the simulation time advances. A

process is suspended until some signal

changes value to which the process is sen-

sitive.

Within processes behavior is descri-

bed by sequential statements. These se-

quential statements include function and

procedure calls, assignments to variables

and assignments to signals. Assignments

to signals do not cause the signal's value

to be immediately modi�ed. They just

modify a signal driver which is locally

maintained for each process that writes

to a signal. The values of the drivers are

assigned to the signals when all proces-

ses are suspended. If there is more than

one process driving a signal, the values of

all drivers will be passed to a resolution

function and the function's result will be

assigned to the signal.

2

ENTITY counter IS

GENERIC (capacity : integer := 256);

PORT (reset : IN bit;

clk : IN bit;

count : BUFFER integer RANGE 0 TO capacity-1);

END counter;

ARCHITECTURE behavior OF counter IS

BEGIN

p: PROCESS

BEGIN

IF reset = '1'

THEN

count <= 0;

ELSE

count <= (count + 1) MOD capacity;

END IF;

WAIT UNTIL clk'event AND clk = '1';

END PROCESS;

END behavior;

Figure 2: 8-Bit Counter in VHDL.

3 VHDL Translation

The translation of VHDL into a BDD-

based FSM is performed in two phases.

We assume that VHDL has been parsed,

any overloading of subprograms, opera-

tors and enumeration literals resolved as

well as all VHDL-expressions attributed

with types.

In Phase 1 declarations are annotated

with BDD's and processes are compiled

into control graphs. The control gra-

phs include state transitions represen-

ted as BDD's. In Phase 2 the control

graphs are compiled into an FSM and

�xed-point computations and optimiza-

tions are performed on this FSM.

3.1 Translation into BDD's

and Control Graphs

The declarations are processed by anno-

tating them with BDD's: For signals (in-

cluding the ones introduced by attribu-

tes such as stable and delayed) and va-

riables, BDD variables (index in [3]) re-

presenting their current values are intro-

duced. Constants are annotated by their

value represented as BDD's.

Processes are compiled into control

graphs. A node in the control graph de-

scribes control
ow as a Boolean condi-

tion (represented as a BDD) and refe-

rences to two possible successor nodes.

The node also includes a list of BDD-

based state transitions with one entry for

each state transition to variables and si-

gnal drivers. These state transitions are

performed at the given point of control.

Signal drivers and variables that are not

changed at that point are not included

in the list of transitions.

In the control graph, all nodes that

represent wait-statements are marked.

To determine the initial state of the va-

riables and signal drivers as well as the

wait statement to start with, the con-

trol graph is simulated. The signal dri-

vers, signals and variables are initialized

with their initial values and updated du-

ring simulation of the control graph until

the �rst wait-statement is reached. This

wait-statement is marked as the wait-

statement at the initial state and the si-

mulated values of the variables and si-

gnal drivers are entered as part of the

FSM's initial state. This implements

the initialization phase in LRM Section

3

?

reset = '1'

true

?

false

?

|

TRUE

true

?

false

count'driver(p)

:=

0

TRUE

true

?

?

false

count'driver(p)

:=

count + 1

clk /= clk'delayed

AND

clk = '1'

true

-

false

6

|

Figure 3: Control Graph of 8-Bit Counter.

12.6.3 [2] and ensures that the FSM's in-

itial state corresponds to the VHDL mo-

del at simulation time 0.

Refer to Figure 2 for the VHDL de-

sign of an 8-bit counter. The counter

has a reset pin, a clock input and an

output port of mode BUFFER. The mode

BUFFER allows the output to be read in

the VHDL description. Figure 3 shows

the control graph for this counter. Each

control graph node's condition is TRUE

when no branch is intended. The left

hand side of each node shows the con-

dition and targets of branches; the right

hand side consists of a list of state tran-

sitions. Note, that both the condition

and the transitions are represented as

BDD's. In the control graph, the ex-

pression clk'event has been translated

into clk /= clk'delayed which shows

that the e�ective value of clk and its

value delayed by a delta step are compa-

red to check for an event. clk'delayed

is a signal and corresponds to a

state variable in the FSM. The transi-

tion count'driver(p) := count + 11

shows that the FSM state variable

count'driver(p), process p's driver of

count, is modi�ed by the transition, not

the e�ective value of count that is read

at the right hand side of the assignment.

The e�ective and driving values of si-

gnals are thus implemented according to

Section 12.6 in the VHDL LRM [2].

These control graphs are subject to se-

veral transformations. Each of the trans-

formations is a reduction rule yielding

a smaller graph. For every node in the

graph an applicable rule is applied until

no further reduction is achieved.

The following reduction rules are app-

lied:

Branch Optimization If a control

graph node's condition is constant

true (false), remove pointer to false

(true) successor nodes.

Unreachable Node Removal

If a control graph node is no suc-

1The modulo-2n-operation in Figure 2 just

truncates to n bits.

4

cessor of any other node, it will be

removed from the graph.

No-Op Removal If a control graph

node's condition is constant and its

set of state transitions is empty, it

will be removed from the graph.

Basic Block Compaction If two no-

des are part of a basic block: Node

b is successor of node a and a has

no other successors than b and b is

not successor of any other node than

a (Figure 4), then a and b will be

merged into one node ab: The state

transitions of a are substituted in

the state transitions of b.

Branch Over Node

If exactly one node is only executed

on a condition and it's successor is

the same node that is executed when

the condition is not met (Figure 4),

then the condition will be merged

into the transitions: The transiti-

ons take e�ect when the condition

is met and otherwise do not modify

the state.

2-Way Branch Over Nodes If

two nodes are successors of a condi-

tion and both nodes have the same

successor (Figure 4), then the con-

dition and both nodes are combined

to one transition: Dependent on the

condition, either transitions take ef-

fect.

In the end the control graph usually

consists of one node for each wait-

statement. Only in cases where loops

take a data-dependent number of iterati-

ons, there are more nodes left. In the end

of the control graph transformations, all

variables that do not occur in the �nal

transitions are eliminated. These trans-

formations are also applied to the con-

trol graphs resulting from calls to sub-

programs (functions, user-de�ned opera-

tors, procedures). This way, the control

graphs of processes are kept small and

the variables local to subprograms are

eliminated as soon as possible.

The control graph in Figure 3 is redu-

ced as follows: In the �rst step, the three

?

TRUE

true false
<transitions>

?

TRUE

true false
<transitions>

?

Basic Block Compaction

?

<condition>

true false
|

?

TRUE

true false
<transitions>

?

Branch Over Node

?

<condition>

true false
|

?

?

TRUE

true false
<transitions>

TRUE

true false
<transitions>

?

2-Way Branch Over Nodes

Figure 4: Control Graph Reduction Ru-

les.

5

Design VHDL cpu time vhdl2fsm FSM

name I O LOC in [5] cpu time S j � j j � j

adc 3 9 55 7.0 0.2 15 55 47

count 8 4 38 3.0 0.2 5 52 52

prefetch 68 96 52 62.0 9.7 129 762 665

tlc 4 12 93 16.0 0.2 19 208 112

Table 1: Comparison with Results Published in [5].

nodes in the two upper rows are combi-

ned to one node by the 2-Way-Branch-

Over-Nodes rule. In the next step, the

resultant two nodes are combined to one

node by the Branch-Over-Node rule. Af-

ter this, there is only one node left that

represents the entire process.

3.2 Translation of Control-

Graphs into FSM's

In the second phase of the VHDL com-

pilation the control graphs are combined

to an FSM consisting of inputs, states,

next-state functions and output func-

tions. The state variables in the FSM

consist of signals outside of processes and

of the state variables belonging to pro-

cesses. State variables belonging to pro-

cesses are signal drivers, variables and si-

gnals local to processes, and the program

counter whose values are the nodes in

the control graph. Each process exports

the process state, a property with values

suspended or running dependent on whe-

ther the program counter points to the

control graph node of a wait-statement

or to another statement's control graph

node. The FSM is constructed by combi-

ning all states and state-transition func-

tions from the processes and adding pri-

mary inputs and outputs as well as other

signals. State variables are introduced

for the primary inputs and outputs. The

inputs' states variables are read within

the FSM and these state variables are

updated from the primary inputs when

all processes are suspended. In the same

way, the outputs' state variables are up-

dated from their signal drivers when all

processes are suspended.

In VHDL, processes communicate via

signals. The processes modify signal dri-

vers and at the end of each delta cycle,

the signal drivers' values are propaga-

ted to signals and may cause the same

or another process to resume execution

in the next delta cycle. No simulation

time passes when processes are executed

in delta time steps. For FSM's in for-

mal veri�cation, we are interested in va-

lues changing in simulation time, not for

signal changes in delta time steps. We

compute the �nal FSM using the cur-

rent state transition functions that de-

scribe the behavior in delta time steps:

The �xed point of the state transition

functions is the result of process rein-

vocations. The �xed point is computed

and represents state transitions in terms

of simulation time. This process is cal-

led macro-machine generation [5]. The

initial state is recomputed by evalua-

ting the macro-machine's state transi-

tion function for the initial state and the

inputs' initial values. The primary out-

puts are still delayed by a delta time

step since there is a signal assignment

to their state variables involved. In the

output functions the next-state functions

are substituted for the state variables in

order to remove this delta delay.

In the macro machine, there are state

variables that no output and no other

variable's transition function depend on.

Such state variables are removed from

the FSM. Typically, all signal drivers'

state variables and all primary output's

state variables are removed by this opti-

mization. State identi�cation | the eli-

mination of functionally equivalent state

variables, described in [10] | is also ap-

plied to the FSM.

It should be noted that the resultant

6

Design VHDL EDIF edif2fsm vhdl2fsm FSM

name I O LOC cells cpu time cpu time S j � j j � j

strobe 6 18 161 127 0.9 2.0 48 178 63

busint 123 26 511 196 5.4 12.2 37 277 446

div 18 4 737 75 1.0 28.1 27 632 59

channel 8 22 1278 234 4.6 430.9 94 854 92

Table 2: VHDL vs. EDIF for Industrial VHDL Designs.

FSM exhibits exactly the same behavior

as the VHDL simulation of the model.

Even simultaneous changes of clock and

data inputs | for which synthesized de-

signs usually di�er from their speci�ca-

tions { have the same e�ect in the FSM

and in VHDL simulations. This is an im-

portant point since the FSM extraction

is one step in the formal veri�cation pro-

cess whose results have to be equivalent

to exhaustive simulation.

4 Results

The vhdl2fsm translator has been im-

plemented using a commercial VHDL

analyzer to parse VHDL and produce

a parse tree annotated with type in-

formation. The FSM translator ac-

cesses this parse tree and translates

entity/architecture pairs into FSM's.

Structural VHDL is supported by com-

piling the instantiated entity and ar-

chitecture with the given assignments

to generics and then adding them to

the FSM currently under construction.

The variable ordering of the BDD data

structure is adjusted by dynamic varia-

ble reordering [8]. Reordering is invo-

ked whenever the number of BDD-nodes

has doubled since the most recent re-

ordering. The VHDL generics, also

used in Figure 2, as well as generate-

statements [2] provide for scalability

which is crucial for BDD-based formal

veri�cation [6].

See Table 1 for the runtime required

for the designs benchmarked in [5]. I

the number of inputs, O the number

of outputs, LOC is the number of li-

nes of VHDL code excluding any code

from packages. The cpu time publis-

hed in [5] and the cpu time we mea-

sured are both reported in seconds on

a Sparc2. For the FSM generated by

vhdl2fsm, S is the number of state va-

riables, j � j and j � j the number of

BDD-nodes for the state transition and

output functions, respectively. Table 2

reports some results for industrial de-

signs and compares the VHDL transla-

tion to the translation of the EDIF resul-

ting from synthesizing the VHDL with a

commercial tool. The number of EDIF

cells is reported as well as the runtimes

of both edif2fsm and vhdl2fsm. While

the translation times of the VHDL mo-

dels grow overlinearly with the size of the

VHDL descriptions, the times to trans-

late EDIF-netlists are about proportio-

nal to the number of cells. This compa-

rison shows the price that is to pay for

dealing with VHDL's semantics.

5 Conclusion and Fu-

ture Work

Our approach allows to translate VHDL-

designs that are common in industry

into BDD-based �nite state machines.

Over [5] the size of VHDL that can be

translated has been improved by about

two orders of magnitude. The reason for

this improvement is that the �xed point

of the state transition function is not ap-

plied to the sequential statements of pro-

cesses anymore but part of it is done by

the control-graph modi�cations. Nevert-

heless, a �xed point computation is still

the bottleneck of the VHDL translation.

For the larger designs in Table 2, more

than 90% of the CPU time is spent in

�xed point computation which is still ne-

cessary to determine the results of pro-

cess re-invocations.

In the future, a growing need to sup-

port timing can be anticipated since

real-time extensions to symbolic model

7

checking are subject of growing atten-

tion.

The similarity of our BDD-based con-

trol graphs to the data structures used

in high-level synthesis is striking. It may

be interesting to use our data structures

(BDD's for data + graphs for control) or

even the generated FSM's as basis for a

synthesis tool.

References

[1] R. E. Bryant, \Graph-Based Algo-

rithms for Boolean Function Ma-

nipulation", IEEE Transactions on

Computers, Volume C-35, Number

8, pp. 677{691, August 1986.

[2] IEEE Standard VHDL Language

Reference Manual , IEEE Std 1076-

1987, The Institute of Electrical and

Electronical Engineers, Inc., New

York, 1988.

[3] K. S. Brace, R. L. Rudell and

R. E. Bryant, \E�cient Imple-

mentation of a BDD Package",

27th Design Automation Confe-

rence, pp. 40{45, June 1990.

[4] P. P. Hou, R. W. Owens, M. J. Ir-

win, \High-Level Speci�cation and

Synthesis of Sequential Logic Mo-

dules", Proc. CHDL'91 - Compu-

ter Hardware Description Langua-

ges and their Application, pp. 131{

142, April 1991.

[5] T. Filkorn, M. Payer, P. War-

kentin, \Symbolic Veri�cation of

High-Level Synthesis Results from

CALLAS", Proc. 6th International

Workshop on High-Level Synthesis,

pp. 344{353, IEEE, November 1992.

[6] K. L. McMillan, Symbolic Model

Checking , Kluwer Academic Publis-

hers, 1993.

[7] A. Debreil, P. Oddo, \Synchronous

Designs in VHDL", Proceedings

Euro-DAC'93 with Euro-VHDL'93 ,

pp. 486{491, IEEE Computer So-

ciety Press, September 1993.

[8] R. L. Rudell, \Dynamic Variable

Ordering for Ordered Binary De-

cision Diagrams", Proc. IEEE IC-

CAD, pp. 42{47, November 1993.

[9] G. D�ohmen, \Petri Nets as In-

termediate Representation between

VHDL and Symbolic Transition Sy-

stems", Proceedings Euro-DAC'94

with Euro-VHDL'94 , pp. 572{577,

IEEE Computer Society Press, Sep-

tember 1994.

[10] M. Payer, J. Bormann, T. Filkorn,

J. Lohse, G. Venzl, P. Warkentin,

\CVE: An Industrial Formal Veri�-

cation Environment", Internal Re-

port, 1994.

8

