
VSI AllianceTM

Architecture Document

Version 1.0

Copyright 1997 © VSI AllianceTM Version 1.0 Page ii
All Rights Reserved

Table of Contents
1. OVERVIEW...1

1.1. Situation Analysis...1

1.2. Document Overview..1
1.2.1. Goal..1
1.2.2. Scope..2
1.2.3. Audience...2
1.2.4. Document Organization...2
Figure 1.2-a Model of Complex Chip Design Flow..3
1.2.5. Relationship to Existing and Proposed Standards...3
1.2.6. Assumptions..3

1.3. Definition of Terms..4
1.3.1. Basic Definitions..4
1.3.2. Hardness..4
Figure 1.3-a Graphical Representation of Soft, Firm, and Hard VCs...........................5

1.4. Methodology Overview...5
Figure 1.4-a Virtual Component Design Methodology..7

1.5. Data Interchange..8
1.5.1. Format Specification Philosophy...8
1.5.2. Deliverables Summary...8
Table 1.5-a VSI Data Deliverables ...9
1.5.3. Proprietary Formats...10
Table 1.5-b Proprietary Formats..11

1.7. Design Guidelines...11

2. SPECIFICATION OF DELIVERABLES...11

2.1. User Guide...11
2.1.1. Specification..11

2.1.1.1 System Description..12
2.1.1.2 Block Diagram...12
2.1.1.3 Register Description...13
2.1.1.4 Timing Information...13
2.1.1.5 Clock Distribution..13
2.1.1.6 Bus Interfaces & I/O Configurations...14
2.1.1.7 Test Description Summary...14
2.1.1.8 Integration Requirements...15

2.1.2. Claims and Assumptions..15
2.1.3. Verification of Claims and Assumptions..16
2.1.4. Version History...16
2.1.5. Known Bugs..16
2.1.6. Application Notes..16

2.2. System Architecture..17
2.2.1. System Evaluation Model..17

2.3. System Design..17

Copyright 1997 © VSI AllianceTM Version 1.0 Page iii
All Rights Reserved

2.3.1. Verification Test Bench...17
2.3.2. Behavioral Model..18
2.3.3. Processor Models...18
2.3.4. Bus Functional Model..19
2.3.5. Bonded Out VC/Prototype...20

2.4. Logic Design..20
2.4.1. Synthesizable RTL Source...20
2.4.2. Synthesis Constraints...21
2.4.3. Floorplanning..21

Floorplanning Shell..21
Floorplanning Constraints...22

2.4.4. Structural Netlist..22
2.4.5. Basic Delay Model...22

Soft VC..23
Firm VC...24
Hard VC...24

2.4.6. Peripheral Interconnect Model...24
Figure 2.4-a Peripheral Interconnect Model...24

2.5. Test Requirements..25
2.5.1. Virtual Component Test Interface Architecture..25
2.5.2. Test Methods...27

Open-box Test...28
Open-box Test Descriptions...28
Black-box Test...28
Black-box Test Description..28
Fault-based Test Patterns..29
Stuck-at Patterns..29
Scan Chain Confidence Patterns...29
IDDQ Test Patterns..30
BIST..30
Delay Tests..30
Reliability (Burn-in)...31
Failure Analysis and Fault Isolation..31

Figure 2.5-a Test Requirements Decision Tree (Part 1)...32
Figure 2.5-b Test Requirements Decision Tree (Part 2)..33

2.6. Physical Block Implementation...34
2.6.1. Block Description..34
2.6.2. Pin List/Pin Placement..34
2.6.3. Porosity/Blockage File...34
2.6.4. Footprint...34
2.6.5. Power and Ground...35
2.6.6. Power Model...35
2.6.7. Physical Netlist..35

3. VIRTUAL COMPONENT GUIDELINES..36

3.1. Naming Guidelines...37
3.1.1. VC Naming...37
3.1.2. VC Pin Naming...37

Copyright 1997 © VSI AllianceTM Version 1.0 Page iv
All Rights Reserved

3.1.3. VC File Naming...38

3.2. Test Guidelines...39
3.2.1. Functional Test..39
3.2.2. Virtual Socket Test Interfaces..39
Figure 3.2-a Internal Scan Black Box VC..40
Figure 3.2-b External Boundary Scan Black-box VC...40
Figure 3.2-c External Full MUX Interface...41
Figure 3.2-d External Partial MUX/Scan Interface...41
3.2.3. Structural Test Methods and Guidelines...41

General Testability Improvements...41
Scan Design..42

Definition..42
Rules for Scan-Based Design..43
Methodology Guidelines..44

Multiplexer Technique...44
Definition..44
Rules..44
Methodology Guidelines..44

Figure 3.2-e Multiplexer Test Access Points...45
BIST...45

Definition..45
Rules..45
Methodology Guidelines..46

Boundary Scan Design...46
Definition..46
Rules for Boundary Scan Design..46
Methodology Guidelines..47

Bus Technique..47
Definition..47
Rules for Test Bus..48
Methodology Guidelines..48

IDDQ...48
Definition..48
IDDQ Rules...48
Methodology Guidelines..49

Delay Testing...49
3.2.4. Example of VLSI Tester Capabilities...49
Table 3.2-a VLSI Tester Examples..49

WGL Description Guide..50

3.3. Chip-to-VC Hierarchical Integration...50
3.3.1. Logic Design Integration Guidelines..50

Logical I/O Ports...51
Figure 3.3-a Re-entrant Outputs...51
Figure 3.3-b Through Net Rule...52
Figure 3.3-c Tri-State Control Available at The VC Boundary.................................52
Figure 3.3-d Bus Hold Cell..52
Figure 3.3-e Dividing Bi-Directional..53

Clocking Guidelines...54
Clocking Guidelines — Soft VC...54
Clocking Guidelines — Hard and Firm VCs...54

Timing...55
3.3.2. Physical Design Integration...55

Physical I/O Ports..55
Porosity and Blockage..56

Copyright 1997 © VSI AllianceTM Version 1.0 Page v
All Rights Reserved

Physical Structure (Hard VC)..57
Power Access..57
Shapes..58
Grid..58

A. VC RESERVED WORDS..60

A1. Verilog...60

A2. VHDL...60

B. NAME SPACE DESCRIPTIONS AND TRANSFORMATION RULES.......................61

B.1. Name Space Descriptions...61

B.2. File System...61

B.3. VHDL..62

B.4. Verilog/Sensitive...62

B.5. Verilog/Insensitive (Verilog -u option)...63

B.6. Name space Transformation Rules..63

B.7. Raw -> Verilog/Sensitive...63

B.8. Verilog/Sensitive ->Raw..63

B.9. Raw ->Verilog/Insensitive...63

B.10. Verilog/Insensitive ->Raw...64

B.11. Raw ->VHDL...64

B.12. VHDL ->Raw...65

B.13. Raw ->File System..65

B.14. File System ->Raw..66

B.15. Case Preservation..66

C. OPEN STANDARDS REFERENCES...67

C.1. Reference Source Locations...68

D. GLOSSARY OF ACRONYMS...69

 NOTE: Virtual Socket, Virtual Socket Interface, Virtual Component and Virtual
Socket Interface Alliance are trademarks of the Virtual Socket Alliance, Inc.

Copyright 1997 © VSI AllianceTM Version 1.0 Page 1 of 69
All Rights Reserved

1. Overview

This document represents the baseline architecture for a proposed set of standards
called the Virtual Socket InterfaceTM.

1.1. Situation Analysis

As semiconductor technology advances, the business pressure to design large ICs in a
short time increases. Design reuse is expected to be a prevalent method for improving
design efficiency of large ICs. In many cases, the reused blocks are internally
developed. However, even with the rapid advances in fabrication technology and
design tools, few companies can dedicate the resources necessary to design and
maintain all of the blocks required to offer the customer a total “system-on-a-chip”
solution.

Consequently, it is becoming critical for companies to increase their access to a
variety of functional blocks, both within companies (other divisions) as well as from
other companies, to meet their time-to-market and business objectives. By doing so,
each company can focus their limited design resources on areas where they provide
maximum value while leveraging design expertise in blocks from the industry to
satisfy their needs.

IC designs of the future will contain several reused functional blocks from several
internal and external sources, mixed with some functional blocks designed
specifically for that particular IC. For all these blocks to work together, it is necessary
to define a common set of standards for the exchange of blocks.

Also, the existence of a design standard for the interchange of functional blocks
creates the possibility of any design group becoming a provider of functional blocks,
giving a company the option to sell or exchange their blocks with other companies in
a more efficient manner.

The VSI Alliance was formed to support the needs of the industry for design reuse,
and has begun to investigate how to reduce the technology and business barriers in
order to accelerate the industry transformation. While there are a number of business
barriers which need to be addressed, this document directly addresses some of the
more important technical issues.

1.2. Document Overview

1.2.1. Goal

The goal of the VSI standardization effort is:

To specify or recommend a set of hardware and software interfaces, formats,
and design practices for the creation of functional blocks that enable the
efficient and accurate integration, verification, and testing of multiple blocks
on a single piece of silicon.

This document is the result of the first of a multiple stage evolution of standards for
functional blocks, with changes occurring as the industry evolves and the
methodologies change.

The goal of the first stage is to establish:
• a common nomenclature for the practice of design reuse,

Copyright 1997 © VSI AllianceTM Version 1.0 Page 2 of 69
All Rights Reserved

• a baseline specification for the deliverables between functional block
providers and integrators, and

• a context for future VSI standards.

1.2.2. Scope

The VSI Alliance intends to define, develop, ratify, test and promote open
specifications relating to (1) data formats, (2) test methodologies and (3) interfaces,
which will facilitate the mix and match and the reuse of intellectual property blocks
from different sources in the design and development of system chips. The VSI
Alliance does not intend to develop Specifications relating to the (a) internal design
of intellectual property blocks, (b) functional architectures of subsystem components,
(c) fabrication processes or (d) methods, algorithms or techniques for EDA tools.

1.2.3. Audience

This document targets two generic audiences:
1. Providers of functional blocks, and
2. Users — or integrators — of these blocks.

For the providers of functional blocks, it defines the documentation and data formats
that users require for effective reuse of the blocks in an integrated product design.
For the users of functional blocks compliant to this specification, it represents the
information they can expect to receive in terms of content and formats.

1.2.4. Document Organization

This document contains the following sections:
• Section 1 provides an overview, including background, a summary of the

contents and the goal for the document.
• Section 2 provides a detailed description of the requirements for

documentation and data interchange.
• Section 3 is a set of preliminary VC guidelines intended as a seed to be

reviewed by DWGs.

Figure 1.2-a graphically represents a generalized design flow for a complex chip
design. It relates the development stages of the design (system specification, detailed
block and system design, etc.) to the various disciplines or domains of design activity.
Section 2 of this document is organized around those design domains - system design
(Sections 2.2 and 2.3), logic design (Section 2.4), test design (Section 2.5) , and
physical design (Section 2.6). Each entry in the table reflects a typical design activity
for that stage and domain.

Copyright 1997 © VSI AllianceTM Version 1.0 Page 3 of 69
All Rights Reserved

D e s i g n
Stage

System
specifi-
cation

Detailed
block and
s y s t e m
des ign

Chip
integrat ion

Modif i -
ca t ion
Request

Chip
Implemen-
ta t ion

System
Design

Algorithm and
architecture
design and

partitioning

VC selection and
system

simulation

Logic
D e s i g n

Target function
and perfor-

mance

HDL develop-
ment and syn-

thesis

Block refine-
ment and

interconnect

Phys i ca l
D e s i g n

Target Power,
packaging and

loading

Floorplan,
estimated block

size, loading

Timing/Size/
Power/Cluster

Post-layout up-
dates for timing /

size / power

Test
D e s i g n

Test method and
test bench

Test struc-
tures, vectors,

ATG

Test structure
insertion

Block modifica-
tion and verifi-

cation

Scan Chain
reordering

Silicon proto-
type and certifi-

cation

D e s i g n
Domain

Production Test
Creation

Figure 1.2-a Model of Complex Chip Design Flow

1.2.5. Relationship to Existing and Proposed Standards

This document and its subsequent enhancements are intended to specify
recommended usage of existing standards and standards under development
whenever possible. This standardization effort will be complementary to the activities
of existing standards bodies.

1.2.6. Assumptions

There are some underlying assumptions which have been made while addressing this
issue:

• Time is of the essence — a good short term solution, which will evolve, is
better than a multiple year perfect solution.

• The proposed standard needs to be supported and endorsed by a number
of vendors from the systems, semiconductor, and EDA segments.

• In keeping with the first two goals, the proposed standard needs to be both
open and in common use.

• The standardization will prioritize issues to maximize impact on near term
IP interchange and integration.

In preparing this proposal, it has been assumed that virtually all new digital designs
originate from an HDL description. With increasing complexity, it is encouraged that
future designs also include, where practical, a behavior description or model to
facilitate inter-block verification..

Copyright 1997 © VSI AllianceTM Version 1.0 Page 4 of 69
All Rights Reserved

1.3. Definition of Terms

1.3.1. Basic Definitions

Virtual Socket InterfaceTM A set of proposed standards and interfaces to enable
system-level integration on a chip using pre-designed
blocks resulting in rapid development of product. This
enables IC design to be done using a component
based paradigm.

Virtual ComponentTM (VC) A block that meets the Virtual Socket Interface
Specification and is used as a component in the
Virtual Socket design environment. Virtual
Components can be of three forms — Soft, Firm, or
Hard -- which are defined below.

Intellectual Property (IP) The term “Intellectual Property” means products,
technology, software, etc. that have been protected
through patents, copyrights, or trade secrets.

VC Creation Process by which a block is designed to a set of
specifications. The output should be in a standard
format with a pre-defined set of characteristics which
will simplify the integration and verification.

VC Integration The process by which a designer combines and/or
reuses multiple Virtual Components to create a much
larger IC.

1.3.2. Hardness

One parameter for characterizing VCs is the “hardness” of the block, or the degree
to which the VC has been targeted toward a particular fabrication process.
Soft VC Soft VCs are delivered in the form of synthesizable

HDL, and have the advantage of being more flexible
and the disadvantage of not being as predictable in
terms of performance (i.e., timing, area, power). Soft
VCs typically have increased Intellectual Property
protection risks because RTL source code is required
by the integrator.

Firm VC Firm VCs have been optimized in structure and in
topology for performance and area through
floorplanning/placement, possibly using a generic
technology library. The level of detail ranges from
region placement of RTL sub-blocks, to relatively
placed datapaths, to parameterized generators, to a
fully placed netlist. Often a combination of these
approaches is used to meet the design goals. As
indicated in Figure 1.3-a, Firm VCs offer a
compromise between Soft and Hard. More flexible
and portable than Hard, yet more predictive of
performance and area than Soft, Firm VCs include a
combination of synthesizable RTL, reference
technology library, detailed floorplan, and a full or
partial netlist. When a full netlist is present, it is
expected that test logic has been inserted and that test
lists will accompany the design. Firm VCs do not
include routing. Protection risk is equivalent to that of
Soft if RTL is included and is less if it is not included.

Copyright 1997 © VSI AllianceTM Version 1.0 Page 5 of 69
All Rights Reserved

Hard VC Hard VCs have been optimized for power, size, or
performance and mapped to a specific technology.
Examples include netlists fully placed, routed, and
optimized for a specific technology library, a custom
physical layout, or a combination of the two. Hard
Virtual Components are process/vendor specific and
generally expressed in GDSII. They have the
advantage of being much more predictable, but
consequently are less flexible and portable due to
process dependencies. Hard VCs require, at a
minimum, a high level behavioral model, a test list, full
physical and timing models along with the GDSII. The
ability to legally protect Hard VCs is much better
because of copyright protections and there is no
requirement for RTL.

Figure 1.3-a depicts a graphical representation of a design flow view, and
summarizes the high level differences between Soft, Firm, and Hard VCs.

System Design

RTL Design

Floor Planning
Synthesis

Placement

Routing
Verification

Soft

Firm

Hard

Design Flow Representation Libraries Technology

Behavioral

RTL

RTL & Blocks

Netlist

Polygon
Data

N/A

Reference
Library

• Footprint
• Timing model
• Wiring model

Process specific
library & design
rules
• Characterized
 Cells
• Process rules

Technology
Independent

Technology
Generic

Technology
Fixed

Not Predictable
Very Flexible

Flexible
Predictable

Not Flexible
Very Predictable

Portability

Unlimited

Library Mapping

Process Mapping

Figure 1.3-a Graphical Representation of Soft, Firm, and Hard VCs

1.4. Methodology Overview

As design complexity increases, so too must design reuse of existing functional
blocks. To realize real improvements in productivity and time-to-market, large
designs require a set of higher level building blocks. One way to visualize this shift is
to adopt a printed circuit board-like model where standard, pre-existing components
(or blocks) are assembled, simulated, verified, and ultimately manufactured.

Designs can be divided into two basic areas: block creation and block integration.
Extending the board paradigm, block creation involves the development, or
authoring, of blocks which are then re-used in either a stand-alone component or as
part of a larger chip. Block integration is the activity associated with integration and
verification of multiple blocks onto one piece of silicon.

Copyright 1997 © VSI AllianceTM Version 1.0 Page 6 of 69
All Rights Reserved

Figure 1.4-a presents a graphical view of the VC creation and integration process and
their relationship to VSI.

Creators of VCs go through the design and verification flow on the left side of the
figure. The creator flow proceeds as far as necessary, depending on the hardness of
the intended deliverable.

Integrators of VCs go through the design and verification flow on the right side of the
figure. The integrator is responsible for completion of the chip design through the
release to manufacturing (as defined by the manufacturer’s requirements).

The data exchanged between the VC creator and the VC Integrator is the domain of
the VSI standard.

Copyright 1997 © VSI AllianceTM Version 1.0 Page 7 of 69
All Rights Reserved

Bus Functional
Verification

RTL
Functional
Verification

Gate
Functional
Verification

Performance
Verification

Final
Verification

System Design

RTL Design

Floorplanning
Synthesis
Placement

Routing

Verification
Flow

Creation
Flow

VSI VC Integrator

Bus Functional
Verification

RTL
Functional
Verification

Gate
Functional
Verification

Performance
Verification

Final
Verification

System Design

RTL Design

Floorplanning
Synthesis
Placement

Routing

Verification
Flow

Creation
Flow

VC Provider

Data Sheet
ISA Model

Bus Functional
 Models

RTL
SW Drivers

Functional Test
Test Bench

Synthesis Script
Timing Models
Floorplan Shell

Gate Netlist

Timing Shell
Clock
Power Shell

Test Vectors
Fault Coverage
Polygon Data

System
Modeling/
Analysis

System
Requirement
Generation

Software
Design

System
Integration

System
Character-

ization

Behavioral Models
Emulation Model
Eval. Test Bench

Board
Design

Emulation/
Prototype

Interconnect Models
P&R Shell

Figure 1.4-a Virtual Component Design Methodology

Copyright 1997 © VSI AllianceTM Version 1.0 Page 8 of 69
All Rights Reserved

1.5. Data Interchange

1.5.1. Format Specification Philosophy

The VSI standard identifies information required to enable block-based system
integration onto a single piece of silicon. While some of this information comes in the
form of documentation, much of it comes in the form of executable models or
machine-readable design descriptions.

The goal of the VSI Alliance is to specify a complete interface which:
• provides a practical, reliable link between VC provider and VC user
• provides an evolution consistent with tool, process, and technological

advances
• specifies the use of an industry standard open format whenever applicable

for executable or machine-readable models

The VSI Alliance advocates convergence among competing formats to reduce the
number of recommended alternatives.

Where no standard exists, or where the standard has not yet been widely integrated,
the VSI identifies the information that must be exchanged without specifying a
particular format.

The VSI Alliance will only recommend proprietary formats whose owners have
agreed not to assert rights within the field of use as defined in the VSI standard.

1.5.2. Deliverables Summary

Table 1.5-a summarizes the initial proposal for data formats. The discussion in this
section is applicable to tables in Section 2.

The following list describes the columns of the table and the keywords used in that
column:

Section references the document section which discusses the
deliverable

Deliverable describes the deliverable

Currently Used Formats lists the formats used today as common practice in
delivering VCs.

Document Information exchanged on paper or
electronically in a widely used format

ASCII Information must be exchanged in a
machine- and human-readable format

Candidate VSI Format lists open formats that are under consideration for
inclusion in future VSI standards. The decisions of
the standard formats will be made by a VSI Alliance
DWG.

TBD denotes that no candidate has been
selected. The VSI Alliance will take one
of the following actions:

Copyright 1997 © VSI AllianceTM Version 1.0 Page 9 of 69
All Rights Reserved

1) Actively pursue a candidate within a
DWG

2) do not pursue a candidate at this time

Soft, Firm, Hard describe the applicability of the deliverable to a VC
of this hardness.

M denotes mandatory

CM denotes conditional mandatory
(requirement is based on application)

R denotes recommended

CR denotes conditionally recommended
(requirement is based on application)

Comments adds clarifying information

Table 1.5-a VSI Data Deliverables

Section Deliverable
Currently Used

Formats
Candidate VSI

Format Soft Firm Hard Comments

 2.1 User Guide
 2.1.1 Specification Document TBD M M M

 2.1.2 Claims and Assumptions Document TBD M M M

 2.1.3 Verification of Claims Document TBD M M M

 2.1.4 Version History Document TBD M M M

 2.1.5 Known Bugs Document TBD M M M

 2.1.6 Application Notes Document TBD R R R

 2.2 System Architecture

2.2.1 System Evaluation Model C, C++, VHDL,
Verilog

TBD CR CR CR

 2.3 System Design

 2.3.1 Verification Test Bench VHDL, Verilog
+PLI

VHDL, Verilog
+PLI

R R R

 2.3.2 Behavioral Model C, C++, VHDL,
Verilog

C, C++, VHDL,
Verilog

R CM M OK to use RTL
if available

 2.3.3 Processor Models C, C++, VHDL,
Verilog

C, C++, VHDL,
Verilog

R CM M

 2.3.4 Bus Functional Model VHDL, Verilog VHDL, Verilog R R R

 2.3.5 Bonded Out VC/Prototype R R R

 2.4 Logic Design

 2.4.1 Synthesizable RTL Source (VHDL,
Verilog)
Synthesizable
subset

(VHDL,
Verilog)
Synthesizable
subset

M CM CR Netlist could be
used

 2.4.2 Synthesis Constraints Synopsys DC
Shell

TBD M CM -

 2.4.3 Floorplanning

Floorplanning Shell ASCII, LEF TBD M M M Inter-block

Floorplanning Constraints PDEF, LEF, SDF TBD R CM - Intra-block

 2.4.4 Structural Netlist Verilog, VHDL,
EDIF-netlist,

Verilog, VHDL,
EDIF-netlist

- CM CR Synthesizable
RTL could be

Copyright 1997 © VSI AllianceTM Version 1.0 Page 10 of 69
All Rights Reserved

Section Deliverable
Currently Used

Formats
Candidate VSI

Format Soft Firm Hard Comments
SPICE used

 2.4.5 Basic Delay Model TLF, Synopsys
NLDM, ITL,
MMF

TBD R M M No current state
dependent block
format

 2.4.6 Peripheral Interconnect Model SPEF TBD - CR CM

 2.5 Test Requirements

 2.5.2 Test methods Document TBD M M M

Open-box Test Description Document TBD M CM - If the VC faults
fall into open
box category

Black-box Test Description Document TBD - CM M

Test Patterns WGL, VCD, or
ASCII

TBD - CM M Dependent upon
Test Method

BIST WGL, VCD TBD CM CM CM Large memory
arrays

Delay Tests WGL, VCD TBD - R R

Reliability (Burn-in) WGL, VCD TBD - R R

Failure Analysis & Fault isolation TBD TBD - R R

 2.6 Physical Block Implementation

 2.6.1 Block description GDSII,
LEF/DEF,
SPICE

TBD - CM CM Estimated for
Soft and Firm

 2.6.2 Pin list/placement LEF/DEF TBD - CM M Required if
Hard is netlist
based

 2.6.3 Porosity/blockage file LEF/DEF TBD - CM M

 2.6.4 Footprint LEF TBD - CM M

 2.6.5 Power/ground LEF/DEF/
ASCII

TBD - CR R

 2.6.6 Power model TBD TBD R R R

 2.6.7 Physical Netlist SPICE TBD - CM CM

1.5.3. Proprietary Formats

The intention of the VSI Alliance is that all interface formats referenced in VSI
standards must be open and available within the field of use defined by the standards.
However, for this document, we have listed known proprietary formats in the
“currently used formats” column. To become an open standard, the VSI Alliance
must agree that the interface is appropriate and the owner of the standard must agrees
to release it.

Table 1.5-b lists the proprietary formats referenced in Table 1.5-a and their owners.

Table 1.5-b Proprietary Formats

Format Description Owner
DC Shell Design Compiler Scripting Language Synopsys

DEF Design Exchange Format Cadence

SPEF Standard Parasitic Extended Format Cadence

GDSII Polygon Level Layout format Cadence

ITL Interpolated Table Lookup cell-level timing model Mentor Graphics

LEF Layout Exchange Format Cadence

Copyright 1997 © VSI AllianceTM Version 1.0 Page 11 of 69
All Rights Reserved

MMF Motive Modeling Format Viewlogic

NLDM Non-Linear Delay Model cell-level timing model Synopsys

TLF Table Lookup Format – cell-level timing model Cadence

VCD Verilog Change Dump Cadence

WGL Waveform Graphical Language TSSI

This section addresses the deliverables between VC creators to VC integrators. At this
time, the document does not address any issues regarding the generation (manual or
automatic) of VCs. However, the deliverables created by a generator must meet the
requirements of the standard.

1.6. Design Guidelines

Integration of VCs into a system chip can be made difficult, or fail, for many reasons:
inadequate documentation, lack of system level models, electrical mismatches, layout
mismatches, mismatch of tool usage assumptions, multiple test protocols, and multiple
block interface protocols to name a few. Section 2 discusses the requirements and
recommendations for deliverables (such as documentation and system level models).
A design guidelines document will discuss some of the most common mismatches and
will present guidelines for avoiding them.

2. Specification of Deliverables

2.1. User Guide

2.1.1. Specification

Specifications for VCs are generally in human readable form and
provided by the VC creator. They describe functional operation,
performance, timing requirements, operating modes, and acceptable
operational regions of temperature, voltage, gate size, critical paths,
and recommended floorplans. The format includes text, charts, tables,
block or flow diagrams, and other graphical information. The actual
outline and content of the data sheet will be highly dependent on the
VC type and function. Information contained in the datasheet is
generally applicable to Soft, Firm, and Hard VCs.

The VC provider needs to describe the socket requirements for such
things as: test access interface, test vectors, and test methods that are to
be applied. This section enumerates the types of tests, identifies a
proposed standard for each, and maps the VC into the test architecture
interfaces described in Figures 2.5.1. The VC provider must
document the test methods available in the VC and the appropriate
information for each test method.

Section Deliverable
Currently Used

Formats
Candidate VSI

Format Soft Firm Hard Comments

 2.1.1 Specification Document TBD M M M
 2.1.1.1 System Description Document TBD M M M

 2.1.1.2 Block Diagram Document TBD M M M

 2.1.1.3 Register Description Document TBD CM CM CM

 2.1.1.4 Timing Diagram Document TBD M M M

Copyright 1997 © VSI AllianceTM Version 1.0 Page 12 of 69
All Rights Reserved

Section Deliverable
Currently Used

Formats
Candidate VSI

Format Soft Firm Hard Comments
 2.1.1.5 Clock Distribution Document TBD M M M

 2.1.1.6 Bus Interfaces & I/O Configs Document TBD M M M

 2.1.1.7 Test Description Document TBD M M M

 2.1.1.8 Integration Requirements Document TBD CM CM CM

2.1.1.1. System Description

The system description is in text format, and is written for the user
(system designer or chip integrator) to gain an understanding of the
functional operation and general applicability of the VC. It contains
both implementation and operational information, and can range in
complexity from a page or two for simple functions to possibly
hundreds of pages for the complex microprocessors.

Programmable functions will need to contain information the user will
require to develop needed programs and software. Typical sections
are: data formats; instructions and commands; control modes;
operating modes; test modes; special modes; and features. Also
required is reference to appropriate software support tools such as
models, compilers, linkers, and debuggers.

2.1.1.2. Block Diagram

Block, flow, and/or tree diagrams are generally required for
descriptive reference. These diagrams are to provide information on
the interaction of key sub-elements of the VC. These should describe:

ï organization

ï structure

ï partitioning

ï data flow

ï critical interactions

2.1.1.3. Register Description

All externally visible states need to be described. All registers
important to the understanding, implementation, operation, and
programming of the VC need to be described in this section. This
should include:

ï register definitions

ï bit mapping into registers

ï register clocks

ï access requirements for writing or reading these registers

CONDITIONAL: The requirements for register documentation is
conditional on the presence of registers in the VC design.

Copyright 1997 © VSI AllianceTM Version 1.0 Page 13 of 69
All Rights Reserved

2.1.1.4. Timing Information

The timing diagram is a graphical representation where the clocks,
data interfaces, and status are illustrated, and valid conditions for the
inputs and outputs are identified — such as on which edge the input is
captured and on which edge the output changes. Also included are
false path designations, timing errors which can be ignored, and set-up
and hold conditions.

When an asynchronous input is used, sufficient information must be
provided to avoid problems in verification and test of the VC. Critical
information includes:

1. where the asynchronous circuits are used

2. asynchronous circuit structure

3. metastability probability associated with this logic

2.1.1.5. Clock Distribution

All critical information on clock(s) and clock distribution must be
provided by the VC supplier. For example:

ï It is recommended that Firm VCs include a detailed description of
the clock distribution network as part of the deliverable.

ï For Firm VC, if additional clock frequencies or phases are being
developed in the VC from the clock I/O on the VC, they must be
clearly defined and described in detail.

ï The internal clocking distribution should be described for the
Firm VC. At a minimum this should include internal clock delay
and skew.

ï Hard VCs must specify interface requirements for the clocks such
as frequency range, duty cycle, rise and fall edges, active edges,
relation to other clocks, slew rate, jitter, and clock stop/start
conditions.

ï Soft VCs should not include the internal clocking structures.

2.1.1.6. Bus Interfaces and I/O Configurations

This section describes the interfaces to the VC with the internal
functionality assumed to be at the black-box level. It includes:

ï pin list (I/O names, function, and location)

ï bus interfaces and protocols

ï memory and CPU interfaces

ï bus cycle encoding

ï interrupts

Copyright 1997 © VSI AllianceTM Version 1.0 Page 14 of 69
All Rights Reserved

ï data rates

ï word formats

ï clocking specifications

2.1.1.7. Test Description Summary

The VC provider needs to describe the socket requirements for such
things as test access interface, test vectors, and test methods which are
to be applied. This section enumerates the types of tests, identifies a
proposed standard for each, and maps the VC into the test architecture
interfaces. The VC provider must document the test methods
available in the VC along with the appropriate information. Section
2.5 describes the test methods.

2.1.1.8. Integration Requirements

The integration requirements section includes:

ï those requirements specific to certain VC types as opposed to
general requirements. An example might be special noise
isolation or power requirements

ï non standard files and formats required

ï explanation of any design condition that could be considered
contrary to VSI standard guidelines

2.1.2. Claims and Assumptions

Information on features and characteristics of a VC must be provided
by the VC supplier for user evaluation and selection prior to purchase.
This will result in claims related to performance, size, number of
gates/bits/transistors, power requirements, etc. The VC supplier has the
responsibility of substantiating these claims. This requires the supplier
to define the context to which the claims were evaluated and,
therefore, validated. This context will be referred to in this document
as the “reference environment.” The reference environment will
consist of the generic technology library, design flow, design tools,
options, parameters, and all other information used to implement the
VC in this environment. With this reference environment the user
should be able to duplicate the results and verify the VC supplier’s
claims.

The VC provider will state the claims for the VC including a minimum
of the following:

ï functionality

ï performance (measured or estimated)

ï power usage (measured or estimated)

Copyright 1997 © VSI AllianceTM Version 1.0 Page 15 of 69
All Rights Reserved

ï implementation size or gates as appropriate to indicate area
(measured or estimated)

ï VSI Data formats table

ï testability

ï test suites and/or test streams

These claims represent the VC supplier’s products to the system chip
integrator. They will represent his value added, market place
differentiation, and will serve the chip integrator in the process of
choosing the appropriate VC to meet his needs.

2.1.3. Verification of Claims and Assumptions

This section describes the procedures such that the claims made by the
VC supplier can be verified. For Hard VCs actual measured values can
be used when available. However, for Soft or Firm VC types, estimated
values must be developed by running the design through to
completion against a reference environment as defined in section
2.1.2. The selection of a reference technology library is at the
discretion of the VC provider. However, it must be available to the VC
user in a form appropriate for comparison. Generally, the reference
library selected should be available in the industry to permit user
validation.

This reference environment must be defined by the VC supplier such
that the user would be able to repeat the claims by duplicating the
conditions specified in the reference environment. This provides an
audit capability for the claims.

A document from the VC provider identifying the compliance to
Table 1.5-a is required. It is recommended that it be in the form of
Table 1.5-a with a column added for status of the deliverables.

2.1.4. Version History

The VC developer must supply a version history of the VC describing
changes and version releases associated with the VC. This information
should clearly identify the current level of release and be coordinated
with the claims.

2.1.5. Known Bugs

A record of bugs, issues, or other problems that are known to exist in
a VC must be kept and made available to the VC purchaser. This
could also include work-arounds and plans for fixes.

2.1.6. Application Notes

The application notes should discuss the implementation and
customization options available to a System Designer using the VC.
For example, a Micro-Processor Unit (MPU) VC could offer different
memory access mechanisms, such as burst access or pipeline access.
The VC provider may provide an application note explaining
different implementation options to the VC user in designing the
memory subsystem unit.

Copyright 1997 © VSI AllianceTM Version 1.0 Page 16 of 69
All Rights Reserved

2.2. System Architecture

2.2.1. System Evaluation Model

The goal of the system, or high-level, models is to allow the VC user
to evaluate and select the various VCs which are to be used for the
system chip. The evaluation within the system environment, tradeoff
analysis, and subsequent decisions on items such bandwidth, function,
and performance can be determined within this environment in the
context of the overall system chip specification.

The high-level behavioral models required for this evaluation do not
need to be cycle accurate as they are intended as a block-level
description of the data flow and only need minimal control. They can
be created at a very abstract level to allow early delivery of an
evaluation model, as well as fast and efficient simulation of the VC
and the proposed system chip.

These models generally will contain no information that can be used
for synthesis, and could act as an efficient method for the marketing
and/or evaluation of the VC. By providing a data sheet and simplified
behavioral model, the VC user would be able to quickly gain technical
knowledge with respect to the value of the VC in their specific design
implementation.

The VC user can generate the system level test bench by starting with
the highest level of abstraction and use this for the initial regression
test used in the subsequent stages of the design process.

CONDITIONAL: The need for an architectural evaluation model is
conditional on the functional complexity of the VC. It is seen as a
fundamental differentiator between complex VC designs which the
system architect chooses to observe and evaluate in the system
environment prior to an implementation decision.

2.3. System Design

High-level behavior models are necessary to describe the functionality at the
block level of a VC. The RTL source used for synthesis can also be used for
chip verification. Higher level models should be considered for simulator
efficiency during functional verification. These higher level models would be
used to verify functionality of the VC in the chip or system context, verify the
correctness of an RTL description in top-down design, and to provide models
for software/hardware co-verification. Protected, or secure, models may be
provided in an OMF compliant format.

2.3.1. Verification Test Bench

The presence of a set of functional and timing delay verification
patterns is a requirement which serves several basic needs:

1. May serve as a basis for regression when Soft RTL VC is being
modified by the system user.

Copyright 1997 © VSI AllianceTM Version 1.0 Page 17 of 69
All Rights Reserved

2. Supports the use of verification testbench vectors and can be used
for manufacturing test.

3. It provides a functional and timing delay verification check for a
Hard VC which has been ported to another vendor.

The form of the verification test bench should be consistent with the
Verilog or VHDL RTL model used. Stimulus/response along with
timing and clocking controls is required.

2.3.2. Behavioral Model

The behavioral model is used to model the functionality of non-
processor blocks of VCs. It is important for all classes of VCs — Soft,
Firm, and Hard — and is used for verifying the functionality of the
VC, for co-verification with other VCs, and for software-hardware co-
verification. This would be a natural output of a top-down design of a
VC. When VCs are developed using an alternate methodology, such as
VCs designed directly at the RTL level, the behavioral model would
need to be written and verified against the RTL description or the
netlist description — if that is the only functional representation of the
VC. A requirement of this model is that it can be simulated efficiently
in the complex system-on-a-chip environment. A cycle accurate
model is desirable. It need not model all internal functionality, only
that portion which is visible at the boundary of the VC.

CONDITIONAL: The behavioral model is conditional for Firm VCs
depending on whether an RTL model is available. If the VC provider
supplies only a netlist then a behavioral model is required as a
supplement for system level functional design verification.

2.3.3. Processor Models

Programmable devices such as microprocessors, DSPs, and
microcontrollers have extra modeling requirements. Additional
models are necessary because software is an important part of the
verification of a chip containing a processor. Some of the support
products for processor models include:

• Instruction Set Architecture (ISA) — a high level model which
models the programmable behavior of the processor VC. The ISA
emulates the behavior of the processor VC in response to any and
all instruction set stimuli. It’s written at a sufficiently high level to
allow good efficiency in modeling the VC behavior in a system
chip environment. As such, it does not need to model specific
internal functionality except where it is visible to the user, such as
user write-able registers. Two ISA models are recommended - one
optimized for speed and targeting hardware/software cosimulation
and one optimized for cycle accuracy and having the same
interface as the RTL model. The datasheet should specify whether
this model is cycle accurate (a cycle accurate model is preferred).

• Code Size and Performance Estimators — for the purposes of VC
evaluation, simulation/emulation models and estimators are
required for assessing performance criteria, such as RAM and
ROM code-size for program and data, execution run-time (cycle-
counting), and power.

Copyright 1997 © VSI AllianceTM Version 1.0 Page 18 of 69
All Rights Reserved

• Software Development Tools — for the purposes of VC
application development, extra software must be added to the VSI:
compilers, assemblers, and loaders for application software, dis-
assemblers, run-time analysis, and debug environments.

• Run-Time Libraries — part of the value of a processor may be
software libraries that have been developed to run on it. Run-time
libraries can either be in a source form or pre-compiled in a
library that is usable by the software development tools. Run-time
libraries may come from the processor VC provider or from
another VC provider. Libraries which implement features of the
user-visible instruction set architecture in software are particularly
important as well as basic hooks for setting breakpoints and
examining states for debugger support.

CONDITIONAL: The processor model is conditional for Firm VCs
depending on whether an RTL model is available. If the VC provider
supplies only a netlist, then a processor model is required as a
supplement for system level functional design verification.

2.3.4. Bus Functional Model

The overall rationale for the use of a bus functional model (BFM) of a
VC is to permit the user to verify that, as seen from its interface, the
VC functions correctly with other VCs to which it is connected.
Emphasis on behavior at this level has the following advantages:

• More lightweight, and thus, compile more quickly, occupy less
memory, and run much faster than full implementation models.
This permits a more thorough coverage of interface behavior to
be verified in a reasonable time than would be possible with
models that cover the full details of the implementation.

• Enable vendors to give their customers the means to perform
thorough verification of the usage of their VCs, without the need
to reveal internal implementation details. Most of the essential
pins/ports will be present in the model, but some may still be
missing — such as test pins. In addition, not all aspects of
interface behavior will always be covered — for example, some
interrupt modes may be missing in the case of processors. The
trade-off is between speed and complexity of the model, and the
most important aspects of the VCs likely use.

• Beyond the verification of correct function, BFMs usually have
enough detail to permit the verification of interface timing, and
will produce detailed error reports of misuse and violations.

• In some cases, a BFM may offer user-callable tasks or procedures
that encapsulate and evoke complex bus protocol sequences, and
serve as reference stimulus and test for external blocks under
design by the user.

• BFM models may provide tasks or procedures that offer a
programming interface to the attributes of a block that are not
available in the hardware implementation. For example,
procedures may be offered that permit the inspection of internal
registers and status bits.

Copyright 1997 © VSI AllianceTM Version 1.0 Page 19 of 69
All Rights Reserved

2.3.5. Bonded Out VC/Prototype

System chips with embedded software frequently require special
simulation. Near the end of design process, to perform integration
testing (in which hardware and software run together), a simulation
system involving a hardware emulator is evoked. This is done for
reasons of functional completeness and execution speed. In order to
simulate with a hardware modeler or hardware emulation system,
either synthesizeable RTL or a bonded-out VC is needed for all VCs
on the chip. The unavailability of a prototype model as either RTL or
a bonded-out VC for even one VC can complicate or prevent building
a hardware prototype.

2.4. Logic Design

CONDITIONAL: As the definition of a Firm VC can range from RTL with
topological planning to a technology specific placed netlist, the presence of
synthesis and floorplanning/timing constraints are conditionally mandatory if
synthesis from RTL is required. This conditional statement applies to all of
section 2.4.

2.4.1. Synthesizable RTL Source

The RTL source file must be written in a standard RTL language and
must conform to the synthesizable VHDL or Verilog subset. It should
be written in a modular form that clearly identifies:

ï memory functions to be instantiated through generators, or
specified as pre-designed library elements.

ï structured functions where generators or pre-existing blocks are to
be used for performance, area, or power — such as data flow
structures (note: structures which are instantiated require the
availability of the required generators, libraries and appropriate
supporting views).

ï synthesizable logic.

The value of encryption for VC protection and cross contamination
prevention for both the provider and the user respectively makes it a
key element in the VC interface. An encrypted RTL file must provide
for the modeling of any functions such as registers that need to be
user visible for proper integration, verification, and debug of the VC
within the system chip. If encryption is required, the OMF standard
should be followed.

2.4.2. Synthesis Constraints

Any RTL intended for use in synthesis (Soft or Firm) is required to
include a set of synthesis directives and constraints. The synthesis
directives include information typically found in synthesis scripts,
such as the order for processing the design hierarchy and wire load
models. Synthesis constraints describe the performance and area
objectives.

Copyright 1997 © VSI AllianceTM Version 1.0 Page 20 of 69
All Rights Reserved

2.4.3. Floorplanning

Generically, there are two categories of floorplanning information
required for the system chip designer.

Floorplanning Shell

High-level floorplanning is becoming an important step in system
design flow. All VC types will need to have models that are usefully
predictive at the system design level. At the present time, no model
formats or tools are mature enough to be specified. However, the
characterization of VCs is intended to establish a starting place for the
refinement of system-level models. The floorplanning shells should
have the following information:

Deliverable
Currently

Used Formats
Candidate

VSI Format Soft Firm Hard Comments
Floorplanning Shell

Block abstract (size, pin
location, and porosity)

ASCII, LEF TBD M M

Pin attribute (in, out, clock) ASCII, LEF TBD M M M

Timing information or data
flow (timing arc)

TLF,
Synopsys
NLDM, ITL,
MMF

TBD M M M

Power information
(frequency)

ASCII TBD M M M

Floorplanning Constraints

The presence of floorplanning information at the Soft VC level is
typically expected to be region-based and correlated to the wire load
constraint models. Relative placement of megacells — such as RAMs
— is expected as part of the floorplan. If there is a pre-specified or
preferred I/O configuration it should be described in the floorplan.
For Firm VCs, the floorplanning is expected to be significantly more
detailed, ranging down to a full placement for both internal and I/O
cells. Floorplanning constraints have the following information:

Deliverable Currently
Used Formats

Candidate VSI
Formats

Soft Firm Hard Comments

Floorplanning Constraints

Wiring constraints SDF, PDEF TBD R CM

Placement constraints PDEF TBD R CM

Block abstract (size, pin
location & porosity)

LEF TBD CM

Pin attribute (in, out, clock) LEF TBD R CM

Timing information or data
flow (timing arc)

TLF, Synopsys
NLDM, ITL,
 MMF

TBD R CM

Power information
(frequency)

ASCII TBD R CM

2.4.4. Structural Netlist

In many cases, especially for Firm VCs, the deliverables include a
structural netlist of blocks, generic gates, library-specific gates or
transistors. The netlist may be used as an input to synthesis, to
floorplanning or as a final technology-specific deliverable.

Copyright 1997 © VSI AllianceTM Version 1.0 Page 21 of 69
All Rights Reserved

2.4.5. Basic Delay Model

The characterization of the embedded block in the time domain is an
important element in delivering VCs which can be embedded. The
typical methods for characterizing small SSI/MSI level standard cell
functions have matured to provide a fairly accurate approximation of
the actual cell behavior. This has typically been achieved through
multiple SPICE simulations followed by curve fitting techniques.
Unfortunately, this technique is limited by the practical bounds of
SPICE simulation. For larger VCs, an alternative method is needed
which combines static timing analysis with SPICE to provide a useful
characterization. Furthermore, a method is needed to properly handle
the I/O boundary conditions affecting the timing model and the true
behavior over all possible clock domains.

The timing specification format remains relatively constant over the
various types of VC. However, the accuracy of the characterization
model improves as the design implementation becomes more
technology specific. The format proposed consists of two
fundamental representations, which are combined to provide a
complete characterization. The first representation covers the VC
independent of the peripheral interconnect, and the second (section
2.4.6) addresses the peripheral portion of the block recognizing the
possibility that nets extending beyond the block boundaries must be
modeled in the context of use at the system-level. A discussion of the
utility of each model in light of the VC type is included.

The basic delay model includes :

ï propagation delay model (delay between I/O ports expressed as a
function of output load and input slew)

ï slew model (output slew expressed as a function of output load
and input slew)

ï input and output port capacitance

ï external setup and hold constraints (expressed at the input ports to
the block)

ï all values should be expressed for min, max, rise, and fall
transitions

The recommended methodology for generating the model is through
static timing analysis for all synchronous blocks. The model should
include as a reference either:

• the technology characterization parameters used in the model
generation process (temperature, process, voltage); or,

• the reference environment used in the VC layout.

The model format for the VC is executable at the next level of timing
analysis and suitable for use by timing simulation or system-level
static timing verification.

Soft VC

Copyright 1997 © VSI AllianceTM Version 1.0 Page 22 of 69
All Rights Reserved

This model is not required because the accuracy without the
presence of a cell library or interconnect structure is so poor it
becomes useless. If the provider has verified his VC against a
reference environment (Section 2.1.2), a model may be provided
that is usable to the VC user. However, this provides limited
information on how the block will behave in the customer
application — primarily due to variances in layout and
interconnect delays. We would recommend the creation of a
generic library for a technology level (e.g. 0.5u, 3ML) against
which vendors could characterize their cell libraries. The
comparison estimates would be better, but this model would still
suffer at this level due to a lack of predictable interconnect
structure.

Firm VC

The interconnect delay approximations based on a topological
layout description are considered sufficiently predictive for
preliminary system-level timing analysis. Therefore, the base
timing model is required for Firm VCs.

Hard VC

This model is required. A transistor-level static timing analysis
with characterization for temperature, process, and voltage
variations and a curve fit should be performed. Accuracy will be
limited by the tools used and should be backed up with a SPICE
analysis of the critical paths. The process used for characterization
of the Hard VC should be listed as part of the VC documentation.

2.4.6. Peripheral Interconnect Model

The peripheral interconnect model represents the interface
interconnect network shell around the block internal model. This
provides a separation of the peripheral interconnect RCs from the
block intrinsic delays expressed in section 2.4.5. By preserving the
interconnect model for these nets from I/O ports to gates, delay
calculation at the next level of hierarchy can be performed using the
actual interconnect rather than an inaccurate approximation of
loading and interconnect. This model is required for Hard VCs where
the I/O interconnect is clearly understood (see Figure 2.4-a).

Copyright 1997 © VSI AllianceTM Version 1.0 Page 23 of 69
All Rights Reserved

Figure 2.4-a Peripheral Interconnect Model

2.5. Test Requirements

Testing designs with embedded blocks is often challenging, as the I/O of the
blocks may not be accessible from the chip I/O. The test methodology must
be optimized based on test execution time, pattern size, performance
degradation, and area overhead (including routing resources) due to test logic,
high fault coverage, and fault isolation. Special attention should be given to
fault isolation and test execution time. Multiple test methods (BIST, IDDQ,
Stuck-at, Scan) may be required to adequately test VCs embedded within a
system chip. The test architecture at VC level must support parallel testing of
different VCs at chip-level. Adhering to test standards during the design of a
VC will make the task of assembling a chip level test possible. Assuming they
meet DFT constraints, Soft VCs can be tested by treating them just like any
other system logic. In the case of Hard VCs, it is critical to have the associated
test vectors, details on test methods, fault modeling, and fault isolation
information. Thus, test requirements can be simplified into two categories:

• Black-box — these are VCs for which the provider must supply a test
pattern set and does not allow modification of a VC. Typically, this
category would apply to Hard and netlist-based Firm VC types.

• Open-box — these are VCs for which the user has access to the
underlying logic. This allows the user to insert test infrastructure and
create test vectors. Typically, Soft VCs are in the Open-box category for
test. For Open-box VCs, it is required that the VC provider demonstrate
design-for-test by supplying data that indicates test coverage and test
vector counts for the VC using a reference technology library. This
information is created by the VC provider taking the design through a
paper implementation, inserting test, executing ATPG, and calculating
fault coverage numbers.

Copyright 1997 © VSI AllianceTM Version 1.0 Page 24 of 69
All Rights Reserved

2.5.1. Virtual Component Test Interface Architecture

The test architecture for block-based design can be broken into two
areas of discussion: Socket interface and internal logic. The Socket
interface describes the way the VC can be individually accessed from
the chip IO for testing that VC, while the internal logic describes the
test logic which is included within the VC or can be included within
the VC by the user to facilitate test generation of vectors for the VC.

VC Test Socket Interface Types

The test architecture for block-based design requires that multiple
types of sockets be provided at the chip-level to support the different
VC requirements. Each VC must specify compatibility with one or
more of these socket interfaces. Below is a brief description of each
type, the detailed diagrams and descriptions are contained in the
appendix.

1. Open-box: VC which can have test logic inserted by the VC user.
Practically it is any VC which is Soft or possibly Firm that
conforms to some DFT rules.

The following are all Black-box VC:

2. Internal boundary scan-based: VC which has boundary scan with
its test controller and access port included as part of the VC. The
following are all External socket interfaces, and as such are added
by the VC user:

3. External Boundary Scan-based: The user adds a boundary scan
around the VC which provides access to all non-global IO.

4. External Full Mux Interface: The user adds muxes to all non-
global VC IO which directly connect these IO to chip pins in test
mode.

5. External partial Mux/scan Interface: The user adds some
combination of either boundary scan or muxes to all non-global
VC IO. In this case the Muxed IO usually have some timing
critical testing requirements.

VC Internal Test Logic Options

The VC may be designed with or for various types of internal test
logic contained within the VC. This logic may already be included
within the VC if it is Firm or Hard (Black-box) or the VC may be
designed to meet certain DFT rules which would support the addition
of the appropriate test logic by the user (Open-box). There are three
types of internal test logic referred to in this section:

a) Scan: Full or Partial Scan may be included within the VC or the
VC may be designed to meet the DFT rules for inclusion of scan
by the user.

b) BIST: Built-In Self Test structures may be included within the VC
to aid in testing the VC. This is specially true for large memories.

Copyright 1997 © VSI AllianceTM Version 1.0 Page 25 of 69
All Rights Reserved

c) None: No special test logic for test modes may be built into the
VC. Vectors may still be provided and applied by way of the
chosen Socket interface method.

Open-Box

Soft Firm Hard Test Interface

Black-box

Type 1

Type 3

Type 4

Type 5

Internal to the VC

External to the VC

Type 2

VC provider
builds in the
test logic

VC Socket
Interfaces

All other VC the
User adds test logic

Figure 2.5.1-a VC Test Categories

2.5.2. Test Methods

The successful testing of a system chip, which incorporates multiple
VCs, requires that the system test designer and the VC designer
provide complementary information regarding test. The system test
designer is responsible for the infrastructure to interconnect the VC to
the sockets and to satisfy the test requirements of the VCs which are
used.

The VC provider needs to describe the socket requirements for such
things as test access interface, test vectors, and test methods which are
to be applied. This section references the types of tests, identifies a
proposed standard for each, and maps the VC into the test architecture
interfaces described in figures 2.5.1. The VC provider must document
the test methods available in the VC and the appropriate information
enumerated below for each test method.

• Global Signals: the VC provider needs to identify all global test
signals, clocks, and test ports along with a detailed description,
rules to follow, and other requirements during normal operation
and test mode. If the core has a bus interface, it must also have a
global bus disable signal. That signal can be specifically
designated pin/port, or it can be a 1149.1 defined ‘EXTEST’
instruction op code.

• TAP Controller: If there is a TAP controller in a VC, it must be
designed as per the IEEE 1149.1 standard, and the associated
BSDL file must be provided. If the VC provides a test vector set
based on using the 1149.1 test data registers, the VC provider
must provide user instruction(s) that facilitates testing of the core
through TAP, or through the ‘INTEST’ instruction.

• VC provider is required to design the VC so that it can be put into
quiescent state for IDDQ testing.

• The socket type required by the VC.

Copyright 1997 © VSI AllianceTM Version 1.0 Page 26 of 69
All Rights Reserved

Open-box Test

The open-box test includes Soft VCs and certain classes of Firm VCs.

CONDITIONAL: This information is mandatory for Firm VCs which
do not include test logic.

Open-box Test Descriptions

The VC provider is responsible for providing the following
information: recommended test methods to test the VC along with
test coverage numbers, as well as the tools and libraries used in
obtaining the stated coverage. There are two cases which apply to
the open-box test:

1. In most situations, the VC provider relies on the system
designer to insert the test logic and create the test patterns. In
this case, the VC provider meets the test requirements by
performing a “paper” test generation exercise, in which the
test logic is inserted and ATPG is run against a reference
environment.

2. In some cases the VC provider may choose to build a BIST
feature into the VC. In this case, the coverage number
provided would be based on a fault grade of the BIST vectors.
The rules and requirements specified for BIST apply.

Black-box Test

The black-box test applies when the VC provider provides test
vectors but does not supply a detailed description of the VC.

Black-box Test Description

The black-box VC provider must specify the test method used,
the type of test structures, the test coverage, etc. The different
methods and requirements are outlined below.

CONDITIONAL: This information is mandatory for Firm VCs
that include test logic.

Deliverable
Format

(current)
Format
future) Soft Firm Hard Comments

Open-box Test
Description

Document Document M CM - If the VC faults
fall into open box
category

Black-box Test
Description

Document Document - CM M

Fault-based Test Patterns

The VC provider must provide applicable test patterns (such as
functional, toggle, stuck-at, shorts, open, delay test, etc.), and
ensure that the vectors conform to the following guidelines:

1. Pattern set must have a stated fault coverage from an industry
available tool, along with detailed information on fault

Copyright 1997 © VSI AllianceTM Version 1.0 Page 27 of 69
All Rights Reserved

modeling and DFT methodology used in obtaining the stated
fault coverage.

2. Test execution time is important, and the VC provider must
make every attempt to provide a compact vector set that
provides maximum fault coverage and minimizes test
execution time.

3. The patterns must be in a usable form and a detailed
explanation of how to apply them at chip-level (including any
chip-level requirements) must be provided.

CONDITIONAL: This information is mandatory for Firm VCs
that include test logic.

Stuck-at Patterns

CONDITIONAL: The VC provider must provide stuck-at fault
patterns if the stuck-at faults are not covered by other test types ,
such as BIST. The test pattern set should have high stuck-at fault
coverage.

Scan Chain Confidence Patterns

Scan chain confidence patterns will ensure coverage of faults
within the maintenance logic. They also provide users a simple
way to verify their Virtual Socket is interacting properly with the
VC, and provide some measure of isolation and failure debug.

CONDITIONAL: If the VC provider supplies a pattern set that
relies on a scan infrastructure, then a set of scan chain confidence
patterns must also be provided.

Deliverable
Format

(current)
Format
(future) Soft Firm Hard Comments

Fault-based Test Patterns WGL,
VCD

TBD - CM M If the VC faults
fall into black
box category

Stuck at Patterns WGL,
VCD

TBD - CM CM If not covered by
BIST

Scan chain confidence
patterns

WGL,
VCD

TBD - CM CM If scan chain is
used

IDDQ Test Patterns

IDDQ test patterns, when provided, must conform to the following
requirements:

1. VC providers who claim IDDQ capability must supply
sufficient information to the VC user to support system chip
IDDQ test requirements — such as a set of port/state pairs and
sequencing directives that place the block into an IDDQ
compatible mode.

2. IDDQ patterns must conform to the format of the other test
vectors (WGL or VCD).

CONDITIONAL: This may be mandatory based on silicon
manufacturing requirements.

Copyright 1997 © VSI AllianceTM Version 1.0 Page 28 of 69
All Rights Reserved

BIST

BIST is the preferred method for meeting the requirements for
RAM and general control logic structures. Embedded processor
diagnostic testing via a test bus would be included in this category.
VC providers who have BIST logic within their design must
provide:

1. Stuck-at fault coverage numbers for logic BIST (LBIST). For
RAM and register array structures, a text description of faults
covered is sufficient.

2. The set of port/state pairs that set the VC into its BIST test
mode.

3. The pattern sequence that initializes the BIST sequence.

4. How many cycles/clocks to burst.

5. Expected output signature.

It is expected that the BIST infrastructure will be designed
into the VC.

CONDITIONAL: Mandatory for large memory structures.

Deliverable
Format

(current)
Format
(future) Soft Firm Hard Comments

IDDQ Test Patterns ASCII and
WGL, or

VCD

TBD - CM CM Per manufacturer’s
requirement

BIST WGL,
VCD

TBD CM CM CM Large memory
arrays

Delay Tests

Delay tests are optional and are aimed at detecting manufacturing
defects that result in the circuit failing to operate at the required
operating speed. Since there are many variations of delay tests
with different names, VC providers who do supply delay test
pattern sets must provide:

1. A detailed description of the test and reasons for performing
the test — including fault model information, if applicable.

2. The name and active state of any test mode signal that enables
the test logic necessary to perform delay testing.

3. A list of timing-critical ports on the VC that need access from
the chip I/O. Additionally, providers of Hard and Firm VCs
must supply the timing relationship between the critical ports.

Reliability (Burn-in)

It is recommended to providers of Hard and Firm VC to supply a
pattern set for burn-in (for reliability consideration). This pattern
set could be an identified subset of the complete pattern set that
has been provided. If scan is present, scan chain shift patterns
should also be provided.

Copyright 1997 © VSI AllianceTM Version 1.0 Page 29 of 69
All Rights Reserved

Failure Analysis and Fault Isolation

This requires that providers of black-box VCs supply specific
diagnostic vectors or failure analysis information, along with their
test patterns so as to isolate the defect to the lowest block-level in
the block-level diagram provided by the VC provider. Analysis of
failing parts may become very critical for identifying the problem
source and improving the yield.

For scan-based VCs, it is recommended that scan chain confidence
patterns and the scan based patterns be supplied. For BIST and
embedded block test sets it is recommended that intermediate fail
signatures be supplied to assist in fault isolation. The format for
the fault isolation information will be defined in the future.

Deliverable
Format

(current)
Format
(future) Soft Firm Hard Comments

Delay Tests WGL,
VCD

TBD - R R

Reliability (Burn-in) WGL,
VCD

TBD - R R

Failure analysis & Fault
isolation

TBD TBD - R R

Below is a Flow chart which simply diagrams out the requirements
for test. It also notes what are the applicable Socket interface
types and internal test logic options associated with each
requirement.

Copyright 1997 © VSI AllianceTM Version 1.0 Page 30 of 69
All Rights Reserved

Is
Test Logic within

VC?

Recomended test
methods.

types 1.3.4.5; option c

Global Signals
Quiescent vector

Socket Type
type 2; options a,b

Is
Socket within

VC?

A

Tap control interface

type 2

B

No

No Yes

Yes

Figure 2.5-a Test Requirements Decision Tree (Part 1)

Copyright 1997 © VSI AllianceTM Version 1.0 Page 31 of 69
All Rights Reserved

B

Is
Scan logic in

 VC?

Scan Chain
Conformance patterns

type 2; option a

Yes

A

Is
Bist used?

No

Test patterns
fault coverage

chip level application

Estimated coverage
port/states/test mode
Initialization pattern
clock cycle count
Output signature

options a,c

option b

YesNo

Optional Tests

IDDQ Tests

Delay Tests

Burn-in Tests

Failure Analysis
& Fault Isolation

Figure 2.5-b Test Requirements Decision Tree (Part 2)

Each box in the above decision tree contains a section which lists
the applicable Socket interface types and internal test logic
options. Any one of the listed types or options constitutes an

Copyright 1997 © VSI AllianceTM Version 1.0 Page 32 of 69
All Rights Reserved

applicable structure to have the requirements within the box apply
to the VC.

2.6. Physical Block Implementation

For Hard VCs, the physical block implementation — sometimes called the
physical abstract or footprint — is a set of files which describe the physical
attributes of the block necessary for the integration of that VC within the
higher level chip physical architecture and along with other VCs. This set of
models include the following:

CONDITIONAL: The presence of detailed physical information for Firm
VCs is conditional if a placed netlist is included. If the Firm VC includes a
placed netlist with fixed I/O, then a footprint, pin placement, blockage, and
power grid is mandatory. This conditional statement applies to all of section
2.6.

2.6.1. Block Description

The block description provides the most detailed physical description
of the VC in GDSII format. Primarily, this image is used at the
system-level following place-and-route for final chip integration and
design rule verification.

CONDITIONAL: GDSII must be available either to the VC integrator
or to the manufacturer.

2.6.2. Pin List/Pin Placement

This contains the VC information on size, dimensions, ports, and all
other information required to allow the placement of the block, within
a chip, and on the appropriate grid structure for place, route, and
delay parasitic extraction. This information is generally referred to as
the physical abstract.

2.6.3. Porosity/Blockage File

A blockage file needs to be available, such that available channels and
over-the-block routing can be utilized at the chip integration level.
This file must also identify (block) area/channels that are physically
open, and where routing should be denied due to crosstalk or other
noise related issues.

2.6.4. Footprint

The VC dimensions are included in the format file, and define the
block boundary in standard format that would allow the placement of
the block within a chip on the appropriate grid structure for place,
route, and delay parasitic extraction .

2.6.5. Power and Ground

Power and ground connections must be defined in the file. This file
should describe the top level power grid, the power and ground ring
description (if used) and the allowable connect matrix for both power
and ground. A separate current density file, designating current
requirements as a function of contact, should also be included for

Copyright 1997 © VSI AllianceTM Version 1.0 Page 33 of 69
All Rights Reserved

reliability and chip-level voltage drop budgeting. This file needs to
also include the number of power and ground drops (pins) required.

Sufficient power and ground connections must be provided to meet
voltage drop, noise, and simultaneous switching requirements under
worst case conditions.

2.6.6. Power Model

The power model characterizes the power usage of a VC as a function
technology of implementation, clock speed, and typical or worse case
data model. Power should be characterized for typical and worst case
expectations.

The purpose of this model is for reliability, design of a chip, power
budgeting, and power management of the chip design.

2.6.7. Physical Netlist

A device level netlist is recommended which is sufficient to define the
electrical characteristics of the VC interface.

CONDITIONAL: Dependent upon the availability of sufficiently
accurate I/O models.

Copyright 1997 © VSI AllianceTM Version 1.0 Page 34 of 69
All Rights Reserved

3. Virtual Component Guidelines

This section is a preliminary document. Section 3 is intended as a
seed for design guidelines to be reviewed by working group(s).
Sections 1 & 2 are intended for review - Section 3 is only intended
for refinement.

Guidelines fall into three major categories:
Interoperability In order to ensure the ability to use VCs from

different providers, which may have been developed in
different environments, several issues need to be
addressed to guarantee this “interoperability”. For
example, the matching of assumptions with regard to
the reference environment and the matching of
naming conventions will be necessary.

Hierarchical Integration As the VC and the system chip designs represent two
different levels in the overall design hierarchy, rules
are required to bridge the hierarchical boundaries
between the VCs and the system chip. This is
important when VCs, which were designed separately,
are used in parallel with other VCs on the system chip.

Portability Future versions of this document will address VC
portability with respect to issues like general mask
pattern design guide lines (e.g., in the case of those
Hard VCs to be transferred between technologies).

These guidelines are neither an attempt to define design methods for VCs nor to
define design methods for system design. Rather they facilitate the integration of VCs
into a system chip.

Both rules and recommendations are included as guidelines to the VC provider to
facilitate the integration of the VC into the larger IC design. Guidelines that must be
followed by VC authors is denoted by either the words “must” or “rule.”
Guidelines which encourage VC authors are denoted by the words
“recommendation” or “should.”

Some specific areas for design guidelines have been identified:
Naming Conventions Guidelines to prevent name collisions among VCs on a

chip and to prevent common translation problems
between formats and tools.

Test Guidelines to promote a common approach to chip-
level testing in the presence of multiple VCs.

Logic Design Guidelines to promote electrical and functional
compatibility among VCs on a chip, and to avoid
common tool limitations. This includes clocking, and
restrictions on the use of bidirectional ports.

On-chip Busses and Protocols Definition of specific methods for passing information
between VCs, analogous to the domain-specific busses
and protocols in the board world.

Physical Design Guidelines to promote layout compatibility among
VCs on a chip and to avoid common tool limitations.

Copyright 1997 © VSI AllianceTM Version 1.0 Page 35 of 69
All Rights Reserved

3.1. Naming Guidelines

This shall describe the conventions to be followed for VC component naming,
pin naming, and modeling language inter-operability.

There are appendices attached to this document in support of naming
definitions: Appendix A identifies keywords that should be avoided in
naming by VC providers; and, Appendix B proposes a set of conventions that
EDA vendors should follow to facilitate inter-operability. Names and naming
consistencies/ transformations between Verilog, VHDL, C, C++, and the file
system are defined in detail.

3.1.1. VC Naming

1. The top-level VC name must be meaningful and reflect the
function of the VC. (e.g., MPEG2 core, vc_mpeg2).

2. Any known standard, implied or otherwise, in the component
name must be documented in the claims and verification section
of the VSI document.

3. Different cases should not be mixed (i.e., all lower case or all
upper case, no mixed case naming).

4. Lower case is recommended.

5. The previous conventions should also be applied hierarchically to
all lower level module names that are seen by the VC user.

3.1.2. VC Pin Naming

1. Pin names need to comply with any existing naming conventions
for formats being used (e.g., VHDL, Verilog naming
requirements, reserved key words).

2. Different cases should not be mixed (i.e., all lower case or all
upper case, no mix case naming).

3. Lower case is recommended.

4. A consistent and coherent naming convention must be used for all
common or global signals — such as clock, reset, etc.

5. Active high and active low signals should be labeled to
differentiate between the two types (e.g., sig1x, sig2x, where x
denotes active low).

6. All pin names must be documented in the User Guide for the VC.
This should detail the various signal attributes which may be
required by the VC user (e.g., clock, reset, in/out/bi-directional).

7. All busses must start at zero.

8. It is recommended that all busses be designated with the most
significant bit on the left (i.e., D[7:0], so that D[7] refers to 27).

3.1.3. VC File Naming

1. Known keywords should be avoided — see Appendix 1

Copyright 1997 © VSI AllianceTM Version 1.0 Page 36 of 69
All Rights Reserved

2. A consistent naming convention should be used throughout the
file naming used for the VC. Recommended example naming
formats are:

ï C files vcname.c

ï C++ files vcname.cpp

ï Verilog vcname.v

ï VHDL vcname.vhd

ï SDF data vcname.sdf

ï test, etc.

3. Directories should be used to allow the separation of different data
types, such as gate-level and RTL VHDL:

ï rtl/vcname.vhd

ï rtl/vcsubmodule.vhd

ï gate/vcname.vhd

ï gate/vcsubmodule.vhd

4. Whichever naming convention is used must be reflected in the
User Guide. It should be included in Section 2.1.4 Version
History. This will enable the revision control to be closely linked
in with the filenames.

5. Where multi-platform support is required, the VC provider is
responsible for ensuring a consistent naming format — not the
VC user. The VC provider should document which platforms are
supported for a particular VC.

6. Filenames should not differ by case alone. This will reduce any
problems with multi-platform support.

3.2. Test Guidelines

3.2.1. Functional Test

There are two types of functional tests that are applicable: compliance
tests and functional verification tests. Compliance tests are a set of tests
that verifies the interface function meets (complies) with some known
industry standard. Functional verification tests are a set of tests to
check out the system functionality of the VC. In both cases, the
developer should verify that these functional tests at least meet some
control state completeness and provide the associated documentation.
For example, one way to do this is to make sure the tests traverse all
the arcs of the VCs control logic state diagram. Some tools may be
available in the near future to help evaluate these tests. Coverage could
be defined as the percentage of arcs traversed versus the total arcs in
the control state diagram. Further work should be done in this area.

Copyright 1997 © VSI AllianceTM Version 1.0 Page 37 of 69
All Rights Reserved

3.2.2. Virtual Socket Test Interfaces

The test architecture for block-based design requires that multiple
types of sockets be provided at the chip-level to support the different
VC requirements. Each VC must specify compatibility with one or
more of these socket interfaces. This section defines the types of
socket options available in the test architecture. Figures 3.2.a - 3.2.d
provide examples to support the definitions below.

1. Classic Open-box VC: in this scenario, the provider has
supplied a VC along with reference data which demonstrates
that the VC conforms to DFT rules and what the user can
assume about coverage, vector counts, and area. The user of
the VC then inserts the scan infrastructure and generates tests.
In this scenario the VC is integrated into the system like the
user designed logic.

2. Internal boundary scan-based Black-box VC: the VC provider

supplies a set of test vectors that are accessible through
formally published standards, such as 1149.1 interface. This
mechanism can support scan-, functional-, or BIST-based test
generation techniques at the providers discretion (Figure 3.2-
a)

Figure 3.2-a Internal Scan Black Box VC

3. External Boundary Scan-based Black-box VC: the VC

provider supplies a set of test vectors that are applied through
an external boundary scan ring created by the system designer
(Figure 3.2-b)

 Figure 3.2-b External Boundary Scan Black-box VC

Copyright 1997 © VSI AllianceTM Version 1.0 Page 38 of 69
All Rights Reserved

4. External Full MUX Interface Requirement: In this scenario,
the provider has supplied a pattern set that requires direct chip
port access for all ports on the VC. At-speed tests for RAMs
and other types of structures are prime examples where the
full MUX interface can be used. The provider is cautioned
that this type of testing can rapidly consume a significant
number of pins and routing resources at the chip level (Figure
3.2-c)

 Figure 3.2-c External Full MUX Interface

5. External partial MUX/scan interface: in this scenario, the VC
provider has supplied a pattern set that requires direct chip
port access for some of the ports on the VC. The user is
require to provide a combination of MUX access to critical
ports and scan access to the remaining ports. This can be
thought of as a combination of the two previously described
techniques.

 Figure 3.2-d External Partial MUX/Scan Interface

3.2.3. Structural Test Methods and Guidelines

Much of the testability discussion references fault models. For a
detailed explanation refer to your favorite book on test engineering.

General Testability Improvements

Copyright 1997 © VSI AllianceTM Version 1.0 Page 39 of 69
All Rights Reserved

Generally, test patterns can be more easily generated when there is a
high degree of observability and control. Design-for-testability
guidelines are listed below.

1. A circuit should not contain asynchronous feedback loops. A
circuit with asynchronous loops is much harder to test than a
comparable synchronous circuit due to time dependency.

2. Make the VC easy to initialize — a VC needs to be in a stable
initial state to help generate test patterns.

3. Avoid gated clock — clocking in is essential to be able to control
and observe during test. If a gated clock is necessary, design the
circuit such that:

ï there are states or control signals that allow the clock to pass
through the gating

ï minimize clock skew between gated and non-gated
registers/flip-flops

ï it can handle the short-path problem for scan paths, given
some clock delay due to gating

ï it ensures the gated clock circuit can be initialized.

4. Eliminate race conditions between data and clock of sequential
elements

5. Eliminate potential tri-state contention. Design the circuit in such
a way that internal bus contentions cannot occur, especially when
the circuit is not in its normal mode.

6. Decoded multiplexer — similar to a tri-state contention problem
in a tri-state bus, decoded multiplexers need to have only one
input selected during test.

7. Circuits which require large sequential patterns should have test
logic inserted to partition the design for increased parallel testing
(example: 32-bit counter should be partitioned into four 8-bit
parallel groups).

8. Circuits with separate power supplies should be isolated from each
other (analog-analog, analog-digital, digital-digital).

9. The VC provider should supply a test method for controlling and
observing all input and output signals to the VC.

Scan Design

Definition

A scan latch/flip-flop is a latch/flip-flop that has a set of
connections from one latch/flip-flop directly to another in test
mode. These latches/flip-flops are serially connected together via
these test connections to form a scan chain. The scan chain’s
contents can be shifted in and out of the serial chain in test mode.
In this way, the scan registers and control states can be defined by
shifting in values, and the results from clocking these storage
elements under normal operational mode can be shifted back out.

Copyright 1997 © VSI AllianceTM Version 1.0 Page 40 of 69
All Rights Reserved

There are two prevalent types of scan implementations: full scan
and partial scan. In full scans all internal registers and control
states are scan latches/flip-flops, while in partial scans only some
of the registers and control states are defined as scan latches/flip-
flops.

There are different rules for different categories of VCs. In the
case of Open-box VCs, the scan logic may be added to the design
by the user, while in the case of Black-box VCs the scan logic
must have been added by the VC provider. In the rule section
below, the rules are annotated with either Open-box or Black-box,
depending upon which is applicable.

Rules for Scan-Based Design

1. The design should be synchronous (Open-box and Black-
box).

2. The design must meet standard scan design rules or some
variant of them (Open-box and Black-box).

3. Provide scan control, clock, and data as external pins (Black-
box VC).

4. Provide a separate file containing the scan chain order (Black-
box VC).

Copyright 1997 © VSI AllianceTM Version 1.0 Page 41 of 69
All Rights Reserved

Methodology Guidelines

In general, the logic should be organized to minimize the number
of patterns that either were generated to get at least 99.9% stuck
fault coverage or would be generated. To minimize the required
patterns necessary to test the VC in the partial scan case, additional
test only registers should be added to those areas with low ability
to observe and control. Other guidelines include:

1. Full-scan design is highly recommended when possible.

2. Avoid destructive flip-flops in the design as much as possible.
Destructive flip-flops are defined as flip-flops not in the scan
chain that can change state during scan mode.

3. Free running oscillators are difficult to synchronize to the
tester. It is imperative to bypass the internally generated clock
signal with an external test clock during test.

Multiplexer Technique

Definition

In this technique, multiplexers are added around functional blocks
within the VC, such that these blocks can be independently tested
from the VCs boundary without having to test the whole VC.

Rules

1. Each block of logic must be completely and independently
testable.

2. The test logic must be constructed such that it is completely tested
in the process of testing all the multiplexed functions.

3. All functional block outputs within a VC must either pass through
another functional block that has a bypass mode, or the pins must
be multiplexed directly to some of the VCs outputs.

Methodology Guidelines

It is important to connect to the VC’s multiplexed output pins the
output of multiplexers that are used as inputs to adjacent
functional blocks rather than the output of the original functional
block. In this way, the data side of the input test multiplexers for
any functional block will be tested by the adjacent functional
blocks tests. Care should be given to make the structure as simple
as possible.

Copyright 1997 © VSI AllianceTM Version 1.0 Page 42 of 69
All Rights Reserved

Figure 3.2-e Multiplexer Test Access Points

BIST

Definition

Built-In-Self-Test (BIST) brings the test application into the chip.
A BIST structure typically contains a test pattern generator and an
optional a result compressor. The test pattern generator can either
be a ROM containing all desired input vectors or a counter
generating a sequence of vectors. The results of the self-test need
to be predictable to differentiate a pass from fail, and therefore,
the test pattern cannot be truly random. Resulting compression
can be done with parity checker, counter, or signature analyzer.

Rules

1. The logic being tested must have determinate output values
over the set of possible inputs (no floating or undefined
states).

2. The BIST must be able to single step for diagnostic isolation
of failures.

3. The algorithm used in generation and checksum must be
guaranteed to not repeat over the number of tests applied.

4. To effectively run a BIST test in parallel with other BIST tests,
the infrastructure must automatically shutoff after the
specified number of burst cycles/clocks has been issued.

5. To facilitate manufacturing debug, the BIST structure should
supply the ability to read out the intermediate signatures and
status of registers and storage elements.

6. The VC provider must provide a means of testing the self-test
logic.

Copyright 1997 © VSI AllianceTM Version 1.0 Page 43 of 69
All Rights Reserved

Methodology Guidelines

Essentially, all of the above rules require that the logic and the test
sequence are robust enough to sufficiently test the logic in a
deterministic manner. The valid and known states requirement is
there because the design may be tested in ways that it was not
intended to be used when the BIST tests are applied. If this
happens, erroneous timing problems or illegal undefined states
could cause a failure in BIST when the design is actually good.
Conversely, rule 3 is required to insure that the test sequence and
resulting checksum is good enough to actually detect almost all
the possible real failures in the design. Some fault grading or
statistical fault grading should be done on the resulting BIST test
sequence to verify the coverage.

Boundary Scan Design

Definition

Boundary scan-based VCs place registers at all terminals of all
VCs, and allow the choice and control of the VC through a test
protocol, such as defined in IEEE 1149.1. The advantage of
boundary scan is that it provides access for running functional
tests on the VC. It is also possible to check the inter-net
connections between VCs. While requiring a small number of
chip-level pins, this technique does increase test cycle time. The
testing speed of the chip becomes slower due to boundary scan
shifting. The area taken by the boundary scan register is also
large. There are two basic approaches to boundary scan as
described in Section 2 of this document. Type 2 is internal to the
VC and type 3 is external to the VC. The rules below note, in
parenthesis, to which approach they apply.

Rules for Boundary Scan Design

1. All I/Os should be included within the boundary scan, except
clocks, asynchronous reset, power, and ground. (internal)

2. When connecting adjacent VCs together, it is acceptable to
only include the outputs of the source VC or the inputs of the
target VC, but not both. (external)

3. Separate latches should be used for input, output, and enable
lines going to a bi-directional pin. (internal and external)

4. The logic must be constructed so it is able to test the
connections between VCs, the logic within each VC, and the
test logic itself. (internal and external)

5. A technique for bypassing each VC should be provided.
(internal and external)

Methodology Guidelines

When including the boundary scan within the VC, it is necessary
to include either an instruction similar to the INTEST or bring
internal scan chains out of the VC to use scan test in the VC. When
including the boundary scan internally to the VC, all I/Os must be
connected to the boundary scan since the VC provider does not
know which test technique will be used external to the VC. In the

Copyright 1997 © VSI AllianceTM Version 1.0 Page 44 of 69
All Rights Reserved

case where the boundary scan may be added externally to the VC,
the user may choose to merge boundary scan chains together to
minimize the test logic. In general, the logic implementation I/O
guidelines should be followed, but if bi-directional or tri-state I/Os
are used, the boundary scan should include separate control lines
for the enables and data-in in a fashion similar to IEEE 1149.1.
Clocks may be gated, but the gating should be done within the
VC. This will allow the boundary scan logic to control the gating
of the clock directly within that VC’s specific tests, otherwise the
pattern may become complicated since one VC must be set in the
proper state to test another VC. It may not be possible in this case
to setup the required initial conditions to properly test the VCs in
a system. Lastly, a bypass option will allow for smaller tests sets
since not all data needs to be scanned in on each pattern.

Bus Technique

Definition

There are two versions of bus oriented testing: parallel scan, and
system bus test access.

In the first case, the bus merely does a parallel load of test data in
the same fashion that scan chains are loaded serially. Test bus is a
quick and dirty way of accessing primary ports of each core; one
or more buses are connected to all primary ports of all VCs. A
decoder is used to select which core or cores receive vectors from
primary inputs of the chip, and a multiplexer is used to select
outputs of which core(s) is to be observed at primary outputs of
the chip. The exact number of pin depends on the desired number
of accessible primary ports of each core. The major drawback of
this method is the requirement of global bus routing. The lack of
automation and tools limits the wide implementation of this test
structure.

The second case uses a special test bus, or the system bus, for
testing the chip. The chip must include a controller or processor
that will be the test engine. In this case, there is a special test mode
that allows the test logic to load instructions and data into the
controller for executing diagnostics, and to access the peripheral
VCs outputs through a special bus access of “boundary scan-
like” test ports. This section will only deal with the second type of
test structure.

Rules for Test Bus

1. The test port must have both master and slave capabilities on
the system bus in test mode.

2. The test port must be able to load cache and any internal
memories independent from the processor.

3. The test port must be able to access all internal busses directly
or indirectly.

4. The test port must be able to test itself.

5. The test port must be able to access other special test registers
that are added for testability.

Copyright 1997 © VSI AllianceTM Version 1.0 Page 45 of 69
All Rights Reserved

Methodology Guidelines

Initially, the test port must act like a master to load the memories
in a state necessary to begin the diagnostic tests. In many cases,
the test port will be built into a bus bridge so as to be able to
directly control both busses on either side of the bridge. In some
cases, where there are multiple processors on the chip, each with
separate system busses, it will be necessary to put the test logic into
some common port, such as the memory controller. Special test
registers should be inserted on lines between VCs, and between
VCs and outside ports. This allows the test port to isolate the
individual VCs, set up the external conditions, and feed back the
resulting output from the peripheral VCs onto the system bus for
the processor to check. In some cases it may be sufficient to
connect multiple copies of a peripheral VC together with a
multiplexer controlled by a single bit test register. Data could then
be written to and read back into the processor to test the
peripherals. This test technique is a form of system-level BIST, in
that the system is set up and then a large number of clocks are
issued.

IDDQ

Definition

CMOS is inherently low power. As such, any high current
condition normally would be a sign of a fault in the design. IDDQ
is a set of vectors that are designed to test the independent gates
by checking the standby current after each vector. These can be
used in conjunction with other functional test techniques.

IDDQ Rules

To enable IDDQ measurements, the following rules should be
observed.

1. No floating nets.

2. No dynamic latches.

3. No totem-pole or high current conditions.

Methodology Guidelines

As is the case with partial scan, if a gate cannot be adequately
exercised the potential faults on that gate cannot be tested. Unlike
scan-based testing, the effective output is the power supply, which
means there are no sensitized paths to create. Still coverage for
IDDQ can be low if there are not sufficient test points for
controllability of the gates. When IDDQ is the only test technique
used, care must be taken to add test points for adequate
controllability. Lastly, any normal high current conditions or
floating nets that cause unintended high current conditions will
mask out any failures on single gates which result in high current.
As designs become very large it is possible that the normal
leakage current of the overall chip might exceed any single IDDQ
failure. In this case, the power supply may have to be designed to
be shut off such that each section of the chip can be IDDQ tested
individually and still detect single transistor faults.

Copyright 1997 © VSI AllianceTM Version 1.0 Page 46 of 69
All Rights Reserved

Delay Testing

To be defined.

3.2.4. Example of VLSI Tester Capabilities

It is important for both VC provider and the VC user to know actual
specifications of a VLSI test instrument. These specifications are
shown as a reference, although these specifications will help the VC
provider consider the test pattern limitations. As an example, the
following table shows two sets of reference: (a) a typical tester, and (b)
an advanced tester.

No. Items Typical Tester Advanced Tester

1-1 Maximum Operating Frequency 40 MHz 150 MHz

1-2 Resolution of Test Rate 150 pS 15 pS

1-3 Resolution of Timing Edge 60 pS 50 pS

1-4 Total Timing accuracy ± 1.5 nS ± 500 pS

1-5 Maximum Pattern Length 128 Mbyte total 4 Mbit per channel

1-6 DC Level Accuracy Drv = ± 50 mV

Cmp = ± 50 mV

(@ 3V)

Drv = ± 25 mV

Cmp = ± 25 mV

(@3 V)

1-7 SCAN Pattern Size

SCAN Operating Frequency

SCAN Chain

256 Mbit

40 MHz

1/2/4/8

512 Mbit

40 MHz

1/2/4/8

Table 3.2-a VLSI Tester Examples

WGL Description Guide

WGL can handle various test pattern waveforms and generic data
structure, although a typical VLSI tester cannot accept all the
specifications of WGL. These limitations will be shown as a reference
in the near future. Several fundamental restrictions are:

1. Waveform format: WGL accepts triple-clock format but a typical
tester does not recognize the format.

2. Test pattern length: WGL supports test pattern using REPEAT or
subroutine syntax to reduce redundancy in test program
descriptions. However, some testers do not support the functions.

3.3. Chip-to-VC Hierarchical Integration

Designs at the VC-level and chip-level often use similar methods but at
different levels of design hierarchy. However, where differences in
methodology occur, it becomes necessary to provide an approach to
“bridge” the two levels of hierarchy together. This can be done through
providing guidelines at both the logical and physical integration levels.

Copyright 1997 © VSI AllianceTM Version 1.0 Page 47 of 69
All Rights Reserved

3.3.1. Logic Design Integration Guidelines

Logic design integration guidelines are those guidelines affecting the
logic at the boundary of the VC interfacing to the system chip.

Copyright 1997 © VSI AllianceTM Version 1.0 Page 48 of 69
All Rights Reserved

Logical I/O Ports

The I/O ports provide the chip-level interface to the VC. These ports
must provide the interface between two distinct levels of hierarchy: the
VC and the system chip. As such, these ports must be carefully
designed such that:

ï the system chip integration can be accomplished with as much
flexibility as possible without affecting the functionality or
performance of the VC; and,

ï the VC operations do not affect the overall operation of the chip
in any unexpected or unplanned ways.

The goal of good I/O port design should be to isolate the two levels of
hierarchy from undesirable affects on each other. The following are
recommendations

1. Re-entrant outputs should be avoided

N.G.(re-entrant) OK(non-re-entrant)

OK(except N.G. case)

N.G.

 Figure 3.3-a Re-entrant Outputs

Copyright 1997 © VSI AllianceTM Version 1.0 Page 49 of 69
All Rights Reserved

2. Through nets should be avoided

 N.G. (through net)

o1

o2

N.G. (through net)

o1

o2

i

 Figure 3.3-b Through Net Rule

3. When tri-state capable output or bi-directional ports are used, tri-
state enable/bi-directional control should be available at the VC
boundary.

VC boundary Chip

I/O cell

Figure 3.3-c Tri-State Control Available at The VC Boundary

4. The VC user is responsible for providing hold cells for the chip
level busses

N.G. OK(Internal Bus)

Bus hold cellPull-up register

Figure 3.3-d Bus Hold Cell

5. Bi-directional I/O cells should be divided as separate input and
output cells if possible, as timing calculation becomes more
difficult.

Copyright 1997 © VSI AllianceTM Version 1.0 Page 50 of 69
All Rights Reserved

VC boundary

figure (1) figure (2)

figure (3) figure (4)

figure (5)

figure (6)

sel
A

B

C1

C2

A

B

C1 or C2

C1

C2

Figure 3.3-e Dividing Bi-Directional

6. All reset and preset signals (synchronous and asynchronous) shall
be active low at the periphery of the macro

Copyright 1997 © VSI AllianceTM Version 1.0 Page 51 of 69
All Rights Reserved

Clocking Guidelines

The system chip should provide synchronized clocking at the system-
level. The system chip clock designer will need to provide the
clocking signal(s) to the VC for this purpose. The VC designer must,
therefore, provide clock access to the VC and pass along to the system
designer the appropriate VC clock characteristics to enable overall
chip clock synchronization. Recommendations to accomplish the
above are:

• Synchronous designs are preferred.

• Single clock, single phase clock architectures are preferred.

• Clock port access should be properly identified by the VC
provide.

• Clock characterization of the VC should be provided to the system
chip designer. This should describe the valid conditions for VC
clock operation — such as valid frequencies, skew requirements,
duty cycle, and pulse width.

• The VC designer should provide information on any special
clocking requirements.

• When asynchronous signals are mixed with synchronous signals,
the internal block design structure should separate synchronous
and asynchronous domains. The interface relationships between
the blocks should be documented.

Clocking Guidelines — Soft VC

• It is recommended that no clock distribution circuits be
included as part of a Soft VC.

• It is a general recommendation that all Soft VCs be
“characterized” against a reference implementation library.
When this is done, a description of the clock distribution tree,
the clock skew achieved, and the clock delays observed in the
reference implementation should be included.

Clocking Guidelines — Hard and Firm VCs

• It is recommended that Hard and Firm VCs include the clock
distribution network as part of the deliverable. Furthermore, if
additional clock frequencies or phases are being developed in
the VC from the clock I/O on the VC, they must be clearly
defined and described in detail. An alternative is to provide
the additional clock circuitry as a companion VC to be used to
provide the unique frequency or conditions.

• The internal clocking distribution should be described. At a
minimum this should include internal clock delay and skew.

• The tradeoff between clock delay and clock skew is the
responsibility of the Hard VC designer. Caution must be
exercised to assure that a proper balance is achieved and also
that on-chip variations are considered.

• Many different clocking schemes can be utilized to meet
aggressive performance or power objectives in a VC. When

Copyright 1997 © VSI AllianceTM Version 1.0 Page 52 of 69
All Rights Reserved

methods such as gated clocks, multiple frequency, multiple
pulse width, multi-phase or asynchronous circuits are
employed the VC provider must provide detailed
documentation on the operation of the clock circuitry and the
legitimate frequencies at which the design can be run.

Timing

Internal timing of the VC is the responsibility of the VC designer, as is
the chip-level timing of the system chip the responsibility of the
system chip designer. Recommendations for the timing of the
interface between the system chip and the VC are:

• Static timing analysis is the preferred characterization method for
VCs. When there are “don’t care” paths or conditions in the
circuit these must be described (in terms of clocking conditions
and path) to permit successful static timing analysis.

• It is recommended that the VC designer either follow strict rules in
the design and placement of the I/O port or a peripheral timing
model be provided with the VC.

3.3.2. Physical Design Integration

Predictability and controllability are required for success of system
chip physical designs. Performance factors — such as size, timing, and
power — must be properly considered for system chip success. These
attributes need to be properly accounted for at system chip integration
with guidelines written to bridge the level of hierarchy between the
system chip and the VC. The three different types of VC require
different types of guidelines. Hard VCs should have been designed to
be consistent with system chip integration, and be accompanied by
proper documentation and specifications. Soft and Firm VCs should
provide pre-analysis results and physical design control factors.

Physical I/O Ports

The VC port is the pad or point of interconnection between the VC
and the system chip. The location and dimensions are defined in the
physical abstract.

• It is recommended that the VC port and I/O buffer be located near
the edge of the VC, with access layers defined in order to simplify
timing between the VC and the chip, and for accuracy and
repeatability.

• There should be direct access to the pin, at least on the layer
defined, but preferably in the direction the routing normally
occurs on that layer as well.

• To avoid additional routing channels, all ports must be positioned
so that they can be wired to the intended grid. This means that no
more than three adjacent pins can be spaced less than the external
grid they are intended to connect to.

• The supplier of a Hard VC should specify ports which connect to
the external chip I/O pad and the appropriate electro-static
discharge protection devices, taps, and other reliability and
manufacturability structures used.

Copyright 1997 © VSI AllianceTM Version 1.0 Page 53 of 69
All Rights Reserved

• Any inputs which have diode or substrate connections on first
metal should be separately listed. This will inform the chip
integrator that he need not be concerned about antenna problems
with these inputs.

• GDSII labels on all I/O ports with their pin names are required to
adjust them to the grid.

Porosity and Blockage

A blockage file provided with the VC designates those regions where
system chip level routing is allowed. This file should include all areas
there are wires and the possibility of error due to crosstalk.

• Timing models should include the assumed capacitive effects of
feed throughs through non-blockage points. In general, non-
blocked areas should be in the same form and direction as the
preferred routing direction for that layer.

• Blockages should be included for all possible layers.

• Sufficient porosity should be created for the design. One logical
minimum is the minimum number of feed-throughs that are likely
required if the VC is placed on an edge or corner of the die. More
feed-throughs will probably be needed for VC placement
anywhere else in the system chip, but the amount is a function of
the size of the resulting system chip and the location of the core
within the system chip.

• It is recommended that this file ensure the blockage of chip-level
interconnect routing from critical areas, such as noise or timing,
since they could affect the implementation of the VC.

Physical Structure (Hard VC)

• Hard VCs are recommended to be rectangular.

• All process layers should be specified in the GDSII, even blank
layers since blockages are as important as wires in the usage of the
core.

• Hard VCs should be self contained as much as possible. This
means all substrate taps required for the power usage of the VC
should be included within the VC, or any field isolation for
different power supplies should be wholly contained within the
VCs boundary.

Power Access

VCs will have various current requirements and will be designed with
specific voltage drop expectations. Further, they may have multiple
voltage requirements or special power requirements.

• It is required that power requirements of VCs be carefully
described by the VC provider.

• On flip chips where solder ball grids are to be used for the chip,
the VC must provide the appropriate power pads on grid for
access to power.

Copyright 1997 © VSI AllianceTM Version 1.0 Page 54 of 69
All Rights Reserved

• The VC must provide power access contacts that are sufficient to
meet both current and voltage drop requirements of the VC. It is
recommended that special requirements be appropriately
described for the system chip integrator.

• Special power access must be properly described and defined, as
appropriate, in LEF/DEF format.

• The maximum power requirement should be stated (at least be
defined for the specific process the GDSII was originally targeted
for).

• The resulting operating voltage de-rating from nominal resulting
from IR drop should be noted to the user of the VC for proper
timing design.

• The power and ground connections should be on the edge of the
VC with layers specified.

• The connection locations should be specified along with the width
of available connection on that edge. There should be a suggested
minimum total width of power and ground connections required
for each VC, and the VC should have sufficient margin for
integration.

• For VCs which have multiple power supplies the different supplies
access points should be clearly labeled and differentiated from
one another.

Shapes

Today’s chip technologies have finely tuned photo-lithographic
processes. This is especially true for the more advanced (higher
performance, high density) technologies. This results in rules for
critical spacing and geometry shapes. Most shape rules require
rectilinear geometries with possibly some conditional exceptions and
most critical spacing/sizing rules are consistent across a chip with
possibly some conditional exceptions.

It is recommended that VC providers use only rectilinear geometries
and generally consistent critical spacing rules. Only when a VC design
is intended to be used for one process should technology specific
rules be considered.

Grid

Today’s design systems and routers can use the layout grid in various
ways. It is expected that physical VCs will come in a variety of grid
styles.

It is recommended that the system chip level integration design
systems be able to accommodate grided, gridless, or a mixture. The
physical VC supplier should provide a boundary description in
physical dimensions (e.g., microns rather than grids).

Copyright 1997 © VSI AllianceTM Version 1.0 Page 55 of 69
All Rights Reserved

Appendices

Copyright 1997 © VSI AllianceTM Version 1.0 Page 56 of 69
All Rights Reserved

A. VC Reserved Words
For Virtual Component design we recommend that authors refrain from use of the
following set of keywords.

A1. Verilog

<all reserved keywords as described in OVI Verilog Language Reference>

A2. VHDL

<all reserved keywords as described in IEEE1076.X Language Reference>

1. Windows NT

ï CON

ï AUX

ï COM1

ï COM2

ï COM3

ï COM4

ï LPT1

ï LPT2

ï LPT3

ï PRN

ï NUL

ï .

ï ..

ï \

ï Non-printable and control characters (0x1F-0x7F, del)

Copyright 1997 © VSI AllianceTM Version 1.0 Page 57 of 69
All Rights Reserved

2. Unix

ï .

ï ..

ï /

ï Non-printable and control characters (0x1F-0x7F, del)

B. Name Space Descriptions and Transformation Rules
The following proposes a set of definitions for name spaces for EDA vendors to
support, as well as transformation rules for mapping between name spaces.
Implementing these name spaces transformation capabilities will support ease of
integration of Virtual Component information produced by tools from different
vendors.

B.1. Name Space Descriptions

ï A raw string of characters (represented with uchar or ushort (UNICODE))

ï String is terminated with the NULL character (value 0)

ï Case sensitive

ï No character restrictions

ï Allowed characters are currently ASCII values 1 to 255

ï In the future, to support UNICODE, character values will be 1 to 2^16-1

B.2. File System

ï UNIX is case sensitive

ï *** NT is case INSENSITIVE but case preserving ***

ï Forward slash and back slash not allowed (back slash because of NT)

ï White space not allowed

ï Characters other than alphanumerics and underscore are discouraged (we
are allowing dash and dollar sign to be used in names)

ï NT does not allow filenames that match DOS devices, and thus the
following names are reserved in NT: CON, AUX, COM1, COM2, COM3,
COM4, LPT1, LPT2, LPT3, PRN, NUL

ï Let N_Filesystem be the set of characters that will be escaped in file
system names. N_file system includes all characters which are not a letter,
digit, underscore, dash and dollar sign. All characters greater than 127 are
in N_file system.

ï N_file system includes the pound sign and percent character.

Copyright 1997 © VSI AllianceTM Version 1.0 Page 58 of 69
All Rights Reserved

ï (Note that we want UNIX and NT to share the same name space since we
want to be able to tar a library on UNIX, untar it on NT (or vice-versa),
and have the library work in the new environment. This requirement leads
us to treat the combined file system name space as case INSENSITIVE,
but it also requires that we NOT use case preservation due to UNIX’s case
sensitivity.)

B.3. VHDL

ï Normal and Escaped identifiers

ï Normal identifiers are case insensitive

ï Escaped identifiers are case sensitive

ï Escaped identifiers can contain any graphic character, and spaces

ï Escaped identifiers begin and end with \ (backslash)

ï To embed \ (backslash) in an escaped identifier, use \\

ï Equivalent normal and escaped identifiers denote different objects.

ï VHDL keywords must be escaped

ï Normal identifiers start with alpha, contain alphanums and underscores

ï All objects share the same name space (signals, instances, etc.)

ï Let N_VHDL be the set of characters which will be escaped VHDL
characters. N_VHDL includes all characters which are not in the graphic
character set defined in chapter 13 of the VHDL 93 LRM. N_VHDL
includes all characters greater than 255.

B.4. Verilog/Sensitive

ï Normal and Escaped identifiers

ï Normal identifiers are case sensitive

ï Escaped identifiers are case sensitive

ï Escaped identifiers can contain any graphic character, but no spaces

ï Escaped identifiers begin with \ and are terminated by white space

ï Verilog keywords must be escaped

ï Normal identifiers contain letters, digits, dollar sign, and underscore

ï Normal identifiers cannot start with digit or dollar sign.

ï Equivalent normal and escaped identifiers denote the same objects.

ï All objects share the same name space (signals, instances, etc.)

Copyright 1997 © VSI AllianceTM Version 1.0 Page 59 of 69
All Rights Reserved

ï Let N_Verilog be the set of characters which will be escaped Verilog
characters. N_Verilog includes non-graphic characters, whitespace
characters, and characters greater than 127.

B.5. Verilog/Insensitive (Verilog -u option)

 Same as Verilog/Sensitive except that normal and escaped identifiers are case
insensitive.

B.6. Name space Transformation Rules

 The next sections outline the name space transformation rules for mapping
between the name spaces defined above.

 Note: In the rules below:

ï #XX is used to map an “objectionable” character in the ASCII
range 0 to 255.

ï ##XXXX is used to map an “objectionable” character in the UNICODE
range 256 to (2^16-1).

ï X will be one of the characters 0-9, a-f. Note that a-f will always be in
lowercase. The #XX and ##XXXX character sequence are referred to as
“pound-hex groups” in the rules below.

B.7. Raw -> Verilog/Sensitive

 If the raw identifier is a legal Verilog normal identifier, it is represented as
such. Else, if the raw identifier contains any characters in N_Verilog, these
characters are replaced with pound-hex groups. The resulting string is
represented as a Verilog escaped identifier (that is, it is prefixed with
backslash).

B.8. Verilog/Sensitive ->Raw

 If the Verilog identifier is not escaped, the identifier is converted as-is into the
raw identifier. If the identifier is escaped, the leading \ is removed, any pound-
hex groups which in fact represent characters in N_Verilog are replaced by
their single character equivalents, any pound-hex groups which do not
represent characters in N_Verilog are left as-is, and the resulting string is the
raw identifier.

B.9. Raw ->Verilog/Insensitive

 Let ESC_VLOGUP be the character ^ (caret).

 Any uppercase characters are preceded with the ESC_VLOGUP prefix. If the
resulting string is a legal Verilog normal identifier, it is represented as such.
Else, if the resulting string contains any characters in N_Verilog, these
characters are replaced with pound-hex groups. The resulting string is
represented as a Verilog escaped identifier (that is, it is prefixed with \).

B.10. Verilog/Insensitive ->Raw

 If the Verilog identifier is not escaped, the identifier is copied to a temp
string. Else, the leading \ is removed, any pound-hex groups which in fact
represent characters in N_Verilog are replaced by their single character
equivalents, any pound-hex groups which do not represent characters in
N_Verilog are left as-is, and the resulting string is copied to a temp string.

Copyright 1997 © VSI AllianceTM Version 1.0 Page 60 of 69
All Rights Reserved

 Next, all letters A-Z in the temp string are lowercased unless they are preceded
with the ESC_VLOGUP prefix, in which case the ESC_VLOGUP is removed
and the letter is uppercased. The identifier then is represented as-is as a raw
identifier.

B.11. Raw ->VHDL

 Let ESC_VHDL be the six character sequence ESC, V, H, D, L, ESC, where
ESC represents the escape character (ASCII hex value 1B).

 If a raw identifier is prefixed with ESC_VHDL,

 {

 Then the ESC_VHDL sequence is removed, backslashes are doubled, and the
remaining characters are represented as-is as a VHDL escaped identifier,

 }

 else If (the raw identifier

 contains no uppercase letters

 begins with alpha, contains only alphanums and underscores, and does not
contain a trailing or duplicate underscore and

 is not a VHDL keyword)

 {

 Then it is represented as a normal VHDL identifier

 }

 else

 {

 Any characters in N_VHDL are replaced with pound-hex groups, backslashes
are doubled, and the resulting identifier is represented as an escaped VHDL
identifier in its original case. (That is, it begins and ends with backslash).

 }

B.12. VHDL ->Raw

 If a VHDL identifier is represented escaped {

 Unescape the identifier, turn double backslashes into single backslashes.
Replace any pound-hex groups which in fact represent characters in
N_VHDL with their single character equivalents. Leave and pound-hex
groups which represent characters not in N_VHDL as-is.

 If the resulting string needn’t be escaped according to the rules of VHDL

 {

 Prefix the identifier with ESC_VHDL

 }

 return the resulting string

Copyright 1997 © VSI AllianceTM Version 1.0 Page 61 of 69
All Rights Reserved

 }

 else

 {

 lowercase the identifier and return it

 }

B.13. Raw ->File System

 Any characters in N_file system are replaced with a pound-hex group. Every
uppercase character is preceded with % and is left in uppercase. If the
resulting name is a NT/DOS reserved device name (i.e.: CON, AUX, COM1,
COM2, COM3, COM4, LPT1, LPT2, LPT3, PRN, NUL) then % is appended to
the name.

ï Example Raw -> file system mappings:

ï foo foo

ï Foo %Foo

ï Hi There %Hi#20%There

ï con con%

ï nec$f04 nec$f04

 Note that these rules imply that “Foo” is not a legal file system name.

B.14. File System ->Raw

 Replace every pound hex group that in fact represents a character in N_file
system with the corresponding character. Leave any pound hex group that
does not represent a character in N_file system as-is. Replace every
occurrence of % followed by a letter by the same uppercase letter. Any
trailing % is removed. All other characters are translated in lowercase. The
resulting string is the raw identifier.

B.15. Case Preservation

 When mapping between two case insensitive name spaces, it is often desirable
(but never strictly the case of identifiers. Note that case preservation is not an
issue when either name spaces is case sensitive.

 To support case preservation, the name mapping routines invisibly associate
an additional piece of data with a RAW identifier -- this additional piece of
data is termed the “case preservation string”. The case preservation string is a
normal null terminated string which has the same length as the RAW
identifier. The characters of the case preservation string are one of U, L, and ?,
indicating that the original case of the corresponding character in the RAW
identifier is either upper, lower, or of unknown case.

 The case preservation capability provides only aesthetic benefits. The fact that
case preservation occurs has no semantic effect.

Copyright 1997 © VSI AllianceTM Version 1.0 Page 62 of 69
All Rights Reserved

 An example of case preservation follows. Assume an application needs to map
the identifier FooBar from the VHDL name space to the Verilog/Insensitive
name space. The following transformations would occur:

ï VHDL: FooBar

ï Raw: foobar -- identifier

ï ULLULL -- case preservation string

ï Verilog/Insensitive: FooBar

 Note that an application which calls the name mapping routines will have no
knowledge of the use of the case preservation string since its use is completely
internal to the name mapping routines.

 Note that the case preservation capability is intentionally turned off when
mapping to or from the file system namespace. Because we want to treat the
file system name space as a single unified name space, and because UNIX is
in fact case sensitive while NT is case insensitive, it is required that case
preservation not occur in this mapping.

 Examples

ï Convert an Verilog/Sensitive identifier “buffer” into the VHDL name
space.

ï Verilog/Sensitive -> Raw

ï buffer -> buffer

ï Raw -> VHDL

ï buffer -> \buffer\ -- since “buffer” is a VHDL keyword

ï Convert VHDL identifier FOO into Verilog/Sensitive name space

ï VHDL -> Raw

ï FOO -> foo

ï Raw -> Verilog/Sensitive

ï foo -> foo

ï Find the file system cell directory for the Verilog module named “Foo”

ï Verilog -> Raw

ï Foo -> Foo

ï Raw -> file system

ï Foo -> %Foo

ï Cross-name space references work sensibly. For example, if a VHDL
entity has ports named “FOO” and “WIRE”, and if this entity is
instantiated in a Verilog module, then the ports can be referenced in

Copyright 1997 © VSI AllianceTM Version 1.0 Page 63 of 69
All Rights Reserved

Verilog by the names “foo” and “\wire”. No additional information is
required.

ï As another example, if a Verilog/Sensitive name space path to an instance
is a.b.c.A where “a” is the root instance and “a” and “A” are different
modules due to Verilog’s case sensitivity, then the corresponding path
expressed in the VHDL name space would be \A\

Again, no additional information is required to indicate that a particular
identifier exists in one name space or another. Note that this path may
represent a mixed design hierarchy containing both Verilog and VHDL
instances.

C. Open Standards References

ï IEEE Std 1076-1987, IEEE Standard VHDL Language Reference Manual.

ï ANSI/IEEE Std 1076-1993 (Revision of IEEE Std 1076-1987), IEEE Standard
VHDL Language Reference Manual.

ï IEEE Std 1164-1993, IEEE Standard Multivalue Logic System for VHDL Model
Interoperability (Std_logic_1164).1

ï IEEE Std 1364, Verilog Hardware Description Language Reference Manual.

ï OVI Standard Delay Format Specification, Version 2.1-3.0.

ï OVI-CFI Standard Delay Calculation System Specification, Version 1.0.

ï ISO/IEC 9899-1990, The Programming Language C.

C.1. Reference Source Locations

ï IEEE publications are available from the Institute of Electrical and
Electronics Engineers, 445 Hoes Lane, P.O. Box 1331, Piscataway, NJ
08855-1331, USA.

ï IEEE Std 1076-1987 has been superseded by IEEE Std 1076-1993. IEEE
Std 1076-1987 is no longer in print; however, it is available from the
IEEE.

ï ANSI publications are available from the Sales Department, American
National Standards Institute, 11 West 42nd Street, 13th Floor, New York,
NY 10036, USA.

ï OVI publications are available from Open Verilog International (OVI),
15466 Los Gatos Blvd., Suite 109-071, Los Gatos, CA 95032.

ï CFI publications are available from CFI, 4030 West Braker Lane, Suite
550, Austin, TX 78759, USA.

Copyright 1997 © VSI AllianceTM Version 1.0 Page 64 of 69
All Rights Reserved

D. Glossary of Acronyms

ATPG Automatic Test Pattern Generation

BFM Bus Functional Model

BIST Built-In Self Test

BIST Built-In Self Test

DEF Design Exchange Format

DFT Design-For-Test

DSM Deep Submicron

DSP Digital Signal Processor

ESPF Extended Standard Parasitic Format

GCF General Constraint Format

GIF Geometric Image Format

HDL Hardware Design Language

IDDQ Quiesent drain current

ISA Instruction Set Architecture

ITL Interpolated Table Lookup-format

LBIST Logic Built-In Self Test

LEF Layout Exchange Format

NLDM Non-Linear Delay Model

OMF Open Model Forum

PDEF Physical Design Exchange Format

PLI Procedural Language Interface

RTL Register Transfer Language

SDF Standard Delay Format

TAP Test Access Port

TLF Timing Library Format

VC Virtual Component

VCD Verilog Change Dump

VERILOG Verilog (VHDL)

VHDL VHSIC Hardware Design Language

WGL Waveform Generation Language

