K\\\K\\k\\\; european space agency
o eS a european space research

\\\\\\X\%“: es t eC and technology centre

ASIC/001
Issue 1
September 1994

VHDL Modelling Guidelines

Approved by

R. Creasey R. Coirault
Onboard Data Division Radio Frequency Systems Division

Prepared by P. Sinander

Onboard Data Division (WD)
Keplerlaan 1 - Noordwijk - The Netherlands
Mail address: Postbus 299 - 2200 AG Noordwijk - The Netherlands
Tel: +31-1719-83667 - Telex: 39098 - Cables: Spaceurop, Noordwijk - Fax: +31-1719-84295



ASIC/001 Issue 1 2 european space agency

Table of contents

1 INTRODUCTION......coeiteisieisieieiesieeseseesesseseseseesessesessessesessessssessessssessesessessssenses 3
11 PUIPOSE BN STOPE. ...ttt ettt 3
12 APPIiCADIE DOCUMENTS........ooviiiirieiiirieeesie s 3
13 REFErENCE DOCUMENLS........ceeieieeesieeseseeeseseeeseeee e see e ssesessessesessesaesessenessessesessenes 3
2 REQUIREMENTS FOR ALL KINDS OF MODELS........cccoorieeerereeereeeeenes 4
21 (€1 1= - S 4
22 NBITIES ...ttt e e e e s b e e e sb e et e be et e sbe e e e sneennanneenens 5
23 (00 0010101= 01157 SRR 5
24 I3 T 6
25 1= 6
26 SIGNAIS AN POITS......eeieeiiirieerer ettt 7
2.7 NS < 1SS 8
2.8 Subprograms, processes, entities, architectures, component declarations............... 8
29 CONTIQUIBLIONS ......veieetecesie ettt 9
2.10 POCKBOES. ...ttt 9
211 DESIGN lIBIANES ... 10
212 Congtructs to be aV0Ided..........cceeveeeeerereeec e 10
P22 G T V< 11 o= 1o o OSSPSR 12
214 Format of deliverable ItemsS............ccveeecereecee e 13
3 ADDITIONAL REQUIREMENTS.......cotieereeeesieesieseeeseesee e seees e sessessenessenens 14
31 Models for Component SIMUIBLION ...........cvrieirrieireer e 14
0 S O N = 1= SRR 14
3 0 Y/ o= S TR 14
ICTH IR T Y/ [0 o (= N1 1= £ "o 0SSPSO 15
32 Modelsfor Board-level SMUIBLION .........coeeeeeirieiseireeee e 16
G N N = 1= J SRR 17
2272 Y/ [0 o = 1 1= £ "o 0SSR 17
323  Handling of UNKNOWN VAIUES.........ccoiiriiiiiieiiieerse e 17
324 THMNG ettt a ettt bttt et nn b 18
T2 S TV = 111 o= 1o o OSSR 19
33 Modelsfor System-level SMUIEON ... 20
TR N Y/ [0 o (= 1 1= £ "o 0SSR 20
TS B2V = 111 o= 1o o RSSO 20
34 LIS 0= 0 07 21
341  Automated VENTICAON ......ceeveeeeeeseeeeeee et e s e 21
APPENDIX A: ABBREVIATIONS........ooeieeeesistee ettt s s snenas 22
APPENDIX B: COMMON ERRORS ENCOUNTERED ........ccccoviireireeeeneeseeseeseeane 23
APPENDIX C: COMPATIBILITY BETWEEN VHDL-87 AND VHDL-93................... 24
APPENDIX D: VHDL CODE EXAMPLES. ........o oo 25
APPENDIX E: SELECTION OF SIMULATION CONDITION........cccctvererrererereerenrenenn. 49

Copyright © 1995 European Space Agency. All rights reserved.
This document may be used and distributed without restrictions provided that this copyright statement is
retained and that any derivative work acknowledges the origin of the information.



european space agency 3 ASIC/001 Issue 1

1. INTRODUCTION
11 Purpose and scope

This document defines requirements on VHDL models and testbenches, and isintended to be used
as an applicable document for ESA developments involving VHDL moddling. It is mainly
focused on digital models; specific requirements for analog modelling have not been covered.

The requirements concern smulation and documentation aspects of VHDL models ddlivered to
ESA; specific rules and guidelines for logic synthesis from VHDL have not been included.
Nevertheless, the requirements of this document are compatible with the use of logic synthess.
The requirements are not applicable for the case when a design database is transferred in VHDL
format.

The purpose of these requirements is to ensure a high quality of the developed VHDL models, so
they can be efficiently used and maintained with a low effort throughout the full life-cycle of the
modelled hardware.

The requirements are based on the VHDL-93 standard, to minimise future maintenance efforts for
updating models. However, in an initid stage the models shal be backward compatible with
VHDL-87 asfar as possible, snce some toolswill not be updated immediately.

The requirements have been structured in a general part applicable to al VHDL models, and
additional requirements applicable to different kinds of models. In addition, VHDL code examples
and alist of common problems encountered have been included in order to provide some guidance
to the VHDL developer. If not stated which kind of model isto be developed, the default kind isa
model for Component smulation.

Requirements expressed in a Statement of Work or similar document have precedence over this
document.

1.2 Applicable Documents

AD1 |EEE Standard VHDL Language Reference Manual, IEEE Std 1076-1993
AD2 |EEE Standard Multivalue Logic Sysem for VHDL Modd Interoperability
(std_logic_1164), IEEE Std 1164-1993

13 Reference Documents
RD1  |EEE Standard VHDL Language Reference Manua, IEEE Std 1076-1987

RD2 |EEE Standards Interpretations. IEEE Standard VHDL Language Reference Manudl,
|EEE Std 1076/INT-1991



ASIC/001 Issue 1 4 european space agency

2. REQUIREMENTSFOR ALL KINDSOF MODELS
2.1 General

The models shdl be written in VHDL-93 as defined in AD1. All code shdl be written with the
intent to be smulator independent (as far as possible, using al available information); the use of
non-standard constructs or supersets is not allowed. Note that the code is not necessarily correct
just because it compiles and executes on one simulator without errors; many tools do not detect al
possible errors (see further appendix B). In case of ambiguities the interpretations in RD2 shall
have precedence.

Unusud language constructs should be avoided, since this will reduce the clarity and have a
potentia to stimulate bugs in other VHDL tools.

All models shadl be compliant with VHDL-93 as defined in AD1. To alow backward
compatibility with VHDL-87 in an initid stage, the VHDL code shdll as far as possible also be
compliant with RD1. The usage of the new features of VHDL-93 shall be agreed with ESA before
being introduced.

All documentation, identifiers, comments, messages, file names etc. shall use or be based on the
English language.

The code shall be consistent in writing style and naming conventions. The VHDL reserved words
shdl appear in uniform casing; they shall either all appear in lower-case, or dl appear in upper-
case. It is recommended to write identifiers usng mixed casing. Congistent casing shall be used in
all the code.

The code shdl be concise and use the most straightforward and intuitive constructs. Using more
code than necessary leads to poorer readability and lower smulation speed. Wherever possible,
unused parts of the code shall be removed. Temporary assgnments shall not be used unless

necessary.

The code shall emphasize good readability. It shal contain maximum one statement per line, and
have maximum 80 characters per line. The code shall be properly indented, for example using 3
gpace characters; the indentation shall be the same in al the code. The TAB character shall not be
used, being environment dependent. Related congtructs should be grouped together, and these
groups should be separated e.g. using blank lines or lines made of dashes where this increases the
readability. Identifiers, comments etc. should be aigned verticaly where this improves the
readability.

Automatically generated VHDL models, for example from schematics or from State Machine
diagrams, may be accepted subject to explicit ESA approva. To obtain such approval, the
contractor shall provide complete written information about any possible non-compliancies w.r.t.
the requirements before commencing the development, after which ESA may grant the usage. If
granted, all additional design documentation (e.g. the schematics or the State Machine diagrams)
should be delivered in addition to the VHDL code itself. Automaticaly trandated models, e.g.
from Verilog, are generaly not acceptable, not fulfilling the requirements of this document.



european space agency 5 ASIC/001 Issue 1

22 Names

Meaningful non-cryptic identifier names shall be used, based on the English language. The same
identifier name as for the actual hardware and as in the data sheet or smilar documentation shall
be used. For signals and variables that are active low, this shall be clearly indicated by their name,
for example by suffixing _N asin Reset_N. In case a name would not be legal VHDL, it should be
close to the original name and a comment should be included for clarification. The VHDL-93
extended identifiers (any string enclosed by two \ characters) may only be used in case ESA
approval has been obtained before commencing the devel opment.

A name should indicate the purpose of the object and not its type. Example: an eight-bit |oadable
counter used for addressing should be called AddressCounter (its purpose) rather than CountL.oad8

(itstype).

The naming convention (e.g. how active low and internal signals are indicated, if registers are
indicated with a specia suffix etc.) used should be documented in each file, close to the signa
declarations or in the file header.

It is recommended to write identifiers using mixed casing, with consistent casing in al the code. It
is recommended to use less than 15 charactersin the normal case, though the number of characters
used for an identifier shal never exceed 28 due to an NFS limitation for file names.

The VHDL name of the predefined identifiers, including the identifiersin the Sid and |EEE design
libraries shall never be used for other identifiers. Note for example the formfeed character FF and
the Time unit Min.

2.3 Comments

The purpose of comments is to alow the function of a model, package or testbench to be
understood by adesigner not involved in the development of the VHDL code.

All modes shal be fully documented with explanatory comments in English. The comments shall
be placed close to the part of the code they describe; a description only in the file header without
comments in the executable part is not acceptable. All comments shal be indented and aigned for
good readability. The comments shall be descriptive and not just direct trandations or repetitions
of the VHDL code.

Each file shall include a header, as a minimum containing the following information:
Name of the design unit(s) in thefile;

File name;

Purpose of the code, description of hardware modelled;

Limitations to the model and known errors, if any, including any assumptions made;
Design library where the codeis intended to be compiled in;

List of al analysis dependencies, if any;



ASIC/001 Issue 1 6 european space agency

» Author(s) including full address;

» Simulator(s), smulator version(s) and platform(s) used;

» Change ligt, containing version numbers, author(s), the dates and a description of al changes
performed (as aminimum thislist shall be updated for each delivery, in case a change has taken
place).

Each subprogram declaration, subprogram, process, block etc. shal be immediately preceded by a
description of its function, including any limitations and assumptions. For subprograms, the
parameters and result shall aso be described.

For port and generic clauses in entity and component declarations, there shal be one signa
declaration per line, directly followed by a comment describing the signal. Describing the signals
in a group of comments separate from the declarations themsalves are not recommended, being
likely to become inconsistent in case of modification.

Where functionality is represented by data, as for example microcode or a PLA fuse-map
program, the functionality shall be fully described. This applies regardless of the data
representation (e.g. hard-coded constants or read from an ASCII file).

24 Types

The leftmost bit of an array shall be the most significant, regardless of the bit ordering.
Example: In Bit_Vector(0 to 15), bit 0 is the Most Significant Bit (MSB), whereas in
Bit_Vector (15 downto 0), bit O isthe Lest Significant Bit (LSB).

It is recommended to write the code o it is possible to change the type of a signd or variable

without changing the smulation behaviour. Thisimplies:

» Avoid relying on default initialisation of a variable or asignal unless a reset policy ensures that
the modd isinitialised in an explicit way (typica for synthesizable constructs);

* Avoid relying on the number of type valuesin atype declaration;

* Avoid dependencies on the order in the type declaration.

Real literals shall only be written in decimal format. Based literals shall only be specified in base
2, 8, 10 or 16, and should not have an exponent. The use of underscore charactersin literals should
be restricted to binary, octal and hexadecimal literals. Hexadecimal literals shall be written using
uppercase characters, for example 16#9ABCH.

25 Files

For portability reasons the only alowed file type is Sd.Textio. Text. However, it should be noted

that there are till certain variances, such as (see further AD1 section 14.3):

* Lineddimiters might not be readable, and therefore characters with alower rank than the space
character should be avoided;

» Underline character(s) and/or an exponent may be absent or present when writing values of the
Integer, Real and Time types;

» Thecasing of the identifier when writing vaues of the Boolean type may vary.



european space agency 7 ASIC/001 Issue 1

Consequently, in case vaues of the Boolean, Integer, Real or Time types are written using
Sd.TextlO, possible impact on the portability should be analyzed. The same applies when
characters with lower rank than the space character isread from afile.

The predefined file Sd.TextlO.Input should be avoided, since its implementation on different
smulators varies. In particular, it shall never be used in testbenches for automated verification,
since this could preclude the verification to be performed using a script. Also note that assertions
may be output to the Sd.Textlo.Output file by some simulators, but not by all.

When data is to be read from atext file, e.g. for initialising a memory, the format of the file shall
be fully and clearly specified in the VHDL code implementing the reading function. An example
should aso be included.

It is recommended to limit the number of characters per linein afileto be read to 80 characters. In
any casg, it shall never exceed 255 characters.

2.6 Signalsand ports

The same name shall be used for asigna throughout al levels of the model, wherever possible. In
cases where exactly the same name cannot be used, e.g. when two identical sub-components have
been instantiated, names derived from the same base name should be used.

The index ordering (i.e. using to or downto) of the model top-level entity port clause signals shdl
be identical to the one used in the data sheet or smilar documentation. It is recommended to use
the same index ordering in the whole model, but in case the index order is reversed within the
model, this shall be clearly marked every time the index order is different w.r.t. the corresponding
signd at the highest level of the hierarchy.

The buffer mode shall never appear in the port clause of the model’'s top-level entity declaration.

The port clause signal declarations shall appear in alogica order. It is recommended to order the
sgndsin the port clause after their mode; first input signals, followed by bi-directional signals and
last output signals. Nevertheless the signas could be grouped together according to their function,
and within each such group according to their mode. Port clauses shal be commented as specified
insection 2.3.

Port maps for component ingtantiations shal use named association, unless al signas in the
component ingtantiation have the same (or derived) name as in the component declaration. The
same gpplies to generic maps where increasing the readability.

Duplicating a signa by assignment to another signal only to rename the signa, to alow another
port mode to be used or to perform a type converson should only be used where necessary or
where clearly increasing the readability.



ASIC/001 Issue 1 8 european space agency

2.7 Assertions

Assertions shall be used to report mode errors, timing violations and when signals have illega or
unknown values affecting the model behaviour. The following policy for assigning severity levels
is recommended:

* Failure  Errors in the modd itself (e.g. if a statement believed to be non-executable is
actudly executed);

» Error: Timing violations and invalid data affecting the state of the model, including illega
combinations of mode signals and of control signals (e.g. unknown data on a mode
input or too short reset time);

* Warning: Timing violations and invalid data not affecting the state, but which could affect
the smulation behavior of the model (e.g. if datato be sent out from an interface is
invalid);

* Note: Essentia information that is not classified in the other severity levels, such as
reporting from which text file data is read, which testbench is executed, if an event
iS detected on an input signa whose function has not been implemented (e.g.
activation of production test) etc.

A model should not issue assertions for insgnificant events, for example at start, during reset or if
an event has no impact on the smulation behavior. Neither should unnecessary messages be
generated, e.g. as reporting whether Worst Case or Best Case timing has been selected.

The assertion report shal give a clear description of the reason for the assertion, and shall include
the hierarchica path to the instance or package, as well as identifying the signa(s) where
applicable. It is sufficient to report the hierarchica path relative to the top-level entity of the model
before VHDL-93 has been fully introduced (then the new predefined attribute 'Instance Name
should be used).

Testbenches could use Sd. Textl O.Output instead of assertions where advantageous.

28 Subprograms, processes, entities, ar chitectur es, component declar ations

All processes shall be associated with a descriptive label. The same applies for other concurrent
statements where thiswill increase the readability.

A process with only one wait statement (e.g. typica for synthesizable processes) should use a
process sensitivity list instead of the wait statement, since this increases the readability.

Wherever possible, al language congtructs such as subprograms, package declarations and bodies,
entities, architectures and loop statements shall be qualified, i.e. the identifier associated with the
construct shall also appear at its end.

Procedures that modify signals or variables not passed as parameters in the procedure cal should
be avoided. Nevertheless, in some cases such as testbenches, this technique could actudly increase
the readability of the code. If used, it shall be clearly commented which signals and variables can
be modified by the procedure call.



european space agency 9 ASIC/001 Issue 1

The top-level entity should have the same name as the device or hardware modelled. Declarations
other than generic and port clauses should be avoided in an entity declaration.

The identifier, port clause and generic clause of acomponent declaration shall be identica (i.e. use
the same identifiers and the same ordering) to the declarations in the corresponding entity
declaration.

29 Configurations

There shall be no configuration specifications within the architectures of the modd itsdlf, since it
would then not be possible to use another configuration without modifying the source code.

A testbench should preferably use explicit configuration specifications within its architecture.

2.10 Packages

Where possible, packages approved by the IEEE should be used rather than redeveloping smilar
functionality, in order to reduce development cost as well as the number of errors in the packages
and to allow speed optimised versions to be provided with the VHDL simulators. At the time of
writing, only the IEEE.Sd _Logic 1164 package has been approved; in case a package to be
approved by the IEEE is used before approval it shal be placed in the same design library as the
mode itself.

Packages specific to a particular CAD tool should only be used after ESA approval before
commencing the development. In particular, any source code distribution restrictions should be
assessed.

The number of packages used by a modd shal not be excessve. There shal be no empty or
amost empty packages, unless where this clearly increases code readability. It is recommended to
place VHDL code concerning different functionality aress in different packages, e.g. al timing
parameters in one package, al subprograms related to timing in another etc. However, there
should not be a separate package for each entity where constants etc. used by that entity are
defined.

The declarations in a package body shal appear in the same order as the corresponding
declarationsin its package declaration.

The package declaration shall contain full documentation about the declared types, constants,
subprograms €tc.

Each package containing one or more subprograms - except packages approved by the |IEEE -
shdll be separately and extensively verified as specified in section 2.13, using a testbench alowing
automated verification as described in section 3.4.1.



ASIC/001 Issue 1 10 european space agency

211 Design libraries

The model design units shal be placed in adesign library other than Work. Thiswill normally be a
separate design library for each model, though families of devices, such as 54-series logic or a
collection of different memories, are preferably grouped together in one design library.

This design library shall be named after the device, respectively the family, with the suffix Lib
appended. The top-level entity to be used for smulation shall have the same name as the device.
Example: a device XYZ should be placed in the library XYZ Lib, and should be used as
XYZ_Lib.XYZ. It is recommended to consult ESA regarding the name choice, to avoid the same
name being used in different developments.

This design library shal contain al design units used by the model itself (including packages),
except for the packages in design library Sd, the packages in the IEEE design library (at the time
of writing only Sd_Logic_1164), and common packages used by many different models. Whether
a paticular package is to be consdered as common is subject to ESA approva before
commencing the development.

The testbench(es) used for the development and verification of the device shal be placed in a
design library different from the device design library, such as XYZ_TB_Lib or Work. This design
library should contain al hierarchical sub-components and packages used, except the modd to be
tested (dready being in a separate library) and standard and common packages in the same way as
above.

The |IEEE design library shal not contain any other packages than those approved by the IEEE.
Neither shall these packages be modified or extended. At the time of writing only the
|IEEE.Sd _Logic_1164 package has been approved. Some CAD companies may place own defined
packages in the IEEE design library. In case such a package is used, it shall be moved to the
design library where it is used.

212 Condgtructsto be avoided

The VHDL code shdll be fully deterministic when executed regardless of the simulator used. This

means for example:

* There shdl be no communication between different parts of the model through files;

* Resolution functions shall always be commutative and associative;

o Shared variables (VHDL-93) shdl only be used after justification and ESA approva before
commencing the development. It shall then be proven by anadyss that the usage is fully
deterministic, which shal be documented;

» Care should be taken when using floating point vaues, especially converson to and from
floating point values, comparisons between floating point values and events on floating point
values. Note that using pseudo-random test patterns is not portable if the pseudo-random
generator is using the Real type;

* The Sd.Textl O portability limitations shall be avoided, see further section 2.5.

Refer to appendix C of AD1 for more information.



european space agency 11 ASIC/001 Issue 1

CAD tool specific types shal not be used. Features specific to an operating system, eg. the
/dev/null file on Unix systems, should be avoided. Neither shal absolute paths be used for
filenames.

Objects with an implicitly declared index, for example a line returned from the Sd.TextlO.Read
procedure for a string, shall never be used with absolute indexing. Instead the predefined attributes
for indexing, such as 'Left, shal be used. As a consequence absolute indexing shall be used when
declaring an object to be referenced using an absolute index.

The dependence on implementation defined limitations, for example 32-bit limitations on the
Integer and Time types, shal be minimized. In particular, the model should not encounter
implementation defined limitations on Time as long as the smulated time does not exceed the
limitation.

Subprograms and components should not be renamed by encapsulating them with subprograms or
components with other names unless where clearly increasing the readability.

Signals, variables, constants, subprograms or components shall not be hidden by declaring another
object with the same name (overloading is not considered as hiding, and is encouraged where
beneficia).

The predefined operators, subprograms, attributes etc. shall never be redefined. This shall aso
apply to the packagesin the IEEE design library. Neither shal similar declarations using the same
names be crested.

Since the model shall be placed in another design library than Work, there shall be no references to
Work within the code for the model and its packages.

The constructs below are consdered as obsolescent. Being not strictly necessary to use for

modelling, they should therefore not be used, unless otherwise agreed with ESA before

commencing the development:

» Guarded expressions, signals and assignments, including the reserved words bus, disconnect,
guarded, register;

» Thelinkage mode for interface declarations,

» The Allowed Replacement Characters defined in section 13.10 of AD1;

» The Sd.TextlO.EndLine function, L'Length = O could be used instead (EndLine was excluded
from VHDL-87 being illegal VHDL);

» Filetypes other than Sd.Text|O.Text.



ASIC/001 Issue 1 12 european space agency

2.13 Verification

The purpose of the verification shall be to verify that the developed modd is correct, with few or
no errors being found. It shall not be a means to locate errors in the VHDL code in order to patch
them.

The verification shall be performed by somebody not involved in the crestion of that modd or
package, to avoid that a misunderstanding of the functiondity is masked by the same
misunderstanding in the verification.

In case another smulation mode is available, the VHDL mode shall aso be verified versus this
other mode (regardless whether the other model isaVHDL modd).

The verification shall solely be performed using VHDL testbenches as specified in section 3.4, no
smulator specific features or commands shdl be used.

The verification shall encompass the full functionaity, including al assertions and error messages.
As a minimum requirement every executable line of the model shall be executed, which shall be
proven and documented. The following guidelines shall apply:

* Only sequential and concurrent statements, excluding component instantiations and block
statements, shall be counted as executable (empty lines, comments, declarations, specifications
etc. shal not be counted);

» Statements that cannot be removed but can be shown to be non-executable should be excluded.
An example is the other s choice in a State Machine decoding only covering non-existing states.
Wherever possible such statements shall be associated with an assertion of severity level
Failure reporting model failure;

* Only statements executed by a testbench verifying the complete model or a package may be
counted as executed; the coverage obtained when verifying a sub-component of the model shall
be disregarded;

* Only statements executed for the purpose of verifying the mode versus the functional
requirements may be counted as executed. Statements included to implement testability can
nevertheless be counted, in case it can be shown that they are actualy used. Example: If a
Built-In Self Test function happens to execute certain statements in the model they should not
be counted as executed, except for those included only for the purpose of implementing this
Built-In Salf Test.

In addition, subprograms placed in packages shal be verified for al possble boundary conditions
and singularities. This shdl include unknown and not initialized values, as well as ascending,
descending and invalid ranges, and null arrays. Each such package (except IEEE approved
packages) shdl be fully verified by its corresponding separate testbench.

The results shall be presented in a verification compliance matrix for each VHDL modd and
package, clearly describing each test and its extent, when, how and by whom it was performed and
the result. Each separate test shal be presented together with the date of verification and a
signature. In addition, the results shall be summarised for each model, clearly identifying any
discrepancies from the specifications, including agreed differences.



european space agency 13 ASIC/001 Issue 1

2.14 Format of ddiverableitems

All models and packages shall be delivered with their respective testbench(es) in eectronic format,
using the two organisations specified below (both shal be delivered):

» Using separate files for each design unit or design unit pair (entity with corresponding
architecture, or package declaration with corresponding package body). All design units shall
be delivered, except from design library Sid. Note that this includes the IEEE.Sd Logic 1164
package and other common packages, if any;

» Using one file for the model design library, and one file for the testbench design library. Each
file shall contain all design units of the respective design library, as specified in section 2.11, in
the following order:

* Top-leve entity;

» All packages,

* Remaining entities and architectures combined in pairs,

» Thetop-leve architecture.

The headers of each design unit (pair) shall be included in the file. For a model, the header of
the file could be derived from the header of the top-leve entity.

Thefiles shall contain the design unitsin a correct compilation order. Each file shal have the same
name as the contained entity, package, configuration respectively design library. If afile containsa
separate architecture or package body, this should be indicated in the filename by appending the
architecture name respectively the word body. VHDL files shall have a .vhd or a .vhdl suffix. The
uniqueness of a filename shall not depend on case senditivity. Examples. An entity XYZ together
with its architecture Behavioral are together placed in the file xyzvhd, or in the separate files
xyzvhd and xyz.behavioral.vhd. The design library XYZ_Lib is placed in thefile xyz_lib.vhd.

There shall be a script file for each design library which when executed compiles al the separate
files (design units or design unit pairs) of the design library. For models where automated
verification is required, a script file performing the full verification shal also be delivered. The
scripts shal be executable under a standard Unix sh or csh shell.

Any files associated with the code shall be delivered, such asfilesread by Sd. Textl O.

In case automated verification is to be performed by writing an ASCII file to be compared with a
reference file, each such reference file shall be delivered. Each reference file shal have the same
name as the file written by the testbench, with the recommended suffix .chk appended.

All files shall usethe ASCII character representation (Unix ASCII).

Unless otherwise specified, the default ddivery media for the files shal be QIC-150 tape
cartridges suitable for archive storage (high quality, not reused etc.), and it shall be possible to
restore the files on a Sun Sparc workstation using the tar command. The contents (VHDL model,
developer, issue, date) and the procedure to retrieve al information shall be clearly indicated on
the tape cartridge itself.



ASIC/001 Issue 1 14 european space agency

3. ADDITIONAL REQUIREMENTS
31 Modelsfor Component smulation

The main purpose of a mode for component smulation is to be used for verification of a
component under development, before proceeding with the manufacture. This implies that the
mode should exactly reflect the structure and functions of the underlying hardware; accuracy
being more important than smulation speed. The model shall have correct timing characteristics,
at least using estimated (e.g. pre-layout) values for timing parameters.

The model need not be synthesizable, unless so specified. The model can be on the gate level or on
the Register Transfer level. Phenomena such as EMC, transmission line effects etc. need not be
modelled.

However, for some developmentsiit is aso specified that a mode for board-level smulation shall
be developed. The same entity declarations shall then be used for both models (i.e. the modd for
Component ssimulation will be represented by one architecture, and the modd for Board-level
smulation by another architecture).

An accurate block diagram showing the relationship between different VHDL modules, their input
and output signals etc. shal be created. It is suggested not to mix structura and behaviora
descriptions within the same architecture,

3.1.1 Names

The modd structure and naming convention shal be the same as for al other design descriptions,
including the Architectural Design Document, the Detailed Design Document and the data sheet. It
is recommended to use an architecture name reflecting the level of the description, such as
Gatel.evel or RTL for the architecture associated with the top-level entity.

3.1.2 Types

The VHDL predefined types such as Bit, Bit_Vector, Boolean and Integer, together with the types
defined in the IEEE.Sd_Logic_1164 package are preferred. For Finite State Machines, the states
could be represented by constants of type Bit Vector or Sd ULogic Vector, or by enumerated
types. Complex data types should be avoided unless were beneficid.



european space agency 15 ASIC/001 Issue 1

3.1.3 Modd interface

The preferred types for the modd interface are Sd Logic and Sd_Logic_Vector from the
IEEE.Sd Logic 1164 package for digita signals. The Bit and Bit_Vector types may aso be used,
but no other types are alowed. In the case of analog signds, the Real typeis suggested.

Globa signds shal not be used; al signds of the component shal be specified in the top-level
entity port clause, aso including signals whose functions have not been modelled, such as signas
activating specific test modes etc. Power pins and unconnected pins need not be included. The
model interface should only include signals actualy present on the component.

It is recommended that the top-level entity declaration is not preceded by any other library and use
clauses than necessary for defining the interface signals (IEEE.Sd_Logic_1164) and the timing
(e.g. the Vital_Timing package). No user-defined subtypes should be used in the port clause.



ASIC/001 Issue 1 16 european space agency

3.2 Modelsfor Board-level smulation

The main purpose of a model for Board-level smulation is to be used for the verification of a
board using the component, normally together with severa other components. This can be seen as
the smulation version of breadboarding. This implies that the model must have acceptable
smulation speed, but only need to model the functiondity possibly affecting the board and the
other models. The modd should be on the Register Transfer level or higher, a gate level netlist is
not acceptable. The mode need necessarily not reflect the actual internal structure of the
component.

The modd behaviour shal include the full functionality, though specific test modes only used
during manufacturing test need not be implemented (activation should be reported as specified in
section 2.7). The interface signals shal have the correct digital waveform behavior as can be
observed at the interfaces of the components. Timing shall be modelled for the interface, including
checking violations on inputs and assigning output delays.

The model shall be coded for efficient smulation w.r.t. smulation time. This implies that the
number of processes, signas and signa assgnments shall be minimized, due to their negative
impact on the smulation speed. There should not be more design entities than there are blocks in
the architectura block diagram. Where possible variables should be used instead of signals.
Resolved signals should be avoided where not functional. By using types on higher abstraction
levels - eg. Integer instead of Bit_Vector - models with higher smulation speed will be obtained
in most cases. It should be avoided to execute statement when not necessary.

The memory usage shal be optimised when necessary, e.g. when modelling memory devices,
since otherwise smulation could be impossible due to the memory requirements of the smulator.
One technique could be to divide the memory area into a number of blocks, which would be
allocated only when used.

It is suggested to mode the timing and handling of unknownsin the top-level architecture.
The model should avoid reading files, since this complicates model distribution and usage.

Each modd shal be delivered with a full configuration declaration for the top-level entity,
explicitly binding all entities and architectures of the modd.

An accurate block diagram showing the relationship between different VHDL modules, their input
and output signals etc. shal be created.

A User's Manud shall be written, alowing a Board-level designer not involved in the development
activity to efficiently use the developed VHDL modesto perform Board-level smulation at alater
stage, without needing the VHDL source code.



european space agency 17 ASIC/001 Issue 1

321 Names

The model naming convention shall be the same asfor al other design descriptions, and especially
the data sheet. Unless otherwise agreed with ESA, the architecture associated with the top-level
entity should be named BoardLeve.

3.2.2 Modd interface

The types used for the mode interface shal be Sd Logic and Sd Logic Vector from the
|[EEE.Sd Logic 1164 package, no other types are dlowed for digital signas. In the case of analog
sgnds, the Real type is suggested.

Pull-up and pull-down on inputs and outputs shal be correctly modelled; the
|[EEE.Sd Logic 1164 vaues'L' and 'H' on an input shall result in the same simulation response as
the values '0' and '1', respectively. The IEEE.Sd _Logic 1164 values 'L', 'H' and 'W' shall only
appear on outputs having weak driversfor those states.

Globa signals shal not be used; al signals of the component shal be specified in the top-level
entity port clause, aso including signals whose functions have not been modelled, such as signas
activating specific test modes etc. Power pins and unconnected pins need not be included. The
model interface shal only include signals actudly present on the component.

The top-level entity declaration should not be preceded by any other library and use clauses than
necessary for defining the interface signas and the timing. No user-defined subtypes shall be used
in the port clause.

3.23 Handling of unknown values

Unless otherwise specified, handling of unknown values (X-handling) may be limited to only
reporting the offending values using assertions. If propagation of unknown values is implemented,
it should only apply to data not affecting the state of the model; there should be no propagation on
control signals or mode signals affecting the model state. In all cases assertions shall be issued for
unknown values that would affect the simulation behaviour (on all inputs); insignificant
occurrences should not be reported.

The handling of unknown values should be documented in the header of the top-level entity as
well asin the User's Manual.

ThelEEE.Sd Logic 1164 vaues'U’, 'Z',"W'" and '-' on an input shall result in the same smulation
response as the value X', though propagation of the un-initialised value 'U' should be considered
for combinational functionality and low complexity devices. Modds that have not been initiaized,
aswell as parts thereof, should produce the IEEE.Sd_Logic_1164 value 'U' when accessed. The ™'
value shal never appear on an output.



ASIC/001 Issue 1 18 european space agency

324 Timing

All inputs shall be checked w.r.t. period, pulse width, setup time and hold time as applicable, and
al sgnificant violations reported using assertions. Violations that would not affect the smulation
behaviour should not be reported. All outputs shall be assigned output delays, including tristate
modelling. The timing shall be correctly modelled w.r.t. the internal or external signals generating
the change of the sgnal.

All timing parameters shal have the smulation condition selectable between Worst Case, Typica

Cae or Best Case timing, controlled by a generic parameter SmCondition of type

SmConditionType defined in the package ESA.Smulation (see appendix E), with the default

smulation condition being Worst Case. The smulation conditions for CMOS processes are

defined asfollows:

* Worgt Case: Thetiming at the lowest voltage (e.g. 4.5 Volt), highest temperature (e.g. 125 °C)
and dowest process characterigtics,

» Typical Case. The timing at the nomina voltage (e.g. 5.0 Volt), temperature (e.g. 25 °C) and
process characteristics;

* Best Case: The timing at the highest voltage (e.g. 5.5 Volt), lowest temperature (e.g. -55 °C)
and fastest process characterigtics.

The values of the timing parameters shall be specified in a separate package as deferred congtants,
alowing the vaues to be changed by only recompiling the package body. This package shal be
named after the component name with the suffix Timing appended, as in XYZ _Timing. The data
sheet timing parameter names shall be clearly indicated for each timing parameter.

The timing parameters shal be updated with accurate values after final layout and manufacture.
The vaues shdl be taken from the component data sheet. If al values are not available, the
designer or manufacturer should be contacted for advice. In case no information can be obtained,
suitable values should be established in consultation with ESA. The timing parameters shall be
specified including an appropriate loading, which should be specified in the timing package, in the
header for the top-level entity and in the User's Manual.

As a basdline, timing parameters should be given in an integer number of ns in order to avoid
simulation time limitations, with values rounded in a pessmistic way.

The modd shall allow timing check disabling, controlled by a generic parameter TimingChecksOn
of type Boolean declared in the top-level entity declaration. When TimingChecksOn has the vaue
False no timing checks shall be performed. The default value shal be False. The implementation
shall ensure minimum simulation time penalty when timing checks are disabled.

When the packages implementing the Vital Model Development Specification have been approved
by the IEEE, it is recommended to use them for checking and reporting setup and hold times etc.
In this case it is alowed that the severity level for timing violations are dl Error (as implemented
in the Vita subprograms). The types defined therein may also be used. In case a package is used
before |EEE approval, it should be placed in the same library asthe model itself.



european space agency 19 ASIC/001 Issue 1

Timing parameters should use names compliant with the Vital Mode Development Specification,
which could alow back-annotation on the board-level to be performed using the Standard Delay
File (SDF) format in the future, or alternatively the same names as in the data sheet should be
used. Vital-compliant naming for some types of timing parameters has been listed below:

* tpd_<OutPort> Propagation delay applicable to al delay paths for the output <OutPort>;
» tpd_<InPort>_<OutPort> Propagation delay only applicable to the specified I nput-to-Output delay path;
» tsetup_<InPort> Setup time for the input <InPort> w.r.t. any clock;

» tsetup_<InPort>_<ClkPort> Setup time for the input <InPort> w.r.t. the clock signal <ClkPort>;

+ thold_<InPort> Hold time for the input <InPort> w.r.t. any clock;

+ thold_<InPort>_<ClkPort> Hold time for the input <InPort> w.r.t. the clock signal <ClkPort>;

e tperiod_min_<ClkPort> Minimum allowable period time for <ClkPort>;

» tperiod_max_<ClkPort> Maximum allowable period time for <ClkPort>;

e tpw_hi_min_<InPort> Minimum pulse width for a high value at the input <InPort>;

* tpw_hi_max_<InPort> Maximum pulse width for a high value at the input <InPort>;

e tpw_lo_min <InPort> Minimum pulse width for alow value at the input <InPort>;

* tpw_lo_max_<InPort> Maximum pulse width for alow value at the input <InPort>.

It is recommended to only report timing violations, and not to generate unknown values. In case
generation of unknown values is implemented, a generic parameter XGenerationOn of type
Boolean should be declared in the generic clause of the top-level entity. When XGenerationOn has
the value False timing violations should not lead to unknown values being generated. The default
vaue should be False.

It is not required to check timing violations for changes between similar logic levels (e.g. 'O and
‘L', '1' and 'HY); to differentiate delays for falling and rising signas or to assign separate delay
vaues for each element of a Sd _Logic_Vector. Neither is it required to proportionaly model
loading, temperature, voltage or radiation impact on the timing parameters.

Optiond: In case more detailed timing modelling is desired, such as differentiating delays for
risng and falling edges, assigning separate delays for each element of a vector or providing wire-
load delays for the inputs, it is recommended to be compliant with the requirements for a Vital
level 0 modd. The same applies in case it is desired that the timing parameters appear in the
generic clause of the top-level entity to alow easy modification of the timing on a per-instance
basis.

3.25 Verification
The verification shal be performed using a testbench alowing automated verification as described

in section 3.4.1. The verification shal include assigning al nine values of the Sd_Logic type to
each input (including inout ports), and to produce timing violations on each input.



ASIC/001 Issue 1 20 european space agency

33 Modelsfor System-level smulation

The main purpose of amodel for system-level smulation isto provide the functionality of a board,
a subsystem, an agorithm or a protocol, with a smulation speed alowing trade-offs to be
performed. No similarity with any hardware is necessary, as long as the desired functionality is
achieved. The behaviour may be approximated w.r.t. details such as timing aspects, exactly which
clock cycle an event occurs, the exact numerica value of aresult etc.

The modd shall be coded for efficient smulation, not to sow down simulations. Thisimplies that
the number of entities, processes, signals and signa assignments shall be minimized, due to their
negative impact on the smulation speed. Where possible, variables should be used instead of
sgnas. Resolved signals should only be used when advantageous. By using types on higher
abstraction levels - e.g. Integer instead of Bit_Vector - models with higher simulation speed will be
obtained in most cases. It should be avoided to execute statement when not necessary.

The memory usage shal be optimised when necessary, e.g. when modelling memory devices,
since otherwise smulation could be impossible due to the memory requirements of the simulator.
One technique could be to divide the memory area into a number of blocks, which would be
allocated only when used.

3.3.1 Mode interface

The model interface should use the types most suitable for the intended usage of the model, be that
IEEE.Sd Logic 1164 types (e.g. if aelectronic board is modelled) or more abstract types (e.g. if a
protocol is modelled).

3.3.2 Verification

Unless otherwise specified, the verification should be performed using a testbench alowing
automated verification as described in section 3.4.1.



european space agency 21 ASIC/001 Issue 1

34 Testbenches

The purpose of a testbench is to verify the functiondity of a developed model or package. A
testbench shall be adistinct design unit separated from the model or package to be verified, placed
inadesign library separate from the modd itself.

If the testbench incorporates models of components surrounding the model to be tested, they need
only to incorporate functions and interfaces required to properly operate with the model under test;
it is not necessary to develop complete VHDL models of them. If external stimuli or configuration
datais required, it shall be implemented by reading an ASCII file using the Sd.TextlO package in
order to ensure portability.

Every testbench shall stop by itself when the test has been completed, in order to alow the
verification to be done using a script, independent of the simulator used.

The root entity shall neither have port nor generic clauses, being potentially not portable.

If several testbenches are used for the verification of a package or amodel, no re-compilation shall
be necessary in order to perform the complete verification. Neither shall it be necessary to copy
any files (or create soft links) used by the testbenches or the mode!.

If severa testbenches are used it is recommended to place the component declaration(s), some
signd declarations etc. in a package instead of including them in each testbench.

3.4.1 Automated verification

All testbenches for models for Board-level smulation, for models for System-level smulation and
for packages containing subprograms should alow automated verification to be performed.
Automated verification alows a reduction of the future maintenance effort, such as verification of
the model operation on a different smulator, platform or operating system. Since it enables fast
and reliable verification of a model when modifications have been introduced, it is recommended
for al types of models.

The verification of error messages and timing parameters can be difficult due to assertions, and
may therefore be performed without using automated verification.

The recommended approach is to write testbenches that are self-checking, reporting success or
falure for each sub-test. Alternatively, and subject to ESA approva before commencing the
development, a testbench could write al values of the signas generated by the model together
with time stamps to a text file, which could be verified separately for example by using the Unix
diff utility. In case a specific program is needed for the file comparison, it shall be delivered in
compiled form together with the fully documented source code in the C language. Care should be
taken with non-portable issues of Sd.TextI O, see section 2.5.



ASIC/001 Issue 1 22 european space agency

APPENDIX A: ABBREVIATIONS

ASCII American Standard Code for Information Interchange
ASIC Application Specific Integrated Circuit
CAD Computer Aided Design

EIA Electronic Industries Association
EMC.. Electro Magnetic Compatibility

eg. exempli gratia (Latin: for example)
efc. et cetera

ESA European Space Agency

i.e id est (Latin: that is; in other words)
|EEE Institute of Electrical and Electronics Engineers
LSB Least Significant Bit

MSB Most Significant Bit

NFS Network File System

PLA Programmable Logic Array

QIC Quarter Inch Cartridge

RTL Register Transfer Logic

SDF Standard Delay File

sd standard

VHDL VHSIC Hardware Description Language
VHSIC  Very High Speed Integrated Circuit
VITAL VHDL Initiative Towards ASIC Libraries
w.rt . with respect to



european space agency 23 ASIC/001 Issue 1

APPENDIX B: COMMON ERRORS ENCOUNTERED

This appendix contains examples of some common errors concerning the VHDL syntax and
semantics found in some of the VHDL models ddlivered to ESA. Before ddlivering any VHDL
code, it should be verified w.r.t. these error types in order to avoid the mode being immediately
rejected for example due to compilation errors.

B.1 Inconsistent subprogram declar ations

The subprogram declaration in a package declaration must be identica to the subprogram
declaration in the package body, e.g. whenever any of the mode indicators in, out, inout or buffer
appear in one declaration they must appear exactly at the same position in the other declaration.
This aso appliesfor default expressonsin the declarations.

B.2 Brackets around case statement expression

Thefollowing codeisillegd if BV isaBit_Vector, due to the brackets around the expression:

case (BV) is
when others => null;
end case;

B.3 Time limitation encountered at time 0

It shall be ensured that the model does not execute constructs requiring higher resolution than 32
bits on the Time type at time O or for short smulation times.

B4 Subtype assigned value outside subtype range

A variable or asignal of a subtype shall not be assigned a value outside the range of that subtype.
The following code fragment is illegd in case UXOl is the subtype defined in the
|IEEE.Sd _Logic 1164 package, which can only take the values'U', X', '0' and '1":

signal OneSignal: UX01 :="'Z;

B.5 No range check on values of type Integer and Time

Some smulators do not implement range check on the Integer and Time types; instead of reporting
arun-time error the value iswrapped around (e.g. Time'Low - 1 gives TimeéHigh).



ASIC/001 Issue 1 24 european space agency

APPENDIX C: COMPATIBILITY BETWEEN VHDL-87 AND VHDL-93
Note: this appendix contains only alimited set of compatibility issues.

In case it has been agreed to start a VHDL model development using the VHDL-87 standard
instead of the VHDL-93 standard, the code shall be written so as to require minima modifications
when updating to VHDL-93. As an example, the following identifiers shall not be used, being
reserved wordsin VHDL-93:

group, impure, inertial, literal, postponed, pure, rgect, rol, ror, shared, da, dl, sra, 51,
unaffected, xnor

The predefined attributes 'Behavior and 'Structure shall not be used, being removed from the
VHDL-93 standard.

The congtructs for handling files, including the Std.TextlO package, are different for VHDL-93
compared to VHDL-87. Therefore shdl the code involving file handling be written considering a
future update; these constructs should be concentrated to as few places in the code as possible, and
clearly commented.



european space agency 25 ASIC/001 Issue 1

APPENDIX D: VHDL CODE EXAMPLES

This appendix isincluded as a guidance for VHDL model developers. In case of discrepancies, the
requirements have precedence over the examples. The code is provided as is, no functiondity is
guaranteed.

D.1 VHDL constructs

This section contains code fragments of various VHDL constructs. It is not exhaustive, but
contains a sufficient set of congtructs to create most types of models. The code fragments have not
necessarily been fully commented.

D.1.1 Entity declaration

entity ABCis
generi c(Si mCondi tion: SimConditionType := WrstCase);

port (
ak: in Bit; -- Cock signa
Reset N in Bit; -- Asynchronous Reset
I nl: in Bit; -- Input 1
I n2: in Bit_Vector(1l downto 0); -- Input 2
Qut 1: out Bit_Vector(7 downto 0)); -- Qutput, bit 0is LSB
end ABC,
D.1.2 Architecture body

architecture RTL of ABCis

-- Declarations, such as type decl arations, constant declarations,
-- subprograns, conponent decl arations, signal declarations etc.

begin -- Architecture RTL of ABC

-- Concurrent statenents, e.g. processes, signal assignhnments and
-- component instantiations

end RTL;



ASIC/001 Issue 1 26 european space agency

D.1.3 Configuration declaration

This configuration configures the components used to design the TMEncoder design, which is a
board with ten components.

configurati on TMEncoder Confi g of TMEncoder is

for Structural
for VCAO, VCAl, VCA2, VCA7: VCA
use configuration VCA Lib.VCA Config;
end for;

for SRAMD, SRAML, SRAM2, SRAM/: SRAM
use entity Mem Lib. MA9264( Boar dLevel ) ;
end for;

for VCML: VCM
use configuration VCM Li b. VCM Confi g;
end for;

for MA1916_1: MA1916
use configuration MA1916_Li b. MA1916_Confi g;
end for;
end for;

end TMEncoder Confi g;

D.1.4 Package declaration
package TCSuiteDef is

-- Declarations of (deferred) constants, types, files, subprograns,
-- conponents etc. For exanple:

subt ype Byt e is Bit Vector(0 to 7); -- Bit 0is MSB

subt ype Wrdl6é is Bit_Vector(0 to 15); -- Bit 0 is MSB

type Byt eArr ay is array(lnteger range <>) of Byte;

type Tai |l ErrorType is (Al 5s, -- Normal Tail (55555...)
SingleFill, -- Single error + Fill bit
Doubl e, -- Double error
DoubleFill); ~-- Double error + Fill bit

constant CrcPoly: Bit Vector := X'1021"; -- x16 + x12 + x5 + 1

constant InitCrc: Bit _Vector := X'FFFF"; -- Init. to all ones

-- The AddCrc function cal cul ates the CCSDS CRC (syndrone x16 +

-- x12 + x5 + 1, register initiated to all ones before each data)
-- over an array of bytes, and appends the cal cul ated CRC.

-- Data is an unconstrained array of bytes, and the result is of
-- the sane type, with the length increased by 2 (for the CRC).

function AddCrc(Data: ByteArray) return ByteArray;

-- Description of subprogram function and paraneters
procedur e ADFranme( NR: Byt e;
Segnent: inout ByteArray;
signal TCQut: out Bit);

end TCSui t eDef;



european space agency 27 ASIC/001 Issue 1

D.1.5 Package body

package body TCSuiteDef is
-- Declarations of subprograns, deferred constants etc., in the same
-- order as they appeared in the package decl arati on.
-- Al so declaration of objects not visible outside the package body.

end TCSui t eDef;

D.1.6 Component declaration

conmponent ABC
generi c(Si mCondi tion: SimConditionType := WrstCase);

port (
ak: in Bit; -- Cock signal
Reset N in Bit; -- Asynchronous Reset
I nl: in Bit; -- Input 1
I n2: in Bit_Vector(1l downto 0); -- Input 2
Qut 1: out Bit Vector(7 downto 0)); -- Qutput

end conponent;

D.1.7 Component ingtantiation

In case dl sgnads outsde and inside the component have the same name, positional association
could be used instead of named association.

Ul: ABC
generic map(Si nConditi on => Best Case)
port nmap(
ak => d k,
Reset N => Reset N,
I nl => Dat al n1,
I n2 => BaudRat e,
Qutl => Dat aBusA) ;

D.1.8 Procedur e declaration and body

-- Description of subprogram function and paraneters
procedur e ADFranme( NR: Byt e;
Segnent: inout ByteArray;
signal TCQut: out Bit) is
begi n

-- Sequential statenents

end ADFr ane;



ASIC/001 Issue 1 28 european space agency

D.1.9 Function declaration and body

-- The AddCrc function cal cul ates the CCSDS CRC (syndrone x16 +

-- x12 + x5 + 1, register initiated to all ones before each data)
-- over an array of bytes, and appends the cal cul ated CRC.

-- Data is an unconstrained array of bytes, and the result is of
-- the sanme type, with the length increased by 2 (for the CRC).

function AddCrc(Data: ByteArray) return ByteArray is

variable Crc: Wordi16 : = I nitCRC

vari abl e Xor1: Bit;

vari abl e Result: ByteArray(0 to (Data' Length + 1));
begi n

-- Calculate the CRC over all the data
EachByte: for i in Data' Range | oop
EachBit: for BitNo in Byte' Range | oop
Xorl := Crc(0) xor Data(i)(BitNo);
Crc Crc(1 TO15) & '0'; -- Shift left 1 bit
if Xorl ='1'" then
Crc := Cc xor CRCPoly;
end if;
end | oop EachBit;
end | oop EachByt e;

-- Add the CRC after the data

Result (0 to Result'High - 2) := Data;
Resul t (Result' High - 1) = Cc(0 TO 7);
Resul t (Resul t' Hi gh) = Crc(8 TO 15);
return Result;
end AddCrc;
D.1.10 Signal assgnment
Reset N <= "'0'",
"1' after 79 ns,
'0" after 10491 ns,
"1' after 10627 ns;
D <= DQut after Tpd_D when DEnable = '1'" else
"Z2272777277" after Tpd_ D
D.1.11 Processstatement
-- Process header
SyncRxI n: process(C k, Reset_N) -- Rx synchroni zer
begi n
if Reset_N="0" then -- Asynchronous reset
Rxl nSync <= "'1";
elsif Ak'Event and Ok ="'1" then -- Rising dk edge
Rxl nSync <= Rxln;
end if;

end process SyncRxln;



european space agency 29 ASIC/001 Issue 1

D.1.12 If satement

if RxInSync ='1" and RxReg(0) = '0" then -- Wit for start bit
BaudCount : = O;
el sif (BaudRate
(BaudRat e
BaudCount : =
el se
BaudCount := BaudCount + 1
end if;

,Baud1200 and BaudCount >= Count 1200) or
Baud9600 and BaudCount >= Count 9600) then

=N INe)

D.1.13 Casedgatement

case TailError is

when Al 58 => -- Normal tail sequence
Result := EndCB

when SingleFill => -- Set filler bit
Result := Data,;
Result(7)(7) :="'1"; -- Set filler bit

when Double | DoubleFill => -- Double error
Result := InjectError(Data);
if TailError = DoubleFill then

Result(7)(7) :="'1"; -- Set filler bit

end if;

when ot hers => -- No action
nul | ;

end case;

D.114 Loop statement

EachByte: for i in Data' Range | oop
-- Statements to be executed in the | oop

end | oop EachByt e;

D.1.15 Assertion statement

Note that when VHDL-93 has been fully introduced, the new predefined attribute 'Instance Name
should be used to report the full instantiation path.

assert (TestMode = '0")
report InstancePath & ": Non-inplenented test node activated"
severity Note



ASIC/001 Issue 1 30 european space agency

D.2 Complete examples
D.21RS232 VHDL receiver

This example is representative for one module of a larger component (called XYZ). The model is
gynthesizable with a complexity of about 400 equivalent gates. It is however efficiently and
concisaly coded to be acceptable as amodel for Board-level smulation though timing checks and
output delays have not been modelled here.

-- Design units : RS232_Recei ve(RTL) (Entity and architecture)

-- File nane © rs232_receive.vhd

-- Purpose : The nmodul e receives a serial RS-232 bit stream The
-- bit streamshould contain 1 start bit ('0'), 8 data
-- bits and finally 2 stop bits ('1'). The baud rate
-- is selectable to 1200, 2400, 4800 or 9600. The | ast
-- received data is output in 8-bit parallel format.

-- Note . This nodel can be synthesized by Synopsys VHDL
-- Conpi | er and Mentor AutolLogi ¢ VHDL.

-- Limtations : The baud rates have been approxinmated in order to
-- allow a sinpler inplenmentation. A dk frequency of
-- 10 MHz is assuned.

-- Errors: . None known

-- Library  XYZ_Lib

-- Dependenci es : None

-- Aut hor . Peter Sinander

- - ESTEC Onboard Data Division (VD)
- - P.O Box 299

- - 2200 AG Noordwi j k
- - The Net herl ands

-- Simul at or . Synopsys v. 3.0c, on Sun Sparcstation 10, SunCS 4.1.3
-- Revision list

-- Version Author Date Changes

-- 1.0 PSI 4 Mar 94 New version

-- 2.0 PSI 10 May 94 Baudrate index changed to descendi ng;

- - Constants introduced for baud count;
- - Header and commrents nodifi ed.

-- Naming convention: Active low signals are indicated by "_N'
-- synchroni zed signals are indicated by "Sync"

entity RS232_Receive is

port (
dk: in Bit; -- Cock, nomnally 10 M
Reset N in Bit; -- Asynchronous Reset
RxI n: in Bit; -- Serial data in
BaudRate: in Bit_Vector(l dowmnto 0); -- Bit rate selection
RxQut : out Bit_Vector(7 downto 0)); -- Last received data,

end RS232_Recei ve; -- Bit 0is LSB



european space agency 31 ASIC/001 Issue 1

architecture RTL of RS232_Receive is

-- These constant would nornmally be placed in a package defining al
-- constants and subprograns used by the design, but in this
-- exanpl e they have been placed here.

constant Baudl1200: Bit_Vector := "00"; -- Baud sel ections

constant Baud2400: Bit_Vector := "01";

constant Baud4800: Bit_Vector := "10";

constant Baud9600: Bit_Vector := "11";

constant Count 1200: |nteger := 4096; -- End count val ues

constant Count 2400: Integer := 2048;

constant Count4800: Integer := 1024;

constant Count 9600: Integer := 512

constant InitRxReg: Bit_Vector := "1111111110"; -- Init. pattern

si gnal Rxl nSync: Bit; -- Synchroni sed Rx
begin -- Architecture RTL of RS232_Receive

-- Input serial data is synchronized with k to protect against
-- meta-stability. This process could be nerged with the Rs232

-- process in order to increase the sinmulation performance (it was
-- witten separately here for the cause of clarity).

SyncRxI n: process (O k, Reset N)

begi n
if Reset_N="0" then -- Asynchron. reset
Rxl nSync <= "'1";
elsif Ak'Event and Ok ="'1" then -- Rising Ak edge
Rxl nSync <= Rxln;
end if;

end process SyncRxln;

-- The Rs232 process contains a counter which toggles the Sanple

-- signal two times per bit period. The rising edge of Sanple (which
-- occurs in the mddle of the input bit) is synchronously detected

-- by conparing it to DelaySanple (the Sanpl e signal del ayed one d k
-- cycle); at this time the data bit is clocked into the shift

-- register.

-- The State machine controlling the shift regi ster has been nerged
-- with the shift register itself. Wen the last bit - RxReg(0) - is
-- 0 the retrieval cycle has conpleted and the process is waiting

-- for the next start bit. Wien a start bit is detected, the counter
-- starts increnenting, at each sanple tine shifting in one data bit
-- (a start bit shorter than a half bit period will have no inpact).
-- Wien the start bit, which is '0', reaches RxReg(0) the data is

-- copied to the output, and the process will wait for the next start

-- bit.

Rs232: process (O k, Reset_N)
vari abl e BaudCount : Integer range 0 to 8191; -- 13 bit counter
vari abl e Sanpl e: Bit; -- For bit sanple
vari abl e Del aySanple: Bit; -- To detect edge
vari abl e RxReg: Bit_Vector(9 downto 0); -- 10 bit shift

-- register



ASIC/001 Issue 1 32 european space agency

begi n

if Reset_N="0" the -- Asynchron. reset,
BaudCount = 0; -- initialize all
Sanpl e ='0"; -- val ues
Del aySanmple :='0";
RxReg = I ni t RxReg;
RxQut <= X'00"

elsif Ak'Event and Ok ="'1" then -- Rising dk edge

-- Wit for RkinSync to be O, i.e. the start bit in the seria
-- input stream
if RxIlnSync = "'1" and RxReg(0) = '0'" then

-- Waiting for the start bit; initialise values

BaudCount ;

Sanpl e ='0";
RxReg := I nit RXReg;
el sif (BaudRate = Baudl1200 and BaudCount >= Count 1200) or
(BaudRat e = Baud2400 and BaudCount >= Count 2400) or
(BaudRat e = Baud4800 and BaudCount >= Count 4800) or
(BaudRat e = Baud9600 and BaudCount >= Count 9600) then

-- The counter has reached half a bit period (assum ng that
-- Ok runs at 10 MHz); reset counter and toggle the Sanple
-- signal (the exact bit rates are 1220, 2441, 4882 & 9765)
BaudCount 0;

Sanpl e not Sanpl e;

else -- RxInSync = '0' or RxReg(0) ="'1'
BaudCount := BaudCount + 1

end if;

if Sanple = '1'" and DelaySanple = '0' then
-- Rising Sampl e edge; shift in one data bit
RxReg : = RxInSync & RxReg(9 downto 1);

if RcReg(0) = '0' and RxReg(8) = '1' and RxReg(9) = '1' then

-- Last bit acquired, copy data to output if stop
-- bits are both "1
RxQut <= RxReg(8 downto 1);
end if;
end if;

-- Sanpl e del ayed one dk
Del aySanpl e : = Sanpl e;

end if;
end process Rs232;



european space agency 33

ASIC/001 Issue 1

D.2.2VHDL modd for Board-levd smulation

Thisis an example showing the principle of aVHDL mode for board-level smulation. All design

units have been included, except the package defining the sub-programs for timing checks:

» ExampleDefinition: Defines constants, functions and conversion functions;

* ExampleTiming: Definesthe timing parameters as deferred constants,

» ExampleCore: The functional core, written for high smulation efficiency (most of the
code in one process), and with an interesting implementation of the

reset functionality;

* Example: The top-leve entity/architecture, with signa strength stripping and

the timing implementation.

The margins have been extended in order to alow 80 characters per line.

-- Design units : ExanpleDefinition (Package decl aration and body)

-- File nane : exanpl edefinition.vhd

-- Purpose . Package defining constants and functions for the Example.
-- Defi nes constants and types for the functions as inplenmented

-- by the Exanpl e.

-- Defi nes conversion functions/procedures.

-- Limtations : None
-- Errors: : None known
-- Library . Exanple Lib

-- Dependencies : |EEE Std_Logic_1164

- - Aut hor . Peter Sinander

- - ESTEC Onboard Data Division (VD)
-- P. 0. Box 299

- - 2200 AG Noordwi j k

-- The Net herl ands

-- Simul at or . Synopsys v. 3.0c, on Sun Sparcstation 10, SunCS 4.1.3
-- Revision list

-- Version Author Date Changes

-- 1.0 PSI 1 Sep 94 New version

library |EEE;

use | EEE. Std_Logic_1164. all;

package Exanpl eDefinition is

-- Definition of common Std_ULogi ¢ vector sizes
-- Note: Bit O is the MSB

subtype Std_Byte is Std _ULogic_Vector(0 to 7);
subtype Std_Wordl6 is Std _ULogic_Vector(0 to 15);
subtype Std_Word32 is Std _ULogic_Vector(0 to 31);



ASIC/001 Issue 1 34 european space agency

const ant Fi xPreanbl e: Std Wrd32 := To_StdULogi cVector (X'89 _AB CD EF");

const ant Fi xedFi el d: Std _ULogi c_Vector = "00";

-- Length of preanble

-- Position of the Line Count field after the preanble
const ant Preanbl eLen: I nt eger Fi xPreanbl e' Length + 8;
const ant Li neCount End: I nt eger Preanbl eLen + 8;

-- Nunmber Ok cycles for the Built In Self Test, BIST, and time after reset
-- when no BIST is running

constant Bistd ks: I nteger := 16384,

const ant NoBi st C ks: I nteger := 1;

-- Nunber of entries in the nenory

-- Definition of Memtype

constant Menti ze: I nteger := 255;

type MenTType i s array(0 to MenSi ze-1) of Integer range 0 to 255;

-- Calculation of Valid and FSM | engt hs

-- Valid is 1200, 2400, 4800 or 9600 dependi ng on Mde

-- FSMis sane as Valid, plus a gap of 400 system cl ocks between data bursts
-- when LowSpeed is 1

function Cal cVal i dLengt h( Mode: Std_ULogi c_Vector(0 to 1))
return I nt eger;

function Cal cFSM_ength (Mode: Std_ULogi c_Vector (0 to 1);
LowSpeed: Std_ULogi c)
return I nt eger;

-- Converts Natural to Std _ULogic_Vector of length Len
-- Leftnost bit is nost significant
function To_StdULogi cVector(I: Nat ur al ;

Len: Posi tive)

return Std_ULogi c_Vector;

-- Converts unsigned Std_ULogi c_Vector to Natural
-- Leftnost bit is nost significant
-- No warning for unknowns (U, X, W Z, -), they are converted to O
-- Verifies whether vector is too long (> 31 bits)
function To_lnteger(V: Std_ULogi c_Vector)
return Natural;

-- Wap-around addition between two Std_ULogic_Vectors of the same |ength
-- Leftnost bit is nost significant
-- Verifies whether both vectors have the sane | ength
function "+"(R, L: Std_ULogic_Vector)
return Std_ULogi c_Vector;
end Exanpl eDefinition;



european space agency 35 ASIC/001 Issue 1

package body Exanpl eDefinition is

-- Calculation of Valid Iength
-- Valid is 1200, 2400, 4800 or 9600 dependi ng on Mde

function Cal cValidLength(Mde: Std_ULogic_Vector(0 to 1))
return Integer is

begi n

if Mode = "00" then

return 1200; -- Myde O
elsif Mbde = "01" then

return 2400; -- Mode 1
elsif Mbde = "10" then

return 4800; -- Mde 2
el se

-- Default value for unknowns as well as for 11

return 9600; -- Default node
end if;

end Cal cVal i dLengt h;

-- Calculation of FSM | ength
-- FSMis 1200, 2400, 4800 or 9600 dependi ng on Mdde, plus a gap of 400
-- system cl ocks between data bursts when LowSpeed is 1

function Cal cFSM_engt h( Mode: Std _ULogic_Vector(0 to 1);
LowSpeed: Std_ULogi c)
return Integer is
begi n

if LowSpeed = '0" then
-- Highest speed, no gap between data bursts, same as Valid length
if Mode = "00" then

return 1200; -- Mode O
elsif Mbde = "01" then
return 2400; -- Mode 1
elsif Mbde = "10" then
return 4800; -- Mde 2
el se
-- Default value for unknown Mdde as well as for 11
return 9600; -- Default node
end if;

el se
-- Insert gap of 400 system cl ocks between data bursts
if Mbde = "00" then

return 1600; -- Mbde 0 + 400
elsif Mbde = "01" then
return 2800; -- Mde 1 + 400
elsif Mbde = "10" then
return 5200; -- Mde 2 + 400
el se
-- Default value for unknown Mdde as well as for 11
return 10000; -- Default node + 400
end if;

end if;
end Cal cFSMLengt h;

-- Converts Natural to Std ULogic_Vector of length Len
-- Leftnost bit is nost significant

function To_StdULogi cVector(I: Nat ur al
Len: Posi tive)
return Std_ULogi c_Vector is
variabl e Tnp: I nt eger;

variable Result: Std ULogic_Vector(0 to Len - 1);



ASIC/001 Issue 1 36 european space agency

begi n
Tmp = 1;

for j in Result'Reverse Range | oop
if (Tmp nod 2) = 1 then

Result(j) :="1";
el se
Result(j) :="'0";
end if;
Tnp = Tmp [/ 2;
end | oop;

return Result;
end To_St dULogi cVector;

-- Converts unsigned Std ULogi c_Vector to Natural

-- Leftnost bit is nost significant

-- No warning for unknowns (U, X, W Z, -), they are converted to O
-- Verifies whether vector is too long (> 31 bits)

function To_lnteger(V: Std_ULogi c_Vector)
return Natural is
variable Result: Integer := 0;
begi n

assert V Length <= 31
report "Can not convert nmore than 31 bit Std ULogi c_Vectors"
severity Failure;

for i in V Range | oop

Result := Result * 2;
if (M(i) ='1") or (M(i) ='H) then
Result := Result + 1;
end if;
end | oop;

return Result;
end To_I nteger;

-- Wap-around addition between two Std_ULogi c_Vectors of the sane | ength
-- Leftnost bit is nost significant
-- Verifies whether both vectors have the sane | ength
function "+"(R, L: Std_ULogic_Vector)
return Std_ULogi c_Vector is
variable Carry: Std_ULogic :="'0";
variable RTnp, LTnp, Result: Std_ULogic_Vector((R Length - 1) downto 0);
begi n
assert R Length = L'Length
report "Vectors to be added are not of sane | ength"
severity Failure;

RTnmp : = R -- To get the range (MSB downto 0)
LTmp = L; -- - " -
for i in O to RTnp'Length - 1 |oop
-- Calculate sumusing carry from previous step, then carry out
Result(i) := RTmp(i) xor LTmp(i) xor Carry,;
Carry : = (RTnp(i) and LTnp(i)) or (RTmp(i) and Carry) or
(LTrp(i) and Carry);

end | oop;
return Result;
end n +II;

end Exanpl eDefinition;



european space agency 37 ASIC/001 Issue 1

-- Design units : Exanpl eTi mi ng (Package decl arati on and body)

-- File nane : exanpl etimng. vhd

-- Purpose : In this package, all timing paraneters for the Exanple are
-- defined as deferred constants; their value can be nodified
-- by reconpiling only the package body and no other files.

-- Note . The tinming figures have been taken fromthe data sheet.
-- The timng figures are based on 50 pF | oad on the outputs.

-- Limtations : Best case and typical figures have been estinated.
-- Note that sirmulation with timng checks CANNOT repl ace
-- a worst case timng anal ysis.

-- Errors : None known

-- Nam ng : Names of timng paranmeters are conpliant with SDF (Standard
-- convention Del ay Format).

-- Library : Example_Lib

-- Dependencies : ESA Simulation

- - Aut hor : Sandi Habi nc, Peter Sinander

- - ESTEC Onboard Data Division (VD)
-- P. O Box 299

- - 2200 AG Noordwi j k

- - The Net herl ands

-- Simul ator . Synopsys v. 3.0c, on Sun Sparcstation 10, SunCS 4.1.3
-- Revision list

-- Version Author Date Changes

-- 1.0 PSI 1 Sep 94 New version

library ESA

use ESA. Sinulation.all;

package ExanpleTiming is

-- Deferred constants for the timng paraneters, all values are defined in
-- the package body.

-- Test, Mdde, LowSpeed, Code : not allowed to change while Reset Nis
-- de-asserted (checked in nodel).

-- Reset N, CS N de-asserted after wite: timng requirenent expressed in
-- nunber of clock cycles (checked in nodel).

-- Systemsignal timng paraneters Dat a sheet reference
constant tperiod d k: Ti meArray; -- TCp
constant tpw_hi_mn_d k: Ti meArray; -- TCLo

constant tpw.|o_mn_dKk: Ti meArray; -- TCHi



ASIC/001 Issue 1 38 european space agency

-- Meminterface timng paraneters
constant tsetup_A CS N

_A CS N Ti meArr ay; -- T5
constant thold_A CS_ Ti meArr ay; -- T6
constant tsetup_RWN CS_ N TinmeArray; --T1
constant thold_RWN CS_ N TineArray; -- T2
constant tpw lo_mn_CS N TineArray; -- T3
constant tsetup_D CS N Ti meArr ay; -- T5
constant thold_D CS N Ti meArr ay; -- T6
constant tpd_CS_N_ D Ti meArr ay; -- T7
constant tpd_CS N D Z: Ti meArr ay; -- T9
constant tpd_A D Ti neArray; -- T8
-- Serial input interface tining paraneters
constant tsetup_C k_Ready: TinmeArray; -- T10
constant thol d_C k_Ready: TineArray; -- T11
constant tsetup_C k_SIn: Ti meArray; -- T12
constant thold_d k_SIn: Ti meArr ay; -- T13
-- Qutput interface timng paraneters
constant tpd_C k_SCut: Ti meArray; -- T4
constant tpd_C k_Valid: Ti meArray; -- T4

end Exanpl eTi ni ng;

package body ExanpleTiming is

-- Deferred constants for the timng paraneters, all values are defined in
-- the package body

-- Test, Mde, LowSpeed, Code : not allowed to change while Reset Nis
-- de-asserted (checked in nodel).

-- Definition of default timng paraneter values with 50 pF | oad
-- The tinming figures have been taken fromthe data sheet

-- Systemsignal timng paraneters WC Typ BC Ref .
constant tperiod_d k: TimeArray := (80 ns, 66 ns, 50 ns); -- TCp
constant tpw_hi_mn_d k: TinmeArray := (40 ns, 33 ns, 25 ns); -- TCLO
constant tpw_lo_mn_dk: TineArray := (40 ns, 33 ns, 25 ns); -- TCH
-- Meminterface timng paraneters WC Typ BC Ref .
constant tsetup_A CS N TineArray := (10 ns, 7 ns, 5ns); -- T5
constant thold_A CS_ TimeArray := (10 ns, 7 ns, 4 ns); -- T6
constant tsetup_ RWN CS N TineArray := ( Ons, Ons, Ons); -- T1
constant thold_ RWN CS N TineArray :=( 3 ns, 5ns, 6 ns); -- T2
constant tpwlo_mn_CS N TinmeArray := (50 ns, 40 ns, 30 ns); -- T3
constant tsetup_D CS N TineArray := (10 ns, 7 ns, 5ns); -- T5
constant thold_D CS N TimeArray := (10 ns, 7 ns, 4 ns); -- T6
constant tpd_CS N D TineArray := (45 ns, 35 ns, 25 ns); -- T7
constant tpd_CS N D Z: TineArray := (35 ns, 35 ns, 35 ns); -- T9
constant tpd_A D TineArray := (60 ns, 53 ns, 45 ns); -- T8
-- Serial input interface timng wWC Typ BC Ref .
constant tsetup_COk Ready: TinmeArray :=( 5ns, 4 ns, 3ns); -- T10
constant thold_C k_Ready: TinmeArray := (10 ns, 8 ns, 5 ns); -- T1l1
constant tsetup_C k_SIn: TineArray := ( 5 ns, 4ns, 3ns); -- T12
constant thol d_C k_SI n: TineArray := (10 ns, 8 ns, 5 ns); -- Ti3
-- Qutput interface timng parameters WC Typ BC Ref .
constant tpd_C k_SCut: TineArray := (30 ns, 22 ns, 15 ns); -- T5
constant tpd_CO k_Valid: TinmeArray := (30 ns, 22 ns, 15 ns); -- T5

end Exanpl eTi mi ng;



european space agency 39 ASIC/001 Issue 1

-- Design units :

Exanpl eCor e(Functional Core) (Entity and architecture)

-- File nane exanpl ecore. vhd

-- Purpose This is the functional core of an exanple VHDL nodel called
-- Exanpl e. The core inplenents all the functionality, except
-- the multiplexing of the data bus D which is perforned in the
-- top-1evel architecture.

-- Note Al tinming, checking and conversion of |ogical values are

-- Limtations

-- Errors:

-- Nam ng
-- convention

-- Library

-- Dependenci es :

- - Aut hor

-- Sinul ator

-- Revision |ist
-- Version Author

-- 1.0 PS

library |EEE

performed in the top-level architecture.
X-propagation is inplenented for the SIn and Code inputs, but
not for data witten to the parallel interface.

The functionality does not represent an existing conponent.

The nodel is intended for efficient sinmulation at board | eve
and is not synthesizabl e.

Since no real function is nodell ed, the comrents have
soneti nes been reduced.

BI ST internal function not nodelled, only the resulting del ay
after reset. Manufacturing test not nodell ed.

None known (nodel not verified)

Active low signals are indicated by _N
Al'l external signals have been naned as in the data sheet.

Exanpl e_Li b

| EEE. Std_Logi c_1164,
Exanpl e_Li b. Exanpl eDefi niti on

Pet er Si nander

ESTEC On-board Data Division (WD)
P. O Box 299

2200 AG Noordwi j k

The Net herl ands

Synopsys v. 3.0c, on Sun Sparcstation 10, SunCS 4.1.3

Dat e Changes
1 Sep 94 New version

use | EEE. Std_Logic_1164. al |

library Exanple_Lib;
use Exanpl e_Lib. Exanpl eDefinition. all

entity Exanpl eCore is

port (
-- Systemsignals
Test O: in Std_ULogi c; -- 0to activate BI ST
d k: in Std_ULogi c; -- System cl ock

Reset N: in Std_ULogi c; --

System async reset

-- Mode pins for selecting the operation + static fields

Mode: in Std _ULogic_Vector(0 to 1); -- Sel ects node
LowSpeed: in Std _ULogi c; -- Lower speed when 1
Code: in Std _ULogi c_Vector(0 to 5); -- Code input 6 bits



european space agency

ASIC/001 Issue 1 40
-- Parallel interface
A in St d_Byt e;
CS N in Std_ULogi c;
RW N: in Std_ULogi c;
D in Std _Logic_Vector(0 to 7);
DQut : out I nteger range 0 to 255;
DEnabl e: out Bool ean;
-- Serial input interface
Ready: in Std_ULogi c;
Sl n: in Std_ULogi c;
-- Resulting serial output and valid strobe
SQut : out Std_ULogi c;
Val i d: out Std _ULogic);

end Exanpl eCor e;

archi tecture Functi onal

====—====== ARCHI TECTURE
Core of ExanpleCore is

Addr ess bus

Chip select, act. |ow
Read/wite, read = 1
Data bus in

Dat a bus out put
Dat a bus enabl e

Dat a i nput ready
Serial input data
Serial data output

1 when output valid

signal ValidLen: Integer range 0 to 9600; -- Valid FSM st ates

si gnal EndOF FSM I nteger range 0 to 10000; -- \Were the FSM ends

si gnal Preanbl e: Std _ULogi c_Vector(0 to Preanbl eLen-1); -- Concat preanble

signal Mai nReset: Bool ean : = True; -- Reset or BIST

signal DWite: I nteger range 0 to 255; -- Menory data to wite

signal AWite: I nteger range 0 to 255; -- Address to wite data

si gnal Wbt robe: St d_ULogi c; -- Async. wite strobe
begi n --=========== Architecture Functional Core of Exanpl eCore ===============--

Val i dLen <= Cal cVal i dLengt h( Mbde);
EndO' FSM <= Cal cFSM_engt h( Mode, LowSpeed) - 1;

-- Inplementation of all functionality driven by Ak, i.e.

-- (Here a full description should normally be placed)

-- Note that the Reset signal is synchronized, and is therefore not
-- in the sensitivity list.

-- Inclusion of events on the A address signal in order to synchronize
-- data and address fromthe asynchronous nenory interface.

i ncl uded

Cl kRegi on: process(Ck, A)
vari abl e Reset1_N: Std_ULogic :="1"; -- Synchroni zed reset
vari abl e Reset2_N: Std_ULogic :="1"; -- Synchroni zed reset
vari abl e Bi st Count: Integer range -1 to BistCks :=-1; -- Noinit = -1
vari abl e FSMCount : I nteger range 0 to 10000; -- Wich bit of FSM
vari abl e Li neCount: St d_Byt e; -- Line Counter
vari abl e Dat aCQut: Std_ULogi c; -- Serial data output
vari abl e Del ayedSIn: Std_ULogi c; -- Registered Sin bit
vari abl e MenDat a: I nteger range 0 to 255; -- Data read from Mem
variabl e Mem MenType; -- 256*8 bit menory
vari able A Integer: I nteger range 0 to 255; -- Ain integer format
variable AWitel: I nteger range 0 to 255; -- Delayed wite address
variable DWitel: I nteger range 0 to 255; -- Delayed Memwite data
variable AWite2: I nteger range 0 to 255; -- Delayed wite address
variable DWite2: I nteger range 0 to 255; -- Delayed Memwite data



european space agency 41 ASIC/001 Issue 1

begi n
if Falling_Edge(d k) then -- Falling dk edge
-- Code dealing with the Reset initialization
-- Delay 2 Ak of Reset N due to synchronization
Reset2_N : = Reset1_N
Reset1 N : = Reset N,
if Reset2_N="0" then -- Reset the Exanple

-- Select delay for BIST or for no BIST
if TestO = '1" then

Bi st Count : = NoBi st C ks; -- BI ST di sabl ed
el se
Bi st Count := Bistd ks;
end if;
FSMCount = 0;
Li neCount = "00000000";
Del ayedSI n =0
AWitel = 0;
DWitel = 0;
AWite2 = 0;
DWite2 = 0;
Mem = (others => 0); -- Initialize nenmory
DQut <= Men( A | nteger);
-- Qutput values at reset
SQut <='0";
Valid <='0";

el sif (BistCount = 0) then
-- The serial data output, containing of the Preanble, the line
-- count and the serial input data SIn
i f FSMCount < LineCountEnd then
-- Optimzed if-structure to execute only when necessary

i f FSMCount < Preanbl eLen then -- Sync. Mark +
Dat aCut : = Preanbl e( FSMCount) ; -- Preanbl e bytes
el se -- Line Counter byte
Dat aCut : = Li neCount (FSMCount nod 8);
end if;
el sif FSMCount < ValidLen then -- Qutput data from Sln
Dat aCut : = Del ayedSl n;
el se -- Reed- Sol onmon codes
DataCut := '0";
end if;

-- Ceneration of SQut
-- Ceneration of Valid; '"1" while the input data is being output
-- if the data input is ready (i.e. Ready = '1")
SQut <= Dat aCQut;
i f FSMCount < Fi xPreanbl e' Length then -- Qutput invalid
Valid <="'0";
el se
i f FSMCount = Fi xPreanbl e' Length then
Val i d <= Ready;
el sif FSMCount = ValidLen then
Valid <="'0";
end if;
end if;



ASIC/001 Issue 1 42 european space agency

-- Witing of data into the Mem delayed 2.5 Ok cycles for
-- synchroni zation reasons (first delay on rising Ok edge)
-- Change DQut in case the correspondi ng Mem data was changed

Menm{AWite2) := DWite2;
AWite2 = AWitel;
DWite2 = DWitel;
DQut <= Men(A | nteger);

-- Delay of SIn with 1 Cock cycle (it was registered in order
-- to reduce the setup tine)
Del ayedSln : = SIn;

-- Inplementation of FSM counter (for FSM and Li ne Counter
i f FSMCount < EndCf FSM t hen
-- Increment bit counter

FSMCount : = FSMCount + 1;
el se
-- BEnd of FSMreached: reset FSM counter & increnent Line Count
FSMCount := O;
Li neCount := Li neCount + "00000001";
end if;

-- Model Bist delay. In case Reset has never been asserted,
-- BistCount = -1, and no action will take place
el sif BistCount > 0 then

Bi st Count := BistCount - 1;

-- Rel ease Mai nReset when the BI ST has conpl et ed
-- Prepare Reset1l N & Reset2_N for the next reset
if BistCount = 0 then

Mai nReset <= Fal se;

Resetl N :="'1";
Reset2_N ="'1";
end if;
end if;

-- First latching of parallel interface address & data on Rising C k edge
el sif Rising_Edge(d k) then

AWitel := AWite;

DWitel := DWite;
end if;

-- Qutput parallel data on internal bus whenever the address changes
-- Only convert Ato integer when it changes (used el sewhere in process)
if A Event then
A Integer := To_Integer(A);
DQut <= Men( A | nteger);
end if;
end process C kRegi on;



european space agency 43 ASIC/001 Issue 1

-- Latching of address & data for the parallel interface
-- Ceneration of external data bus enable

-- Data and address to be witten is latched on the rising edge of W5trobe
W5t robe <= CS_N or RWN,

WiteMem process(Wstrobe, MinReset)

begi n
i f Mai nReset then
AWite <= 0;
DWite <= 0O;

el sif W5trobe' Event and Wstrobe = '1' then
AWite <= To_lnteger(A);
DWite <= To_l nteger(To_StdULogi cVector(D));
end if;
end process WiteMem

-- Enabl ed for read cycles when not Reset
DEnable <= (Reset N="1") and (RWN ="1") and (CS N="0");

end Functional Core; --==== End of Exanpl eCore(Functional Core) ================--



ASIC/001 Issue 1 44 european space agency

-- Design units :
-- File nane

-- Purpose

-- Note

-- Limtations

-- Errors:

-- Nami ng
-- convention

-- Library

-- Dependenci es :

- - Aut hor

-- Sinul ator

-- Revision |ist
-- Version Author

Exanpl e( BoardLevel ) (Entity and architecture)

exanpl e. vhd

This is an exanple VHDL nodel called Exanple. For a rea
nmodel the functionality should be described here, together
with a reference to the applicable data sheet.

Sel ection of Wrst Case, Typical or Best Case timng
is performed by changing the SinCondition generic.

X-propagation is inplenented for the Code and SIn inputs, but
not for data witten to the parallel interface.

Timng violations will not |ead to unknown bei ng generat ed.

The nodel is intended for efficient sinulation at board | eve
and is not synthesizabl e.

BI ST internal function not nodelled, only the resulting del ay
after reset. Manufacturing test not nodell ed.

Do not use tinmng nodelling to replace worst case timng
analysis; the tinming nodelling is not always accurate.

Ti m ng and X checks have not been inplenmented for all inputs.

Active low signals are indicated by _N

Al'l external signals have been naned as in the data sheet.
Internal, strength converted signals are named after their
new strength, for exanple _X01. Internal signals w thout
out put delay are indicated by _NoTine.

Exanpl e_Li b

| EEE. Std_Logi c_1164

ESA. Si mul ati on

Exanpl e_Li b. Exanpl eCor e

Exanpl e_Li b. Exanpl eDefi niti on

Exanpl e_Li b. Exanpl eTi nmi ng

Exanpl e_Li b. Ti mi ngChecks (Note: code not incl uded)

Sandi Habi nc, Peter Sinander
ESTEC Onboard Data Division (VD)
P. O Box 299

2200 AG Noordwi j k

The Net herl ands

Synopsys v. 3.0c, on Sun Sparcstation 10, SunCS 4.1.3

Dat e Changes

-- 1.0 PSI 1 Sep 94 New version

library | EEE

use | EEE. Std_Logic_1164. all; -- For signal types
library ESA

use ESA. Simul ation.all; -- For sinulation node

entity Exanple is
generi c(

I nst ancePat h: String

Si nCondi ti on: Si nCondi tionType : = Wrst Case; -- Simulation condition
= "Exanple:"; -- For Assertions
= Fal se); -- Timng disabling

Ti m ngChecksOn: Bool ean



european space agency 45 ASIC/001 Issue 1

port (

-- Systemsignals (4)

Test : in Std _Logic Vector(0 to 1); -- Test inputs

d k: in Std_Logic; -- System cl ock

Reset _N: in St d_Logi c; -- System async reset

-- Mode pins for selecting the operation + static fields (9)

Mode: in Std _Logic_Vector(0 to 1); -- Sel ects node

LowSpeed: in Std_Logic; -- Lower speed when 1

Code: in Std _Logic_Vector(0 to 5); -- Code input 6 bits

-- Parallel interface (18)

A in Std_Logic_Vector(0 to 7); -- Address bus

CS N in Std_Logic; -- Chip select, act. |ow

RW N: in St d_Logi c; -- Read/wite, read =1

D i nout Std _Logic_Vector(0 to 7); -- Data bus

-- Serial input interface (2)

Ready: in St d_Logi c; -- Data input ready

Sl n: in Std_Logic; -- Serial input data

-- Resulting serial output and valid strobe (2)

SQut : out Std_ULogi c; -- Serial data output

Val i d: out Std_ULogi c); -- 1 when output valid
end Exanpl e;

library Exanpl e _Lib;

use Exanple_Lib. Exanpl eDefinition.all; -- For functions
use Exanpl e Lib. Exanpl eTi ming. al | ; -- For timng parameters
use Exanpl e_Lib. Ti m ngChecks. al | ; -- Code not incl uded

architecture BoardLevel of Exanple is

conponent Exanpl eCore

port (
-- Systemsignals
Test O: in Std_ULogi c; -- 0to activate BI ST
d k: in Std_ULogi c; -- System cl ock
Reset N in Std_ULogi c; -- System async reset
-- Mode pins for selecting the operation + static fields
Mode: in Std_ULogi c_Vector(0 to 1); -- Sel ects node
LowSpeed: in Std_ULogi c; -- Lower speed when 1
Code: in Std_ULogi c_Vector(0 to 5); -- Code input 6 bits
-- Parallel interface
A in St d_Byt e; -- Address bus
CS N in Std_ULogi c; -- Chip select, act. |ow
RW N: in Std_ULogi c; -- Read/wite, read = 1
D in Std_Logic_Vector(0 to 7); -- Data bus in
DQut : out I nteger range 0 to 255; -- Data bus out put
DEnabl e: out Bool ean; -- Data bus enabl e
-- Serial input interface
Ready: in Std_ULogi c; -- Data input ready
Sl n: in Std_ULogi c; -- Serial input data
-- Resulting serial output and valid strobe
SQut : out Std_ULogi c; -- Serial data output
Val i d: out Std_ULogi c); -- 1 when output valid

end conponent;



ASIC/001 Issue 1 46 european space agency

-- Local signal declarations, for input strength conversion, output signals
-- without delay and signals for the data bus control

signal TestO_XO1: St d_ULogi c; -- 0 to activate BIST

signal Ok _X01: Std_ULogi c; -- System cl ock

signal Reset N XO1: Std_ULogi c; -- System async reset

si gnal Mode_ XO1: Std _ULogic_Vector(0 to 1); -- Selects npde

signal LowSpeed_XO1: St d_ULogi c; -- Lower speed when 1

si gnal Code_ XO1: Std _ULogic_Vector(0 to 5); -- Code input 6 bits

signal A X01: Std_Byte; -- Address bus

signal CS_N_XO1: St d_ULogi c; -- Chip select, act. |low

signal RWN_X01: St d_ULogi c; -- Read/wite, read = 1

signal D X01: Std _Logic_Vector(0 to 7); -- I nput data

si gnal DQut: I nteger range 0 to 255; -- Data bus out put

si gnal DQut Del ayed: Integer range 0 to 255; -- D del ayed wt address

si gnal DEnabl e: Bool ean; -- Data bus enabl e

si gnal DEnDel ayed: Bool ean; -- Enabl e del ayed wt CS

si gnal Ready_ XO01: Std_ULogi c; -- Data input ready

signal SIn_X01: Std_ULogi c; -- Serial input data

si gnal SCQut_NoTi rne: Std_ULogi c; -- Serial data output

signal Valid_NoTi ne: Std_ULogi c; -- 1 when output valid

-- Used for enabling the input timng checks and for storing timng check status

signal AfterReset: Bool ean; -- True after reset

signal d Kklnfo: Ti me; -- Status for Ak period

signal CS_N nfo: Ti me; -- Status for Ak period
beg| n --============== Architecture BoardLevel of Exan'p| @ =====—=—==—=—==—=—======--

Test 0_X01 <= To_X01(Test(0));

a k_Xo1 <= To_X01(dKk);

Reset N X01 <= To _X01l(Reset N);

Mode X01 <= To_StdULogi cVect or (To_X01( Mode));
LowSpeed X01 <= To_X01(LowSpeed);

Code_X01 <= To_StdULogi cVect or (To_X01( Code));
A X01 <= To_StdULogi cVector (To_X01(A));
CS_N_Xo01 <= To_X01(CS_N);

RW N X01 <= To_X01(RWN);

D X01 <= To_X01(D);

Ready_X01 <= To_X01( Ready);

Sl n_X01 <= To_X01(SIn);

-- Check for unknown values on the static inputs, and that they only change
-- during reset). Check for unknown val ues on Reset N.

- Activating production test and changi ng the code inputs do not change the
-- state of the nodel, and have therefore severity |evel Note resp. Varning.

CheckStaticlnputs: process(Reset N X01, Mde X01, LowSpeed X01, Code_XO01)
begi n
if (Now /= 0 ns) and (Reset N X01 = '1') then
-- No assertions at start-up or when Reset is asserted
assert not |Is_X(Test)
report InstancePath & " 'X on Test inputs” severity Error;
assert (Test(1l) ='0")
report InstancePath & " Prod. test not nodelled" severity Note;
assert not |s_X(Mde_X01)

report InstancePath & " 'X on Mde input"” severity Error;
assert LowSpeed_X01 /= "'X
report InstancePath & " 'X on LowSpeed input” severity Error;

assert not |s_X(Code_X01)
report InstancePath & " 'X on Code inputs” severity Warning;



european space agency a7 ASIC/001 Issue 1

-- Check if the static pins changed after Reset
assert not Test' Event

report InstancePath & " Test changed after reset" severity Error;
assert not Mdde_X01' Event

report InstancePath & " Mode changed after reset" severity Error;
assert not LowSpeed X01' Event

report InstancePath & " LowSpeed changed after reset" severity Error;
assert not Code_XO01' Event

report InstancePath & " Code changed after reset"” severity Warning;

elsif (Now /= 0 ns) and Reset_N Event then -- Check for X on Reset_N
assert Reset_N X01 /="'X
report InstancePath & " 'X on Reset N input" severity Error;

end if;
end process CheckStaticlnputs;

-- Timng checks on inputs (setup, hold, period, pulse wdth).

-- Enabling of the checkers when reset is de-asserted (1 ns delay in order
-- to avoid nessages at start-up
Af t er Reset <= Ti mi ngChecksOn and (Reset _N X01 = '1") after 1 ns;

-- Ok period, high and low tines (TCp, TCLo, TCH)

Per i odCheck( Test Por t => O k_XO01,
Test Port Nane => "d k",
Peri odM n => tperiod Ok (Si mCondi tion),
Pw H Mn => tpw_hi _m n_d k(Si nCondi tion),
Pw Lo_Mn => tpw_|l o_m n_d k(Si nCondi tion),
Info => d ki nf o,
CheckEnabl ed => Ti mi ngChecksOn,
Header Msg => | nst ancePat h,

SeveritylLevel => Error);

-- CS N asserted time (T3), PeriodMn and Pw H M n defined by default val ues

Per i odCheck( Test Por t => CS_N X01,
Test Port Nane => "CS_N',
Pw Lo_Mn => tpw_lo_m n_CS N(Si mCondition),
Info => CS_NI nf o,
CheckEnabl ed => Ti mi ngChecksOn,
Header Msg => | nst ancePat h,

SeveritylLevel => Error);

-- Ready setup & hold wt Ck (T10, T11); does not affect state => Warning

Set upHol dCheck( Test Port => Ready_X01,
Test Port Name => " Ready",
Ref Por t => O k_XO01,
Ref Por t Name = "d k",
Ref Edge = "'0",
TSet up => tsetup_C k_Ready(Si nCondi tion),
THol d => thol d_d k_Ready (SinCondition),
CheckEnabl ed => AfterReset,
Header Msg => | nst ancePat h,

SeveritylLevel => Warning);
-- SIn setup & hold wt Ok (T12, T13); does not affect state => Warning

Set upHol dCheck( Test Port => SIn_X01,
Test Port Nane => "SIn",
Ref Por t => O k_XO01,
Ref Port Nane = "d k",
Ref Edge = "'0",
TSet up => tsetup_C k_SIn(Si nCondition),
THol d => thold Ak _SIn (SinCondition),
CheckEnabl ed => AfterReset,
Header Msg => | nst ancePat h,

SeveritylLevel => Warning);



ASIC/001 Issue 1

european space agency

SQut
Valid

DEnDel ayed

D <= To_

<= SCQut _NoTi e
<= Val i d_NoTi ne

Ceneration of the tristate or drive of the external
DQut del ayed wt the address

DEnabl e del ayed, with different timng for tristating
DQut Del ayed <= transport DQut

after tpd_d k_SQut (Si mCondition);
after tpd _dk _Valid(Si nCondition);

Dat a bus.

after tpd_A D(Si mCondition);

<= transport DEnable after tpd CS N D(Si mCondition)

when DEnabl e el se

DEnabl e after tpd_CS_N D Z(Si nCondition);

St dLogi cVect or ( To_St dULogi cVect or ( DQut Del ayed, 8))
when DEnDel ayed el se

"27777777",

Exanpl eCorel: Exanpl eCore

port nmap (
Test O =>
ak =>
Reset N =>
Mode =>
LowSpeed =>
Code =>
A =>
CS N =>
RW N =>
D =>
DQut =>
DEnable =>
Ready =>
SIn =
SCut =>
Valid =>

end BoardLevel ;

Test 0_XO01,

Cl k_X01,
Reset N XO01,
Mode XO01,
LowSpeed_ XO01,
Code_XO01,

A X01,

CS_N _Xo01,
RW N X01,

D Xo01,

DQut ,

DEnabl e,
Ready XO01,

Sl n_X01,

SQut _NoTi e,
Val i d_NoTi ne) ;

End of Exanpl e(BoardLevel)



european space agency 49 ASIC/001 Issue 1

APPENDIX E: SELECTION OF SIMULATION CONDITION

In order to achieve acommon interface for al VHDL models intended for Board-level smulation,
the package below has been created, ensuring a smilar interface for VHDL models for Board-
level smulation created under ESA contracts. Work is ongoing to find a more widespread method,
and it is therefore recommended to consult ESA regarding the timing interface before starting the
modelling.

-- Design unit : Sinulation (Package decl arati on)
-- File nane . simul ation. vhd
-- Purpose : In this package the enunerated type SinConditionType,

-- to be used to select Wrst, Typical or Best Case
-- val ues for timng parameters in VHDL nodels for
-- board-1evel simulation

-- The sinulation condition will nornally be sel ected
-- by a generic paraneter in the top-level entity

-- Note : A type TinmeArray has been defined, which can be used
- - for defining the tining paraneters.

-- Errors: : None known

-- Library : ESA

-- Dependenci es : None

- - Aut hor : Sandi Habi nc, Peter Sinander
- - ESTEC Onboard Data Division (VD)
-- P. 0. Box 299

- - 2200 AG Noordwi j k
-- The Net herl ands

-- Simul ator . Synopsys v. 3.0c, on Sun Sparcstation 10, SunCS 4.1.3
-- Revision list

-- Version Author Date Changes

-- 1.0 PSI 1 Sep 94 New version

package Sinulation is

-- Definition of the SinConditionType type
type SinmConditionType is (WrstCase, TypCase, Best Case);

-- Definition of Time array type which can be used for the timng
-- paraneters
type TinmeArray is array(Si mConditionType) of Tine;

end Simulation; --======= End of package Simul ation ==--




ASIC/001 Issue 1 50 european space agency

Page intentionally left blank



	Table of Contents
	Requirements for all kinds of models
	Additional requirements
	Appendix A : Abbreviations
	Appendix B : Common errors encounted
	Appendix C : Compatibility between VHDL-87 and VHDL-93
	Appendix D : VHDL code examples
	Appendix E : Selection of simulation condition

