IEEE
LANGUAGE REFERENCE MANUAL Std P1076a-1999 2000/D3

Annex B
Glossary

(informative)

Thisglossary contains brief, informal descriptionsfor anumber of terms and phrases used to define this language.
The complete, formal definition of each term or phrase is provided in the main body of the standard.

For each entry, the relevant clause numbers in the text are given. Some descriptions refer to multiple clausesin
which the single concept is discussed; for these, the clause number containing the definition of the concept isgiven
initalics. Other descriptions contain multiple clause numbers when they refer to multiple concepts; for these,
none of the clause numbers are italicized.

B.1 abstract literal: A literal of the universal_real abstract type or the universal_integer abstract type. (813.2,
§813.4)

B.2 accesstype: A typethat provides accessto an object of agiventype. Accessto such an object isachieved by
an access value returned by an allocator; the access value is said to designate the object. (83, §3.3)

B.3 access mode: The mode in which afile object is opened, which can be either read-only or write-only. The
access mode depends on the value supplied to the Open_Kind parameter. (83.4.1, §14.3).

B.4 access value: A value of an access type. This value is returned by an allocator and designates an object
(which must be avariable) of agiventype. A null access value designates no object. An access value can only
designate an object created by an allocator; it cannot designate an object declared by an object declaration. (83,
83.3)

B.5 active driver: A driver that acquires a new value during a simulation cycle regardless of whether the new
valueis different from the previous value. (812.6.2, §12.6.4)

B.6 actual: Anexpression, aport, asignal, or avariable associated with aformal port, formal parameter, or formal
generic. (§1.1.1.1, §1.1.1.2, §3.2.1.1, §4.3.1.2, §4.3.2.2, §5.2.1, §5.2.1.2)

B.7 aggregate:
a) Thekind of expression, denoting a value of acomposite type. The value is specified by giving the value
of each of the elements of the compositetype. Either apositional association or anamed associ ation may

must! be used to indicate which value is associated with which element.

b) A Kkind of target of avariable assignment statement or signal assignment statement assigning acomposite
value. The target isthen said to be in the form of an aggregate. (87.3.1, 87.3.2. §7.3.4, §7.3.5, §7.5.2)

B.8 alias: An dternate name for a named entity. (84.3.3)

1. IR1000.4.7.

Annex B 237

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
Std P1076a-1999 2000/D3 IEEE STANDARD VHDL

B.9 allocator: An operation used to create anonymous, variable objects accessible by means of access values.
(83.3,87.3.6)

B.10 analysis: The syntactic and semantic analysis of source code in a VHDL design file and the insertion of
intermediate form representations of design unitsinto adesign library. (811.1, 811.2, §11.4)

B.11anonymous: The undefined simple name of anitem, whichiscreated implicitly. The basetype of anumeric
type or an array type is anonymous; similarly, the object denoted by an access value is anonymous. (84.1)

B.12 appropriate: A prefix issaid to be appropriate for atypeif the type of the prefix is the type considered, or
if the type of the prefix is an access type whose designated type is the type considered. (86.1)

B.13 architecture body: A body associated with an entity declaration to describe the internal organization or
operation of a design entity. An architecture body is used to describe the behavior, data flow, or structure of a
design entity. (81, §1.2)

B.14 array object: An object of an array type. (83)

B.15 array type: A type, the value of which consists of elements that are all of the same subtype (and hence, of
thesametype). Each element isuniquely distinguished by anindex (for aone-dimensional array) or by asegquence
of indexes (for amultidimensional array). Eachindex must be avalue of adiscretetype and must liein the correct
index range. (83.2.1)

B.16 ascending range: A rangelL toR. (83.1)

B.17 ASCII: The American Standard Code for Information Interchange. The package Standard contains the def-
inition of the type Character, the first 128 values of which represent the ASCII character set. (83.1.1, §14.2)

B.18 assertion violation: A violation that occurs when the condition of an assertion statement evaluates to fal se.
(88.2)

B.19 associated driver: Thesingledriver for asignal in the (explicit or equivalent) process statement containing
the signal assignment statement. (812.6.1)

B.20 associated in whole: When a single association element of a composite formal supplies the association for
the entireformal. (84.3.2.2)

B.21 associated individually: A property of aformal port, generic, or parameter of acomposite type with respect
to some association list. A composite formal whose association is defined by multiple association elementsin a
single association list is said to be associated individually in that list. The formats of such association elements
must denote non-overlapping subelements or slices of the formal. (84.3.2.2)

B.22 association element: An element that associates an actual or local with alocal or formal. (84.3.2.2)

B.23 association list: A list that establishes correspondences between formal or local port or parameter names
and local or actual names or expressions. (84.3.2.2)

B.24 attribute: A definition of some characteristic of a named entity. Some attributes are predefined for types,
ranges, values, signals, and functions. The remaining attributes are user defined and are always constants. (84.4)

B.25 base gpecifier: A lexical element that indicates whether a bit string literal is to be interpreted as a binary,
octal, or hexadecimal value. (§13.7)

B.26 base type: The type from which a subtype defines a subset of possible values, otherwise known as a con-
straint. This subset is not required to be proper. The base type of atype is the type itself. The base type of a
subtype is found by recursively examining the type mark in the subtype indication defining the subtype. If the

238 Annex B

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change

IEEE
LANGUAGE REFERENCE MANUAL Std P1076a-1999 2000/D3

type mark denotes atype, that type is the base type of the subtype; otherwise, the type mark is a subtype, and this
procedure is repeated on that subtype. (83) See also subtype.

B.27 based literal: Anabstract literal expressed in aform that specifiesthe base explicitly. Thebaseisrestricted
to therange 2to 16. (813.4.2)

B.28 basic operation: An operation that isinherent in one of the following:
a) Anassignment (in an assignment statement or initialization);
b) Analocator;
c) A selected name, an indexed name, or aslice name;
d) A qudification (in aqualified expression), an explicit type conversion, aformal or actual designator in
the form of atype conversion, or an implicit type conversion of avalue of type universal_integer or

universal_real to the corresponding value of another numeric type; or

e) A numeric literal (for auniversal type), the literal null (for an access type), a string literal, a bit string
literal, an aggregate, or a predefined attribute. (83)

B.29 basic signal: A signal that determines the driving values for al other signals. A basic signal is

— Either ascalar signal or aresolved signal;

— Not asubelement of aresolved signal;

— Not animplicit signal of the form SStable(T), SQuiet(T), or STransaction; and

— Not animplicit signal GUARD. (812.6.2)
B.30 belong (to arange): A property of a value with respect to some range. The value V is said to belong to a
range if the relations (lower bound <= V) and (V <= upper bound) are both true, where lower bound and upper

bound are the lower and upper bounds, respectively, of the range. (83.1, 83.2.1)

B.31 belong (to a subtype): A property of avalue with respect to some subtype. A valueis said to belong to a
subtype of agiven typeif it belongs to the type and satisfies the applicable constraint. (83, §3.2.1)

B.32 binding: The process of associating a design entity and, optionally, an architecture with an instance of a
component. A binding can be specified in an explicit or a default binding indication. (81.3, 85.2.1, 85.2.2,
§12.3.2.2,812.4.3)

B.33bit stringliteral: A literal formed by asequence of extended digits enclosed between two quotation () char-
acters and preceded by a base specifier. The type of abit string literal is determined from the context. (87.3.1,
813.7)

B.34 block:

a) Therepresentation of aportion of the hierarchy of adesign. A block is either an externa block or an
internal block. (81, 81.1.1.1, 81.1.1.2, 81.2.1, 81.3,81.3.1, §1.3.2)

b) Theact of suspendi ng the execution of a process for the purposes of guaranteeing exclusive accessto
either afile object or< an object of a protected type. (§3.4.1,3 §12.5)

2. Noted as part of the P1076a cleanup initiated by Peter Ashenden.
3. Noted as part of the P1076a cleanup initiated by Peter Ashenden.

Annex B 239

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
Std P1076a-1999 2000/D3 IEEE STANDARD VHDL

B.35 bound: A labdl that isidentified in the instantiation list of a configuration specification. (85.2)

B.36 box: The symbol <> in anindex subtype definition, which stands for an undefined range. Different objects
of the type need not have the same bounds and direction. (83.2.1)

B.36.5 buffer: One possible port mode. A port of mode buffer contributes its driving value to the network con-
taining the port; the design entity containing the port is also allowed to read its driving value. (§1.1.1.2, §4.3.2)*

B.37 bus: One kind of guarded signal. A bus floats to a user-specified value when all of its drivers are turned
off. (84.3.1.2, 84.3.2)

B.37.5 change: Thesignal S, of type T, issaid to changeval ueif and only if theexpression“S=S Delgyed" eval-

B.38 character literal: A literal of the character type. Character literals are formed by enclosing one of the
graphic characters (including the space and nonbreaking space characters) between two apostrophe () characters.
(813.2, 813.5)

B.39 character type: An enumeration type with at least one of its enumeration literals as a character literal.
(83.1.1,83.1.1.1)

B.39.5 chosen implementation: An implementation of floating-point typesthat conformsto either IEEE Std 754
or to |EEE Std 854 and with a minimum representation size of 64 bits. (§3.1.4)

B.40 closely related types: Two type marks that denote the same type or two numeric types. Two array types
may-also-be are are’ closely related if they have the same dimensionality, if their index types at each position are
closely related, and if the array types have the same element types. Explicit type conversion is only allowed be-
tween closely related types. (87.3.5)

B.41 complete: A loop that has finished executing. Similarly, an iteration scheme of aloop is complete when
the condition of a while iteration scheme is FALSE or al of the values of the discrete range of a for iteration
scheme have been assigned to the iteration parameter. (88.9)

B.42 complete context: A declaration, a specification, or astatement; complete contexts are used in overload res-
olution. (810.5)

B.43 compositetype: A typewhosevalues have elements. There aretwo classes of composite types: array types
and record types. (83, §3.2)

B.44 concurrent statement: A statement that executes asynchronously, with no defined relative order. Concur-
rent statements are used for dataflow and structural descriptions. (89)

B.45 configuration: A construct that defines how component instancesin a given block are bound to design en-
titiesin order to describe how design entities are put together to form a complete design. (81, §1.3. 85.2)

B.46 conform: Two subprogram specifications, are said to conform if, apart from certain alowed minor varia-
tions, both specifications are formed by the same sequence of lexical elements, and corresponding lexical ele-
ments are given the same meaning by the visibility rules. Conformance is defined similarly for deferred constant
declarations. (82.7)

4. Missing definition identified during D1 review. Note that the definitions will be renumbered during final edit-
ing.

5. LCS14. Notethat the definitionswill be renumbered during final editing.

LCS 22. Note that the definitions will be renumbered during final editing.

7. 1R1000.4.7.

o

240 Annex B

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change

IEEE
LANGUAGE REFERENCE MANUAL Std P1076a-1999 2000/D3

B.47 connected: A formal port associated with an actual port or signal. A formal port associated with the re-
served word open is said to be unconnected. (81.1.1.2)

B.48 constant: An object whose value may-nhet cannot' cannot® be changed. Constants may-be are either either® explicitly de-
clared subelements of explicitly declared constants, or interface constants. Constants declared in packages may
can'® also be deferred constants. (§4.3.1.1)

B.49 constraint: A subset of the values of atype. The set of possible values for an object of a given type that
can be subjected to a condition is called a constraint. A value is said to satisfy the constraint if it satisfies the

correepondl ng condition. There are index constraints—range-constraints—and-size-constraints and range con-
straints'®. (§3)

B.50 conversion function: A function used to convert values flowing through associations. For interface objects
of mode in, conversion functions are allowed only on actuals. For interface objects of mode out or buffer, con-
version functions are allowed only on formals. For interface objects of mode inout or linkage, conversion func-
tions are alowed on both formals and actuals. Conversion functions have a single parameter. A conversion
function associated with an actual accepts the type of the actual and returnsthe type of theformal. A conversion
function associated with aformal accepts the type of the formal and returns the type of the actual. (84.3.2.2)

B.51 convertible: A property of an operand with respect to some type. An operand is convertible to some type
if there exists an implicit conversion to that type. (87.3.5)

B.52 current value: The value component of the single transaction of a driver whose time component is not
greater than the current simulation time. (812.6, 812.6.1, §12.6.2. 812.6.3)

B.53 decimal literal: Anabstract literal that isexpressed in decimal notation. The base of theliteral isimplicitly
10. Theliteral may optionally contain an exponent or adecimal point and fractional part. (§13.4.1)

B.54 declaration: A construct that defines a declared entity and associates an identifier (or some other notation)
withit. Thisassociation isin effect within aregion of text that is called the scope of the declaration. Within the
scope of adeclaration, there are places where it is possible to use the identifier to refer to the associated declared
entity; at such places, the identifier is said to be the simple name of the named entity. The simple nameis said to
denote the associated named entity. (84)

B.55 declarative part: A syntactic component of certain declarations or statements (such as entity declarations,

architecture bodies, and bI ock stadements) The declarative part defines the lexical area gusuaJ ly introduced by a
keyword reserved word'? such asis and terminated with another keyweord reserved word* such as begin) within
which declarations may occur. (81.1.2, §1.2.1, 81.3, 82.6, 89.1, 89.2, §9.6.1, §9.6.2)

B.56 declarativeregion: A semantic component of certain declarations or statements.

A—deela;e&we%egmnmay
mc—l-udedn—qemt-pa#ts—saehes Certal n declarative regionsinclude d|§0| nt parts; for example,* the declarative re-

gion of an-entity-declaral d-of & ¢ apackage declara
tion, which, if there iss an associ ated Dacakqe bodv extends to the end of that Dackaqe bodv1 (810.2)

B.57 decorate: To associate a user-defined attribute with a named entity and to define the value of that attribute.
(85.1)

8. IR1000.4.7.
9. IR1000.4.7.
10. IR1000.4.7.
11. Boyer.

12. IR1000.2.10.
13. IR1000.2.10.

14. 1R1000.4.7.
15. LCS3.
Annex B 241

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
Std P1076a-1999 2000/D3 IEEE STANDARD VHDL

B.58 default expression: A default valuethat is used for aformal generic, port, or parameter if the interface ob-
ject is unassociated. A default expression is also used to provide an initia value for signals and their drivers.
(84.3.1.2,84.3.2.2)

B.59 deferred constant: A constant that is declared without an assignment symbol (:=) and expression in apack-
age declaration. A corresponding full declaration of the constant must exist in the package body to definethe val-
ue of the constant. (84.3.1.1)

B.60 delta cycle: A simulation cyclein which the simulation time at the beginning of the cycleisthe same as at
the end of the cycle. That is, ssimulation timeis not advanced in adeltacycle. Only nonpostponed processes can
be executed during adeltacycle. (812.6.4)

B.61 denote: A property of the identifier given in adeclaration. Where the declaration is visible, the identifier
given in the declaration is said to denote the named entity declared in the declaration. (84)

B.62 depend (on alibrary unit): A design unit that explicitly or implicitly mentions other library unitsin a use
clause. These dependencies affect the allowed order of analysis of design units. (811.4)

B.63 depend (on asignal value): A property of animplicit signal with respect to some other signal. The current
value of an implicit signal R is said to depend on the current value of another signal Sif R denotes an implicit
signal S'Stable(T), SQuiet(T), or STransaction, or if R denotes an implicit GUARD signal and Sisany other im-
plicit signal named within the guard expression that defines the current value of R. (8§12.6.3)

B.64 descending range: A range L downto R. (83.1)

B.65 design entity: An entity declaration together with an associated architecture body. Different design entities
may share the same entity declaration, thus describing different components with the same interface or different
views of the same component. (81)

B.66 design file: One or more design units in sequence. (8§11.1)

B.67 design hierarchy: The complete representation of a design that results from the successive decomposition
of adesign entity into subcomponents and binding of those components to other design entities that may be de-
composed in asimilar manner. (81)

B.68 design library: A host-dependent storage facility for intermediate-form representations of analyzed design
units. (811.2)

B.69 design unit: A construct that can be independently analyzed and stored in adesign library. A design unit
may-beis either!® an entity declaration, an architecture body, a configuration declaration, a package declaration,
or apackage body declaration. (811.1)

B.70designate: A property of accessvaluesthat relatesthe val ue to some object when the access valueis nonnull.
A nonnull access value is said to designate an object. (83.3)

B.71 designated subtype: For an access type, the subtype defined by the subtype indication of the access type
definition. (83.3)

B.72 designated type: For an access type, the base type of the subtype defined by the subtype indication of the
access type definition. (83.3)

B.73 designator:

a) Syntax that forms part of an association element. A formal designator specifieswhich formal parameter,
port, or generic (or which subelement or slice of a parameter, port, or generic) isto be associated with an

16. IR1000.4.7.

242 Annex B

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change

IEEE
LANGUAGE REFERENCE MANUAL Std P1076a-1999 2000/D3

actual by the given association element. An actual designator specifies which actual expression, signal,
or variableisto be associated with aformal (or subelement or subelements of aformal). An actual des-
ignator may also specify that the formal in the given association element isto be left unassociated (with
an actual designator of open). (84.3.2.2)

b) Anidentifier, character literal, or operator symbol that defines an alias for some other name. (84.3.3)

¢) A simplenamethat denotes a predefined or user-defined attribute in an attribute name, or a user-defined
attribute in an attribute specification. (85.1, 86.6)

d) Ansimplename, character literal, or operator symbol, and possibly asignature, that denotes anamed en-
tity in the entity name list of an attribute specification. (85.1)

€) Anidentifier or operator symbol that defines the name of a subprogram. (82.1)
B.74 directly visible: A visibledeclaration that isnot visible by selection. A declarationisdirectly visiblewithin
itsimmediate scope, excluding any places where the declaration is hidden. A declaration occurring immediately
within the visible part of a package can be made directly visible by means of a use clause. (810.3, 810.4). See
alsovisible.
B.75 discretearray: A one-dimensiona array whose elements are of a discrete type. (§7.2.3)

B.76 discreterange: A range whose bounds are of adiscretetype. (83.2.1, 83.2.1.1)

B.77 discretetype: An enumeration type or an integer type. Each value of a discrete type has a position number
that isan integer value. Indexing and iteration rules use values of discrete types. (83.1)

B.78 driver: A container for a projected output waveform of asignal. The value of the signal is a function of
the current values of its drivers. Each process that assigns to a given signal implicitly contains a driver for that
signal. A signal assignment statement affects only the associated driver(s). (812.4.4, 812.6.1, §12.6.2, 812.6.3)

B.79 driving value: The value asignal provides as a source of other signals. (812.6.2)
B.80 effective value: The value obtained by evaluating a reference to the signal within an expression. (812.6.2)

B.81 elaboration: The process by which a declaration achievesits effect. Prior to the completion of its elabora-
tion (including before the elaboration), a declaration is not yet elaborated. (812)

B.82 element: A constituent of a compositetype. (83) See also subelement.

B.83 entity declaration: A definition of theinterface between a given design entity and the environment in which
itisused. It may also specify declarations and statements that are part of the design entity. A given entity decla-
ration may be shared by many design entities, each of which has adifferent architecture. Thus, an entity declara-
tion can potentially represent a class of design entities, each with the same interface. (81, §1.1)

B.84 enumeration literal: A literal of an enumeration type. An enumeration literal may—bei_sl7 either an iden-
tifier or acharacter literal. (83.1.1, 87.3.1)

B.85 enumeration type: A type whose values are defined by listing (enumerating) them. The values of the type
are represented by enumeration literals. (83.1, 83.1.1)

B.86 error: A condition that makes the source description illegal. If an error is detected at the time of analysis
of adesign unit, it prevents the creation of alibrary unit for the given design unit. A run-time error causes simu-
lation to terminate. (811.4)

17. IR1000.4.7.

Annex B 243

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
Std P1076a-1999 2000/D3 IEEE STANDARD VHDL

B.87 erroneous:. An error condition that cannot always be detected. (82.1.1.1, 8§2.2)

B.88 event: A changein the current value of asignal, which occurs when the signal is updated with its effective
vaue. (812.6.2)

B.89 execute:

a) Whenfirst the design hierarchy of amodel is elaborated, then its nets are initialized, and finally simula-
tion proceeds with repetitive execution of the simulation cycle, during which processes are executed and
nets are updated.

b) When a process performs the actions specified by the algorithm described in its statement part. (812,
§12.6)

B.90 expanded name: A selected name (in the syntactic sense) that denotes one or al of the primary unitsin a
library or any named entity within aprimary unit. (86.3, 88.1) See also selected name.

B.91 explicit ancestor: The parent of the implicit signal that is defined by the predefined attributes ' DELAY ED,
'QUIET, 'STABLE, or TRANSACTION. Itisdetermined using the prefix of the attribute. If the prefix denotes
an explicit signal or a slice or subelement (or member thereof), then that is the explicit ancestor of the implicit
signal. If theprefix isone of theimplicit signals defined by the predefined attributes'DELAYED, 'QUIET, 'STA-
BLE, or TRANSACTION, thisruleis applied recursively. If the prefix isan implicit signal GUARD, the signal
has no explicit ancestor. (82.2)

B.92 explicit signal: A signal, other than those'® defined by the predefined attributes 'DELAYED, 'QUIET,

'STABLE, or TRANSACTION, any implicit signal GUARD, or their slices, subelements, or slices of their sub-
elements. A dlice, subelement, or aslice of a subelement of an explicit signal is also an explicit signal®®. (§2.2)

B.93 explicitly declared constant: A constant of a specified type that is declared by a constant declaration.
(84.3.1.1)

B.94 explicitly declared object: An object of aspecified typethat isdeclared by an object declaration. An object
declaration is called a single-object declaration if its identifier list has a single identifier; it is called a multiple-
object declaration if the identifier list has two or more identifiers. (84.3, 84.3.1) See also implicitly declared
object.

B.95 expression: A formulathat defines the computation of avalue. (87.1)

B.96 extend: A property of source text forming a declarative region with digoint parts. In a declarative region
with digoint parts, if aportion of text is said to extend from some specific point of a declarative region to the end
of the region, then this portion is the corresponding subset of the declarative region (and does not include inter-
mediate declarative items between an interface declaration and a corresponding body declaration). (§10.1)

B.97 extended digit: A lexical element that is either adigit or aletter. (§13.4.2)

B.98 external block: A top-level design entity that residesin alibrary and may be used as a component in other
designs. (81)

B.99filetype: A typethat provides access to objects containing a sequence of values of agiventype. Filetypes
are typically used to access files in the host system environment. The value of afile object is the sequence of
values contained in the host system file. (83, §3.4)

B.100 floating point types. A discrete scalar type whose values approximate real numbers. The representation
of afloating point type includes a minimum of six decimal digits of precision. (83.1, §3.1.4)

18. Boyer.
19. Boyer.

244 Annex B

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change

IEEE
LANGUAGE REFERENCE MANUAL Std P1076a-1999 2000/D3

B.101 foreign subprogram: A subprogram that is decorated with the attribute 'FOREIGN, defined in package
STANDARD. The STRING value of the attribute may specify implementati on-dependent information about the
foreign subprogram. Foreign subprograms may have non-VHDL implementations. An implementation may
place restrictions on the alowable modes, classes, and types of the formal parameters to a foreign subprogram,
such as constraints on the number and allowable order of the parameters. (82.2)

B.102 formal: A formal port or formal generic of a design entity, a block statement, or aformal parameter of a
subprogram. (§2.1.1, 84.3.2.2, 85.2.1.2, §9.1)

B.103 full declaration: A constant declaration occurring in a package body with the same identifier asthat of a
deferred constant declaration in the corresponding package declaration. A full type declaration is atype declara
tion corresponding to an incomplete type declaration. (82.6)

B.104 fully bound: A binding indication for the component instanceimplies an entity interface declaration®® and
an architecture. (85.2.1.1)

B.105 generate parameter: A constant object whose type is the base type of the discrete range of a generate pa-
rameter specification. A generate parameter is declared by a generate statement. (89.7)

B.106 generic: Aninterface constant declared in the block header of ablock statement, acomponent declaration,
or an entity declaration. Generics provide achannel for static information to be communicated to ablock from its
environment. Unlike constants, however, the value of a generic can be supplied externally, either in acomponent
instantiation statement or in a configuration specification. (81.1.1.1)

B.107 generic interfacelist: A list that defineslocal or formal generic constants. (81.1.1.1, 84.3.2.1)

B.108 globally static expression: An expression that can be evaluated as soon as the design hierarchy in which
it appears is elaborated. A locally static expression is also globally static unless the expression appears in a dy-
namically elaborated context. (87.4)

B.109 globally static primary: A primary whose value can be determined during the elaboration of its complete
context and that does not thereafter change. Globally static primaries can only appear within statically elaborated
contexts. (87.4.2)

B.110 group: A named collection of named entities. Groups relate different named entities for the purposes not
specified by the language. In particular, groups may be decorated with attributes. (84.6, §4.7)

B.111 guard: Seeguard expression.

B.112 guard expression: A Boolean-valued expression associated with a block statement that controls assign-
ments to guarded signals within the block. A guard expression defines an implicit signal GUARD that may be
used to control the operation of certain statements within the block. (84.3.1.2, 89.1, §9.5)

B.113 guarded assignment: A concurrent signal assignment statement that includes the option guar ded, which
specifiesthat the signal assignment statement is executed when asignal GUARD changes from FAL SE to TRUE,
or when that signal has been TRUE and an event occurs on one of the signals referenced in the corresponding
GUARD expression. The signal GUARD raay must?! be one of the implicitly declared GUARD signal's associ-
ated with block statements that have guard expressions, or it say must 2 be an explicitly declared signal of type
Boolean that is visible at the point of the concurrent signal assignment statement. (89.5)

B.114 guarded signal: A signal declared as aregister or abus. Such signals have specia semantics when their
drivers are updated from within guarded signal assignment statements. (84.3.1.2)

20. Terminological correction.

21. IR1000.4.7.
22. IR1000.4.7.
Annex B 245

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
Std P1076a-1999 2000/D3 IEEE STANDARD VHDL

B.115 guarded target: A signal assignment target consisting only of guarded signals. An unguarded targetisa
target consisting only of unguarded signals. (89.5)

B.116 hidden: A declaration that is not directly visible. A declaration may—bei_523 hidden in its scope by a ho-
mograph of the declaration. (8§10.3)

B.117 homograph: A reflexive property of two declarations. Each of two declarationsis said to be ahomograph
of the other if both declarations have the same identifier and overloading is alowed for at most one of the two. 1f
overloading is allowed for both declarations, then each of the two is a homograph of the other if they have the
sameidentifier, operator symbol, or character literal, aswell asthe same parameter and result type profile. (81.3.1,
§10.3)

B.118identify: A property of a name appearing in an element association of an assignment target in the form of
an aggregate. Thenameis said to identify asignal or variable and any subelements of that signal or variable. (88.4,
8.5)

B.119 immediate scope: A property of adeclaration with respect to the declarative region within which the dec-
laration immediately occurs. The immediate scope of the declaration extends from the beginning of the declara-
tion to the end of the declarative region. (810.2)

B.120 immediately within: A property of a declaration with respect to some declarative region. A declaration
issaid to occur immediately within adeclarative region if thisregion isthe innermost region that encloses the dec-
laration, not counting the declarative region (if any) associated with the declaration itself. (810.1)

B.121 implicit signal: Any signal SStable(T), SQuiet(T), S Delayed, or STransaction, or any implicit GUARD
signal. A dlice or subelement (or dlice thereof) of an implicit signal is also an implicit signal. (812.6.2, §12.6.3,
§12.6.4)

B.122 implicitly declared object: An object whose declaration is not explicit in the source description, but isa
consequence of other constructs; for example, signal GUARD. (84.3, §89.1, §14.1) See also declared object.

B.123imply: A property of abinding indication in a configuration specification with respect to the design entity
indicated by the binding specification. The binding indication is said to imply the design entity; the design entity
maybe is?* indicated directly, indirectly, or by default. (85.2.1.1)

B.124 impure function: A function that may return a different value each time it is called, even when different
calls have the same actual parameter values. A pure function returns the same value each time it is called using
the same values as actual parameters. An impure function can update objects outside of its scope and can access
abroader class of values than a pure function. (82)

B.124.5in: One possible mode of a port or subprogram parameter; also, the only allowed mode of a generic con-
stant. A port of modein may be read within the design entity containing the port but does not contribute adriving

value to the network containing the port. A subprogram parameter of mode in may be read but not modified by
the containing subprogram. (§1.1.1.1, §1.1.1.2, 2.1.1, §4.3.2)®

B.125 incomplete type declaration: A type declaration that is used to define mutually dependent and recursive
accesstypes. (83.3.1)

B.125.5 incremental binding: A binding indication in a configuration declaration that either reassociates a pre-

viously associated |ocal generic or that associates a previously unassociated |ocal port is said to incrementally re-
bi lies. (85.2.1

ind the component instance or instances to which the binding indication

23. 1R1000.4.7.
24. 1R1000.4.7.
25. Missing definition identified during D1 review. Note that the definitions will be renumbered during final edit-
ing.
26. LCSS8.
246 Annex B

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change

IEEE
LANGUAGE REFERENCE MANUAL Std P1076a-1999 2000/D3

B.126 index constraint: A constraint that determines the index range for every index of an array type, and there-
by the bounds of the array. Anindex constraint is compatible with an array typeif and only if the constraint de-
fined by each discreterangein theindex constraint is compatible with the corresponding index subtypein the array
type. An array value satisfies an index constraint if the array value and the index constraint have the same index
range at each index position. (83.1, §3.2.1.1)

B.127 index range: A multidimensional array has a distinct element for each possible sequence of index values
that can be formed by selecting one value for each index (in the given order). The possible values for a given
index are all the values that belong to the corresponding range. This range of values is called the index range.
(83.2.1)

B.128 index subtype: For agiven index position of an array, the index subtype is denoted by the type mark of
the corresponding index subtype definition. (83.2.1)

B.129inertial delay: A delay model used for switching circuits; a pul sewhose duration is shorter than the switch-
ing time of the circuit will not be transmitted. Inertial delay isthe default delay mode for signal assignment state-
ments. (88.4) Seealsotransport delay.

B.130 initial value expression: An expression that specifies the initia value to be assigned to a variable.
(84.3.1.3)

B.130.5 inout: One possible mode of aport or subprogram parameter. A port of mode inout may be read within
the design entity containing the port and also contributes a driving value to the network containing the port. A
subprogram parameter of mode inout may be both read and modified by the containing subprogram. (81.1.1.2,
2.1.1,84.3.2)%'

B.131 inputs. The signalsidentified by the longest static prefix of each signal nhame appearing as a primary in
each expression (other than time expressions) within a concurrent signal assignment statement. (89.5)

B.132 instance: A subcomponent of a design entity whose prototype is a component declaration, design entity,
or configuration declaration. Each instance of a component may have different actuals associated with its local
ports and generics. A component instantiation statement whose instantiated unit denotes a component creates an
instance of the corresponding component. A component instantiation statement whose instantiated unit denotes
either adesign entity or a configuration declaration creates an instance of the denoted design entity. (89.6, §9.6.1,
§9.6.2)

B.133integer literal: Anabstract literal of the type universal_integer that does not contain abase point. (813.4)

B.134 integer type: A discrete scalar type whose values represent integer numbers within a specified range.
(83.1,83.1.2)

B.135interfacelist: A list that declarestheinterface objectsrequired by asubprogram, component, design entity,
or block statement. (84.3.2.1)

B.136 internal block: A nested block in a design unit, as defined by ablock statement. (81)
B.137 1SO: The International Organization for Standardization.

B.138 1S0O 8859-1: ThelSO Latin-1 character set. Package Standard contains the definition of type Character,
which represents the ISO Latin-1 character set. (83.1.1, §14.2)

B.139 kernel process. A conceptual representation of the agent that coordinates the activity of user-defined pro-
cesses during asimulation. The kernel process causes the execution of 1/0O operations, the propagation of signal

27. Missing definition identified during D1 review. Note that the definitions will be renumbered during final edit-
ing.

Annex B 247

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
Std P1076a-1999 2000/D3 IEEE STANDARD VHDL

values, and the updating of values of implicit signals [such as S'Stable(T)]; in addition, it detects events that occur
and causes the appropriate processes to execute in response to those events. (812.6)

B.140 left of: When both avalue V1 and avaue V2 belong to arange and either the range is an ascending range
and V2 isthe successor of V1, or the range is a descending range and V2 is the predecessor of V1. (8§3.1)

B.141 left-to-right order: When each valuein alist of valuesisto the left of the next value in the list within that
range, except for the last valuein thelist. (83.1)

B.142 library: Seedesign library.
B.143library unit: The representation in adesign library of an analyzed design unit. (8§11.1)

B.143.5linkage: One possible port mode. A design entity whose entity interface contains a port of modelinkage
implies that the behavior of the design entity is not expressed in terms of VHDL semantics. (81.1.1.2, 84.3.2)

B.144 literal: A valuethat isdirectly specified in the description of adesign. A literal can be abit string literal,
enumeration literal, numeric literal, string literal, or the literal null. (§7.3.1)

B.145 local generic: An interface object declared in a component declaration that servesto connect aformal ge-
neric in the interface list of an entity and an actual generic or value in the design unit instantiating that entity.
(84.3,84.3.2.2, 84.5)

B.146local port: A signal declaredintheinterfacelist of acomponent declaration that servesto connect aformal
port in the interface list of an entity and an actual port or signal in the design unit instantiating that entity. (84.3,
§4.3.2.2,845

B.147 locally static expression: An expression that can be evaluated during the analysis of the design unit in
which it appears. (§87.4, §7.4.1)

B.148locally staticname: A nameinwhich every expressionislocally static (if every discrete range that appears
as part of the name denotes alocally static range or subtype and if no prefix within the nameis either an object or
value of an access type or afunction call). (86.1)

B.149 locally static primary: One of a certain group of primaries that includes literals, certain constants, and
certain attributes. (87.4)

B.150 locally static subtype: A subtype whose bounds and direction can be determined during the analysis of
the design unit in which it appears. (§7.4.1)

B.151 longest static prefix: The name of asigna or a variable name, if the name is a static signal or variable
name. Otherwise, thelongest static prefix isthe longest prefix of the namethat isa static signal or variable name.
(86.1) Seealso static signal name.

B.152 loop parameter: A constant, implicitly declared by the for clause of aloop statement, used to count the
number of iterations of aloop. (88.9)

B.153 lower bound: For arangel to Ror L downto R, the smaller of L and R. (83.1)
B.154 match: A property of a signature with respect to the parameter and subtype profile of a subprogram or

enumeration literal. The signature is said to match the parameter and result type profile if certain conditions are
true. (82.3.2)

28. Missing definition identified during D1 review. Note that the definitions will be renumbered during final edit-
ing.

248 Annex B

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change

IEEE
LANGUAGE REFERENCE MANUAL Std P1076a-1999 2000/D3

B.155 matching elements: Corresponding elements of two composite type valuesthat are used for certain logical
and relational operations. (§7.2.3 2%)

B.156 member: A slice of an object, a subelement, or an object; or aslice of a subelement of an object. (83)

B.156.5 method: An abstract operation that operates atomically and exclusively on asingle object of aprotected
type. (83.5.1)

B.157 mode: The direction of information flow through the port or parameter. Modesarein, out, inout, buffer,
or linkage. (§1.1.1.2.30§4.3.2)

B.158 model: Theresult of the elaboration of adesign hierarchy. The model can be executed in order to simulate
the design it represents. (812, §12.6)

B.159 name: A property of an identifier with respect to some named entity. Each form of declaration associates
an identifier with anamed entity. In certain places within the scope of adeclaration, itisvalid to usetheidentifier
torefer to the associated named entity; these places are defined by the visibility rules. At such places, theidentifier
is said to be the name of the named entity. (84, §6.1)

B.160 named association: An association element in which the formal designator appears explicitly. (84.3.2.2,
§7.3.2)

B.161 named entity: An item associated with an identifier, character literal, or operator symbol as the result of
an explicit or implicit declaration. (84) See also name.

B.162 net: A collection of drivers, signals (including ports and implicit signals), conversion functions, and reso-
lution functions that connect different processes. Initiaization of a net occurs after elaboration, and a net is up-
dated during each simulation cycle. (812, §12.1, §12.6.2)

B.163 nonobject alias: An alias whose designator denotes some named entity other than an object. (84.3.3,
84.3.3.2) Seealso object alias.

B.164 nonpostponed process. An explicit or implicit process whose source statment does not contain the re-
served word postponed. When a nonpostponed process is resumed, it executes in the current simulation cycle.
Thus, nonpostponed processes have access to the current values of signals, whether or not those values are stable
at the current model time. (8 9.2)

B.165null array: Any of thediscreterangesintheindex constraint of an array that defineanull range. (83.2.1.1)

B.166 null range: A range that specifies an empty subset of values. A rangelL to Risanull rangeif L >R, and
range L downto Risanull rangeif L <R. (83.1)

B.167 null dlice: A slice whose discrete range isanull range. (86.5)

B.168 null waveform element: A waveform element that is used to turn off adriver of aguarded signal. (88.4.1)
B.169 null transaction: A transaction produced by evaluating a null waveform element. (88.4.1)

B.170 numeric literal: An abstract literal, or aliteral of aphysical type. (87.3.1)

B.171 numerictype: Aninteger type, afloating point type, or aphysical type. (83.1)

B.172 object: A named entity that has avalue of agiven type. An object can be a constant, signa, variable, or
file. (84.3.3)

29. Correction.
30. Missing reference identified during D1 review.

Annex B 249

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
Std P1076a-1999 2000/D3 IEEE STANDARD VHDL

B.173 object alias: An aliaswhose aias designator denotes an object (that is, aconstant, signal, variable, or file).
(84.3.3, 84.3.3.1) Seealso nonobject alias.

B.173.5 out: One possible mode of a port or subprogram parameter. A port of mode out contributes a driving

value to the network containing the port but cannot be read by the design entity containing the port. A wbprogram

parameter of mode out can be modified but not read by the containing subprogram. (81.1.1.2, 2.1.1, 84.3.2)

B.174 overloaded: ldentifiers or enumeration literalsthat denote two different named entities. Enumeration lit-
erals, subprograms, and predefined operators may be overloaded. At any place where an overloaded enumeration
literal occursin the text of a program, the type of the enumeration literal must be determinable from the context.
(82.1, 82.3,82.3.1,823.2,83.11)

B.175 parameter: A constant, signal, variable, or file declared in theinterfacelist of a subprogram specification.
The characteristics of the class of objects to which a given parameter belongs are also characteristics of the pa-
rameter. In addition, aparameter has an associated mode that specifiesthe direction of data flow allowed through
the parameter. (82.1.1,82.1.1.1, 82.1.1.2, §2.1.1.3, §2.3, §2.6)

B.176 parameter interfacelist: Aninterface list that declares the parameters for a subprogram. It may contain
interface constant declarations, interface signal declarations, interface variable declarations, interface file decla-
rations, or any combination thereof. (84.3.2.1)

B.177 parameter type profile: Two formal parameter liststhat have the same number of parameters, and at each
parameter position the corresponding parameters have the same base type. (82.3)

B.178 parameter and result type profile: Two subprograms that have the same parameter type profile, and ei-
ther both are functions with the same result base type, or neither of the two isafunction. (§2.3)

B.179 parent: A process or a subprogram that contains a procedure call statement for a given procedure or for a
parent of the given procedure. (82.2)

B.180 passive process. A process statement where neither the processitself, nor any procedure of which the pro-
cessisaparent, contains asignal assignment statement. (89.2)

B.181 physical literal: A numeric literal of aphysical type. (83.1.3)

B.182 physical type: A numeric scalar typethat is used to represent measurements of some quantity. Each value
of aphysical type has a position number that is an integer value. Any value of aphysical typeisan integral mul-
tiple of the primary unit of measurement for that type. (83.1, §3.1.3)

B.183 port: A channel for dynamic communication between a block and its environment. A signal declared in
the interfacelist of an entity declaration, in the header of ablock statement, or in the interface list of acomponent
declaration. In addition to the characteristics of signals, ports also have an associated mode; the mode constrains
the directions of data flow allowed through the port. (81.1.1.2, 84.3.1.2)

B.184 port interfacelist: Aninterface list that declares the inputs and outputs of a block, component, or design
entity. It consists entirely of interface signal declarations. (81.1.1, 81.1.1.2, 84.3.2.1, §4.3.2.2, §9.1)

B.185 positional association: An association element that does not contain an explicit appearance of the formal
designator. An actual designator at a given position in an association list corresponds to the interface element at
the same position in the interface list. (84.3.2.2, §7.3.2)

B.186 postponed process. An explicit or implicit process whose source statement contains the reserved word
postponed. When a postponed processis resumed, it does not execute until the final simulation cycle at the cur-
rent modeled time. Thus, a postponed process accesses the values of signals that are the “stable” values at the
current simulated time. (89.2)

31. Missing defintionidentified during D1 review. Notethat the defintionswill be renumbered during final editing.

250 Annex B

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change

IEEE
LANGUAGE REFERENCE MANUAL Std P1076a-1999 2000/D3

B.187 predefined operators: Implicitly defined operatorsthat operate on the predefined types. Every predefined
operator isapurefunction. No predefined operators have named formal parameters; therefore, named association
may-net cannot® be used when inveking in afunction call whose function name denotes a predefined operation.
(87.2, 814.2)

B.188 primary: One of the elements making up an expression. Each primary has avalue and atype. (87.1)

B.189 pr oj ected output waveform: A sequence of one or more transactions representing the current and proj ect-
ed future values of the driver. (812.6.1)

B.189.5 protected type: A typewhose objects are protected from simultaneous access by more than one process.
(83.5)

B.190 pulserejection limit: The threshold timelimit for which asignal value whose duration is greater than the
limit will be propagated. A pulse rejection limit is specified by the reserved word reject in an inertially delayed
signal assignment statement. (88.4)

B.191 purefunction: A function that returns the same value each timeit is called with the same values as actual
parameters. Animpure function may return adifferent value each timeit is called, even when different calls have
the same actual parameter values. (82.1)

B.192 quiet: Inagiven smulation cycle, asignal that is not active. (§12.6.2)

B.193range: A specified subset of values of ascalar type. (83.1) Seealso ascending range, belong (to arange),
descending range, lower bound, and upper bound.

B.194 rangeconstraint: A construct that specifiestherange of valuesin atype. A range constraint iscompatible
with a subtype if each bound of the range belongs to the subtype or if the range constraint defines a null range.
The direction of arange constraint isthe same asthe direction of itsrange. (83.1, 3.1.2, 83.1.3, §3.1.4)

B.195read: Thevalue of an object is said to be read when its valueis referenced or when certain of its attributes
arereferenced. (84.3.2)

B.196 real literal: An abstract litera of the type universal_real that contains a base point. (813.4)
B.197 record type: A composite type whose values consist of named elements. (83.2.2, §7.3.2.1)
B.198 reference: Accessto a named entity. Every appearance of a designator (a name, character literal, or op-
erator symbol) is areference to the named entity denoted by the designator, unless the designator appearsin ali-

brary clause or use clause. (810.4, §11.2)

B.199 register: A kind of guarded signal that retainsits last driven value when all of its drivers are turned off.
(84.3.1.2)

B.200 regular structure: Instances of one or more components arranged and interconnected (via signals) in a
repetitiveway. Eachinstance may have characteristicsthat depend upon its position within the group of instances.
Regular structures may be represented through the use of the generate statement. (89.7)

B.201 resolution: The process of determining the resolved value of aresolved signal based on the values of mul-
tiple sources for that signal. (82.4, 84.3.1.2)

B.202 resolution function: A user-defined function that computes the resolved value of aresolved signal. (82.4,
§4.3.1.2)

32. IR1000.4.7.
33. Clarification.

Annex B 251

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
Std P1076a-1999 2000/D3 IEEE STANDARD VHDL

B.203 resolution limit: The primary unit of type TIME (by default, 1 femtosecond). Any TIME value whose
absolute value is smaller than this limit is truncated to zero (0) time units. (83.1.3.1)

B.204 resolved signal: A signa that has an associated resolution function. (84.3.1.2)

B.205 resolved value: The output of the resolution function associated with the resolved signal, which is deter-
mined as afunction of the collection of inputs from the multiple sources of the signal. (§2.4, 84.3.1.2)

B.206 resource library: A library containing library units that are referenced within the design unit being ana-
lyzed. (811.2)

B.207 result subtype: The subtype of the returned value of afunction. (82.1)

B.208 resume: The action of await statement upon an enclosing process when the conditions on which the wait
statement iswaiting are satisfied. If the enclosing processisanonpostponed process, the processwill subsequent-
ly execute during the current simulation cycle. Otherwise, the processis a postponed process, which will execute
during the final simulation cycle at the current smulated time. (812.6.3)

B.209right of: When avalueV1 and avalueV 2 belong to arange and either the range is an ascending range and
V2 isthe predecessor of V1, or the range is a descending range and V2 is the successor of V1. (814.1)

B.210 satisfy: A property of avaue with respect to some constraint. The value is said to satisfy a constraint if
the valueisin the subset of values determined by the constraint. (83, 83.2.1.1)

B.211 scalar type: A type whose values have no elements. Scalar types consist of enumeration types, integer
types, physical types, and floating point types. Enumeration types and integer types are called discrete types. In-
teger types, floating point types, and physical types are called numeric types. All scalar types are ordered; that is,
all relational operators are predefined for their values. (83, §3.1)

B.212 scope: A portion of the text in which adeclaration may bevisible. Thisportionisdefined by visibility and
overloading rules. (810.2)

B.213 selected name: Syntactically, aname having aprefix and suffix separated by adot. Certain selected names
are used to denote record elements or objects denoted by an access value. The remaining selected names are re-
ferred to as expanded names. (86.3, 88.1) Also see expanded name.

B.214 sensitivity set: The set of signals to which a wait statement is sensitive. The sensitivity set is given ex-
plicitly in an on clause, or isimplied by an until clause. (88.1)

B.215 sequential statements: Statementsthat executein sequencein the order in which they appear. Sequential
statements are used for algorithmic descriptions. (88)

B.215.5 shared variable: A variable accessible by more than one process. Such variables must be of a protected
type. (84.3.1.3)

B.216 short-circuit operation: An operation for which theright operand is evaluated only if the left operand has
acertain value. The short-circuit operations are the predefined logical operationsand, or, nand, and nor for op-
erands of types BIT and BOOLEAN. (§7.2)

B.217 signal: An object with a past history of values. A signal may have multiple drivers, each with a current
value and projected future values. The term signal refers to objects declared by signal declarations or port decla-
rations. (84.3.1.2)

B.218 signal transform: A sequential statement within a statement transform that determines which one of the
aternative waveforms, if any, isto be assigned to an output signal. A signal transform can be a sequential signal
assignment statement, an if statement, a case statement, or anull statement. (89.5)

252 Annex B

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change

IEEE
LANGUAGE REFERENCE MANUAL Std P1076a-1999 2000/D3

B.219 simple name: Theidentifier associated with a named entity, either in its own declaration or in an alias dec-
laration. (§6:2 6.2%%)

B.220 simulation cycle: One iteration in the repetitive execution of the processes defined by process statements
inamodel. Thefirst simulation cycle occurs after initialization. A simulation cycle can beadeltacycleor atime-
advance cycle. (§12.6.4)

B.221 single-object declaration: An object declaration whose identifier list contains a single identifier; it is
called amultiple-object declaration if the identifier list contains two or more identifiers. (84.3.1)

B.222 dlice: A one-dimensional array of a sequence of consecutive elements of another one-dimensional array.
(86.5)

B.223 source: A contributor to the value of asignal. A source can be a driver or port of a block with which a
signal is associated or a composite collection of sources. (84.3.1.2)

B.224 specification: A class of construct that associates additional information with a named entity. There are
three kinds of specifications:. attribute specifications, configuration specifications, and disconnection specifica-
tions. (85)

B.225 statement transform: Thefirst sequential statement in the process equivalent to the concurrent signal as-
signment statement. The statement transform defines the actions of the concurrent signal assignment statement
when it executes. The statement transform is followed by a wait statement, which is the final statement in the
equivalent process. (89.5)

B.226 static: Seelocally static and globally static.

B.227 static name: A name in which every expression that appears as part of the name (for example, as an index
expression) isastatic expression (if every discrete range that appears as part of the name denotes a static range or
subtype and if no prefix within the name is either an object or value of an accesstype or afunction call). (86.1)

B.228 staticrange: A range whose bounds are static expressions. (87.4)
B.229 static signal name: A static name that denotesasignal. (86.1)
B.230 static variable name: A static name that denotes avariable. (86.1)

B.231 string literal: A sequence of graphic characters, or possibly none, enclosed between two quotation marks
("). Thetype of astring literal is determined from the context. (8§7.3.1, §13.6)

B.232 subaggregate: An aggregate appearing as the expression in an element association within another, multi-
dimensional array aggregate. The subaggregate is an (n—1)-dimensional array aggregate, where n is the dimen-
sionality of the outer aggregate. Aggregates of multidimensional arrays are expressed in row-major (rightmost
index varies fastest) order. (87.3.2.2)

B.233 subelement: An element of another element. Where other subelements are excluded, the term element is
used. (83)

B.234 subpr ogram specification: Specifiesthe designator of the subprogram, any formal parameters of the sub-
program, and the result type for a function subprogram. (82.1)

B.235 subtype: A type together with a constraint. A value belongs to a subtype of a given type if it belongs to
the type and satisfies the constraint; the given type is called the base type of the subtype. A typeis a subtype of
itself. Such asubtypeissaid to be unconstrained becauseit correspondsto acondition that imposes no restriction.
(83)

34. Typo noted by Lance Thompson.

Annex B 253

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
Std P1076a-1999 2000/D3 IEEE STANDARD VHDL

B.236 suspend: A process that stops executing and waits for an event or for atime period to elapse. (812.6.4)

B.236.5 target library: A library containing the design unit in which a given component is declared. The target

library is used to determine the visible entity declaration under certain circumstances for a default binding indica-
tion (§5.2.2)%

B.237 timeout interval: The maximum time a process will be suspended, as specified by the timeout period in
the until clause of await statement. (88.1)

B.238 to theleft of: Seeleft of.
B.239 to theright of: Seeright of.

B.240transaction: A pair consisting of avalue and atime. The value represents a (current or) future value of the
driver; the time represents the relative delay before the value becomes the current value. (8§12.6.1)

B.241 transport delay: An optional delay model for signal assignment. Transport delay is characteristic of hard-
ware devices (such as transmission lines) that exhibit nearly infinite frequency response: any pulseistransmitted,
no matter how short its duration. (88.4) Seealsoinertial delay.

B.242 type: A set of values and a set of operations. (83)

B.243typeconversion: An expression that convertsthe value of a subexpression from onetypeto the designated
type of the type conversion. Associationsin the form of atype conversion are also allowed. These associations
have functions and restrictions similar to conversion functions but can be used in places where conversion func-
tions cannot. In both cases (expressions and associations), the converted type must be closely related to the des-
ignated type. (84.3.2.2, 87.3.5) Seealso conversion function and closely related types.

B.244 unaffected: A waveform inaconcurrent signal assignment statement that does not affect the driver of the
target. (88.4,89.5.1)

B.245 unassociated formal: A formal that is not associated with an actual. (85.2.1.2)
B.246 unconstrained subtype: A subtype that corresponds to a condition that imposes no restriction. (83, 84.2)

B.247 unit name: A name defined by a unit declaration (either the primary unit declaration or a secondary unit
declaration) in aphysical type declaration. (83.1.3)

B.248 universal_integer: Ananonymous predefined integer typethat isused for all integer literals. The position
number of an integer value is the corresponding value of the type universal_integer. (83.1.2, §7.3.1, §7.3.5)

B.249 universal_real: Ananonymous predefined typethat isused for literals of floating point types. Other float-
ing point types have no literals. However, for each floating point type there exists an implicit conversion that con-
vertsavalue of type universal_real into the corresponding value (if any) of thefloating point type. (83.1.4, §7.3.1,
§7.3.5)

B.250 update: An action on the value of a signal, variable, or file. The value of asigna is said to be updated
when the signal appears as the target (or a component of the target) of asignal assignment statement, (indirectly)
when it is associated with an interface object of mode out, buffer, inout, or linkage, or when one of its subele-
ments (individually or as part of adlice) isupdated. The value of asignal isalso said to be updated when it isa®
subelement or gslice of aresolved signal, and the resolved signal isupdated. The value of avariable is said to be
updated when the variable appears as the target (or acomponent of the target) of a variable assignment statement,
(indirectly) when it is associated with an interface object of mode out or linkage, or when one of its subelements

35. LCS5. Note that the definitions will be renumbered during final editing.
36. 1R1000.1.2.

254 Annex B

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change

IEEE
LANGUAGE REFERENCE MANUAL Std P1076a-1999 2000/D3

(individually oras®’ part of adlice) isupdated. Thevalue of afileissaid to be updated when aWRITE operation
is performed on the file object. (84.3.2)

B.251 upper bound: For arange L toRor L downto R, thelarger of L and R. (83.1)
B.252 variable: An object with asingle current value. (84.3.1.3)
B.253 visible: When the declaration of an identifier defines a possible meaning of an occurrence of the identifier

used in the declaration. A visible declarationisvisible by selection (for example, by using an expanded name) or
directly visible (for example, by using asimple name). (810.3)

B.254.5 visible entity declaration: The entity declaration selected for default binding in the absence of explicit
bi 5.2.2).

inding information for a given component instance.

B.254 waveform: A series of transactions, each of which represents a future value of the driver of asignal. The
transactions in awaveform are ordered with respect to time, so that one transaction appears before another if the
first represents a value that will occur sooner than the value represented by the other. (88.4)

B.255 whitespace character: A space, a nonbreaking space, or a horizontal tabulation character (SP, NBSP, or
HT). (814.3)

B.256 Workin%Iibrary: A design library into which the library unit resulting from the analysis of a design unit
is praed placed®®. (§11.2)

37. IR1000.1.1.
38. LCS5.
39. Typo correction.

Annex B 255

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
Std P1076a-1999 2000/D3 IEEE STANDARD VHDL

256 Annex B

Copyright © 2000, IEEE. All rights reserved.
Thisisan unapproved |EEE Standards Draft, subject to change

