
VHDL
handbook

Copyright © 1997-2000 HARDI Electronics AB
2

Contents
LexicaL eLements ... 4

Definition ..4
Character set ...4
Separators ...4
Delimiters ...4
Identifiers ..4

LiteraLs .. 5
Numerical literals..5
Enumeration literals ..5
String literals ...5
Bit string literals ...5
The NULL literal ..5

reserved words ... 6
syntax .. 7

Standards...7
The Backus-Naur-format ..7

types and objects ... 8
Predefined types ..8
Predefined subtypes ..8
Types and subtypes ...9
ARRAY ...10
RECORD ..11
ACCESS TYPES (pointers) ...12
Aggregates ..13
GROUP ...14
ATTRIBUTE...15
Constant declaration ...16
Variable declaration ..17
Signal declaration ...18
File declaration/File handling ...19
File reading (TEXTIO) ...20
File writing (TEXTIO) ...21
ALIAS...22

Libraries... 23
LIBRARY and USE ..23

design units .. 24
PACKAGE DECLARATION ...24
PACKAGE BODY ..25
ENTITY ..26
ARCHITECTURE ..27
CONFIGURATION ..28

sequentiaL statements ... 29
WAIT ..29
IF ...30
CASE ..31
LOOP, NEXT and EXIT ...32
FUNCTION ..33
PROCEDURE...34

Contents

Version 3.1

3
Copyright © 1997-2000 HARDI Electronics AB

RETURN ..35
Variable assignment ..36
Signal assignment ...37

concurrent and sequentiaL statements 38
ASSERT/REPORT..38
Subprogram call ..39

concurrent statements .. 40
PROCESS ...40
WHEN ..41
SELECT ..42
BLOCK ...43

generic parameters and generate 44
GENERIC/GENERIC MAP ...44
GENERATE ..45

components .. 46
Component declaration ...46
Component instantiation ...47
Default configuration ..48
Configuration specification ...49
Configuration declaration ...50

predefined attributes .. 51
Attributes on types ..51
Attributes on arrays...52
Attributes on signals ...53
Attributes on named entities ...54

ieee ... 56
VHDL standards ...56
Predefined packages..56

STANDARD ..56
TEXTIO ...57
STD_LOGIC_1164 ..58
NUMERIC_BIT ...60
NUMERIC_STD ..61
MATH_REAL ..63
MATH_COMPLEX ...64

vHdL guide ... 66
Introduction...66
File notation ..66
Predefined packages..66
VHDL syntax ..66
Simulation and synthesis ..69

vHdL’87 and vHdL’93, differences 70
index .. 74

 Contents

Copyright © 1997-2000 HARDI Electronics AB
4

Lexical elements
Definition
• The text of a design file is a sequence of lexical elements.
• Lexical elements are divided into the following groups:
 - delimiter
 - identifier (may be a reserved word)
 - abstract literal (integer or floating point type)
 - character literal (a graphical character surrounded by ‘, e.g.: ‘H’)
 - string literal (a sequence of graphical characters surrounded by ”, e.g.: ”HAR-
DI”)
 - bit string literal (a sequence of extended digits* surrounded by ”, e.g.: ”011”)
 - comment (preceded by -- and is valid until the end of the line)

Character set
The character set in VHDL’87 is 128 characters, in VHDL’93 it is 256
characters (see page 8, 56). The character set is divided into seven groups
– Uppercase letters, Digits, Special characters, The space characters, Lo-
wercase letters, Other special characters and format effector.

Separators
Separators are used to separate lexical elements. An example is the space
character (SPACE).

Delimiters
A delimiter is one of the following characters or character combinations:
 & ‘ () * + , - . / : ; < = > | []
 => ** := /= >= <= <>

Identifiers
An identifier is either a name or a reserved word (see page 6). There are
two kinds of identifiers:
• Basic identifiers

- Must begin with a letter.
- May contain letters and digits.
- May contain the character ‘_’, but not as first or last character and not more than

one in a row.
- Are not case-sensitive.

• Extended identifiers**

- May contain letters and digits.
- Begins and ends with the character ‘\’.
- The \ character may be included in the identifier, but must then be doubled, e.g.:

\ab\\cd\
- May include an unlimited amount of all graphical characters and in any order.
- Are case-sensitive.

* Possible values for an extended digit is determined by the base for the bit
string literal (see page 5).

** New to VHDL’93

§ 13
LRM

Lexical elements

5
Copyright © 1997-2000 HARDI Electronics AB

Literals
A literal is a written value of a type. The are in total five different kinds
of literals.

Numerical literals
[universal_integer, universal_real, literals of physical types]

Numerical literals of universal_integer do not include a point, literals of
universal_real do include a point, while literals of physical types may
include a point and must include a unit.
All numerical literals may include:
• ‘_’ to increase readability, e.g.: 1_000
• ‘E’ or ‘e’ to include an exponent, e.g.: 5E3 (i.e. 5000).
• ‘#’ to describe a base, e.g.: 2#1010# (i.e. 10). It is possible to have a base

between 2 and 16.
A physical type must include a space between its value and its unit, e.g.:
1 ns

Enumeration literals
[e.g.: BIT, BOOLEAN, CHARACTER]

Enumeration literals are graphical characters or identifiers (see page 4), e.g.:
(reset, start, ‘a’, ‘A’).

String literals
[e.g.: STRING)

String literals are one-dimensional arrays including character literals. They
always begin end end with a ” (the ” character may be included in the literal,
but must then be doubled, e.g.: ”A ”” character”).

Bit string literals
[e.g: BIT_VECTOR, STD_LOGIC_VECTOR*]

Bit string literals are one-dimensional arrays including extended digits (see
page 4). They always begin and end with a ”.
It is possible to include a base for a bit string literal. There are three bases:

B - Binary (possible values: 0 - 1).
O - Octal (possible values: 0 - 7). Each value is replaced by three

values (‘0’ or ‘1’).
X - Hexadecimal (possible values: 0 - 9, A - F, a - f). Each value is

replaced by four values (‘0’ or ‘1’).
A bit string literal may include ‘_’ to increase readability, e.g.: ”0100_
0111”.

The NULL literal
[NULL]

The NULL literal is only used for access types, i.e. pointers (see page 12),
and imply that the pointer is empty, i.e. not pointing anywhere.

§ 7.3.1, 13.4-7
LRM

* New to VHDL’93 (see page 73)

Literals

Copyright © 1997-2000 HARDI Electronics AB
6

Reserved words

* New to VHDL’93

abs
access
after
alias
all
and
architecture
array
assert
attribute
begin
block
body
buffer
bus
case
component
configuration
constant
disconnect
downto
else
elsif
end
entity
exit
file
for
function
generate
generic
group*

guarded

if
impure*

in
inertial*

inout
is
label
library
linkage
literal*

loop
map
mod
nand
new
next
nor
not
null
of
on
open
or
others
out
package
port
postponed*

procedure
process
pure*

range
record

register
reject*

rem
report*

return
rol*

ror*

select
severity
signal
shared*

sla*

sll*

sra*

srl*

subtype
then
to
transport
type
unaffected*

units
until
use
variable
wait
when
while
with
xnor*

xor

§ 13.9
LRM

Reserved words

7
Copyright © 1997-2000 HARDI Electronics AB

Syntax
Standards
The syntax in this handbook describes VHDL’93. At pages 70-73 the main
differences between VHDL’87 and VHDL’93 are explained.

The Backus-Naur-format
All syntax in this handbook is described using the so called Backus-Naur-
format. Here follows a short summary of the format:
• Words written using lower-case letters and possibly one or many hyphens,

are used to denote a syntactical category, for example: entity-declara-
tion.

• Reserved words are written with bold characters, for example: entity.
• Every replacement rule contains a left hand side expression and a right

hand side expression separated by the sign –›, which means ”looks as”
or ”may be replaced with”. The left hand side of the expression is always
a syntactical category and may be replaced by the right hand side of the
expression.

• |, a vertical line (the pipe sign) is used to separate many mutually exclusive
alternatives.

• [], square brackets surround optional things that may occur once or not at
all.

• {}, braces surround optional things that may occur once, many times or
not at all.

• (), parenthesis are used to clarify how and in which order a rule is evalua-
ted.

• Reserved words and characters surrounded by apostrophes, ‘ ’, are included
”as is” in the source code.

• Italicized words in the beginning of the name of a syntactical category
give semantic information and have no syntactical meaning. For example
entity-name-identifier is the same as identifier.

Syntax

Copyright © 1997-2000 HARDI Electronics AB
8

* New to VHDL’93

LRM
Types and objects
Predefined types
Type Possible values (by priority)

INTEGER	 At	least:	 ABS		**
	 -2147483647	-	 *		/		MOD		REM
	 2147483647	 +		-	(sign)
	 	 +		-
	 	 =		/=		<		<=		>		>=

REAL	 At	least:	 ABS		**
	 -1.0E38	-	 *		/
	 1.0E38	 +		-	(sign)
	 	 +		-
	 	 =		/=		<		<=		>		>=

TIME	 At	least:	 ABS
	 -2147483647	-	 *		/
	 2147483647	 +		-	(sign)
	 (fs,	ps,	ns,	 +		-
	 	us,	ms,	sec,	 =		/=		<		<=		>		>=
	 	min,	hr)

BIT	 ‘0’,’1’	 NOT
	 	 =		/=		<		<=		>		>=
	 	 AND		NAND		OR		NOR		XOR		XNOR*

BOOLEAN	 FALSE,	TRUE	 NOT
	 	 =		/=		<		<=		>		>=
	 	 AND		NAND		OR		NOR		XOR		XNOR*

BIT_VECTOR	 Unconstrained	 NOT
	 array	of	BIT	 &
	 	 SLL*		SRL*		SLA*		SRA*		ROL*		ROR*

 =		/=		<		<=		>		>=
	 	 AND		NAND		OR		NOR		XOR		XNOR*

Type Possible values

CHARACTER	 128	characters	in	VHDL’87	[ISO	646-1983]
	 256	characters	in	VHDL’93	[ISO	8859-1	:	1987(E)]

SEVERITY_LEVEL	 NOTE,	WARNING,	ERROR,	FAILURE

FILE_OPEN_KIND*	 READ_MODE,	WRITE_MODE,	APPEND_MODE

FILE_OPEN_STATUS*	OPEN_OK,	STATUS_ERROR,	NAME_ERROR,	MODE_ERROR

STRING	 Unconstrained	array	of	CHARACTER

Predefined subtypes
Type Possible values Operators (by priority)

NATURAL	 0	-	INTEGER’HIGH	 The	same	as	for	INTEGER

POSITIVE	 1	-	INTEGER’HIGH	 The	same	as	for	INTEGER

DELAY_LENGTH*	 0	fs	-	TIME’HIGH	 The	same	as	for	TIME

§ 3, 4.3

Types and objects

9
Copyright © 1997-2000 HARDI Electronics AB

Syntax

Examples

Placement

Comments

																																																	Blk:BLOCK
		PACKAGE	Pack	IS				PACKAGE	BODY	Pack	IS										...
																										BEGIN
		END	PACKAGE	Pack;		END	PACKAGE	BODY	Pack;								...
																																																	END	BLOCK	Blk;

		ENTITY	Ent	IS						ARCHITECTURE	Arc	OF	Ent	IS		
																										CONFIGURATION	Conf	OF	Ent	IS	
		BEGIN														BEGIN																									...
																										END	CONFIGURATION	Conf;
		END	ENTITY	Ent;				END	ARCHITECTURE	Arc;

		Proc:PROCESS(...)		PROCEDURE	P(...)	IS									FUNCTION	F(...)	RETURN	Tp	IS
			
		BEGIN														BEGIN																							BEGIN
			
		END	PROCESS	Proc;		END	PROCEDURE	P;												END	FUNCTION	F;

Operators (by priority)

LRM

Types and subtypes

	TYPE Weight IS RANGE	0	TO	10_000
			UNITS
					gr;
					kg		=	1000	gr;
					ton	=	1000	kg;
			END UNITS;

	ARCHITECTURE Behave OF Design	IS
			TYPE StateMachine	IS	(start,count,steady);
			SIGNAL	state,	nextState	:	StateMachine;
	BEGIN
			...
	END ARCHITECTURE	Behave;

	PROCESS
			SUBTYPE	MyArray	IS	BIT_VECTOR(7	DOWNTO	3);
	BEGIN
			...
	END PROCESS;

• Operators must be defined by the user for user-defined enumerated types (except
for the relational operators). It is therefore preferable to use subtypes since they
share the same operators as their base type.

• Other relational operators than ’=’ and ’/=’ are dependant upon the order in the
enumerated type. They shall therefore be used with care.

• A new type that is a part of an existing type, for example a part of the predefined
unconstrained array BIT_VECTOR, must be declared as a subtype.

type-declaration –›
 type identifier is type-indication ‘;’
subtype-declaration –›
 subtype identifier is subtype-indication ‘;’
subtype-indication, type-indication –›
 [resolution-function-name] type-name [range-constraint | index-constraint]

• Only relational operators (=, /=, <, <=, > and >=) are predefined for user-defined
enumerated types. Other operators must be defined by the user.

• Logical operators are predefined for the predefined enumerated types BIT and
BOOLEAN (see page 7).

• A subtype shares the same operators as its base type, including their priority.

§ 4.1, 4.2

 Types and objects

10
Copyright © 1997-2000 HARDI Electronics AB

Syntax

Examples

Placement

Comments

																																																	Blk:BLOCK
		PACKAGE	Pack	IS				PACKAGE	BODY	Pack	IS										...
																										BEGIN
		END	PACKAGE	Pack;		END	PACKAGE	BODY	Pack;								...
																																																	END	BLOCK	Blk;

		ENTITY	Ent	IS						ARCHITECTURE	Arc	OF	Ent	IS		
																										CONFIGURATION	Conf	OF	Ent	IS	
		BEGIN														BEGIN																									...
																										END	CONFIGURATION	Conf;
		END	ENTITY	Ent;				END	ARCHITECTURE	Arc;

		Proc:PROCESS(...)		PROCEDURE	P(...)	IS									FUNCTION	F(...)	RETURN	Tp	IS
			
		BEGIN														BEGIN																							BEGIN
			
		END	PROCESS	Proc;		END	PROCEDURE	P;												END	FUNCTION	F;

Operators (by priority)

LRM

ARRAY

array-type-declaration –›
 type identifier is array ‘(’ type-name range ‘<>’ { ‘,’ type-name range ‘<>’ } ‘)’
 of element-subtype-indiciation ‘;’ |
 type identifier is array index-constraint of element-subtype-indication ‘;’
element-subtype-indication –›
 [resolution-function-name] type-name [range-constraint | index-constraint]

	TYPE	ArrayType	IS ARRAY(4	DOWNTO	0)	OF	BIT;
	SIGNAL	myArray	:	ArrayType;
	...
	myArray(3)	<=	‘0’;
	myArray	<=	myArray	ROL	2;	--	Rotate	two	steps	to	the	left
	myArray	<=	myArray(2	DOWNTO	0)	&	myArray(4	DOWNTO	3);	--	The	same

	TYPE	ThreeDim	IS ARRAY(1	TO	2,	1	TO	3)	OF	BIT_VECTOR(1	TO	4);
	SIGNAL	complex	:	ThreeDim	:=	((”0000”,”0001”,”0010”),
																															(”1000”,”1001”,”1010”));

	TYPE	Index	IS	(A,B,C,D);	--	Enumerated	type
	TYPE	AnArray	IS ARRAY(Index)	OF	INTEGER;	--	Array	with	four
																																										--	elements
	SIGNAL	myArray	:	AnArray;
	...
	myArray(B)	<=	7;

	TYPE	UnconstrainedArray	IS ARRAY	(NATURAL	RANGE	<>)	OF	REAL;

• The logical operators and the shift operators are only defined for arrays with
elements of the types BIT or BOOLEAN.

• An array may be indexed in an unlimited amount of dimensions.
• The shift operators shifts either arithmetically (for example SLA) or logically (for

example SLL). An arithmetic shift fills the last element with the same value it had
before the shift, a logic shift fills it with ‘0’ or FALSE.

• An array may be indexed by any discrete type.

1. NOT (only for BIT and BOOLEAN)
2. &
3. SLL*, SRL*, SLA*, SRA*, ROL*, ROR* (only for BIT and BOOLEAN)
4. =, /=, <, <=, >, >=
5. AND, OR, NAND, NOR, XOR, XNOR* (only for BIT and BOOLEAN)

 * New to VHDL’93

§ 3.2.1

Types and objects

11
Copyright © 1997-2000 HARDI Electronics AB

Syntax

Examples

Placement

Comments

																																																	Blk:BLOCK
		PACKAGE	Pack	IS				PACKAGE	BODY	Pack	IS										...
																										BEGIN
		END	PACKAGE	Pack;		END	PACKAGE	BODY	Pack;								...
																																																	END	BLOCK	Blk;

		ENTITY	Ent	IS						ARCHITECTURE	Arc	OF	Ent	IS		
																										CONFIGURATION	Conf	OF	Ent	IS	
		BEGIN														BEGIN																									...
																										END	CONFIGURATION	Conf;
		END	ENTITY	Ent;				END	ARCHITECTURE	Arc;

		Proc:PROCESS(...)		PROCEDURE	P(...)	IS									FUNCTION	F(...)	RETURN	Tp	IS
			
		BEGIN														BEGIN																							BEGIN
			
		END	PROCESS	Proc;		END	PROCEDURE	P;												END	FUNCTION	F;

Operators (by priority)

LRM

RECORD

	TYPE Clock IS RECORD
			Hour	:	INTEGER	RANGE	0	TO	23;
			Min		:	INTEGER	RANGE	0	TO	59;
			Sec		:	INTEGER	RANGE	0	TO	59;
	END RECORD	Clock;

	ARCHITECTURE Behave OF Design	IS
			SIGNAL	intTime	:	Clock	:=	(0,0,0);
	BEGIN
			PROCESS(clk)
			BEGIN
					IF	clk’EVENT	AND	clk	=	‘1’	THEN
							IF	intTime.Hour	=	23	THEN
					...
							REPORT	”The	time	is	”	&	INTEGER’IMAGE(intTime.Hour)	&	”:”	&
																															INTEGER’IMAGE(intTime.Min)		&	”:”	&
																															INTEGER’IMAGE(intTime.Sec);
			END PROCESS;
	END ARCHITECTURE	Behave;

• There are no predefined records in VHDL, but user-defined records can be very
useful. A record holds several units within a ”group” and the code gets easier to
read.

• A record may contain an unlimited amount of elements.

record-type-declaration –›
 type identifier is record
 element-declaration
 { element-declaration }
 end record [record-type-name-identifier] ‘;’

• Only the relational operators (=, /=) are predefined for records.

§ 3.2.2

 Types and objects

12
Copyright © 1997-2000 HARDI Electronics AB

Syntax

Examples

Placement

Comments

																																																	Blk:BLOCK
		PACKAGE	Pack	IS				PACKAGE	BODY	Pack	IS										...
																										BEGIN
		END	PACKAGE	Pack;		END	PACKAGE	BODY	Pack;								...
																																																	END	BLOCK	Blk;

		ENTITY	Ent	IS						ARCHITECTURE	Arc	OF	Ent	IS		
																										CONFIGURATION	Conf	OF	Ent	IS	
		BEGIN														BEGIN																									...
																										END	CONFIGURATION	Conf;
		END	ENTITY	Ent;				END	ARCHITECTURE	Arc;

		Proc:PROCESS(...)		PROCEDURE	P(...)	IS									FUNCTION	F(...)	RETURN	Tp	IS
			
		BEGIN														BEGIN																							BEGIN
			
		END	PROCESS	Proc;		END	PROCEDURE	P;												END	FUNCTION	F;

Operators (by priority)

LRM

ACCESS TYPES (pointers)

access-type-declaration –›
 type identifier is access subtype-indication ‘;’

subtype-indication –›
 [resolution-function-name] type-name [range-constraint | index-constraint]

	TYPE	ListElement;	--	Incomplete	type	declaration
	TYPE	ListPointer	IS ACCESS	ListElement;
	TYPE	ListElement	IS RECORD
			Data						:	INTEGER	RANGE	0	TO	31;
			NextPoint	:	ListPointer;
	END RECORD	ListElement;

	VARIABLE	list1,	list2	:	ListPointer;
	...
	list1	:=	NEW	ListElement;
	list1.Data	:=	inData;
	list1.NextPoint	:=	NEW	ListElement’(inData2,NULL);
 IF list1.ALL	=	list2.ALL THEN	...	--	If	the	elements	pointed	out
																																			--	have	the	same	values				
	IF	list1	=	list2	THEN	... --	If	the	pointers	point	at	the	same
																											--	object
	...
	DEALLOCATE(list1.NextPoint);	--	Remove	”list1.NextPoint”
	DEALLOCATE(list1);											--	Remove	the	pointer	”list1”

• Access types (pointers) are not synthesizable.
• An object of an access type must be a variable.
• Access types are for example used when flexible handling of the computers’

memory is desired, for example when simulating large memories.
• There is one predefined access type in the package TEXTIO (see page 57). It is

the type LINE that specifies which line that has been read or that shall be written
to.

• Only the relational operators (=, /=) are predefined for access types (pointers).
• Two pointers are equal only if they point at the same object.

§ 3.3

Types and objects

13
Copyright © 1997-2000 HARDI Electronics AB

																																																	Blk:BLOCK
		PACKAGE	Pack	IS				PACKAGE	BODY	Pack	IS										...
																										BEGIN
		END	PACKAGE	Pack;		END	PACKAGE	BODY	Pack;								...
																																																	END	BLOCK	Blk;

		ENTITY	Ent	IS						ARCHITECTURE	Arc	OF	Ent	IS		
																										CONFIGURATION	Conf	OF	Ent	IS	
		BEGIN														BEGIN																									...
																										END	CONFIGURATION	Conf;
		END	ENTITY	Ent;				END	ARCHITECTURE	Arc;

		Proc:PROCESS(...)		PROCEDURE	P(...)	IS									FUNCTION	F(...)	RETURN	Tp	IS
			
		BEGIN														BEGIN																							BEGIN
			
		END	PROCESS	Proc;		END	PROCEDURE	P;												END	FUNCTION	F;

Syntax

Examples

Placement

Comments

LRM

Aggregates

	TYPE Clock IS RECORD
			Hour	:	INTEGER	RANGE	0	TO	23;
			Min		:	INTEGER	RANGE	0	TO	59;
			Sec		:	INTEGER	RANGE	0	TO	59;
	END RECORD	Clock;
	TYPE	Matrix	IS ARRAY	(0	TO	1,	0	TO	1)	OF	BIT;
	SUBTYPE	MyArray	IS	BIT_VECTOR(2	TO	5);

	CONSTANT	allZero	:	MyArray	:=	(OTHERS =>	‘0’);
	...
	SIGNAL	currentTime,	alarmTime	:	Clock;
	...
	VARIABLE	m1,	m2	:	Matrix;
	VARIABLE	v1,	v2	:	MyArray;
	...
	currentTime	<=	(10,15,5);
	alarmTime			<=	(Hour	=>	10,	Min	=>	15,	Sec	=>	5);
	m1										:=	((‘0’,’1’),(OTHERS	=>	‘0’));	--	”01”,”00”
	m2										:=	(OTHERS	=>	(OTHERS	=>	‘1’));	--	”11”,”11”
	v1										:=	(‘0’,	‘1’,	‘1’,	‘1’);								--	”0111”
	v2										:=	(3	=>	‘0’,	OTHERS	=>	‘1’);			--	”1011”
	(v1,v2)					:=	(”0000”,”1111”);	--	v1	=	”0000”,	v2	=	”1111”	

	--	For	a	BIT_VECTOR	this	assignment	is	easier	to	write:
	v2	:=	”1011”;

	

	• Aggregates are used to assign values to arrays and records. Both types and
objects can get values using aggregates.

• It is possible to use named association (for example ”alarmTime” above) or
positional association (for example ”currentTime” above). Named association is
preferable since then the order of the parameters does not impact the assignment.

• OTHERS is used to assign values to the elements not already assigned. OTHERS
must be placed as the last association in the aggregate.

• For records, but not for arrays, it is possible (but not recommendable) to mix
named and positional association. The only rule is that the positional associations
must be placed before the named.

aggregate –›
 ‘(’ element-association { ‘,’ element-association } ‘)’
element-association –›
 [choices ‘=>’] expression
choices –› choice { | choice }
choice –› simple-expression | discrete-range | element-simple-name | others

§ 7.3.2

 Types and objects

14
Copyright © 1997-2000 HARDI Electronics AB

Syntax

Examples

Placement

Comments

																																																	Blk:BLOCK
		PACKAGE	Pack	IS				PACKAGE	BODY	Pack	IS										...
																										BEGIN
		END	PACKAGE	Pack;		END	PACKAGE	BODY	Pack;								...
																																																	END	BLOCK	Blk;

		ENTITY	Ent	IS						ARCHITECTURE	Arc	OF	Ent	IS		
																										CONFIGURATION	Conf	OF	Ent	IS	
		BEGIN														BEGIN																									...
																										END	CONFIGURATION	Conf;
		END	ENTITY	Ent;				END	ARCHITECTURE	Arc;

		Proc:PROCESS(...)		PROCEDURE	P(...)	IS									FUNCTION	F(...)	RETURN	Tp	IS
			
		BEGIN														BEGIN																							BEGIN
			
		END	PROCESS	Proc;		END	PROCEDURE	P;												END	FUNCTION	F;

LRM

GROUP

group-template-declaration –›
 group identifier is ‘(’ entity-class [‘<>’] { ‘,’ entity-class [‘<>’] } ‘)’ ‘;’

group-declaration –›
 group identifier ‘:’ group-template-name ‘(’ (name | character-literal)
 { ‘,’ (name | character-literal) } ‘)’ ‘;’

	ENTITY	Mux	IS
	 PORT(a,	b,	c	:	IN		STD_ULOGIC;
								choose		:	IN		STD_ULOGIC_VECTOR(1	DOWNTO	0);
								q							:	OUT STD_ULOGIC);
 END ENTITY Mux;

	ARCHITECTURE	Behave	OF Mux	IS
			GROUP Ports	IS (SIGNAL	<>);			--	Create	a	group	template
			GROUP InPorts	:	Ports	(a,b,c);--	Create	a	group	of	the	template
			GROUP OutPort	:	Ports	(q);				--	Create	another	group
			GROUP InToOut	IS (GROUP,GROUP);	--	A	2-dim	group	template
			GROUP Timing : InToOut (InPorts,OutPort); -- The final group
			ATTRIBUTE	synthesis_maxdelay	:	TIME;	--	Use	the	groups
			ATTRIBUTE	synthesis_maxdelay	OF	Timing	:	GROUP IS 9	ns;
	BEGIN
 PROCESS(a,b,c,choose)
			BEGIN
 CASE choose	IS	
 WHEN ”00”			=>	q	<=	a;
 WHEN ”01”			=>	q	<=	b;
 WHEN ”10”			=>	q	<=	c;
 WHEN OTHERS	=>	NULL;
 END CASE;
 END PROCESS;
 END ARCHITECTURE	Behave;

• Groups are new to VHDL’93. They are intended to make the user-defined attribu-
tes (see page 15) more powerful by giving the possibility to set an attribute for a
whole group, not just on named entities each by each.

• The usage of a group contains two parts – group template declaration and group
declaration. The group template declaration creates a template defining the
design of the group, while the group declaration creates the group and includes
its members.

• ‘<>’ (pronounced: box) , means that any number of elements of an entity class
may be included in the group. ‘<>’ may only be used as the last element in a
template list.

§ 4.6, 4.7

Types and objects

15
Copyright © 1997-2000 HARDI Electronics AB

																																																	Blk:BLOCK
		PACKAGE	Pack	IS				PACKAGE	BODY	Pack	IS										...
																										BEGIN
		END	PACKAGE	Pack;		END	PACKAGE	BODY	Pack;								...
																																																	END	BLOCK	Blk;

		ENTITY	Ent	IS						ARCHITECTURE	Arc	OF	Ent	IS		
																										CONFIGURATION	Conf	OF	Ent	IS	
		BEGIN														BEGIN																									...
																										END	CONFIGURATION	Conf;
		END	ENTITY	Ent;				END	ARCHITECTURE	Arc;

		Proc:PROCESS(...)		PROCEDURE	P(...)	IS									FUNCTION	F(...)	RETURN	Tp	IS
			
		BEGIN														BEGIN																							BEGIN
			
		END	PROCESS	Proc;		END	PROCEDURE	P;												END	FUNCTION	F;

Syntax

Examples

Placement

Comments

LRM

ATTRIBUTE

attribute-declaration –›
 attribute identifier ‘:’ (type-name | subtype-name) ‘;’
attribute-specification –›
 attribute attribute-name-identifier of entity-class-name-list ‘:’ (entity | architec.|
 configuration | procedure | function | package | type | subtype | constant | signal
| variable | component | label | literal | units | group | file) is expression ‘;’
entity-class-name-list –›
 entity-class-tag [signature] { ‘,’ entity-class-tag [signature] } | others | all

	TYPE	StateMachine	IS	(start,count,stop);
	ATTRIBUTE	syn_encoding	:	STRING;	--	State	machine	encoding
	ATTRIBUTE	syn_encoding	OF	StateMachine	:	TYPE IS	”onehot”;
	
	ARCHITECTURE	Behave	OF Mux	IS
			GROUP Ports	IS (SIGNAL	<>);
			GROUP InPorts	:	Ports	(a,b,c);
			GROUP OutPort	:	Ports	(q);
			GROUP InToOut	IS (GROUP,GROUP);
			GROUP Timing	:	InToOut	(InPorts,OutPort);
			ATTRIBUTE	synthesis_maxdelay	:	TIME;	--	Maximum	delay
			ATTRIBUTE	synthesis_maxdelay	OF	Timing	:	GROUP IS 9	ns;
	BEGIN
 ...
 END ARCHITECTURE	Behave;

	ENTITY	Count	IS
			PORT(clock			:	IN		BIT;
								counter	:	OUT	INTEGER	RANGE	0	TO	15);
			ATTRIBUTE	pinnum	:	STRING;	--	Pin	numbering
		 ATTRIBUTE	pinnum	OF	clock			:	SIGNAL IS	”P2”;
			ATTRIBUTE	pinnum	OF	counter	:	SIGNAL IS	”P12,P14,P17,P21”;
	END ENTITY	Count;

• The usage of attributes contains two parts – attribute declaration and attribute
specification. The attribute declaration defines the attribute while the attribute
specification uses the attribute on a named entity, for example a signal, a variable,
a function, a type etc.

• In VHDL’93 it is possible to group (GROUP, see page 14) a number of named
entities and then define an attribute for the whole group.

• Attributes are used for documentation purposes, but above all to give commands
to downstream tools, for example synthesis tools. Attributes used for downstream
tools are not defined in the VHDL standard and differ between different tools.

Only spec.!

§ 4.4, 5.1

 Types and objects

16
Copyright © 1997-2000 HARDI Electronics AB

Syntax

Examples

Placement

Comments

																																																	Blk:BLOCK
		PACKAGE	Pack	IS				PACKAGE	BODY	Pack	IS										...
																										BEGIN
		END	PACKAGE	Pack;		END	PACKAGE	BODY	Pack;								...
																																																	END	BLOCK	Blk;

		ENTITY	Ent	IS						ARCHITECTURE	Arc	OF	Ent	IS		
																										CONFIGURATION	Conf	OF	Ent	IS	
		BEGIN														BEGIN																									...
																										END	CONFIGURATION	Conf;
		END	ENTITY	Ent;				END	ARCHITECTURE	Arc;

		Proc:PROCESS(...)		PROCEDURE	P(...)	IS									FUNCTION	F(...)	RETURN	Tp	IS
			
		BEGIN														BEGIN																							BEGIN
			
		END	PROCESS	Proc;		END	PROCEDURE	P;												END	FUNCTION	F;

LRM

Constant declaration

constant-declaration –›
 constant identifier { ‘,’ identifier } ‘:’ subtype-indication [‘:=’ expression] ‘;’

subtype-indication –›
 [resolution-function-name] type-name [range-constraint | index-constraint]

	CONSTANT	zero :	STD_LOGIC_VECTOR(0	TO	3)	:=	(OTHERS	=>	‘0’);
	SIGNAL			data :	STD_LOGIC_VECTOR(zero’RANGE)	:=	zero;
	CONSTANT	bits	:	BIT_VECTOR	:=	x”0FA3”;

	PACKAGE	Useful	IS
			CONSTANT pi	 :	REAL;								--	declare	pi	here	...
			CONSTANT one	 :	NATURAL	:=	1;
			CONSTANT two	 :	NATURAL	:=	2*one;
 CONSTANT four	:	NATURAL	:=	two	+	one	+	one;
	END PACKAGE	Useful;

	PACKAGE BODY	Useful	IS
			CONSTANT pi	:	REAL	:=	3.1415;	--	...	and	give	it	its	value	here
	END PACKAGE BODY	Useful;

• A constant gets its value when it is declared and may only be read.
• A constant can be declared using a so called deferred constant declaration. It is

then declared and named in the package declaration, but gets its value first in the
package body. This coding style hides the value of the constant, it is not shown in
the package declaration, and the user is not tempted to use the value directly. An-
other advantage is if the value of the constant is modifed. Then only the package
body needs to be recompiled.

§ 4.3.1.1

Types and objects

17
Copyright © 1997-2000 HARDI Electronics AB

																																																	Blk:BLOCK
		PACKAGE	Pack	IS				PACKAGE	BODY	Pack	IS										...
																										BEGIN
		END	PACKAGE	Pack;		END	PACKAGE	BODY	Pack;								...
																																																	END	BLOCK	Blk;

		ENTITY	Ent	IS						ARCHITECTURE	Arc	OF	Ent	IS		
																										CONFIGURATION	Conf	OF	Ent	IS	
		BEGIN														BEGIN																									...
																										END	CONFIGURATION	Conf;
		END	ENTITY	Ent;				END	ARCHITECTURE	Arc;

		Proc:PROCESS(...)		PROCEDURE	P(...)	IS									FUNCTION	F(...)	RETURN	Tp	IS
			
		BEGIN														BEGIN																							BEGIN
			
		END	PROCESS	Proc;		END	PROCEDURE	P;												END	FUNCTION	F;

Syntax

Examples

Placement

Comments

LRM

Variable declaration

variable-declaration –›
 [shared] variable identifier { ‘,’ identifier } ‘:’ subtype-indication
 [‘:=’ expression] ‘;’

subtype-indication –›
 [resolution-function-name] type-name [range-constraint | index-constraint]

	VARIABLE	databus	:	STD_LOGIC_VECTOR(3	DOWNTO	0);

	Clocked: PROCESS(clk)
			VARIABLE	internal	:	REAL	:=	0.0;
	BEGIN
			IF	clk’EVENT	AND	clk	=	‘1’	THEN
					internal	:=	internal	+	1.0;
 output			<=	internal;
			END IF;
	END PROCESS	Clocked;

	ARCHITECTURE Behave OF Design	IS
			SHARED VARIABLE data	:	INTEGER	:=	0;
	BEGIN
			One: PROCESS
			BEGIN
					data	:=	0;
					...
			END PROCESS One;
			Another: PROCESS
			BEGIN
					IF	data	=	0	THEN
					...
			END PROCESS Another;
	END ARCHITECTURE	Behave;

• Variables are local in processes or subprograms and are therefore declared there.
The exception is shared variables that are global just as signals. Since variables

 do not have the possibility to handle concurrent assignment from more than one
process, as signals can, shared variables are to be avoided.

• A variable has no direction and may therefore be both read and written.
• Variables are both assigned and get default values using ‘:=’.

SharedShared

Shared
Shared Shared

§ 4.3.1.3

Local Local Local

 Types and objects

18
Copyright © 1997-2000 HARDI Electronics AB

Syntax

Examples

Placement

Comments

																																																	Blk:BLOCK
		PACKAGE	Pack	IS				PACKAGE	BODY	Pack	IS										...
																										BEGIN
		END	PACKAGE	Pack;		END	PACKAGE	BODY	Pack;								...
																																																	END	BLOCK	Blk;

		ENTITY	Ent	IS						ARCHITECTURE	Arc	OF	Ent	IS		
																										CONFIGURATION	Conf	OF	Ent	IS	
		BEGIN														BEGIN																									...
																										END	CONFIGURATION	Conf;
		END	ENTITY	Ent;				END	ARCHITECTURE	Arc;

		Proc:PROCESS(...)		PROCEDURE	P(...)	IS									FUNCTION	F(...)	RETURN	Tp	IS
			
		BEGIN														BEGIN																							BEGIN
			
		END	PROCESS	Proc;		END	PROCEDURE	P;												END	FUNCTION	F;

LRM

Signal declaration

signal-declaration –›
 signal identifier { ‘,’ identifier } ‘:’ subtype-indication [register | bus]
 [‘:=’ expression] ‘;’

subtype-indication –›
 [resolution-function-name] type-name [range-constraint | index-constraint]

	SIGNAL	data	:	STD_LOGIC_VECTOR(3	DOWNTO	0);

	ENTITY	Fir	IS
			PORT(dataIn		:	IN		MyDataType;
								dataOut	:	OUT	MyDataType;
								clock			:	IN		STD_ULOGIC);
	END ENTITY	Fir;

	ENTITY	Design	IS
			PORT(clock		:	IN		STD_ULOGIC;
								result	:	OUT	MyResultType);
			TYPE	ThreeDim	IS ARRAY(1	TO	2,	1	TO	3)	OF	BIT_VECTOR(1	TO	4);
			SIGNAL	complex	:	ThreeDim	:=	((”0000”,”0001”,”0010”),
																																	(”1000”,”1001”,”1010”));
	END ENTITY	Design;

• Signals are global in an architecture or in a block. They may therefore not be
locally declared in a process or in a function.

• A signal declared in a PORT must have a direction, while an internal signal
(declared in an architecture, a block or in a package) does not have a direction.

• Ports of the mode OUT may only be assigned, not read. The workaround is to use
internal variables or the attribute ‘DRIVING_VALUE (see page 54).

• Signals are assigned using ‘<=’ but get default values using ‘:=’.

§ 4.3.1.2

Types and objects

19
Copyright © 1997-2000 HARDI Electronics AB

																																																	Blk:BLOCK
		PACKAGE	Pack	IS				PACKAGE	BODY	Pack	IS										...
																										BEGIN
		END	PACKAGE	Pack;		END	PACKAGE	BODY	Pack;								...
																																																	END	BLOCK	Blk;

		ENTITY	Ent	IS						ARCHITECTURE	Arc	OF	Ent	IS		
																										CONFIGURATION	Conf	OF	Ent	IS	
		BEGIN														BEGIN																									...
																										END	CONFIGURATION	Conf;
		END	ENTITY	Ent;				END	ARCHITECTURE	Arc;

		Proc:PROCESS(...)		PROCEDURE	P(...)	IS									FUNCTION	F(...)	RETURN	Tp	IS
			
		BEGIN														BEGIN																							BEGIN
			
		END	PROCESS	Proc;		END	PROCEDURE	P;												END	FUNCTION	F;

Syntax

Examples

Placement

Comments

LRM

File declaration/File handling

file-declaration –›
 file identifier { ‘,’ identifier } ‘:’ subtype-indication
 [[open file-open-kind-expression] is string-expression] ‘;’

subtype-indication –›
 type-name [range-constraint | index-constraint]

	ARCHITECTURE Behave OF Files	IS
			TYPE	Times	 IS FILE OF	TIME;
			TYPE	Stimuli	IS FILE OF	BIT_VECTOR(3	DOWNTO	0);
			FILE outFile		: Stimuli	OPEN	WRITE_MODE IS ”C:\proj\out.bin”;
			FILE	timeFile	:	Times	 OPEN	READ_MODE		IS	”C:\proj\time.bin”;
			FILE	inData			:	Stimuli;
	BEGIN
			...
					VARIABLE	ok	:	FILE_OPEN_STATUS;
					VARIABLE	t		:	TIME;
					VARIABLE	bv	:	BIT_VECTOR(3	DOWNTO	0);
			...
					FILE_OPEN(ok,inData,”C:\proj\indata.bin”,READ_MODE);					
 IF	ok	=	OPEN_OK	THEN
							WHILE (NOT	ENDFILE(inData)	AND	NOT	ENDFILE(timeFile))	LOOP
									READ(timeFile,t);
									READ(inData,bv);
									WAIT FOR	t;
									WRITE(outFile,bv);
			...
					FILE_CLOSE(outFile);
					FILE_CLOSE(timeFile);
					FILE_CLOSE(inData);
			...
	END ARCHITECTURE	Behave;

• A file may contain all types in VHDL except for files, access types (pointers) and
multidimensional arrays.

• The VHDL standard does not define how data shall be stored in a file. It is
therefore preferable to use text files since they are easy to read and since there is
a number of predefined procedures to handle them. The procedures are defined
in the package TEXTIO (see page 57). By using this standardized package it is
possible to move the files between different simulation environments.

• File handling in VHDL has been considerably modified between VHDL’87 and
VHDL’93 (see page 71). The modifications are not backwards compatible.

• FILE_OPEN and FILE_CLOSE are new to VHDL’93.

§ 3.4, 4.3.1.4

 Types and objects

20
Copyright © 1997-2000 HARDI Electronics AB

Syntax

Examples

Placement

Comments

																																																	Blk:BLOCK
		PACKAGE	Pack	IS				PACKAGE	BODY	Pack	IS										...
																										BEGIN
		END	PACKAGE	Pack;		END	PACKAGE	BODY	Pack;								...
																																																	END	BLOCK	Blk;

		ENTITY	Ent	IS						ARCHITECTURE	Arc	OF	Ent	IS		
																										CONFIGURATION	Conf	OF	Ent	IS	
		BEGIN														BEGIN																									...
																										END	CONFIGURATION	Conf;
		END	ENTITY	Ent;				END	ARCHITECTURE	Arc;

		Proc:PROCESS(...)		PROCEDURE	P(...)	IS									FUNCTION	F(...)	RETURN	Tp	IS
			
		BEGIN														BEGIN																							BEGIN
			
		END	PROCESS	Proc;		END	PROCEDURE	P;												END	FUNCTION	F;

LRM

File reading (TEXTIO)

(No syntax)

	USE	STD.TEXTIO.ALL;	--	Make	TEXTIO	accessible
	ARCHITECTURE	Behave	OF	Filehandling	IS
			TYPE Reg	IS RECORD
					Number	:	POSITIVE;
					Sum				:	NATURAL;
			END RECORD;
			FILE	MyFile	:	TEXT	OPEN	READ_MODE	IS	”data.txt”;
	BEGIN
			PROCESS
 VARIABLE	l							:	LINE;	--	declare	a	line	variable
					VARIABLE	fNumber	:	POSITIVE;
					VARIABLE	fSum				:	NATURAL;
 BEGIN
 IF NOT ENDFILE(MyFile)	THEN -- If the file is not empty ...
 		READLINE(MyFile,l);							--	...	read	a	line	...
							ASSERT	l’LENGTH	/=	0;					--	...	if	it	isn’t	empty	..
							READ(l,fNumber);										--	...	read	the	1st	element	...
							READ(l,fSum);													--	...	and	then	the	2nd	element
					...
	END ARCHITECTURE	Behave;

	VARIABLE	l	:	LINE;
	l	:=	NEW	STRING’(”My	question”);
	WRITELINE(OUTPUT,l);	--	Writes	”My	question”	in	the	simulator
	READLINE(INPUT,l);			--	Reads	the	answer	from	the	keyboard

• When reading a text file, a whole line must first be read. That is done using
READLINE. After that each element in the line is read using a number of READ
operations. Each object assigned by a value from the file must be of the same type
as the value. It is therefore important to know the order of the elements in the file.

• The predefined file INPUT (see example above) reads a value from the keyboard
or from an input file during simulation. The handling of INPUT is tool dependant.

• Files are not synthesizable.
• File handling in VHDL has been considerably modified between VHDL’87 and

VHDL’93 (see page 71). The modifications are not backwards compatible. The
examples above are according to VHDL’93.

§ 14.3

Types and objects

21
Copyright © 1997-2000 HARDI Electronics AB

																																																	Blk:BLOCK
		PACKAGE	Pack	IS				PACKAGE	BODY	Pack	IS										...
																										BEGIN
		END	PACKAGE	Pack;		END	PACKAGE	BODY	Pack;								...
																																																	END	BLOCK	Blk;

		ENTITY	Ent	IS						ARCHITECTURE	Arc	OF	Ent	IS		
																										CONFIGURATION	Conf	OF	Ent	IS	
		BEGIN														BEGIN																									...
																										END	CONFIGURATION	Conf;
		END	ENTITY	Ent;				END	ARCHITECTURE	Arc;

		Proc:PROCESS(...)		PROCEDURE	P(...)	IS									FUNCTION	F(...)	RETURN	Tp	IS
			
		BEGIN														BEGIN																							BEGIN
			
		END	PROCESS	Proc;		END	PROCEDURE	P;												END	FUNCTION	F;

Syntax

Examples

Placement

Comments

LRM

File writing (TEXTIO)

(No syntax)

	USE	STD.TEXTIO.ALL;	--	Make	TEXTIO	accessible
	ARCHITECTURE	Behave	OF	Filehandling	IS
			TYPE Reg	IS RECORD
					Number	:	POSITIVE;
					Sum				:	NATURAL;
			END RECORD;
			FILE	MyFile	:	TEXT	OPEN	WRITE_MODE	IS	”data.txt”;
	BEGIN
			PROCESS
 VARIABLE	l							:	LINE;	--	declare	a	line	variable
					VARIABLE	fNumber	:	POSITIVE;
					VARIABLE	fSum				:	NATURAL;
 BEGIN
					WRITE(l,fNumber);	--	Write	an	element	to	a	line	...
 WRITE(l,’	‘);					--	...	separate	with	a	blank	...
					WRITE(l,fSum);				--	...	another	element	to	the	same	line	...
 WRITELINE(MyFile,l); -- ... and write the line to the file
					...
			END PROCESS;
	END ARCHITECTURE	Behave;

	VARIABLE	l	:	LINE;
	l	:=	NEW	STRING’(”My	question”);
	WRITELINE(OUTPUT,l);	--	Writes	”My	question”	in	the	simulator
	READLINE(INPUT,l);			--	Reads	the	answer	from	the	keyboard

• When writing text to a text file, all elements are first written to a line using
WRITE and finally the whole line is written to the file using WRITELINE.

• The predefined file OUTPUT (see example above) writes to the screen or to an
output file during simulation. No information is given about the current simula-
tion time as it is when using REPORT (see page 38). The handling of OUTPUT is
tool dependant.

• Files are not synthesizable.
• File handling in VHDL has been considerably modified between VHDL’87 and

VHDL’93 (see page 71). The modifications are not backwards compatible. The
examples above are according to VHDL’93.

§ 14.3

Types and objects

22
Copyright © 1997-2000 HARDI Electronics AB

Syntax

Examples

Placement

Comments

																																																	Blk:BLOCK
		PACKAGE	Pack	IS				PACKAGE	BODY	Pack	IS										...
																										BEGIN
		END	PACKAGE	Pack;		END	PACKAGE	BODY	Pack;								...
																																																	END	BLOCK	Blk;

		ENTITY	Ent	IS						ARCHITECTURE	Arc	OF	Ent	IS		
																										CONFIGURATION	Conf	OF	Ent	IS	
		BEGIN														BEGIN																									...
																										END	CONFIGURATION	Conf;
		END	ENTITY	Ent;				END	ARCHITECTURE	Arc;

		Proc:PROCESS(...)		PROCEDURE	P(...)	IS									FUNCTION	F(...)	RETURN	Tp	IS
			
		BEGIN														BEGIN																							BEGIN
			
		END	PROCESS	Proc;		END	PROCEDURE	P;												END	FUNCTION	F;

LRM

ALIAS

alias-declaration –›
 alias (identifier | character-literal | operator-symbol) [‘:’ subtype-indication]
 is name [signature] ‘;’
signature –› ‘[’ [type-name { ‘,’ type-name }] [return type-name] ‘]’
subtype-indication –›
 [resolution-function-name] type-name [range-constraint | index-constraint]

	SIGNAL	data	:	SIGNED(7	DOWNTO	0);
	ALIAS	sign	:	BIT	IS	data(7);
	...
	REPORT	”The	sign	bit	is	”	&	BIT’IMAGE(sign);

	--	The	alias	below	gives	a	certain	index	range	to	be	able	to
	--	calculate	n	not	depending	on	v’s	index	range
	FUNCTION	Bv2Natural(v	:	IN	BIT_VECTOR)	RETURN	NATURAL	IS
			ALIAS	aliasV	:	BIT_VECTOR(v’LENGTH	-	1	DOWNTO	0)	IS	v;
			VARIABLE	n	:	NATURAL;
	BEGIN
			...
			FOR	i	IN	aliasV’RANGE	LOOP
					IF	aliasV(i)	=	‘1’	THEN
								n	:=	n	+	2**i;
			...
			RETURN	n;
	END FUNCTION Bv2Natural;

	CONSTANT	MaxDelayClockToPad	:	TIME	:=	15	ns;
	ALIAS	MDC2P	:	TIME	IS	MaxDelayClockToPad;
	--	MDC2P	=	MaxDelayClockToPad

	SUBTYPE	MyVeryVeryLongTypeName	IS	BIT_VECTOR(3	DOWNTO	0);
	ALIAS	ShortName	IS	MyVeryVeryLongTypeName;

• An alias creates an alternative name for an existing object. It does not create a
new object. It is often used to easier get access to elements in one-dimensional
arrays.

• In VHDL’87 it is only possible to declare aliases for objects. In VHDL’93 it is
possible also for subprograms, operators, types and for all named entities except
”labels”, ”loop parameters” and ”generate parameters”.

§ 4.3.3

Types and objects

23
Copyright © 1997-2000 HARDI Electronics AB

Syntax

Examples

Placement

Comments

																																																	Blk:BLOCK
		PACKAGE	Pack	IS				PACKAGE	BODY	Pack	IS										...
																										BEGIN
		END	PACKAGE	Pack;		END	PACKAGE	BODY	Pack;								...
																																																	END	BLOCK	Blk;

		ENTITY	Ent	IS						ARCHITECTURE	Arc	OF	Ent	IS		
																										CONFIGURATION	Conf	OF	Ent	IS	
		BEGIN														BEGIN																									...
																										END	CONFIGURATION	Conf;
		END	ENTITY	Ent;				END	ARCHITECTURE	Arc;

		Proc:PROCESS(...)		PROCEDURE	P(...)	IS									FUNCTION	F(...)	RETURN	Tp	IS
			
		BEGIN														BEGIN																							BEGIN
			
		END	PROCESS	Proc;		END	PROCEDURE	P;												END	FUNCTION	F;

LRM

LIBRARY and USE

library-clause –›
 library logical-name-identifier { ‘,’ logical-name-identifier } ‘;’
use-clause –›
 use selected-name { ‘,’ selected-name } ‘;’

selected-name –› prefix ‘.’ suffix

	LIBRARY IEEE,	HARDI;
	USE IEEE.STD_LOGIC_1164.ALL;
 USE IEEE.NUMERIC_STD.ALL,	HARDI.Devices.ALL;

	LIBRARY	PACK;
	USE	WORK.OnePackage.MyType;		--	Select	a	unit	from	the	package
	USE	PACK.AnotherPackage.ALL;	--	Select	the	whole	package

	--	The	following	declarations	exist	implicitely:
	LIBRARY	WORK,	STD;
	USE	STD.STANDARD.ALL;

• The LIBRARY clause declares the name of a library. After that the desired parts
of the library are selected using USE.

• Via ALL everything in a library or package is selected.
• The libraries WORK and STD and also the package STD.STANDARD are

always accessible.
• LIBRARY must be placed before the design unit that shall use it, but USE can

also be placed within the design units. It is however good practice to place both
LIBRARY and USE before the design units that shall use them.

• An architecture has the same LIBRARY and USE as its entity. A package body
has the same as its package declaration. A configuration declaration has the
same as its entity and architecture.

USE

LIBRARY, USE

USE

LIBRARY, USE

USE

LIBRARY, USE

USE

LIBRARY, USE

USE USE

USE

LIBRARY, USE

USE

USE

§ 11.2, 10.4

 Libraries

Libraries

24
Copyright © 1997-2000 HARDI Electronics AB

Syntax

Examples

Design unit

Comments

																																																	Blk:BLOCK
		PACKAGE	Pack	IS				PACKAGE	BODY	Pack	IS										...
																										BEGIN
		END	PACKAGE	Pack;		END	PACKAGE	BODY	Pack;								...
																																																	END	BLOCK	Blk;

		ENTITY	Ent	IS						ARCHITECTURE	Arc	OF	Ent	IS		
																										CONFIGURATION	Conf	OF	Ent	IS	
		BEGIN														BEGIN																									...
																										END	CONFIGURATION	Conf;
		END	ENTITY	Ent;				END	ARCHITECTURE	Arc;

		Proc:PROCESS(...)		PROCEDURE	P(...)	IS									FUNCTION	F(...)	RETURN	Tp	IS
			
		BEGIN														BEGIN																							BEGIN
			
		END	PROCESS	Proc;		END	PROCEDURE	P;												END	FUNCTION	F;

LRM

PACKAGE DECLARATION

package-declaration –›
 package identifier is
 { subprogram-declaration | type-declaration | subtype-declaration |
 constant-declaration | signal-declaration | shared-variable-declaration |
 file-declaration | alias-declaration | component-declaration |
 attribute-declaration | attribute-specification | disconnect-specification |
 use-clause | group-template-declaration | group-declaration }
 end [package] [package-name-identifier] ‘;’

	LIBRARY	IEEE;
	USE	IEEE.STD_LOGIC_1164.ALL;

	PACKAGE	Various	IS
			CONSTANT	hold	:	TIME;	--	deferred	constant
			PROCEDURE	Push(SIGNAL	button	:	INOUT	STD_LOGIC;	hold	:	TIME);
			TYPE	Display	IS RECORD
					...
			END RECORD;
			COMPONENT	Clock	IS
					PORT(mode,	set,	reset,	clk		:	IN		STD_LOGIC;
										LCD																				:	OUT	Display;
										backPlane,	alarmSignal	:	OUT	STD_LOGIC);
			END COMPONENT	Clock;
	END PACKAGE	Various;

• A package is used for declarations that shall be shared by several design units.
The package contains two parts – package declaration that contains the declara-
tions and package body that implements the contents of the package.

• A package declaration does not need a package body.
• There is a number of packages available in VHDL. The packages standardized by

IEEE are listed on pages 56-65.

§ 2.5

Design units
Design units

25
Copyright © 1997-2000 HARDI Electronics AB

Syntax

Examples

Design unit

Comments

																																																	Blk:BLOCK
		PACKAGE	Pack	IS				PACKAGE	BODY	Pack	IS										...
																										BEGIN
		END	PACKAGE	Pack;		END	PACKAGE	BODY	Pack;								...
																																																	END	BLOCK	Blk;

		ENTITY	Ent	IS						ARCHITECTURE	Arc	OF	Ent	IS		
																										CONFIGURATION	Conf	OF	Ent	IS	
		BEGIN														BEGIN																									...
																										END	CONFIGURATION	Conf;
		END	ENTITY	Ent;				END	ARCHITECTURE	Arc;

		Proc:PROCESS(...)		PROCEDURE	P(...)	IS									FUNCTION	F(...)	RETURN	Tp	IS
			
		BEGIN														BEGIN																							BEGIN
			
		END	PROCESS	Proc;		END	PROCEDURE	P;												END	FUNCTION	F;

LRM

PACKAGE BODY

	LIBRARY	IEEE;																--	These	two	lines	could	have	been
	USE	IEEE.STD_LOGIC_1164.ALL;	--	left	out	since	they	already	are
																														--	declared	in	the	package
																														--	declaration

	PACKAGE BODY	Various	IS
			CONSTANT	hold	:	TIME	:=	100	ns;	--	deferred	constant
			PROCEDURE	Push(SIGNAL	button	:	INOUT	STD_LOGIC;	hold	:	TIME)	IS
			BEGIN
					button	<=	‘0’,	‘1’	AFTER	hold;
					WAIT FOR	2*hold;
			END PROCEDURE	Push;
	END PACKAGE BODY	Various;

• A package body is used to implement a package. Usually subprograms are im-
plemented and so called deferred constants, constants declared but not assigned
values in a package declaration, are assigned values.

• It is possible to declare types and subprograms in a package body, but they are
then only accessible within the package body.

• There is a number of packages available in VHDL. The packages standardized
by IEEE are listed on pages 56-65.

• A package body must have a package declaration and they must have the same
name. The package body is compiled after its package declaration.

package-body –›
 package body package-name-identifier is
 { subprogram-declaration | subprogram-body | type-declaration |
 subtype-declaration | constant-declaration | shared-variable-declaration |
 file-declaration | alias-declaration | use-clause | group-template-declaration |
 group-declaration }
 end [package body] [package-name-identifier] ‘;’

§ 2.6

Design units

26
Copyright © 1997-2000 HARDI Electronics AB

Syntax

Examples

Design unit

Comments

																																																	Blk:BLOCK
		PACKAGE	Pack	IS				PACKAGE	BODY	Pack	IS										...
																										BEGIN
		END	PACKAGE	Pack;		END	PACKAGE	BODY	Pack;								...
																																																	END	BLOCK	Blk;

		ENTITY	Ent	IS						ARCHITECTURE	Arc	OF	Ent	IS		
																										CONFIGURATION	Conf	OF	Ent	IS	
		BEGIN														BEGIN																									...
																										END	CONFIGURATION	Conf;
		END	ENTITY	Ent;				END	ARCHITECTURE	Arc;

		Proc:PROCESS(...)		PROCEDURE	P(...)	IS									FUNCTION	F(...)	RETURN	Tp	IS
			
		BEGIN														BEGIN																							BEGIN
			
		END	PROCESS	Proc;		END	PROCEDURE	P;												END	FUNCTION	F;

LRM

ENTITY

entity-declaration –›
 entity identifier is
 [formal-generic-clause]
 [formal-port-clause]
 { subprogram-decl. | subprogram-body | type-decl. | subtype-decl. | constant-
 decl. | signal-decl. | shared-variable-decl. | file-decl. | alias-decl. | attribute-
 decl. | attribute-spec. | disconnect-spec. | use-clause | group-template-decl. |
 group-decl. }
 [begin
 { concurrent-assertion-statement | passive-procedure-call |
 passive-process-statement }]
 end [entity] [entity-name-identifier] ‘;’

	LIBRARY	IEEE,	TYPES,	HARDI;
	USE	IEEE.STD_LOGIC_1164.ALL;
	USE	TYPES.TypePackage.ALL;
	USE	HARDI.Timing.ALL;

	ENTITY	Design	IS
			GENERIC	(n	:	NATURAL);
			PORT	(data				:	IN		STD_LOGIC_VECTOR(n	DOWNTO	0);
									clk					:	IN		STD_LOGIC;
									outData	:	OUT	OutDataType);
	BEGIN
			PeriodCheck(clk,	MaxPeriod);	--	Passive	procedure	call
	END ENTITY	Design;

• An entity is the interface of a design.
• The entity contains a declaration part and a statement part. The declaration part

declares the interface of the design, the statement part may contain passive state-
ments, i.e. statements not assigning signals. The purpose of the statement part is
to be able to verify the behavior of the signals declared in the declaration part, i.e.
the ports.

• Each entity in a design must have a unique name while each entity can have
several architectures. Everything declared in an entity is automatically accessible
in its architectures.

• Note the order of the declarations in the declaration part of the entity.

§ 1.1

Design units

27
Copyright © 1997-2000 HARDI Electronics AB

Syntax

Examples

Design unit

Comments

																																																	Blk:BLOCK
		PACKAGE	Pack	IS				PACKAGE	BODY	Pack	IS										...
																										BEGIN
		END	PACKAGE	Pack;		END	PACKAGE	BODY	Pack;								...
																																																	END	BLOCK	Blk;

		ENTITY	Ent	IS						ARCHITECTURE	Arc	OF	Ent	IS		
																										CONFIGURATION	Conf	OF	Ent	IS	
		BEGIN														BEGIN																									...
																										END	CONFIGURATION	Conf;
		END	ENTITY	Ent;				END	ARCHITECTURE	Arc;

		Proc:PROCESS(...)		PROCEDURE	P(...)	IS									FUNCTION	F(...)	RETURN	Tp	IS
			
		BEGIN														BEGIN																							BEGIN
			
		END	PROCESS	Proc;		END	PROCEDURE	P;												END	FUNCTION	F;

LRM

ARCHITECTURE

	ARCHITECTURE	Behave	OF	Design	IS
 FUNCTION	InternalCalc(v	:	STD_LOGIC_VECTOR(7	DOWNTO	0))
					RETURN	BIT_VECTOR(1	TO	4)	IS
			BEGIN
					...
			END FUNCTION	InternalCalc;
			SUBTYPE	MyArray	IS	BIT_VECTOR(3	DOWNTO	0);
			SIGNAL	internal	:	MyArray;
			SHARED VARIABLE	data	:	STD_LOGIC_VECTOR(1	TO	8);
	BEGIN
			PROCESS(clk)
			BEGIN
					...
			END PROCESS;

			internal	<=	InternalCalc(data);
	END ARCHITECTURE	Behave;

• An architecture is the implementation of an entity. It contains a declaration
part and a statement part. The declaration part may for example declare types,
components and subprograms that shall be internal within the architecture.

• An entity may have an unlimited amount of architectures. The architectures as-
sociated with the same entity must have unique names.

• An entity and its architectures belong to the same declarative region. Everything
declared in the entity is therefore accessible in its architectures.

• At synthesis or simulation an architecure must be selected for each entity. If
nothing else is specified, for example using a configuration (see page 28, 49-50),
the last compiled architecture is used.

architecture-body –›
 architecture identifier of entity-name is
 { subprogram-declaration | subprogram-body | type-declaration |
 subtype-declaration | constant-declaration | signal-declaration |
 shared-variable-declaration | file-declaration | alias-declaration |
 component-declaration | attribute-declaration | attribute-specification |
 configuration-specification | disconnect-specification | use-clause |
 group-template-declaration | group-declaration }
 begin
 { concurrent-statement }
 end [architecture] [architecture-name-identifier] ‘;’

§ 1.2

Design units

28
Copyright © 1997-2000 HARDI Electronics AB

Syntax

Examples

Design unit

Comments

																																																	Blk:BLOCK
		PACKAGE	Pack	IS				PACKAGE	BODY	Pack	IS										...
																										BEGIN
		END	PACKAGE	Pack;		END	PACKAGE	BODY	Pack;								...
																																																	END	BLOCK	Blk;

		ENTITY	Ent	IS						ARCHITECTURE	Arc	OF	Ent	IS		
																										CONFIGURATION	Conf	OF	Ent	IS	
		BEGIN														BEGIN																									...
																										END	CONFIGURATION	Conf;
		END	ENTITY	Ent;				END	ARCHITECTURE	Arc;

		Proc:PROCESS(...)		PROCEDURE	P(...)	IS									FUNCTION	F(...)	RETURN	Tp	IS
			
		BEGIN														BEGIN																							BEGIN
			
		END	PROCESS	Proc;		END	PROCEDURE	P;												END	FUNCTION	F;

LRM

CONFIGURATION

configuration-declaration –›
	 configuration identifier of entity-name is
 { use-clause | attribute-specification | group-declaration }
 for block-specification
 { use-clause }
 { block-configuration | component-configuration }
 end [configuration] [configuration-name-identifier] ‘;’

block-specification –›
 architecture-name | block-statement-label |
 generate-statement-label [‘(’ index-specification ‘)’]

	LIBRARY	COMP;

	CONFIGURATION MyConfiguration OF MyEntity	IS
	 FOR	MyArchitecture
					FOR ALL	:	SubBlock	USE ENTITY	WORK.Ent(Arc)
							GENERIC MAP(...)
 PORT MAP(...);
					END FOR;
					FOR	SubBlock2
							FOR	C1	:	AComponent	USE ENTITY	COMP.Ent2(Arc2);
							END FOR;
					END FOR;
			END FOR;
 END CONFIGURATION MyConfiguration;

• A CONFIGURATION (configuration declaration) is a separate design unit and is
used to associate the entities and architectures in a design. It can also give values
to generic parameters (see page 44-45).

• A CONFIGURATION is the most powerful of the three available configurations
in VHDL. In VHDL’93 it may connect unconnected ports, ports that was not con-
nected by a configuration specification (see page 49). That is called incremental
binding.

• A CONFIGURATION connects all parts of a design and shall therefore be compi-
led as the last design unit.

• All three possible configurations are described on pages 48-50.

§ 1.3

Design units

29
Copyright © 1997-2000 HARDI Electronics AB

																																																	Blk:BLOCK
		PACKAGE	Pack	IS				PACKAGE	BODY	Pack	IS										...
																										BEGIN
		END	PACKAGE	Pack;		END	PACKAGE	BODY	Pack;								...
																																																	END	BLOCK	Blk;

		ENTITY	Ent	IS						ARCHITECTURE	Arc	OF	Ent	IS		
																										CONFIGURATION	Conf	OF	Ent	IS	
		BEGIN														BEGIN																									...
																										END	CONFIGURATION	Conf;
		END	ENTITY	Ent;				END	ARCHITECTURE	Arc;

		Proc:PROCESS(...)		PROCEDURE	P(...)	IS									FUNCTION	F(...)	RETURN	Tp	IS
			
		BEGIN														BEGIN																							BEGIN
			
		END	PROCESS	Proc;		END	PROCEDURE	P;												END	FUNCTION	F;

Syntax

Examples

Placement

Comments

LRM

WAIT

wait-statement –›
 [label ‘:’] wait [on sensitivity-list] [until boolean-expression]
 [for time-expression] ‘;’

sensitivity-list –› signal-name { ‘,’ signal-name }

	SIGNAL s,	p	:	BIT;
	 ...
	VARIABLE v	:	BIT;
	VARIABLE t	:	TIME;
			...
	WAIT	ON	s; 																				--	Wait	for	value	changes	on	s
	WAIT	ON	s	UNTIL	s	=	‘1’; 						--	Wait	for	a	rising	edge	on	s
	WAIT	UNTIL	s	=	‘1’; 											--	Wait	for	a	rising	edge	on	s
	WAIT;																										--	Never	passed
 WAIT UNTIL	v;																		--	Never	passed
	WAIT	UNTIL	NOW	=	t; 											--	Never	passed
	WAIT	ON	s	UNTIL	p	=	‘1’	FOR	t;	--	Wait	for	value	changes	on	s,
																																--	then	verify	that	p	=	‘1’,	or	
																																--	wait	at	maximum	the	time	t
																																--	(timeout)
	WAIT FOR	10	ns;																--	Pass	WAIT	after	10	ns
	WAIT FOR	t	-	NOW;														--	Pass	WAIT	after	the	time	t
																																--	minus	current	simulation	time

• The WAIT statement has three conditional parts that may be combined: ON that
detects value changes, UNTIL that verifies a logical expression and FOR that
limits in time (timeout).

• A WAIT statement may exist without a condition and will then never be passed.
• A variable does not have an event and does therefore not work in a WAIT ON

statement. For the same reason expressions without signals do not work in a
WAIT UNTIL statement. Such WAIT statements are suspended forever.

• Most synthesis tools accept just one WAIT statement for each process. The
number is unlimited for simulation. See also page 40 (PROCESS).

• At simulation start every process executes until it reaches its first WAIT state-
ment.

§ 8.1

Sequential statements

Sequential statements

30
Copyright © 1997-2000 HARDI Electronics AB

Syntax

Examples

Placement

Comments

																																																	Blk:BLOCK
		PACKAGE	Pack	IS				PACKAGE	BODY	Pack	IS										...
																										BEGIN
		END	PACKAGE	Pack;		END	PACKAGE	BODY	Pack;								...
																																																	END	BLOCK	Blk;

		ENTITY	Ent	IS						ARCHITECTURE	Arc	OF	Ent	IS		
																										CONFIGURATION	Conf	OF	Ent	IS	
		BEGIN														BEGIN																									...
																										END	CONFIGURATION	Conf;
		END	ENTITY	Ent;				END	ARCHITECTURE	Arc;

		Proc:PROCESS(...)		PROCEDURE	P(...)	IS									FUNCTION	F(...)	RETURN	Tp	IS
			
		BEGIN														BEGIN																							BEGIN
			
		END	PROCESS	Proc;		END	PROCEDURE	P;												END	FUNCTION	F;

LRM

IF

	PROCESS(reset,clk)
	BEGIN
	 IF	reset	=	‘1’	THEN
 ...
			ELSIF	clk’EVENT	AND	clk	=	‘1’	THEN
					...
			END IF;
	END PROCESS;

 ANDgate:	IF	en	=	‘1’	THEN
 q	<=	d;
 ELSE
 q	<=	‘0’;
	END IF;

 Latch:	IF	en	=	‘1’	THEN
 q	<=	d;
	END IF;

 IF	a	=	Func(i*2#01001001#)	THEN
 		...
	END IF;

• All conditions in an IF statement must be of the type BOOLEAN.
• The syntax for the IF statement is quite odd – ELSIF is spelled as one word

without an intermediate ’E’. END IF is two separate words.

if-statement –› [if-label ‘:’] if boolean-expression then
 { sequential-statement }
 { elsif boolean-expression then
 { sequential-statement } }
 [else {sequential-statement }]
 end if [if-label] ‘;’

§ 8.7

Sequential statements

31
Copyright © 1997-2000 HARDI Electronics AB

																																																	Blk:BLOCK
		PACKAGE	Pack	IS				PACKAGE	BODY	Pack	IS										...
																										BEGIN
		END	PACKAGE	Pack;		END	PACKAGE	BODY	Pack;								...
																																																	END	BLOCK	Blk;

		ENTITY	Ent	IS						ARCHITECTURE	Arc	OF	Ent	IS		
																										CONFIGURATION	Conf	OF	Ent	IS	
		BEGIN														BEGIN																									...
																										END	CONFIGURATION	Conf;
		END	ENTITY	Ent;				END	ARCHITECTURE	Arc;

		Proc:PROCESS(...)		PROCEDURE	P(...)	IS									FUNCTION	F(...)	RETURN	Tp	IS
			
		BEGIN														BEGIN																							BEGIN
			
		END	PROCESS	Proc;		END	PROCEDURE	P;												END	FUNCTION	F;

Syntax

Examples

Placement

Comments

LRM

CASE

	PROCESS
	BEGIN
 WAIT ON	number;
			CASE	number	IS
 WHEN	0											=>	...			--	When	”number”	is	0
					WHEN	2	|	5	|	243	=>	...			--	When	”number”	is	2,	5	or	243
					WHEN	6	TO	18					=>	...			--	In	the	interval	6	to	18
					WHEN OTHERS						=>	NULL;	--	At	all	other	values,	do	nothing
			END CASE;
	END PROCESS;

	SIGNAL	s	:	STD_ULOGIC;
	...
	CASE	s	IS
 WHEN	‘0’				=>	...
			WHEN	‘1’				=>	...
			WHEN OTHERS	=>	NULL;	--	Must	exist	(or	a	compilation	error
																								--	will	occur)
	END CASE;

• The CASE statement must specify all possible values of the expression. If not
all possible values are covered, a compilation error will occur. OTHERS may be
used to cover ”all other values”.

• The expression can be of an integer type, an enumerated type or a one-dimensio-
nal array with elements written as characters (for example STRING, BIT_VEC-
TOR, STD_LOGIC_VECTOR etc.).

• Note that the types STD_LOGIC and STD_ULOGIC have more possible values
than ‘0’ and ‘1’. They must also be included in the CASE statement (see above).

• The reserved word NULL is useful in combination with OTHERS. Together they
specify that ”at all other values nothing shall happen”.

case-statement –› [case-label ‘:’] case expression is
 when choices ‘=>’ { sequential-statement }
 { when choices ‘=>’ { sequential-statement }
}
 end case [case-label] ‘;’
choices –› choice { | choice }

§ 8.8

 Sequential statements

32
Copyright © 1997-2000 HARDI Electronics AB

Syntax

Examples

Placement

Comments

																																																	Blk:BLOCK
		PACKAGE	Pack	IS				PACKAGE	BODY	Pack	IS										...
																										BEGIN
		END	PACKAGE	Pack;		END	PACKAGE	BODY	Pack;								...
																																																	END	BLOCK	Blk;

		ENTITY	Ent	IS						ARCHITECTURE	Arc	OF	Ent	IS		
																										CONFIGURATION	Conf	OF	Ent	IS	
		BEGIN														BEGIN																									...
																										END	CONFIGURATION	Conf;
		END	ENTITY	Ent;				END	ARCHITECTURE	Arc;

		Proc:PROCESS(...)		PROCEDURE	P(...)	IS									FUNCTION	F(...)	RETURN	Tp	IS
			
		BEGIN														BEGIN																							BEGIN
			
		END	PROCESS	Proc;		END	PROCEDURE	P;												END	FUNCTION	F;

LRM

LOOP, NEXT and EXIT

loop-statement –›
 [loop-label ‘:’] [while boolean-expression | for identifier in discrete-range]
loop
 { sequential statement }
 end loop [loop-label] ‘;’
exit-statement –› [label ‘:’] exit [loop-label] [when boolean-expression] ‘;’

	L1:	LOOP
			L2:	WHILE	count	<	15	LOOP
					NEXT	L2	WHEN	value	=	12;
					count	:=	count	+	Func(value);
			END LOOP	L2;
	END LOOP	L1;

	FOR	i	IN	anArray’RANGE	LOOP
			EXIT WHEN	IS_X(anArray(i));	--	Exit	if	the	array	contains	any
																															--	‘U’,	‘X’,	‘Z’,	‘W’	or	‘-’	
			IF	anArray(i)	=	‘1’	THEN
					REPORT	”There	is	a	1	at	position	”	&	INTEGER’IMAGE(i);
			END IF;
	END LOOP;

	factorial	:=	1;
	FOR	j	IN	1	TO	n	LOOP
			factorial	:=	factorial*j;
	END LOOP;

• FOR loops are in general synthesizable, but not WHILE loops.
• FOR loops loop according to a loop variable that shall be an integer or an enume-

rated type. The loop variable shall not be declared.
• WHILE loops loop as long as a BOOLEAN expression is true.
• EXIT jumps out of the loop and NEXT goes directly to the next iteration, not

executing any code between NEXT and END LOOP.
• It is useful to name loops since it then is possible to specify what loop to exit or

iterate using EXIT or NEXT.
• It is not possible to affect the length of the steps in a FOR loop.

§ 8.9-8.11

Sequential statements

33
Copyright © 1997-2000 HARDI Electronics AB

																																																	Blk:BLOCK
		PACKAGE	Pack	IS				PACKAGE	BODY	Pack	IS										...
																										BEGIN
		END	PACKAGE	Pack;		END	PACKAGE	BODY	Pack;								...
																																																	END	BLOCK	Blk;

		ENTITY	Ent	IS						ARCHITECTURE	Arc	OF	Ent	IS		
																										CONFIGURATION	Conf	OF	Ent	IS	
		BEGIN														BEGIN																									...
																										END	CONFIGURATION	Conf;
		END	ENTITY	Ent;				END	ARCHITECTURE	Arc;

		Proc:PROCESS(...)		PROCEDURE	P(...)	IS									FUNCTION	F(...)	RETURN	Tp	IS
			
		BEGIN														BEGIN																							BEGIN
			
		END	PROCESS	Proc;		END	PROCEDURE	P;												END	FUNCTION	F;

Syntax

Examples

Placement

Comments

LRM

FUNCTION

function-declaration –› function-specification ‘;’
function-specification –› [pure | impure] function (identifier | operator)
 [‘(’ interface-list ‘)’] return type-name
function-body –› function-specification is { subprogram-declarative-item }
 begin { sequential-statement }
 end [function] [function-identifier | operator] ‘;’
interface-list –› [constant | signal | file]	identifier { ‘,’ identifier } ‘:’ [in]
 subtype-indication [:= static_expression]

	--	declaration
	FUNCTION	AnyZeros(CONSTANT	v	:	IN BIT_VECTOR)	RETURN	BOOLEAN;
	--	implementation	
	FUNCTION	AnyZeros(CONSTANT	v	:	IN BIT_VECTOR)	RETURN	BOOLEAN	IS
	BEGIN
			FOR	i	IN	v’RANGE	LOOP
					IF	v(i)	=	‘1’	THEN
							RETURN	TRUE;
					END IF;
			END LOOP;
			RETURN	FALSE;
	END FUNCTION	AnyZeros;

	--	Function	call
	q	<=	Func(p1	=>	v1,	p2	=>	v2);	--	Named	association
	q	<=	Func(v1,	v2);													--	Positional	association

	FUNCTION	”AND”(...)	RETURN ...; -- A userdefined operator
	FUNCTION	”+”(...)	RETURN	...;			--	Another	one
	--	Operator	call
	q	<=	a	+	b;	--	The	types	of	a,	b	and	q	determine	which	”+”	to
 -- call (eventually a user-defined operator)

• A function returns a single value.
• The formal parameters of a function (the interface-list) are handled as constants

with mode IN if nothing else is specified. Possible parameters are constants and
signals, with mode IN, and files. Parameters with mode IN may only be read.

• A function may not include any WAIT statements.
• It is not permitted to declare signals in subprograms.
• Functions are either PURE or IMPURE. A PURE FUNCTION has no side-effec-

ts, i.e. it will always return the same value with the same input parameters, while
an IMPURE FUNCTION may have side-effects (for example assigning signals,
opening files etc.). If nothing else is said the function is considered PURE.

Decl

Decl,Body

§ 2.1-2.3

Decl,Body

Decl,Body

Decl,Body

Decl,Body

Decl,Body

Decl,Body

Sequential statements

34
Copyright © 1997-2000 HARDI Electronics AB

Syntax

Examples

Placement

Comments

																																																	Blk:BLOCK
		PACKAGE	Pack	IS				PACKAGE	BODY	Pack	IS										...
																										BEGIN
		END	PACKAGE	Pack;		END	PACKAGE	BODY	Pack;								...
																																																	END	BLOCK	Blk;

		ENTITY	Ent	IS						ARCHITECTURE	Arc	OF	Ent	IS		
																										CONFIGURATION	Conf	OF	Ent	IS	
		BEGIN														BEGIN																									...
																										END	CONFIGURATION	Conf;
		END	ENTITY	Ent;				END	ARCHITECTURE	Arc;

		Proc:PROCESS(...)		PROCEDURE	P(...)	IS									FUNCTION	F(...)	RETURN	Tp	IS
			
		BEGIN														BEGIN																							BEGIN
			
		END	PROCESS	Proc;		END	PROCEDURE	P;												END	FUNCTION	F;

LRM

PROCEDURE

procedure-declaration –› procedure-specification ‘;’
procedure-specification –› procedure identifier [‘(’ interface-list ‘)’]
procedure-body –› procedure-specification is { subprogram-declarative-item }
 begin { sequential-statement }
 end [procedure] [procedure-identifier] ‘;’
interface-list –› [constant | signal | variable | file]	identifier { ‘,’ identifier } ‘:’
 [in | out | inout | buffer | linkage] subtype-indication [bus]
 [:= static_expression]

	--	declaration
	PROCEDURE	AnyZeros(CONSTANT	inArray	:	IN 	BIT_VECTOR;
 VARIABLE	result :	OUT	BOOLEAN);
	--	implementation	
	PROCEDURE	AnyZeros(CONSTANT	inArray	:	IN BIT_VECTOR;
																				VARIABLE	result		:	OUT	BOOLEAN)	IS
	BEGIN
 result	:=	FALSE;	--	default	assignment
			FOR	i	IN	inArray’RANGE	LOOP
					IF	inArray(i)	=	‘1’	THEN
							result	:=	TRUE;
					END IF;
			END LOOP;
	END PROCEDURE	AnyZeros;

	PROCEDURE	Finish	IS
	BEGIN
			REPORT	”The	simulation	stopped	at	the	time	”	&	TIME’IMAGE(NOW);
	END PROCEDURE	Finish;

	--	The	procedure	”Finish”	is	called	when	executing	the	line:
	Finish;

• A procedure may contain a number of parameters that are read and/or modified at
a procedure call. All parameters shall be declared in the procedure’s interface-list
and separated by a ‘;’. If nothing else is specified the parameters are handled as
constants with the mode IN. It is possible to not have any parameters at all.

• The parameters can be constants, variables, signals or files. All parameters with
the mode OUT or INOUT are as default variables, while parameters with the
mode IN are constants. Constants do always have the mode IN, while variables
and signals may be of the modes IN, INOUT or OUT. Files do not have a mode.

• A procedure may contain WAIT statements.
• It is not permitted to declare signals in subprograms.

§ 2.1-2.3

Decl

Decl,Body

Decl,Body

Decl,Body

Decl,Body

Decl,Body

Decl,Body

Decl,Body

Sequential statements

35
Copyright © 1997-2000 HARDI Electronics AB

																																																	Blk:BLOCK
		PACKAGE	Pack	IS				PACKAGE	BODY	Pack	IS										...
																										BEGIN
		END	PACKAGE	Pack;		END	PACKAGE	BODY	Pack;								...
																																																	END	BLOCK	Blk;

		ENTITY	Ent	IS						ARCHITECTURE	Arc	OF	Ent	IS		
																										CONFIGURATION	Conf	OF	Ent	IS	
		BEGIN														BEGIN																									...
																										END	CONFIGURATION	Conf;
		END	ENTITY	Ent;				END	ARCHITECTURE	Arc;

		Proc:PROCESS(...)		PROCEDURE	P(...)	IS									FUNCTION	F(...)	RETURN	Tp	IS
			
		BEGIN														BEGIN																							BEGIN
			
		END	PROCESS	Proc;		END	PROCEDURE	P;												END	FUNCTION	F;

Syntax

Examples

Placement

Comments

LRM

RETURN

return-statement –›
 [label ‘:’] return [expression] ‘;’

	FUNCTION	AnyZeros(CONSTANT	v	:	IN BIT_VECTOR)	RETURN	BOOLEAN	IS
	BEGIN
			FOR	i	IN	v’RANGE	LOOP
					IF	v(i)	=	‘1’	THEN
							RETURN	TRUE; --	Return	the	value	TRUE
					END IF;
			END LOOP;
			RETURN	FALSE; --	Return	the	value	FALSE
	END FUNCTION	AnyZeros;

• RETURN is used to exit subprograms. A RETURN statement in a function must
return a value, while a RETURN statement in a procedure must not have a value.
A procedure returns all values via its formal parameters.

• A function should contain at least one RETURN statement (without RETURN
the function is rather meaningless). It determines what value that will be returned
from the function.

• A procedure may contain RETURN, but it is not necessary. If it is included it is
used to exit the procedure. If no RETURN statement exists, the procedure will
end after the final line has been executed. RETURN can not return any value in a
procedure as it can in a function.

	PROCEDURE	AnyZeros(CONSTANT	inArray	:	IN 	STD_LOGIC_VECTOR;
																				VARIABLE	result		:	OUT	BOOLEAN) IS
	BEGIN
 IF IS_X(inArray)	THEN
					REPORT	”Unacceptable	values”;
					RETURN; --	Exit	the	procedure
			END IF;
 result	:=	FALSE;	--	default	assignment
			FOR	i	IN	inArray’RANGE	LOOP
					IF	inArray(i)	=	‘1’	THEN
							result	:=	TRUE;
					END IF;
			END LOOP;
	END PROCEDURE	AnyZeros;

§ 8.12

 Sequential statements

36
Copyright © 1997-2000 HARDI Electronics AB

Syntax

Examples

Placement

Comments

																																																	Blk:BLOCK
		PACKAGE	Pack	IS				PACKAGE	BODY	Pack	IS										...
																										BEGIN
		END	PACKAGE	Pack;		END	PACKAGE	BODY	Pack;								...
																																																	END	BLOCK	Blk;

		ENTITY	Ent	IS						ARCHITECTURE	Arc	OF	Ent	IS		
																										CONFIGURATION	Conf	OF	Ent	IS	
		BEGIN														BEGIN																									...
																										END	CONFIGURATION	Conf;
		END	ENTITY	Ent;				END	ARCHITECTURE	Arc;

		Proc:PROCESS(...)		PROCEDURE	P(...)	IS									FUNCTION	F(...)	RETURN	Tp	IS
			
		BEGIN														BEGIN																							BEGIN
			
		END	PROCESS	Proc;		END	PROCEDURE	P;												END	FUNCTION	F;

LRM

Variable assignment

variable-assignment-statement –›
 [label ‘:’] (variable-name | variable-aggregate) ‘:=’ expression ‘;’

	ARCHITECTURE	Behave	OF Design	IS
			SHARED VARIABLE	globalVariable	:	INTEGER;
	BEGIN
			PROCESS
					VARIABLE	internalVariable	:	REAL;
			BEGIN
					sharedVariable	:=	INTEGER(internalVariable);
 ...
			END PROCESS;
	END ARCHITECTURE	Behave;

	PROCESS
			VARIABLE	a	:	INTEGER	:=	0;
	BEGIN
			First	:	a	:=	a	+	2;
			Second:	a	:=	a	+	4;
			Final	:	a	:=	a	-	3;
			REPORT	INTEGER’IMAGE(a);	--	a	=	3	(i.e.	0	+	2	+	4	-	3)
	END PROCESS;

	v	:=	(2#0100#	+	Func(2.0*3.14))/ABS(x);

• A variable assignment immediately updates the value of the variable. The assign-
ment uses ‘:=’, i.e. the same sign used for default assignments.

• A variable can be assigned the value of a signal and vice versa.
• The expression in the variable assignment may be arbitrarily complex and for

example include subprogram calls.
• A variable may be assigned using a so called ”aggregate” (see page 13).
• Shared variables (see page 17) are global just as signals. Since variables do

not have the possibility to handle concurrent assignments from more than one
process, as signals can, shared variables are to be avoided.

§ 8.5

Sequential statements

37
Copyright © 1997-2000 HARDI Electronics AB

																																																	Blk:BLOCK
		PACKAGE	Pack	IS				PACKAGE	BODY	Pack	IS										...
																										BEGIN
		END	PACKAGE	Pack;		END	PACKAGE	BODY	Pack;								...
																																																	END	BLOCK	Blk;

		ENTITY	Ent	IS						ARCHITECTURE	Arc	OF	Ent	IS		
																										CONFIGURATION	Conf	OF	Ent	IS	
		BEGIN														BEGIN																									...
																										END	CONFIGURATION	Conf;
		END	ENTITY	Ent;				END	ARCHITECTURE	Arc;

		Proc:PROCESS(...)		PROCEDURE	P(...)	IS									FUNCTION	F(...)	RETURN	Tp	IS
			
		BEGIN														BEGIN																							BEGIN
			
		END	PROCESS	Proc;		END	PROCEDURE	P;												END	FUNCTION	F;

Syntax

Examples

Placement

Comments

LRM

Signal assignment

	ENTITY	Design	IS
			PORT(externalSignal	:	OUT	INTEGER);
	END ENTITY Design;

	ARCHITECTURE	Behave	OF Design	IS
			SIGNAL	internalSignal	:	REAL;
	BEGIN
			externalSignal	<=	INTEGER(internalSignal);
			...
	END ARCHITECTURE	Behave;

	SIGNAL	a	:	INTEGER	:=	0;
			...
	PROCESS
	BEGIN
			First	:	a	<=	a	+	2;
			Second:	a	<=	a	+	4;
			Final	:	a	<=	a	-	3;
			WAIT FOR	5	ns;
			REPORT	INTEGER’IMAGE(a);	--	a	=	-3	(i.e.	0	-	3)
	END PROCESS;

	s1	<=	INERTIAL	s	AFTER	10	ns;
	s2	<=	REJECT	5	ns	INERTIAL	s	AFTER	10	ns;
	s3	<=	TRANSPORT	s	AFTER	10	ns;

signal-assignment-statement –›
 [label ‘:’] (signal-name | signal-aggregate) ‘<=’ [delay-mechanism]
 waveform ‘;’
delay-mechanism –› transport | [reject time-expression] inertial
waveform –› waveform-element { ‘,’ waveform-element } | unaffected
waveform-element –› (value-expression | null) [after time-expression]

• A signal assignment immediately puts a value in the signal’s queue, but its driver
is updated first when the process finishes its execution, i.e. when it reaches a
WAIT statement or reaches the final line (when using a sensitivity list).

• A signal can be assigned the value of a variable and vice versa.
• The expression in the signal assignment may be arbitrarily complex and for

example include subprogram calls.
• A signal may be assigned using a so called ”aggregate” (see page 13).
• TRANSPORT generates a transmission delay of a signal.
• REJECT specifies pulses to be filtered (must be combined with INERTIAL).
• INERTIAL both filters and delays. INERTIAL is default.

§ 8.4, 9.5

 Sequential statements

38
Copyright © 1997-2000 HARDI Electronics AB

Syntax

Examples

Placement

Comments

																																																	Blk:BLOCK
		PACKAGE	Pack	IS				PACKAGE	BODY	Pack	IS										...
																										BEGIN
		END	PACKAGE	Pack;		END	PACKAGE	BODY	Pack;								...
																																																	END	BLOCK	Blk;

		ENTITY	Ent	IS						ARCHITECTURE	Arc	OF	Ent	IS		
																										CONFIGURATION	Conf	OF	Ent	IS	
		BEGIN														BEGIN																									...
																										END	CONFIGURATION	Conf;
		END	ENTITY	Ent;				END	ARCHITECTURE	Arc;

		Proc:PROCESS(...)		PROCEDURE	P(...)	IS									FUNCTION	F(...)	RETURN	Tp	IS
			
		BEGIN														BEGIN																							BEGIN
			
		END	PROCESS	Proc;		END	PROCEDURE	P;												END	FUNCTION	F;

LRM

ASSERT/REPORT

assertion-statement –›
 [label ‘:’] [postponed*] assert boolean-expression [report string-expression]
 [severity expression] ‘;’
report-statement –›
 [label ‘:’] report string-expression [severity expression] ‘;’
* postponed is only allowed in a concurrent ASSERT statement

	ARCHITECTURE	Behave	OF Design	IS
	BEGIN
			PROCESS
			BEGIN
					ASSERT	a	=	b	--	sequential	ASSERT
							REPORT	“a	and	b	are	not	equal”
									SEVERITY	WARNING;
					WAIT ON	a,	b;
					REPORT	”WAIT	was	just	passed”;
			END PROCESS;

			Control: POSTPONED ASSERT	a	=	12	--	Concurrent	ASSERT
					REPORT	“a	is	not	12”;
	END ARCHITECTURE	Behave;

	ASSERT	...
			REPORT	”xxx”;							--	The	ASSERT	statement	ends	here!
	REPORT	”yyy”										--	This	line	has	nothing	to	do	with	ASSERT
			SEVERITY NOTE; -- NOTE defined for the second REPORT

	ASSERT	...
			REPORT	”xxx”	&	”yyy”	--	Here	both	REPORT	and	SEVERITY	are
					SEVERITY	FAILURE;		--	connected	to	ASSERT

• With an ASSERT statement a logical expression is claimed to be true. If it is false
the rest of the ASSERT statement is executed.

• SEVERITY has four possible values – NOTE, WARNING, ERROR and FAI-
LURE (see page 7, 57). In most simulators it is possible to set at which severity
level the simulation shall be stopped.

• ASSERT has default severity level ERROR while REPORT has NOTE.
• ASSERT is both a sequential and a concurrent statement while REPORT only is

a sequential statement. However a concurrent ASSERT statement may include a
REPORT statement.

• When using REPORT it is convenient to concatanate text strings using ‘&’.

§ 8.2, 8.3, 9.4

Concurrent Assert

Conc. Assert Concurrent Assert

Assert,
Report Assert, Report Assert, Report

Sequential and concurrent statements
Concurrent and sequential statements

39
Copyright © 1997-2000 HARDI Electronics AB

																																																	Blk:BLOCK
		PACKAGE	Pack	IS				PACKAGE	BODY	Pack	IS										...
																										BEGIN
		END	PACKAGE	Pack;		END	PACKAGE	BODY	Pack;								...
																																																	END	BLOCK	Blk;

		ENTITY	Ent	IS						ARCHITECTURE	Arc	OF	Ent	IS		
																										CONFIGURATION	Conf	OF	Ent	IS	
		BEGIN														BEGIN																									...
																										END	CONFIGURATION	Conf;
		END	ENTITY	Ent;				END	ARCHITECTURE	Arc;

		Proc:PROCESS(...)		PROCEDURE	P(...)	IS									FUNCTION	F(...)	RETURN	Tp	IS
			
		BEGIN														BEGIN																							BEGIN
			
		END	PROCESS	Proc;		END	PROCEDURE	P;												END	FUNCTION	F;

Syntax

Examples

Placement

Comments

LRM

Subprogram call

function-call –› function-name [‘(’ parameter-association-list ‘)’]
procedure-call-statement –›
 [label ‘:’] [postponed*] procedure-name [‘(’ parameter-association-list ‘)’] ‘;’
parameter-association-list –›
 [formal-part ‘=>’] actual-part { ‘,’ [formal-part ‘=>’] actual-part }
* postponed is only allowed in a concurrent function call

	ENTITY	Design	IS
 PORT(d,	clk	:	IN	BIT;	q	:	OUT	BIT);
	BEGIN
			PeriodCheck(clk);	--	Passive	procedure	call
 END ENTITY Design;

	--	This	function	adds	two	arrays
	FUNCTION	”+”(a,b	:	MyArray)	RETURN	MyArray	IS
	BEGIN
			...
	END FUNCTION	”+”;

	SIGNAL	d1,	d2,	sum	:	MyArray;
	...
	sum	<=	d1	+	d2;	--	The	function	”+”	above	is	called

	PROCEDURE	Add(a,b	:	IN	MyArray;	sum	:	OUT	MyArray)	IS
	BEGIN
			...
	END PROCEDURE	Add;

	Add(data1,data2,sum);																				--	Positional	assoc.
	Add(sum	=>	sum,	a	=>	data1,	b	=>	data2);	--	Named	association

	outData	:=	AFunction(x,3.14,16#02AE#);

• A subprogram is called via its name. In the call actual parameters can be associa-
ted with the formal parameters declared in the subprogram. The association may
be done named or positional where positional is preferable since the order of the
parameters then does not impact the association.

• It is permitted to call passive procedures in the statement part of an entity, i.e.
procedures not assigning signals. This is useful when verifying timing for ports
declared in the entity. If any parameter is modified, the procedure is called.

• A concurrent subprogram call is executed whenever an input signal gets a new
value.

Passive

 § 7.3.3, 8.6, 9.3

Sequential and concurrent statements

40
Copyright © 1997-2000 HARDI Electronics AB

Syntax

Examples

Placement

Comments

																																																	Blk:BLOCK
		PACKAGE	Pack	IS				PACKAGE	BODY	Pack	IS										...
																										BEGIN
		END	PACKAGE	Pack;		END	PACKAGE	BODY	Pack;								...
																																																	END	BLOCK	Blk;

		ENTITY	Ent	IS						ARCHITECTURE	Arc	OF	Ent	IS		
																										CONFIGURATION	Conf	OF	Ent	IS	
		BEGIN														BEGIN																									...
																										END	CONFIGURATION	Conf;
		END	ENTITY	Ent;				END	ARCHITECTURE	Arc;

		Proc:PROCESS(...)		PROCEDURE	P(...)	IS									FUNCTION	F(...)	RETURN	Tp	IS
			
		BEGIN														BEGIN																							BEGIN
			
		END	PROCESS	Proc;		END	PROCEDURE	P;												END	FUNCTION	F;

LRM

PROCESS

process-statement –›
 [process-label ‘:’] [postponed] process [‘(’ sensitivity-list ‘)’] [is]
 { subprogram-decl. | subprogram-body | type-decl. | subtype-decl. |
 constant-decl. | variable-decl. | file-decl. | alias-decl. | attribute-decl. |
 attribute-spec. | use-clause | group-template-decl. | group-decl. }
 begin
 { sequential-statement }
 end [postponed] process [process-label] ‘;’

	ARCHITECTURE	Behave	OF Design	IS
	BEGIN
			FlipFlop: PROCESS(reset,clk)
			BEGIN
 IF	reset	=	‘1’	THEN
							q	<=	‘0’;
					ELSIF	clk’EVENT	AND	clk	=	‘1’	THEN
							q	<=	d;
					END IF;
			END PROCESS FlipFlop;
	END ARCHITECTURE	Behave;

	--	These	two	processes	are	equivalent
	PROCESS																											PROCESS(s)
	BEGIN																													BEGIN
			REPORT	”s	has	a	new	value”;							REPORT	”s	has	a	new	value”;
			WAIT ON	s;																 END PROCESS;
 END PROCESS;

• A PROCESS holds a number of sequential statements and executes parallell
towards its environment.

• A PROCESS functions as an eternal loop. It must include at least one WAIT sta-
tement (see page 29) or a sensitivity list that specifies when the PROCESS shall
execute its sequential statements.

• A sensitivity list is equivalent to a WAIT ON statement placed as the final line in
the PROCESS. All sequential statements will execute once at simulation startup
in such processes and after that the processes will suspend.

• POSTPONED defines that the PROCESS shall be executed as the final delta at a
specific occasion.

Passive

§ 9.2

Concurrent statements
Concurrent statements

41
Copyright © 1997-2000 HARDI Electronics AB

																																																	Blk:BLOCK
		PACKAGE	Pack	IS				PACKAGE	BODY	Pack	IS										...
																										BEGIN
		END	PACKAGE	Pack;		END	PACKAGE	BODY	Pack;								...
																																																	END	BLOCK	Blk;

		ENTITY	Ent	IS						ARCHITECTURE	Arc	OF	Ent	IS		
																										CONFIGURATION	Conf	OF	Ent	IS	
		BEGIN														BEGIN																									...
																										END	CONFIGURATION	Conf;
		END	ENTITY	Ent;				END	ARCHITECTURE	Arc;

		Proc:PROCESS(...)		PROCEDURE	P(...)	IS									FUNCTION	F(...)	RETURN	Tp	IS
			
		BEGIN														BEGIN																							BEGIN
			
		END	PROCESS	Proc;		END	PROCEDURE	P;												END	FUNCTION	F;

Syntax

Examples

Placement

Comments

LRM

WHEN

	--	This	architecture	contains	three	processes.	”One”	is	an
	--	ordinary	process	including	a	sequential	signal	assignment
	--	while	”Two”	and	”Three”	are	concurrent	signal	assignments
	ARCHITECTURE Behave OF Design	IS
	BEGIN
			One:	PROCESS(data)
			BEGIN
					outputSignal	<=	data;
			END PROCESS	One;

			Two:	s	<=	‘1’	 WHEN	sel	=	”00”	ELSE
													UNAFFECTED	WHEN	sel	=	”11”	ELSE
													‘0’;

			Three:	s2	<=	REJECT	3	ns	INERTIAL	d	AFTER	5	ns;
	END ARCHITECTURE	Behave;

	MyBlock:	BLOCK(en	=	‘1’)
	BEGIN
			Latch:	q	<=	GUARDED	d;
	END BLOCK	MyBlock;

• A concurrent signal assignment is placed directly in an ARCHITECTURE or in a
BLOCK without using a PROCESS.

• A concurrent signal assignment may preferably be named with a label. This label
simplifies simulation since the assignment then can be identified just as a named
PROCESS.

• The WHEN statement is the concurrent equivalent to the sequential IF statement.
• UNAFFECTED is new to VHDL’93 and may be used to specify that a signal

shall be left unaffected at a specific occasion, i.e. to keep its previous value.

conditional-signal-assignment-statement –›
 [label ‘:’] [postponed] (signal-name | signal-aggregate) ‘<=’
 [guarded] [delay-mechanism]
 { waveform when boolean-expression else }
 waveform [when boolean-expression] ‘;’
delay-mechanism –› transport | [reject time-expression] inertial
waveform –› waveform-element { ‘,’ waveform-element } | unaffected
waveform-element –› (value-expression | null) [after time-expression]

§ 9.5.1

 Concurrent statements

42
Copyright © 1997-2000 HARDI Electronics AB

Syntax

Examples

Placement

Comments

																																																	Blk:BLOCK
		PACKAGE	Pack	IS				PACKAGE	BODY	Pack	IS										...
																										BEGIN
		END	PACKAGE	Pack;		END	PACKAGE	BODY	Pack;								...
																																																	END	BLOCK	Blk;

		ENTITY	Ent	IS						ARCHITECTURE	Arc	OF	Ent	IS		
																										CONFIGURATION	Conf	OF	Ent	IS	
		BEGIN														BEGIN																									...
																										END	CONFIGURATION	Conf;
		END	ENTITY	Ent;				END	ARCHITECTURE	Arc;

		Proc:PROCESS(...)		PROCEDURE	P(...)	IS									FUNCTION	F(...)	RETURN	Tp	IS
			
		BEGIN														BEGIN																							BEGIN
			
		END	PROCESS	Proc;		END	PROCEDURE	P;												END	FUNCTION	F;

LRM

SELECT

selected-signal-assignment-statement –›
 [label ‘:’] [postponed] with expression select
 (signal-name | signal-aggregate) ‘<=’ [guarded] [delay-mechanism]
 { waveform when choices ‘,’ } waveform when choice { | choice } ‘;’
delay-mechanism –› transport | [reject time-expression] inertial
waveform –› waveform-element { ‘,’ waveform-element } | unaffected
waveform-element –› (value-expression | null) [after time-expression]
choice –› simple-expression | discrete-range | element-name-identifier | others

	ARCHITECTURE Behave OF Design	IS
	BEGIN
			Choose:	WITH	sel	SELECT
					s	<=	‘1’	 WHEN	”00”,
										UNAFFECTED	WHEN	”11”,
										‘0’							 WHEN OTHERS;
	END ARCHITECTURE	Behave;

• A concurrent signal assignment is placed directly in an ARCHITECTURE or in a
BLOCK without using a PROCESS.

• A concurrent signal assignment may preferably be named with a label. This label
simplifies simulation since the assignment then can be identified just as a named
PROCESS.

• The SELECT statement is the concurrent equivalent to the sequential CASE
statement.

• UNAFFECTED is new to VHDL’93 and may be used to specify that a signal
shall be left unaffected at a specific occasion, i.e. to keep its previous value.

§ 9.5.2

Concurrent statements

43
Copyright © 1997-2000 HARDI Electronics AB

																																																	Blk:BLOCK
		PACKAGE	Pack	IS				PACKAGE	BODY	Pack	IS										...
																										BEGIN
		END	PACKAGE	Pack;		END	PACKAGE	BODY	Pack;								...
																																																	END	BLOCK	Blk;

		ENTITY	Ent	IS						ARCHITECTURE	Arc	OF	Ent	IS		
																										CONFIGURATION	Conf	OF	Ent	IS	
		BEGIN														BEGIN																									...
																										END	CONFIGURATION	Conf;
		END	ENTITY	Ent;				END	ARCHITECTURE	Arc;

		Proc:PROCESS(...)		PROCEDURE	P(...)	IS									FUNCTION	F(...)	RETURN	Tp	IS
			
		BEGIN														BEGIN																							BEGIN
			
		END	PROCESS	Proc;		END	PROCEDURE	P;												END	FUNCTION	F;

Syntax

Examples

Placement

Comments

LRM

BLOCK

block-statement –› block-label ‘:’ block [‘(’ guard-expression ‘)’] [is]
 [generic-clause [generic-map ‘;’]]
 [port-clause [port-map ‘;’]]
 begin
 { subprog.-decl. | subprog.-body | type/subtype-decl. | constant-decl. | signal-
 decl. | shared-variable-decl. | file-decl. | alias-decl. | component-decl. | attribute-
 decl. | attribute-spec. | config.-spec. | use-clause | group-temp.-decl. | group-decl.}
 end block [block-label] ‘;’

	ARCHITECTURE Behave OF Design	IS
			CONSTANT	holdTime	:	TIME	:=	5	ns;
			SIGNAL			output			:	BIT;
	BEGIN
			Block1:	BLOCK(en	=	‘1’)
 GENERIC	t	:	TIME;
					GENERIC MAP(t	=>	holdTime);
					PORT(d	:	IN		BIT;
										q	:	OUT	BIT);
					PORT MAP(d	=>	data,	q	=>	output);
			BEGIN
					q	<=	GUARDED	d	AFTER	t;
	 END BLOCK	Block1;
	END ARCHITECTURE	Behave;

	OneBlock:	BLOCK(en	=	‘1’)
	BEGIN
			Latch:	q	<=	GUARDED	d;
	END BLOCK	OneBlock;

• A BLOCK has two purposes – to introduce a structure in the design and to be
used in combination with guarded signals.

• A BLOCK may have generic parameters and a port list just as an ENTITY. It is
however most common to use components when structure is desired. The advan-
tage of components is that it exists powerful methods to instantiate and configure
them (see pages 28, 46-50).

• Declarations inside a BLOCK are local in the BLOCK.
• A BLOCK must be named by a label.
• It is possible to declare a BLOCK inside another BLOCK. That creates a struc-

ture in the design.

§ 9.1

 Concurrent statements

44
Copyright © 1997-2000 HARDI Electronics AB

Syntax

Examples

Placement

Comments

																																																	Blk:BLOCK
		PACKAGE	Pack	IS				PACKAGE	BODY	Pack	IS										...
																										BEGIN
		END	PACKAGE	Pack;		END	PACKAGE	BODY	Pack;								...
																																																	END	BLOCK	Blk;

		ENTITY	Ent	IS						ARCHITECTURE	Arc	OF	Ent	IS		
																										CONFIGURATION	Conf	OF	Ent	IS	
		BEGIN														BEGIN																									...
																										END	CONFIGURATION	Conf;
		END	ENTITY	Ent;				END	ARCHITECTURE	Arc;

		Proc:PROCESS(...)		PROCEDURE	P(...)	IS									FUNCTION	F(...)	RETURN	Tp	IS
			
		BEGIN														BEGIN																							BEGIN
			
		END	PROCESS	Proc;		END	PROCEDURE	P;												END	FUNCTION	F;

LRM

GENERIC/GENERIC MAP

generic-clause –› generic ‘(’ generic-interface-list ‘)’ ‘;’
generic-map –› generic map ‘(’ generic-association-list ‘)’ ‘;’

interface-list –› interface-element { ‘;’ interface-element }
interface-element –› interface-constant-declaration | interface-signal-declaration |
 interface-variable-declaration | interface-file-declaration
association-list –› [formal-part ‘=>’] actual-part
 { ‘,’ [formal-part ‘=>’] actual-part }

	ENTITY	LargeFlipFlop	IS
		GENERIC(n	:	NATURAL;
										t	:	TIME);
		PORT(d			:	IN		BIT_VECTOR(n	DOWNTO	0);
							clk	:	IN		BIT;
							q			:	OUT	BIT_VECTOR(n	DOWNTO	0));
	END ENTITY	LargeFlipFlop;

	ARCHITECTURE	Behave	OF	LargeFlipFlop	IS
	BEGIN
			q	<=	d	AFTER	t	WHEN	(clk’EVENT	AND	clk	=	‘1’);
	END ARCHITECTURE	Behave;

	--	The	entity	LargeFlipFlop	may	be	instantiated	like	this:
	ARCHITECTURE	Behave	OF	Top	IS
			COMPONENT	LargeFlipFlop	IS
					...	--	The	same	declaration	as	in	the	ENTITY	LargeFlipFlop
			END COMPONENT	LargeFlipFlop;
	BEGIN
			C1	: LargeFlipFlop	GENERIC MAP(n	=>	5,	t	=>	12	ns)
																			 PORT MAP(d	=>	dtop,	clk	=>	clk,	q	=>	qtop);
	END ARCHITECTURE	Behave;

• Generic parameters are used to create parameterizable units in a design. First
when the unit shall be used the parameters must get values. Generic parameters
may for example be used to define bus widths and delay parameters. Delay para-
meters are useful when generating backannotated VHDL files from synthesis and
Place&Route tools.

• Generic parameters are ”connected” to values using a GENERIC MAP that
functions just as a PORT MAP does for signals (see page 47).

• A GENERIC MAP may exist in a component instantiation (see page 47), in a
configuration declaration (see page 50) or in a BLOCK instantiation (see page
43). The generic parameters may also be assigned values in the simulator or in
the synthesis tool.

GENERIC &
GENERIC MAP

§1.1.1.1,5.2.1.2

GENERIC

Generic parameters and generate
Generic parameters and GENERATE

45
Copyright © 1997-2000 HARDI Electronics AB

																																																	Blk:BLOCK
		PACKAGE	Pack	IS				PACKAGE	BODY	Pack	IS										...
																										BEGIN
		END	PACKAGE	Pack;		END	PACKAGE	BODY	Pack;								...
																																																	END	BLOCK	Blk;

		ENTITY	Ent	IS						ARCHITECTURE	Arc	OF	Ent	IS		
																										CONFIGURATION	Conf	OF	Ent	IS	
		BEGIN														BEGIN																									...
																										END	CONFIGURATION	Conf;
		END	ENTITY	Ent;				END	ARCHITECTURE	Arc;

		Proc:PROCESS(...)		PROCEDURE	P(...)	IS									FUNCTION	F(...)	RETURN	Tp	IS
			
		BEGIN														BEGIN																							BEGIN
			
		END	PROCESS	Proc;		END	PROCEDURE	P;												END	FUNCTION	F;

Syntax

Examples

Placement

Comments

LRM

GENERATE

generate-statement –› generate-label ‘:’
 (for identifier in discrete-range | if boolean-expression) generate
 [subprog.-decl. | subprog.-body | type/subtype-decl. | constant-decl. | signal-
 decl. | shared-variable-decl. | file-decl. | alias-decl. | component-decl. | attribute-
 decl. | attribute-spec. | config.-spec. | use-clause | group-temp.-decl. | group-decl.
 begin]
 { concurrent-statement }
 end generate [generate-label] ‘;’

• GENERATE is used to conditionally create processes. FOR GENERATE is
useful to create a number of copies of processes, while IF GENERATE is useful
when a part of a design shall be excluded during simulation or synthesis.

• The GENERATE statement must be named by a label. This label can be addres-
sed in a configuration declaration (see page 50) and by that parameters in the
GENERATE statement can be modified or completed.

• A configuration specification (see page 49) for components in a GENERATE
statement must be placed between GENERATE and BEGIN in the statement (see
example above).

 ENTITY	FlipFlop	IS
			PORT(d,	clk	:	IN		BIT;
								q						:	OUT	BIT);
	END ENTITY	FlipFlop;

 ARCHITECTURE	Behave	OF	FlipFlop	IS ...

	ENTITY	LargeFlipFlop	IS
			GENERIC(n	:	NATURAL);
	 PORT(d			:	IN		BIT_VECTOR(n	DOWNTO	0);
								clk	:	IN		BIT;
								q			:	OUT	BIT_VECTOR(n	DOWNTO	0));
	END ENTITY	LargeFlipFlop;

	ARCHITECTURE	Behave	OF	LargeFlipFlop	IS
 COMPONENT	FlipFlop	...	--	The	same	as	in	the	ENTITY	FlipFlop
	BEGIN
			Build:	FOR i	IN d’RANGE	GENERATE
					FOR ALL :	FlipFlop	USE ENTITY WORK.FlipFlop(Behave);
			BEGIN
					D	:	FlipFlop	PORT MAP(d	=>	d(i),	clk	=>	clk,	q	=>	q(i));
			END GENERATE Build;
	END ARCHITECTURE	Behave;

§ 9.7

 Generic parameters and generate

46
Copyright © 1997-2000 HARDI Electronics AB

Syntax

Examples

Placement

Comments

																																																	Blk:BLOCK
		PACKAGE	Pack	IS				PACKAGE	BODY	Pack	IS										...
																										BEGIN
		END	PACKAGE	Pack;		END	PACKAGE	BODY	Pack;								...
																																																	END	BLOCK	Blk;

		ENTITY	Ent	IS						ARCHITECTURE	Arc	OF	Ent	IS		
																										CONFIGURATION	Conf	OF	Ent	IS	
		BEGIN														BEGIN																									...
																										END	CONFIGURATION	Conf;
		END	ENTITY	Ent;				END	ARCHITECTURE	Arc;

		Proc:PROCESS(...)		PROCEDURE	P(...)	IS									FUNCTION	F(...)	RETURN	Tp	IS
			
		BEGIN														BEGIN																							BEGIN
			
		END	PROCESS	Proc;		END	PROCEDURE	P;												END	FUNCTION	F;

LRM

Component declaration

component-declaration –›
 component identifier [is]
 [local-generic-clause]
 [local-port-clause]
 end component [component-name-identifier] ‘;’

	COMPONENT	LargeFlipFlop	IS
			GENERIC(n	:	NATURAL;
											t	:	TIME);
		 PORT(d			:	IN		BIT_VECTOR(n	DOWNTO	0);
								clk	:	IN		BIT;
								q			:	OUT	BIT_VECTOR(n	DOWNTO	0));
	END COMPONENT	LargeFlipFlop;

• A COMPONENT declares an ”empty socket”. There is no specification of what
to be placed in the ”socket”, i.e. which ENTITY and ARCHITECTURE that will
specify the functionality.

• Components are used to achieve a structure in a design. The number of hierarchi-
cal levels is unlimited.

• Three steps are performed when working with components – component decla-
ration, component instantiation (see page 47) and component configuration (see
page 48-50). In VHDL’93 it is also possible to directly instantiate an ENTITY, a
so called direct instantiation (see page 47). This method is however not recom-
mended since the design then loses in reuseability.

§ 4.5

Components
Components

47
Copyright © 1997-2000 HARDI Electronics AB

																																																	Blk:BLOCK
		PACKAGE	Pack	IS				PACKAGE	BODY	Pack	IS										...
																										BEGIN
		END	PACKAGE	Pack;		END	PACKAGE	BODY	Pack;								...
																																																	END	BLOCK	Blk;

		ENTITY	Ent	IS						ARCHITECTURE	Arc	OF	Ent	IS		
																										CONFIGURATION	Conf	OF	Ent	IS	
		BEGIN														BEGIN																									...
																										END	CONFIGURATION	Conf;
		END	ENTITY	Ent;				END	ARCHITECTURE	Arc;

		Proc:PROCESS(...)		PROCEDURE	P(...)	IS									FUNCTION	F(...)	RETURN	Tp	IS
			
		BEGIN														BEGIN																							BEGIN
			
		END	PROCESS	Proc;		END	PROCEDURE	P;												END	FUNCTION	F;

Syntax

Examples

Placement

Comments

LRM

Component instantiation

component-instantiation-statement –›
 instantiation-label ‘:’ instantiated-unit [generic-map] [port-map] ‘;’

instantiated-unit –› [component] component-name |
 entity entity-name [‘(’ architecture-identifier ‘)’] |
 configuration configuration-name

• A component instantiation specifies how a component, an entity (only in
VHDL’93) or a configuration declaration is connected in a design. It is not
recommended to directly instantiate entities, so called direct instantiation (’C2’
above), since the design then loses in reuseability.

• Components are used to achieve structure in a design. The number of hierarchical
levels is unlimited. Three steps are performed when working with components
– component declaration (see page 46), component instantiation and component
configuration (see page 48-50).

• A PORT MAP connects ports from inside and out (component port => signal).
• Using OPEN specifies that a port shall be unconnected.

	ENTITY	LargeFlipFlop	IS
			GENERIC(n	:	NATURAL;	t	:	TIME);
		 PORT(d			:	IN		BIT_VECTOR(n	DOWNTO	0);
								clk	:	IN		BIT;
								q			:	OUT	BIT_VECTOR(n	DOWNTO	0));
	END ENTITY	LargeFlipFlop;

	ARCHITECTURE Behave	OF LargeFlipFlop	IS
 ...

	ENTITY	Design	IS	...

	ARCHITECTURE Behave	OF Design	IS
			COMPONENT	LargeFlipFlop	IS
					GENERIC(n	:	NATURAL;	t	:	TIME);
		 PORT(d			:	IN		BIT_VECTOR(n	DOWNTO	0);
										clk	:	IN		BIT;
										q			:	OUT	BIT_VECTOR(n	DOWNTO	0));
	 END COMPONENT	LargeFlipFlop;
	BEGIN
			C1	:	LargeFlipFlop	GENERIC MAP(t	=>	12	ns,	n	=>	5)
																						PORT MAP(clk	=>	clk,	q	=>	q1,	d	=>	d1);
			C2	:	ENTITY WORK.LargeFlipFlop(Behave)	GENERIC MAP(7,	15	ns)
																																									 PORT MAP(d2,	clk,	q2);
	END ARCHITECTURE Behave;

§ 9.6

Components

48
Copyright © 1997-2000 HARDI Electronics AB

Syntax

Examples

Placement

Comments

																																																	Blk:BLOCK
		PACKAGE	Pack	IS				PACKAGE	BODY	Pack	IS										...
																										BEGIN
		END	PACKAGE	Pack;		END	PACKAGE	BODY	Pack;								...
																																																	END	BLOCK	Blk;

		ENTITY	Ent	IS						ARCHITECTURE	Arc	OF	Ent	IS		
																										CONFIGURATION	Conf	OF	Ent	IS	
		BEGIN														BEGIN																									...
																										END	CONFIGURATION	Conf;
		END	ENTITY	Ent;				END	ARCHITECTURE	Arc;

		Proc:PROCESS(...)		PROCEDURE	P(...)	IS									FUNCTION	F(...)	RETURN	Tp	IS
			
		BEGIN														BEGIN																							BEGIN
			
		END	PROCESS	Proc;		END	PROCEDURE	P;												END	FUNCTION	F;

LRM

Default configuration

(No syntax)

• A default configuration implies that the simulator or the synthesis tool automati-
cally will connect a COMPONENT to an ENTITY. This requires that they match
perfectly regarding names, port names, port types, port directions, generic para-
meter names and generic parameter types. The latest compiled ARCHITECTURE
for the ENTITY is used.

• The advantages by using a default configuration are that it is simple (no explicit
configuration is needed) and that it may be overwritten by a configuration
declaration (see page 50). The disadvantages are that the ENTITY must match
the COMPONENT perfectly and that it is not unambigously defined which
ARCHITECTURE that will be used.

	ENTITY	LargeFlipFlop	IS
			GENERIC(n	:	NATURAL;	t	:	TIME);
		 PORT(d			:	IN		BIT_VECTOR(n	DOWNTO	0);
								clk	:	IN		BIT;
								q			:	OUT	BIT_VECTOR(n	DOWNTO	0));
	END ENTITY	LargeFlipFlop;

	ARCHITECTURE	Behave	OF	LargeFlipFlop	IS	...

	ENTITY	Design	IS ...

	ARCHITECTURE Behave	OF Design	IS
			COMPONENT	LargeFlipFlop	IS
					GENERIC(n	:	NATURAL;	t	:	TIME);
		 PORT(d			:	IN		BIT_VECTOR(n	DOWNTO	0);
										clk	:	IN		BIT;
										q			:	OUT	BIT_VECTOR(n	DOWNTO	0));
	 END COMPONENT	LargeFlipFlop;
	BEGIN
			--	The	entity	”LargeFlipFlop”	and	its	architecture	”behave”
			--	will	be	used	for	C1	provided	that	they	are	compiled	to	WORK
			--	and	that	”behave”	is	the	last	compiled	architecture
			C1	:	LargeFlipFlop	GENERIC MAP(n	=>	5,	t	=>	12	ns)
																						PORT MAP(d1,	clk,	q1);
	END ARCHITECTURE Behave;

§ 5.2.2

Components

49
Copyright © 1997-2000 HARDI Electronics AB

																																																	Blk:BLOCK
		PACKAGE	Pack	IS				PACKAGE	BODY	Pack	IS										...
																										BEGIN
		END	PACKAGE	Pack;		END	PACKAGE	BODY	Pack;								...
																																																	END	BLOCK	Blk;

		ENTITY	Ent	IS						ARCHITECTURE	Arc	OF	Ent	IS		
																										CONFIGURATION	Conf	OF	Ent	IS	
		BEGIN														BEGIN																									...
																										END	CONFIGURATION	Conf;
		END	ENTITY	Ent;				END	ARCHITECTURE	Arc;

		Proc:PROCESS(...)		PROCEDURE	P(...)	IS									FUNCTION	F(...)	RETURN	Tp	IS
			
		BEGIN														BEGIN																							BEGIN
			
		END	PROCESS	Proc;		END	PROCEDURE	P;												END	FUNCTION	F;

Syntax

Examples

Placement

Comments

LRM

Configuration specification

configuration-specification –›
 for (instantiation-label { ‘,’ instantiation-label } | others | all) ‘:’
 component-name [use entity-aspect] [generic-map] [port-map] ‘;’

	ENTITY	LargeFlipFlop	IS
			GENERIC(t	:	TIME;	n	:	NATURAL);
		 PORT(clk	 :	IN		BIT;
								d			 :	IN		BIT_VECTOR(n	DOWNTO	0);
								q,	qinv	:	OUT	BIT_VECTOR(n	DOWNTO	0));
	END ENTITY	LargeFlipFlop;

	ARCHITECTURE	Behave	OF	LargeFlipFlop	IS	...

	ENTITY	Design	IS ...

	ARCHITECTURE Behave	OF Design	IS
			COMPONENT	LargeFlipFlop	IS
					GENERIC(n	:	NATURAL;	t	:	TIME);
		 PORT(d			:	IN		BIT_VECTOR(n	DOWNTO	0);
										clk	:	IN		BIT;
										q			:	OUT	BIT_VECTOR(n	DOWNTO	0));
	 END COMPONENT	LargeFlipFlop;
			FOR	C1	:	LargeFlipFlop	USE ENTITY WORK.LargeFlipFlop(Behave)
					GENERIC MAP(12	ns,	5)	PORT MAP(clk,	d,	q,	OPEN);
			FOR OTHERS :	LargeFlipFlop	USE ...
	BEGIN
			C1	:	LargeFlipFlop	GENERIC MAP(n	=>	5,	t	=>	12	ns) PORT MAP	...
			C2	:	LargeFlipFlop	GENERIC MAP(...)	PORT MAP	(...);
	END ARCHITECTURE Behave;

• A configuration specification connects a specific ENTITY and a specific ARCHI-
TECTURE to a COMPONENT. The configuration specifies in detail how the
connection shall be and that excludes the demand of perfect match. OPEN in a
PORT MAP defines that a port shall be unconnected.

• The configuration specification is the mid alternative among the three possible
configurations (see pages 48, 50). It is more powerful than a default configuration
since the demand of perfect match between the ENTITY and the COMPONENT
is excluded. It may on the other hand not configure sub blocks in the design hie-
rarchy as a configuration declaration can. Modifications imply a recompilation of
the whole architecture and since the component is locked to a specific entity/ar-
chitecture pair it is not well suited for multilevel simulations.

§ 5.2

Components

50
Copyright © 1997-2000 HARDI Electronics AB

Syntax

Examples

Placement

Comments

																																																	Blk:BLOCK
		PACKAGE	Pack	IS				PACKAGE	BODY	Pack	IS										...
																										BEGIN
		END	PACKAGE	Pack;		END	PACKAGE	BODY	Pack;								...
																																																	END	BLOCK	Blk;

		ENTITY	Ent	IS						ARCHITECTURE	Arc	OF	Ent	IS		
																										CONFIGURATION	Conf	OF	Ent	IS	
		BEGIN														BEGIN																									...
																										END	CONFIGURATION	Conf;
		END	ENTITY	Ent;				END	ARCHITECTURE	Arc;

		Proc:PROCESS(...)		PROCEDURE	P(...)	IS									FUNCTION	F(...)	RETURN	Tp	IS
			
		BEGIN														BEGIN																							BEGIN
			
		END	PROCESS	Proc;		END	PROCEDURE	P;												END	FUNCTION	F;

LRM

Configuration declaration

configuration-declaration –› configuration identifier of entity-name is
 { use-clause | attribute-specification | group-declaration }
 block-configuration
 end [configuration] [configuration-name-identifier] ‘;’
block-configuration –› for (architecture-name | block-statement-label |
 generate-statement-label [‘(’ index-specification ‘)’]) { use-clause }
 { block-configuration | component-configuration }
 end for ‘;’

• A configuration declaration is a separate design unit in VHDL (see page 28).
It is the most powerful of the three possible configurations (see pages 48-49)
and it can modify previously performed configuration specifications (so called
incremental binding).

• The configuration declaration is well suited for multilevel simulations since it
can configure sub blocks in a design. It can also modify generic parameters, e.g.
timing parameters, and also configure GENERATE statements (see page 45).

• The disadvantage with the configuration declaration is its complicated syntax.
• A configuration declaration connects an entire design and is therefore compiled

as the final design unit.

	CONFIGURATION MyConfiguration OF Design	IS
			FOR Behave
					FOR C1	:	LargeFlipFlop	USE ENTITY WORK.LargeFlipFlop(Behave)
							GENERIC MAP(7,	20	ns)	PORT MAP(...);
					END FOR;
					FOR OTHERS :	LargeFlipFlop	USE ENTITY
							WORK.LargeFlipFlop(Structure);
							FOR	Structure
									FOR	A1 :	SubComponent	USE ENTITY ...
 END FOR;
									FOR OTHERS :	SubComponent	USE CONFIGURATION ...
							 END FOR;
 END FOR;
					END FOR;
			END FOR;
	END CONFIGURATION MyConfiguration;

§ 1.3

Components

51
Copyright © 1997-2000 HARDI Electronics AB

Predefined attributes
Attributes on types
T’BASE Gives the base type of a type T. Can only be used as a

prefix for another attribute.
 Example:
 SUBTYPE	MyNat	IS NATURAL RANGE	5	TO	15;
	 		MyNat’BASE’LOW	=	-2_147_483_647	(=INTEGER’LOW)	

T’LEFT Gives the leftmost value in the type T.
 Example:
 TYPE	State	IS (reset,start,count);
	 		State’LEFT	=	reset

T’RIGHT Gives the rightmost value in the type T.
 Example:
 TYPE	State	IS (reset,start,count);
	 		State’RIGHT	=	count

T’HIGH Gives the largest value in the type T.
 Example:
 SUBTYPE	MyNat	IS NATURAL RANGE 5 TO 15;
	 		MyNat’HIGH	=	15

T’LOW Gives the smallest value in the type T.
 Example:
 SUBTYPE	MyNat	IS NATURAL RANGE 5 TO 15;
	 		MyNat’LOW	=	5

T’ASCENDING Returns a value of the type BOOLEAN that is TRUE if
the type T is defined with an ascending range.

 Example:
 SUBTYPE	MyNat	IS NATURAL RANGE 5 TO 15;
	 		MyNat’ASCENDING	=	TRUE

T’IMAGE(X)* Converts the value X, that is of the type or subtype T,
to a text string. T must be a scalar type, i.e. an integer, a
real, a physical type or an enumerated type.

 Example:
 TYPE	State	IS (reset,start,count);
	 		State’IMAGE(start)	=	”start”

T’VALUE(X)* Converts the text string X to a value of the type T. T
must be a scalar type, i.e. an integer, a real, a physical
type or an enumerated type.

 Example:
 TYPE	State	IS (reset,start,count);
	 		State’VALUE(”reset”)	=	reset

T’POS(X) Returns the position number of X within the type T.
 Example:
 TYPE	State	IS (reset,start,count);
	 		State’POS(start)	=	1

LRM
§ 14.1

* New to VHDL’93

Predefined attributes

Copyright © 1997-2000 HARDI Electronics AB
52

T’VAL(X) Returns the value on position X in the type T.
 Example:
 TYPE	State	IS (reset,start,count);
	 		State’VAL(0)	=	reset

T’SUCC(X) Returns the value, of the type T, with the position num-
ber one greater than that of the parameter X.

 Example:
 TYPE	MyInteger	IS RANGE 5	DOWNTO	-5;
	 		MyInteger’SUCC(0)	=	1

T’PRED(X) Returns the value, of the type T, with the position num-
ber one less than that of the parameter X.

 Example:
 TYPE	MyInteger	IS RANGE 5	DOWNTO	-5;
	 		MyInteger’PRED(0)	=	-1

T’LEFTOF(X) Returns the value to the left of the value X in the range
of the type T.

 Example:
 TYPE	MyInteger	IS RANGE 5	DOWNTO	-5;
	 		MyInteger’LEFTOF(0)	=	1

T’RIGHTOF(X) Returns the value to the right of the value X in the range
of the type T.

 Example:
 TYPE	MyInteger	IS RANGE 5	DOWNTO	-5;
	 		MyInteger’RIGHTOF(0)	=	-1

Attributes on arrays
(All attributes on arrays are valid for both types and objects)

A’HIGH[(N)] Returns the numerical largest index limit in the array A
for its index range N. N may be omitted and its default
value is 1.

 Example:
 TYPE	M	IS ARRAY (0 TO 3,	2	DOWNTO	1)	OF	BIT;
	 		VARIABLE	matrix	:	M;
	 		M’HIGH	=	3
	 		matrix’HIGH(2)	=	2

A’LOW[(N)] Returns the numerical smallest index limit in the array A
for its index range N. N may be omitted and its default
value is 1.

 Example:
 TYPE	M	IS ARRAY (0 TO 3,	2	DOWNTO	1)	OF	BIT;
	 		VARIABLE	matrix	:	M;
	 		M’LOW	=	0
	 		matrix’LOW(2)	=	1

A’LEFT[(N)] Returns the left index limit for the array A for its index
range N. N may be omitted and its default value is 1.

 Example:
 TYPE	M	IS ARRAY (0 TO 3,	2	DOWNTO	1)	OF	BIT;
	 		VARIABLE	matrix	:	M;
	 		M’LEFT	=	0
	 		matrix’LEFT(2)	=	2

Predefined attributes

53
Copyright © 1997-2000 HARDI Electronics AB

A’RIGHT[(N)] Returns the right index limit for the array A for its index
range N. N may be omitted and its default value is 1.

 Example:
 TYPE	M	IS ARRAY (0 TO 3,	2	DOWNTO	1)	OF	BIT;
	 		VARIABLE	matrix	:	M;
	 		M’RIGHT	=	3
	 		matrix’RIGHT(2)	=	1

A’RANGE[(N)] Returns the index range as a RANGE for the array A
for its index range N. N may be omitted and its default
value is 1.

 Example:
 TYPE	M	IS ARRAY (0 TO 3,	2	DOWNTO	1)	OF	BIT;
	 		VARIABLE	matrix	:	M;
	 		M’RANGE	=	0	TO	3
	 		matrix’RANGE(2)	=	2	DOWNTO	1

A’REVERSE_RANGE[(N)]
 Returns the index range as a RANGE, but with opposite

direction, for the array A for its index range N. N may
be omitted and its default value is 1.

 Example:
 TYPE	M	IS ARRAY (0 TO 3,	2	DOWNTO	1)	OF	BIT;
	 		VARIABLE	matrix	: M;
	 		M’REVERSE_RANGE	=	3	DOWNTO	0
	 		matrix’REVERSE_RANGE(2)	=	1	TO	2

A’LENGTH[(N)]
 Returns the number of elements in the array A for its

index range N. N may be omitted and its default value is
1.

 Example:
 TYPE	M	IS ARRAY (0 TO 3,	2	DOWNTO	1)	OF	BIT;
	 		VARIABLE	matrix	:	M;
	 		M’LENGTH	=	4
	 		matrix’LENGTH(2)	=	2

A’ASCENDING[(N)]*

 Returns a value of the type BOOLEAN that is TRUE
if the index range N for array A is ascending. N may be
omitted and its default value is 1.

 Example:
 TYPE	M	IS ARRAY (0 TO 3,	2	DOWNTO	1)	OF	BIT;
	 		VARIABLE	matrix	:	M;
	 		M’ASCENDING	=	TRUE
	 		matrix’ASCENDING(2)	=	FALSE

Attributes on signals
S’STABLE[(T)] Creates a new signal of the type BOOLEAN that returns

TRUE as long as the signal S does not change its value.
The signal gets FALSE when S changes value and is
FALSE during the time T. T may be omitted and its
default value i 0 ns.

S’DELAYED[(T)]

* New to VHDL’93

Predefined attributes

Copyright © 1997-2000 HARDI Electronics AB
54

S’QUIET[(T)] Functions exactly as ‘STABLE but reacts on all updates
of S from its driver queue, also when the signal is as-
signed the value it already has.

S’DELAYED[(T)]
 Creates a copy of the signal S delayed the time T. T may

be omitted and its default value is 0 ns, i.e. exactly S.

S’TRANSACTION
 Creates a new signal of the type BIT that changes value

every time the signal S gets a new value from its driver
queue, i.e. also when it gets the same value as it already
has. The initial value of the new signal is not specified.

S’
 A function of the type BOOLEAN that returns TRUE

during exactly one delta cycle when the signal S gets a
new value.

S’ACTIVE Functions exactly as ‘EVENT but reacts on all updates
of S from its driver queue, also when the signal is as-
signed the value it already has.

S’LAST_EVENT
 A function of the type TIME returning the time since the

last change of the value of the signal S.

S’LAST_ACTIVE
 A function of the type TIME returning the time since the

the last update of the signal S.

S’LAST_VALUE
 A function of the same base type as S returning the

value the signal S had before its last value change.

S’DRIVING* A function of the type BOOLEAN returning TRUE if
the driver for the signal S is on.

S’DRIVING_VALUE*

 A function of the same type as S returning the current
value in the driver for the signal S in the current pro-
cess.

Attributes on named entities
E’SIMPLE_NAME*

 Returns the name, in a text string with lower-case let-
ters, of a named entity.

* New to VHDL’93

Predefined attributes

55
Copyright © 1997-2000 HARDI Electronics AB

E’INSTANCE_NAME*

 Returns the hierarchical path including instances higher
in the hierarchy, in a string with lower-case letters, to a
named entity.

E’PATH_NAME*

 Returns the hierarchical path not including instances
higher in the hierarchy, in a string with lower-case let-
ters, to a named entity.

 Example:
	 	 ENTITY	E	IS
	 	 		...
	 	 END ENTITY	E;

	 	 ARCHITECTURE	A	OF	E	IS
	 	 BEGIN
	 	 		P:	PROCESS(clock)
	 	 				VARIABLE	inVar	:	NATURAL RANGE	0	TO	255;
	 	 		BEGIN
	 	 		...
	 	 		--	inVar’SIMPLE_NAME	=	”invar”
	 	 		--	inVar’INSTANCE_NAME	=	”:e(a):p:invar”
	 	 		--	inVar’PATH_NAME	=	”:e:p:invar”
	 	 		END PROCESS	P;
	 	 END ARCHITECTURE	A;

* New to VHDL’93

Predefined attributes

Copyright © 1997-2000 HARDI Electronics AB
56

IEEE
There is a number of predefined packages in VHDL. All packages standardi-
zed by IEEE are described in this chapter. Further there are a number of non
standardized packages, e.g. STD_LOGIC_ARITH, STD_LOGIC_SIGNED,
NUMERIC_SIGNED, STD_LOGIC_UNSIGNED and NUMERIC_UN-
SIGNED, but they are not recommended to be used since they are not
standardized and may differ between different tools.

VHDL standards
VHDL is built upon a number of standards from IEEE:
• IEEE std 1076-1987 The first standard of VHDL. It is commonly ab-

breviated VHDL’87.
• IEEE std 1076-1993 The second standard of VHDL. It is commonly

abbreviated VHDL’93.
• IEEE std 1164-1993 The package STD_LOGIC_1164 (see page 58).

Includes hardware related types and conversion
functions.

• IEEE std 1076a Intended to improve the usage of shared variables
(see page 17).

• IEEE std 1076.1 VHDL-AMS, analog extensions.
• IEEE std 1076.2 Mathematical packages (see page 63-65). Divided

into one package for real numbers and one for
imaginary numbers.

• IEEE std 1076.3 Describes for example types and operators intended
for synthesis.

• IEEE std 1076.4 VITAL (VHDL Initiative Towards ASIC Libraries).
For example used to specify timing parameters for
backannotated simulation.

• IEEE std 1076.5 Guidelines for modeling of libraries in VHDL.
• IEEE std 1076.6 Defines the part of VHDL intended for RTL syn-

thesis.

Predefined packages
STANDARD
The standard of VHDL. Is precompiled into the library ”STD” (accessed via use std.
standard.aLL that is implicitely declared).

package	STANDARD	is		
 type	BOOLEAN	is	(FALSE,TRUE);		
 type	BIT	is	(‘0’,	‘1’);		
 type	CHARACTER	is	(
				NUL,	SOH,	STX,	ETX,	EOT,	ENq,	ACK,	BEL,
				BS,		HT,		LF,		VT,		FF,		CR,		SO,		SI,
				DLE,	DC1,	DC2,	DC3,	DC4,	NAK,	SYN,	ETB,
				CAN,	EM,		SUB,	ESC,	FSP,	GSP,	RSP,	USP,		

				‘	‘,	‘!’,	‘”’,	‘#’,	‘$’,	‘%’,	‘&’,	‘’’,
				‘(‘,	‘)’,	‘*’,	‘+’,	‘,’,	‘-’,	‘.’,	‘/’,
				‘0’,	‘1’,	‘2’,	‘3’,	‘4’,	‘5’,	‘6’,	‘7’,
				‘8’,	‘9’,	‘:’,	‘;’,	‘<’,	‘=’,	‘>’,	‘?’,

				‘@’,	‘A’,	‘B’,	‘C’,	‘D’,	‘E’,	‘F’,	‘G’,
				‘H’,	‘I’,	‘J’,	‘K’,	‘L’,	‘M’,	‘N’,	‘O’,
				‘P’,	‘q’,	‘R’,	‘S’,	‘T’,	‘U’,	‘V’,	‘W’,
				‘X’,	‘Y’,	‘Z’,	‘[‘,	‘\’,	‘]’,	‘^’,	‘_’,

LRM
§ 14.2

IEEE

57
Copyright © 1997-2000 HARDI Electronics AB

				‘`’,	‘a’,	‘b’,	‘c’,	‘d’,	‘e’,	‘f’,	‘g’,
				‘h’,	‘i’,	‘j’,	‘k’,	‘l’,	‘m’,	‘n’,	‘o’,
				‘p’,	‘q’,	‘r’,	‘s’,	‘t’,	‘u’,	‘v’,	‘w’,
				‘x’,	‘y’,	‘z’,	‘{‘,	‘|’,	‘}’,	‘~’,	del,

				C128,	C129,	C130,	C131,	C132,	C133,	C134,	C135,	
				C136,	C137,	C138,	C139,	C140,	C141,	C142,	C143,	
				C144,	C145,	C146,	C147,	C148,	C149,	C150,	C151,	
				C152,	C153,	C154,	C155,	C156,	C157,	C158,	C159,	

 ‘ ‘, ‘¡’, ‘¢’, ‘£’, ‘¤’, ‘¥’, ‘¦’, ‘§’,
				‘¨’,	‘©’,	‘ª’,	‘«‘,	‘¬’,	‘‘,	‘®’,	‘¯’,
				‘°’,	‘±’,	‘²’,	‘³’,	‘´’,	‘µ’,	‘¶’,	‘·’,
				‘¸’,	‘¹’,	‘º’,	‘»’,	‘¼’,	‘½’,	‘¾’,	‘¿’,

				‘À’,	‘Á’,	‘Â’,	‘Ã’,	‘Ä’,	‘Å’,	‘Æ’,	‘Ç’,
				‘È’,	‘É’,	‘Ê’,	‘Ë’,	‘Ì’,	‘Í’,	‘Î’,	‘Ï’,
				‘Ð’,	‘Ñ’,	‘Ò’,	‘Ó’,	‘Ô’,	‘Õ’,	‘Ö’,	‘×’,
				‘Ø’,	‘Ù’,	‘Ú’,	‘Û’,	‘Ü’,	‘Ý’,	‘Þ’,	‘ß’,	

				‘à’,	‘á’,	‘â’,	‘ã’,	‘ä’,	‘å’,	‘æ’,	‘ç’,
				‘è’,	‘é’,	‘ê’,	‘ë’,	‘ì’,	‘í’,	‘î’,	‘ï’,	
				‘ð’,	‘ñ’,	‘ò’,	‘ó’,	‘ô’,	‘õ’,	‘ö’,	‘÷’,
				‘ø’,	‘ù’,	‘ú’,	‘û’,	‘ü’,	‘ý’,	‘þ’,	‘ÿ’);	
	
 type	SEVERITY_LEVEL	is	(NOTE,	WARNING,	ERROR,	FAILURE);	
 type	INTEGER	is	range	implementation_defined;		
 type	REAL	is	range	implementation_defined;	
 type	TIME	is	range	implementation_defined
				units		
						fs;	
						ps	=	1000	fs;	
						ns	=	1000	ps;	
						us	=	1000	ns;		
						ms	=	1000	us;		
						sec	=	1000	ms;
						min	=	60	sec;		
						hr	=	60	min;		
 end units;	
 subtype	DELAY_LENGTH	is	TIME	range	0	fs	to	TIME’HIGH;	
 impure function	NOW	return	DELAY_LENGTH;		
 subtype					is	INTEGER	range	0	to	INTEGER’HIGH;		
 subtype	POSITIVE	is	INTEGER	range	1	to	INTEGER’HIGH;		
 type	STRING	is	array	(POSITIVE	range	<>)	of	CHARACTER;		
 type	BIT_VECTOR	is array	(NATURAL	range	<>)	of	BIT;		
 type	FILE_OPEN_KIND	is	(READ_MODE,	WRITE_MODE,	APPEND_MODE);	
 type	FILE_OPEN_STATUS	is	(OPEN_OK,	STATUS_ERROR,	NAME_ERROR,
																												MODE_ERROR);	
 attribute	FOREIGN	:	STRING;	
end	package	STANDARD;

TEXTIO
Types and subprograms to handle text files. Is precompiled into the library ”STD (ac-
cessed via use std.textio.aLL).

package	TEXTIO	is	
 type	LINE	is	access	STRING;	
 type	TEXT	is	file of	STRING;	
 type	SIDE	is	(RIGHT,	LEFT);	
 subtype	WIDTH	is	natural;	
	
 file	INPUT		:	TEXT	open	READ_MODE	 is	”STD_INPUT”;	
 file	OUTPUT	:	TEXT	open	WRITE_MODE	is	”STD_OUTPUT”;	

 procedure	READLINE(file	F:TEXT;	L:out	LINE);	
 procedure	READ(L:inout	LINE;	VALUE:out	BIT;	
																	GOOD:out	BOOLEAN);	
 procedure	READ(L:inout	LINE;	VALUE:out	BIT);	
 procedure	READ(L:inout	LINE;	VALUE:out	BIT_VECTOR;
																	GOOD:out	BOOLEAN);	
 procedure	READ(L:inout	LINE;	VALUE:out	BIT_VECTOR);	
 procedure	READ(L:inout	LINE;	VALUE:out	BOOLEAN;
																	GOOD:out	BOOLEAN);	
 procedure	READ(L:inout	LINE;	VALUE:out	BOOLEAN);	

LRM
§ 14.3

IEEE

Copyright © 1997-2000 HARDI Electronics AB
58

 procedure	READ(L:inout	LINE;	VALUE:out	CHARACTER;
																	GOOD:out	BOOLEAN);	
 procedure	READ(L:inout	LINE;	VALUE:out	CHARACTER);	
 procedure	READ(L:inout	LINE;	VALUE:out	INTEGER;
																	GOOD:out	BOOLEAN);	
 procedure	READ(L:inout	LINE;	VALUE:out	INTEGER);	
 procedure	READ(L:inout	LINE;	VALUE:out	REAL;
																	GOOD:out	BOOLEAN);	
 procedure	READ(L:inout	LINE;	VALUE:out	REAL);	
 procedure	READ(L:inout	LINE;	VALUE:out	STRING;
																	GOOD:out	BOOLEAN);	
 procedure	READ(L:inout	LINE;	VALUE:out	STRING);	
 procedure	READ(L:inout	LINE;	VALUE:out	TIME;
																	GOOD:out	BOOLEAN);	
 procedure	READ(L:inout	LINE;	VALUE:out	TIME);	
 procedure	WRITELINE(file	f:TEXT;	L:inout	LINE);	
 procedure	WRITE(L:inout	LINE;	VALUE:in	BIT;
																		JUSTIFIED:in	SIDE	:=	RIGHT;	
																		FIELD:in	WIDTH	:=	0);	
 procedure	WRITE(L:inout	LINE;	VALUE:in	BIT_VECTOR;	
																		JUSTIFIED:in	SIDE	:=	RIGHT;	
																		FIELD:in	WIDTH	:=	0);	
 procedure	WRITE(L:inout	LINE;	VALUE:in	BOOLEAN;	
																		JUSTIFIED:in	SIDE	:=	RIGHT;	
																		FIELD:in	WIDTH	:=	0);	
 procedure	WRITE(L:inout	LINE;	VALUE:in	CHARACTER;	
																		JUSTIFIED:in	SIDE	:=	RIGHT;	
																		FIELD:in	WIDTH	:=	0);	
 procedure	WRITE(L:inout	LINE;	VALUE:in	INTEGER;	
																		JUSTIFIED:in	SIDE	:=	RIGHT;	
																		FIELD:in	WIDTH	:=	0);	
 procedure	WRITE(L:inout	LINE;	VALUE:in	REAL;	
																		JUSTIFIED:in	SIDE	:=	RIGHT;	
																		FIELD:in	WIDTH	:=	0;	
																		DIGITS:in	NATURAL	:=	0);	
 procedure	WRITE(L:inout	LINE;	VALUE:in	STRING;	
																		JUSTIFIED:in	SIDE	:=	RIGHT;	
																		FIELD:in	WIDTH	:=	0);	
 procedure	WRITE(L:inout	LINE;	VALUE:in	TIME;	
																		JUSTIFIED:in	SIDE	:=	RIGHT;	
																		FIELD:in	WIDTH	:=	0;	
																		UNIT:in	TIME	:=	ns);
		--	function ENDFILE(file F:TEXT) return	BOOLEAN;
end package TEXTIO;

STD_LOGIC_1164
Hardware related, resolved types and conversion functions for them. Is precompiled
into the library ”IEEE” (accessed via use ieee.std_Logic_1164.aLL).

package	STD_LOGIC_1164	is	
	 type	STD_ULOGIC	is (‘U’,	--	Uninitialized	
																						‘X’,	--	Forcing	Unknown	
																						‘0’,	--	Forcing	0	
																						‘1’,	--	Forcing	1	
																						‘Z’,	--	High	Impedance				
																						‘W’,	--	Weak	Unknown	
																						‘L’,	--	Weak	0	 				
																						‘H’,	--	Weak	1	 				
																						‘-’		--	Don’t	care);	
 type	STD_ULOGIC_VECTOR is array	(NATURAL	RANGE	<>)	of
 	STD_ULOGIC;	

 function	RESOLVED	(s	:	STD_ULOGIC_VECTOR)	return	STD_ULOGIC;	

 subtype	STD_LOGIC is	RESOLVED	STD_ULOGIC;	

 type	STD_LOGIC_VECTOR is	array	(NATURAL	range	<>)	of	STD_LOGIC;	

 subtype	X01	 is	resolved	STD_ULOGIC	range	‘X’	to	‘1’;	
 subtype	X01Z	 is	resolved	STD_ULOGIC	range	‘X’	to	‘Z’;	
 subtype	UX01	 is	resolved	STD_ULOGIC	range	‘U’	to	‘1’;	
 subtype	UX01Z	is resolved	STD_ULOGIC	range	‘U’	to	‘Z’;	

 function	”and”		(l:STD_ULOGIC;	r:STD_ULOGIC)	return	UX01;	

IEEE

59
Copyright © 1997-2000 HARDI Electronics AB

 function	”nand”	(l:STD_ULOGIC;	r:STD_ULOGIC)	return	UX01;	
 function	”or”			(l:STD_ULOGIC;	r:STD_ULOGIC)	return	UX01;	
 function	”nor”		(l:STD_ULOGIC;	r:STD_ULOGIC)	return	UX01;	
 function	”xor”		(l:STD_ULOGIC;	r:STD_ULOGIC)	return	UX01;	
 function	”xnor”	(l:STD_ULOGIC;	r:STD_ULOGIC)	return	UX01;	
 function	”not”		(l:STD_ULOGIC)	 return	UX01;	
 function	”and”		(l,r:STD_LOGIC_VECTOR) return	STD_LOGIC_VECTOR;	
 function	”and”		(l,r:STD_ULOGIC_VECTOR)
 return	STD_ULOGIC_VECTOR;	
 function	”nand”	(l,r:STD_LOGIC_VECTOR)
																		 return	STD_LOGIC_VECTOR;	
 function	”nand”	(l,r:STD_ULOGIC_VECTOR)
																			return	STD_ULOGIC_VECTOR;	
 function	”or”			(l,r:STD_LOGIC_VECTOR)
																		 return	STD_LOGIC_VECTOR;	
 function	”or”			(l,r:STD_ULOGIC_VECTOR)
																			return	STD_ULOGIC_VECTOR;	
 function	”nor”		(l,r:STD_LOGIC_VECTOR)
																		 return	STD_LOGIC_VECTOR;	
 function	”nor”		(l,r:STD_ULOGIC_VECTOR)
																			return	STD_ULOGIC_VECTOR;	
 function	”xor”		(l,r:STD_LOGIC_VECTOR)
																		 return	STD_LOGIC_VECTOR;	
 function	”xor”		(l,r:STD_ULOGIC_VECTOR)
																			return	STD_ULOGIC_VECTOR;	
 function	”xnor”	(l,r:STD_LOGIC_VECTOR)
																			return	STD_LOGIC_VECTOR;	
 function	”xnor”	(l,r:STD_ULOGIC_VECTOR)
																			return	STD_ULOGIC_VECTOR;	
 function	”not”		(l:STD_LOGIC_VECTOR)
																 return	STD_LOGIC_VECTOR;	
 function	”not”		(l:STD_ULOGIC_VECTOR)
																			return	STD_ULOGIC_VECTOR;	

 function	TO_BIT	(s:STD_ULOGIC;	xmap:BIT	:=	‘0’) return	BIT;	
 function	TO_BITVECTOR	(s:STD_LOGIC_VECTOR	;	xmap:BIT	:=	‘0’)
																									return	BIT_VECTOR;	
 function	TO_BITVECTOR	(s:STD_ULOGIC_VECTOR;	xmap:BIT	:=	‘0’)
																									return	BIT_VECTOR;	
 function	TO_STDULOGIC	(b:BIT)	return	STD_ULOGIC;	
 function	TO_STDLOGICVECTOR		(b:BIT_VECTOR)
																														 return	STD_LOGIC_VECTOR;	
 function	TO_STDLOGICVECTOR		(s:STD_ULOGIC_VECTOR)
																															return	STD_LOGIC_VECTOR;	
 function	TO_STDULOGICVECTOR	(b:BIT_VECTOR)
																															return	STD_ULOGIC_VECTOR;	
 function	TO_STDULOGICVECTOR	(s:STD_LOGIC_VECTOR)
																														 return STD_ULOGIC_VECTOR;	
 function	TO_X01		(s:STD_LOGIC_VECTOR)	 return	STD_LOGIC_VECTOR;	
 function	TO_X01		(s:STD_ULOGIC_VECTOR) return	STD_ULOGIC_VECTOR;
		function TO_X01		(s:STD_ULOGIC) return X01;	
 function	TO_X01		(b:BIT_VECTOR)	 return	STD_LOGIC_VECTOR;	
 function	TO_X01		(b:BIT_VECTOR)	 return	STD_ULOGIC_VECTOR;	
 function	TO_X01		(b:BIT)	 return	X01;	
 function	TO_X01Z	(s:STD_LOGIC_VECTOR)	 return	STD_LOGIC_VECTOR;	
 function	TO_X01Z	(s:STD_ULOGIC_VECTOR)	return	STD_ULOGIC_VECTOR;	
 function	TO_X01Z	(s:STD_ULOGIC)								return	X01Z;	
 function	TO_X01Z	(b:BIT_VECTOR)	 return	STD_LOGIC_VECTOR;	
 function	TO_X01Z	(b:BIT_VECTOR)	 return	STD_ULOGIC_VECTOR;	
 function	TO_X01Z	(b:BIT)	 return	X01Z;	 			
 function	TO_UX01	(s:STD_LOGIC_VECTOR)	 return	STD_LOGIC_VECTOR;	
 function	TO_UX01	(s:STD_ULOGIC_VECTOR)	return	STD_ULOGIC_VECTOR;	
 function	TO_UX01	(s:STD_ULOGIC)								return	UX01;	
 function	TO_UX01	(b:BIT_VECTOR)								return	STD_LOGIC_VECTOR;	
 function	TO_UX01	(b:BIT_VECTOR)								return	STD_ULOGIC_VECTOR;	
 function	TO_UX01	(b:BIT)															return	UX01;	

 function	RISING_EDGE		(signal	s:STD_ULOGIC)	return	BOOLEAN;	
 function	FALLING_EDGE	(signal	s:STD_ULOGIC)	return	BOOLEAN;	

 function	IS_X	(s:STD_ULOGIC_VECTOR)	return		BOOLEAN;	
 function	IS_X	(s:STD_LOGIC_VECTOR)	 return		BOOLEAN;	
 function	IS_X	(s:STD_ULOGIC)								return		BOOLEAN;	
end	package STD_LOGIC_1164;

 IEEE

Copyright © 1997-2000 HARDI Electronics AB
60

NUMERIC_BIT
Types and subprograms for designing with arrays of BIT. Is precompiled into the library
”IEEE” (accessed via use ieee.numeric_bit.aLL).

package	NUMERIC_BIT	is
		type	UNSIGNED	is array	(NATURAL	range	<>)	of	BIT;
		type	SIGNED	 is array	(NATURAL	range	<>)	of	BIT;

		function	“abs”	(ARG:SIGNED)	return SIGNED;
		function	“-”			(ARG:SIGNED)	return SIGNED;
		function	“+”			(L,R:UNSIGNED)										 return UNSIGNED;
		function	“+”			(L,R:SIGNED)												 return SIGNED;
		function	“+”			(L:UNSIGNED;	R:NATURAL)	 return UNSIGNED;
		function	“+”			(L:NATURAL;		R:UNSIGNED)	return UNSIGNED;
		function	“+”			(L:INTEGER;		R:SIGNED)			return SIGNED;
		function	“+”			(L:SIGNED;			R:INTEGER)		return SIGNED;
		function	“-”			(L,R:UNSIGNED)										 return UNSIGNED;
		function	“-”			(L,R:SIGNED)												 return SIGNED;
		function	“-”			(L:UNSIGNED;	R:NATURAL)	 return UNSIGNED;
		function	“-”			(L:NATURAL;		R:UNSIGNED) return UNSIGNED;
		function	“-”			(L:SIGNED;			R:INTEGER)	 return SIGNED;
		function	“-”			(L:INTEGER;		R:SIGNED)		 return SIGNED;
		function	“*”			(L,R:UNSIGNED)										 return UNSIGNED;
		function	“*”			(L,R:SIGNED)												 return SIGNED;
		function	“*”			(L:UNSIGNED;	R:NATURAL)	 return UNSIGNED;
		function	“*”			(L:NATURAL;		R:UNSIGNED) return UNSIGNED;
		function	“*”			(L:SIGNED;			R:INTEGER)	 return SIGNED;
		function	“*”			(L:INTEGER;		R:SIGNED)		 return SIGNED;
		function	“/”			(L,R:UNSIGNED)										 return UNSIGNED;
		function	“/”			(L,R:SIGNED)												 return SIGNED;
		function	“/”			(L:UNSIGNED;	R:NATURAL)	 return UNSIGNED;
		function	“/”			(L:NATURAL;		R:UNSIGNED) return UNSIGNED;
		function	“/”			(L:SIGNED;			R:INTEGER)	 return SIGNED;
		function	“/”			(L:INTEGER;		R:SIGNED)		 return SIGNED;
		function	“rem”	(L,R:UNSIGNED)										 return UNSIGNED;
		function	“rem”	(L,R:SIGNED)												 return SIGNED;
		function	“rem”	(L:UNSIGNED;	R:NATURAL)	 return UNSIGNED;
		function	“rem”	(L:NATURAL;		R:UNSIGNED) return UNSIGNED;
		function	“rem”	(L:SIGNED;			R:INTEGER)	 return SIGNED;
		function	“rem”	(L:INTEGER;		R:SIGNED)		 return SIGNED;
		function	“mod”	(L,R:UNSIGNED)										 return UNSIGNED;
		function	“mod”	(L,R:SIGNED)												 return SIGNED;
		function	“mod”	(L:UNSIGNED;	R:NATURAL)	 return UNSIGNED;
		function	“mod”	(L:NATURAL;		R:UNSIGNED) return UNSIGNED;
		function	“mod”	(L:SIGNED;			R:INTEGER)	 return SIGNED;
		function	“mod”	(L:INTEGER;		R:SIGNED)		 return SIGNED;
		function “>”			(L,R:UNSIGNED)										 return BOOLEAN;
		function “>”			(L,R:SIGNED)													return BOOLEAN;
		function “>”			(L:NATURAL;		R:UNSIGNED)	return BOOLEAN;
		function “>”			(L:INTEGER;		R:SIGNED)			return BOOLEAN;
		function “>”			(L:UNSIGNED;	R:NATURAL)	 return BOOLEAN;
		function “>”			(L:SIGNED;			R:INTEGER)		return BOOLEAN;
		function “<”			(L,R:UNSIGNED)										 return BOOLEAN;
		function “<”			(L,R:SIGNED)												 return BOOLEAN;
		function	“<”			(L:NATURAL;		R:UNSIGNED)	return BOOLEAN;
		function “<”			(L:INTEGER;		R:SIGNED)			return BOOLEAN;
		function	“<”			(L:UNSIGNED;	R:NATURAL)	 return BOOLEAN;
		function “<”			(L:SIGNED;			R:INTEGER)		return BOOLEAN;
		function	“<=”		(L,R:UNSIGNED)										 return BOOLEAN;
		function “<=”		(L,R:SIGNED)												 return BOOLEAN;
		function “<=”		(L:NATURAL;		R:UNSIGNED)	return BOOLEAN;
		function	“<=”		(L:INTEGER;		R:SIGNED)			return BOOLEAN;
		function “<=”		(L:UNSIGNED;	R:NATURAL)	 return BOOLEAN;
		function “<=”		(L:SIGNED;			R:INTEGER)		return BOOLEAN;
		function “>=”		(L,R:UNSIGNED)										 return BOOLEAN;
		function “>=”		(L,R:SIGNED)												 return BOOLEAN;
		function “>=”		(L:NATURAL;		R:UNSIGNED)	return BOOLEAN;
		function “>=”		(L:INTEGER;		R:SIGNED)			return BOOLEAN;
		function “>=”		(L:UNSIGNED;	R:NATURAL)	 return BOOLEAN;
		function “>=”		(L:SIGNED;			R:INTEGER)		return BOOLEAN;
		function “=”			(L,R:UNSIGNED)										 return BOOLEAN;
		function “=”			(L,R:SIGNED)												 return BOOLEAN;
		function “=”			(L:NATURAL;		R:UNSIGNED)	return BOOLEAN;
		function “=”			(L:INTEGER;		R:SIGNED)			return BOOLEAN;

IEEE

61
Copyright © 1997-2000 HARDI Electronics AB

		function “=”			(L:UNSIGNED;	R:NATURAL)	 return BOOLEAN;
		function “=”			(L:SIGNED;			R:INTEGER)		return BOOLEAN;
		function	“/=”		(L,R:UNSIGNED)										 return BOOLEAN;
		function “/=”		(L,R:SIGNED)												 return BOOLEAN;
		function “/=”		(L:NATURAL;		R:UNSIGNED)	return BOOLEAN;
		function “/=”		(L:INTEGER;		R:SIGNED)			return BOOLEAN;
		function “/=”		(L:UNSIGNED;	R:NATURAL)	 return BOOLEAN;
		function “/=”		(L:SIGNED;			R:INTEGER)		return BOOLEAN;
		function SHIFT_LEFT	(ARG:UNSIGNED;	COUNT:NATURAL)
																							return	UNSIGNED;
		function	SHIFT_RIGHT		(ARG:UNSIGNED;	COUNT:NATURAL)
																									return	UNSIGNED;
		function SHIFT_LEFT			(ARG:SIGNED;	COUNT:NATURAL)	return SIGNED;
		function SHIFT_RIGHT		(ARG:SIGNED;	COUNT:NATURAL)	return SIGNED;
		function ROTATE_LEFT		(ARG:UNSIGNED;	COUNT:NATURAL)
																								 return	UNSIGNED;
		function ROTATE_RIGHT	(ARG:UNSIGNED;	COUNT:NATURAL)
																									return	UNSIGNED;
		function ROTATE_LEFT		(ARG:SIGNED;	COUNT:NATURAL)	return SIGNED;
		function	ROTATE_RIGHT	(ARG:SIGNED;	COUNT:NATURAL)	return SIGNED;
		function	“sll”	(ARG:UNSIGNED;	COUNT:INTEGER)	return UNSIGNED;
		function	“sll”	(ARG:SIGNED;			COUNT:INTEGER)	return SIGNED;
		function “srl”	(ARG:UNSIGNED;	COUNT:INTEGER)	return UNSIGNED;
		function “srl”	(ARG:SIGNED;			COUNT:INTEGER)	return SIGNED;
		function “rol”	(ARG:UNSIGNED;	COUNT:INTEGER)	return UNSIGNED;
		function “rol”	(ARG:SIGNED;			COUNT:INTEGER)	return SIGNED;
		function “ror”	(ARG:UNSIGNED;	COUNT:INTEGER)	return UNSIGNED;
		function “ror”	(ARG:SIGNED;			COUNT:INTEGER)	return SIGNED;
		function RESIZE	(ARG:SIGNED;		NEW_SIZE:NATURAL)	return SIGNED;
		function RESIZE	(ARG:UNSIGNED;NEW_SIZE:NATURAL)	return	UNSIGNED;
		function TO_INTEGER		(ARG:UNSIGNED)					return NATURAL;
		function TO_INTEGER		(ARG:SIGNED)							return INTEGER;
		function TO_UNSIGNED	(ARG,SIZE:NATURAL)	return UNSIGNED;
		function TO_SIGNED			(ARG:INTEGER;	SIZE:NATURAL) return SIGNED;
		function “not”		(L:UNSIGNED)			return	UNSIGNED;
		function “and”		(L,R:UNSIGNED)	return UNSIGNED;
		function “or”			(L,R:UNSIGNED)	return UNSIGNED;
		function “nand”	(L,R:UNSIGNED)	return UNSIGNED;
		function “nor”		(L,R:UNSIGNED)	return UNSIGNED;
		function “xor”		(L,R:UNSIGNED)	return	UNSIGNED;
		function “xnor”	(L,R:UNSIGNED)	return UNSIGNED;
		function “not”		(L:SIGNED)					return SIGNED;
		function “and”		(L,R:SIGNED)			return SIGNED;
		function “or”			(L,R:SIGNED)			return SIGNED;
		function “nand”	(L,R:SIGNED)			return SIGNED;
		function “nor”		(L,R:SIGNED)			return SIGNED;
		function “xor”		(L,R:SIGNED) return SIGNED;
		function “xnor”	(L,R:SIGNED)	 return SIGNED;
		function RISING_EDGE		(signal	S:BIT)	return BOOLEAN;
		function FALLING_EDGE	(signal	S:BIT)	return BOOLEAN;
end package	NUMERIC_BIT;

NUMERIC_STD
Types and subprograms for designing with arrays of STD_LOGIC. Is precompiled into
the library ”IEEE” (accessed via use ieee.numeric_std.aLL).

library IEEE;
use	IEEE.std_logic_1164.all;

package	NUMERIC_STD	is
		type	UNSIGNED	is	array	(NATURAL	range	<>)	of	STD_LOGIC;
		type	SIGNED	 is	array	(NATURAL	range	<>)	of	STD_LOGIC;

		function	”abs”	(X:SIGNED)	 return	SIGNED;
		function	”-”			(ARG:SIGNED)	 return	SIGNED;
		function	”+”			(L,R:UNSIGNED)	 return	UNSIGNED;
		function	”+”			(L,R:SIGNED)	 return	SIGNED;
		function	”+”			(L:UNSIGNED;	R:NATURAL)	 return	UNSIGNED;
		function	”+”			(L:NATURAL;		R:UNSIGNED)	return	UNSIGNED;
		function	”+”			(L:INTEGER;		R:SIGNED)	 return	SIGNED;
		function	”+”			(L:SIGNED;			R:INTEGER)	 return	SIGNED;
		function	”-”			(L,R:UNSIGNED)	 return	UNSIGNED;
		function	”-”			(L,R:SIGNED)	 return	SIGNED;
		function	”-”			(L:UNSIGNED;	R:NATURAL)	 return	UNSIGNED;

IEEE

Copyright © 1997-2000 HARDI Electronics AB
62

		function	”-”			(L:NATURAL;		R:UNSIGNED)	return	UNSIGNED;
		function	”-”			(L:SIGNED;			R:INTEGER)	 return	SIGNED;
		function	”-”			(L:INTEGER;		R:SIGNED)	 return	SIGNED;
		function	”*”			(L,R:UNSIGNED)	 return	UNSIGNED;
		function	”*”			(L,R:SIGNED)												 return	SIGNED;
		function	”*”			(L:UNSIGNED;	R:NATURAL)	 return	UNSIGNED;
 function	”*”			(L:NATURAL;		R:UNSIGNED)	return	UNSIGNED;
 function	”*”			(L:SIGNED;			R:INTEGER)	 return	SIGNED;
 function	”*”			(L:INTEGER;		R:SIGNED)	 return	SIGNED;
 function	”/”			(L,R:UNSIGNED)										 return	UNSIGNED;
 function	”/”			(L,R:SIGNED)	 return	SIGNED;
 function	”/”			(L:UNSIGNED;	R:NATURAL)	 return	UNSIGNED;
 function	”/”			(L:NATURAL;		R:UNSIGNED)	return	UNSIGNED;
 function	”/”			(L:SIGNED;			R:INTEGER)	 return	SIGNED;
 function	”/”			(L:INTEGER;		R:SIGNED)	 return	SIGNED;
 function	”rem”	(L,R:UNSIGNED)	 return	UNSIGNED;
 function	”rem”	(L,R:SIGNED)	 return	SIGNED;
 function	”rem”	(L:UNSIGNED;	R:NATURAL)	 return	UNSIGNED;
 function	”rem”	(L:NATURAL;		R:UNSIGNED)	return	UNSIGNED;
 function	”rem”	(L:SIGNED;			R:INTEGER)	 return	SIGNED;
 function	”rem”	(L:INTEGER;		R:SIGNED)	 return	SIGNED;
 function	”mod”	(L,R:UNSIGNED)										 return	UNSIGNED;
 function	”mod”	(L,R:SIGNED)	 return	SIGNED;
 function	”mod”	(L:UNSIGNED;	R:NATURAL)	 return	UNSIGNED;
 function	”mod”	(L:NATURAL;		R:UNSIGNED)	return	UNSIGNED;
 function	”mod”	(L:SIGNED;			R:INTEGER)	 return	SIGNED;
 function	”mod”	(L:INTEGER;		R:SIGNED)	 return	SIGNED;
 function	”>”			(L,R:UNSIGNED)	 return	BOOLEAN;
 function	”>”			(L,R:SIGNED)	 return	BOOLEAN;
 function	”>”			(L:NATURAL;		R:UNSIGNED)	return	BOOLEAN;
 function	”>”			(L:INTEGER;		R:SIGNED)	 return	BOOLEAN;
 function	”>”			(L:UNSIGNED;	R:NATURAL)	 return	BOOLEAN;
 function	”>”			(L:SIGNED;			R:INTEGER)	 return	BOOLEAN;
 function	”<”			(L,R:UNSIGNED)	 return	BOOLEAN;
 function	”<”			(L,R:SIGNED)	 return	BOOLEAN;
 function	”<”			(L:NATURAL;		R:UNSIGNED)	return	BOOLEAN;
 function	”<”			(L:INTEGER;		R:SIGNED)	 return	BOOLEAN;
 function	”<”			(L:UNSIGNED;	R:NATURAL)	 return	BOOLEAN;
 function	”<”			(L:SIGNED;			R:INTEGER)	 return	BOOLEAN;
 function	”<=”		(L,R:UNSIGNED)										 return	BOOLEAN;
 function	”<=”		(L,R:SIGNED)	 return	BOOLEAN;
 function	”<=”		(L:NATURAL;		R:UNSIGNED)	return	BOOLEAN;
 function	”<=”		(L:INTEGER;		R:SIGNED)	 return	BOOLEAN;
 function	”<=”		(L:UNSIGNED;	R:NATURAL)	 return	BOOLEAN;
 function	”<=”		(L:SIGNED;			R:INTEGER)	 return	BOOLEAN;
 function	”>=”		(L,R:UNSIGNED)	 return	BOOLEAN;
 function	”>=”		(L,R:SIGNED)	 return	BOOLEAN;
 function	”>=”		(L:NATURAL;		R:UNSIGNED)	return	BOOLEAN;
 function	”>=”		(L:INTEGER;		R:SIGNED)	 return	BOOLEAN;
 function	”>=”		(L:UNSIGNED;	R:NATURAL)	 return	BOOLEAN;
 function	”>=”		(L:SIGNED;			R:INTEGER)	 return	BOOLEAN;
 function	”=”			(L,R:UNSIGNED)	 return	BOOLEAN;
 function	”=”			(L,R:SIGNED)	 return	BOOLEAN;
 function	”=”			(L:NATURAL;		R:UNSIGNED)	return	BOOLEAN;
 function	”=”			(L:INTEGER;		R:SIGNED)	 return	BOOLEAN;
 function	”=”			(L:UNSIGNED;	R:NATURAL)	 return	BOOLEAN;
 function	”=”			(L:SIGNED;			R:INTEGER)	 return	BOOLEAN;
 function	”/=”		(L,R:UNSIGNED)	 return	BOOLEAN;
 function	”/=”		(L,R:SIGNED)	 return	BOOLEAN;
 function	”/=”		(L:NATURAL;		R:UNSIGNED)	return	BOOLEAN;
 function	”/=”		(L:INTEGER;		R:SIGNED)	 return	BOOLEAN;
 function	”/=”		(L:UNSIGNED;	R:NATURAL)	 return	BOOLEAN;
 function	”/=”		(L:SIGNED;			R:INTEGER)	 return	BOOLEAN;
 function	SHIFT_LEFT		(ARG:UNSIGNED;	COUNT:NATURAL)
																								return	UNSIGNED;
 function	SHIFT_RIGHT	(ARG:UNSIGNED;	COUNT:NATURAL)
																								return	UNSIGNED;
 function	SHIFT_LEFT		(ARG:SIGNED;	COUNT:NATURAL)	return	SIGNED;
 function	SHIFT_RIGHT	(ARG:SIGNED;	COUNT:NATURAL)	return	SIGNED;
 function	ROTATE_LEFT		(ARG:UNSIGNED;	COUNT:NATURAL)
																									return	UNSIGNED;
 function	ROTATE_RIGHT	(ARG:UNSIGNED;	COUNT:NATURAL)
																									return	UNSIGNED;
 function	ROTATE_LEFT		(ARG:SIGNED;	COUNT:NATURAL)	return	SIGNED;
 function	ROTATE_RIGHT	(ARG:SIGNED;	COUNT:NATURAL)	return	SIGNED;

IEEE

63
Copyright © 1997-2000 HARDI Electronics AB

 function “sll”		(ARG:UNSIGNED;	COUNT:INTEGER) return	UNSIGNED;
 function “sll”		(ARG:SIGNED;			COUNT:INTEGER)	return	SIGNED;
 function “srl”		(ARG:UNSIGNED;	COUNT:INTEGER) return	UNSIGNED;
 function “srl”		(ARG:SIGNED;			COUNT:INTEGER)	return	SIGNED;
 function “rol”		(ARG:UNSIGNED;	COUNT:INTEGER) return	UNSIGNED;
 function “rol”		(ARG:SIGNED;			COUNT:INTEGER) return SIGNED;
 function “ror”		(ARG:UNSIGNED;	COUNT:INTEGER) return UNSIGNED;
 function “ror”		(ARG:SIGNED;			COUNT:INTEGER) return SIGNED;
 function	RESIZE	(ARG:SIGNED;		NEW_SIZE:NATURAL)	return	SIGNED;
 function	RESIZE	(ARG:UNSIGNED;NEW_SIZE:NATURAL)	return UNSIGNED;
 function	TO_INTEGER		(ARG:UNSIGNED)	 return	NATURAL;
 function	TO_INTEGER		(ARG:SIGNED)	 return	INTEGER;
 function	TO_UNSIGNED	(ARG,SIZE:NATURAL)	return	UNSIGNED;
 function	TO_SIGNED			(ARG:INTEGER;	SIZE:NATURAL)	return	SIGNED;
 function	”not”		(L:UNSIGNED)	 return	UNSIGNED;
 function	”and”		(L,R:UNSIGNED)	return	UNSIGNED;
 function	”or”			(L,R:UNSIGNED)	return	UNSIGNED;
 function	”nand”	(L,R:UNSIGNED)	return	UNSIGNED;
 function	”nor”		(L,R:UNSIGNED)	return	UNSIGNED;
 function	”xor”		(L,R:UNSIGNED)	return	UNSIGNED;
 function	”xnor”	(L,R:UNSIGNED)	return	UNSIGNED;
 function	”not”		(L:SIGNED)	 return	SIGNED;
 function	”and”		(L,R:SIGNED)	 return	SIGNED;
 function	”or”			(L,R:SIGNED)	 return	SIGNED;
 function	”nand”	(L,R:SIGNED)	 return	SIGNED;
 function	”nor”		(L,R:SIGNED)	 return	SIGNED;
 function	”xor”		(L,R:SIGNED)	 return	SIGNED;
 function	”xnor”	(L,R:SIGNED)	 return	SIGNED;
 function	STD_MATCH	(L,R:STD_ULOGIC)	return	BOOLEAN;
 function	STD_MATCH	(L,R:UNSIGNED)			return	BOOLEAN;
 function	STD_MATCH	(L,R:SIGNED)	 return	BOOLEAN;
 function	STD_MATCH	(L,R:STD_LOGIC_VECTOR)	 return	BOOLEAN;
 function	STD_MATCH	(L,R:STD_ULOGIC_VECTOR)	return	BOOLEAN;
 function	TO_01	(S:UNSIGNED;XMAP:STD_LOGIC:=’0’)	return	UNSIGNED;
 function	TO_01	(S:SIGNED;		XMAP:STD_LOGIC:=’0’)	return	SIGNED;
end package	NUMERIC_STD;

MATH_REAL
Constants and subprograms for real numbers. Is precompiled into the library ”IEEE”
(accessed via use ieee.matH_reaL.aLL).

package	MATH_REAL	is
		constant	MATH_E												:	REAL	:=	2.71828_18284_59045_23536;
		constant	MATH_1_OVER_E					:	REAL	:=	0.36787_94411_71442_32160;
		constant	MATH_PI											:	REAL	:=	3.14159_26535_89793_23846;
		constant	MATH_2_PI									:	REAL	:=	6.28318_53071_79586_47693;
		constant	MATH_1_OVER_PI				:	REAL	:=	0.31830_98861_83790_67154;
		constant	MATH_PI_OVER_2				:	REAL	:=	1.57079_63267_94896_61923;
		constant	MATH_PI_OVER_3				:	REAL	:=	1.04719_75511_96597_74615;
		constant	MATH_PI_OVER_4				:	REAL	:=	0.78539_81633_97448_30962;
		constant	MATH_3_PI_OVER_2		:	REAL	:=	4.71238_89803_84689_85769;
		constant	MATH_LOG_OF_2					:	REAL	:=	0.69314_71805_59945_30942;
		constant	MATH_LOG_OF_10				:	REAL	:=	2.30258_50929_94045_68402;
		constant	MATH_LOG2_OF_E				:	REAL	:=	1.44269_50408_88963_4074;
		constant	MATH_LOG10_OF_E			:	REAL	:=	0.43429_44819_03251_82765;
		constant	MATH_SqRT_2							:	REAL	:=	1.41421_35623_73095_04880;
		constant	MATH_1_OVER_SqRT_2:	REAL	:=	0.70710_67811_86547_52440;
		constant	MATH_SqRT_PI						:	REAL	:=	1.77245_38509_05516_02730;
		constant	MATH_DEG_TO_RAD			:	REAL	:=	0.01745_32925_19943_29577;
		constant	MATH_RAD_TO_DEG			:	REAL	:=	57.29577_95130_82320_87680;

		function	SIGN				(X		:REAL)	return	REAL;
		function	CEIL				(X		:REAL)	return	REAL;
		function	FLOOR			(X		:REAL)	return	REAL;
		function	ROUND			(X		:REAL)	return	REAL;
		function	TRUNC			(X		:REAL)	return	REAL;
		function	“MOD”			(X,Y:REAL)	return	REAL;
		function	REALMAX	(X,Y:REAL)	return	REAL;
		function	REALMIN	(X,Y:REAL)	return	REAL;

		procedure	UNIFORM	(variable	SEED1,SEED2:inout	POSITIVE;
																					variable	X:out	REAL);

		

IEEE

Copyright © 1997-2000 HARDI Electronics AB
64

		function	SqRT				(X:REAL)												return	REAL;
 function	CBRT				(X:REAL)												return	REAL;
		function	“**”				(X:INTEGER;	Y:REAL)	return	REAL;
		function	“**”				(X:REAL;				Y:REAL) return	REAL;
		function	EXP					(X:REAL)												return	REAL;
		function	LOG					(X:REAL)												return	REAL;
		function	LOG2				(X:REAL)												return	REAL;
		function	LOG10			(X:REAL)												return	REAL;
		function	LOG					(X:REAL;	BASE:REAL)	return	REAL;
		function	SIN					(X:REAL)												return	REAL;
		function	COS					(X:REAL)												return	REAL;
		function	TAN					(X:REAL)												return	REAL;
		function	ARCSIN		(X:REAL)												return	REAL;
		function	ARCCOS		(X:REAL)												return	REAL;
		function	ARCTAN		(Y:REAL)												return	REAL;
		function	ARCTAN		(Y:REAL;	X:REAL)				return	REAL;
		function	SINH				(X:REAL)												return	REAL;
		function	COSH				(X:REAL)												return	REAL;
		function	TANH				(X:REAL)												return	REAL;
		function	ARCSINH	(X:REAL)												return	REAL;
		function	ARCCOSH	(X:REAL)												return	REAL;
		function	ARCTANH	(X:REAL)												return	REAL;
end package	MATH_REAL;

MATH_COMPLEX
Constants and subprograms for complex numbers. Is precompiled into the library
”IEEE” (accessed via use ieee.matH_compLex.aLL).

use	IEEE.MATH_REAL.all;
package	MATH_COMPLEX	is
		type	COMPLEX	is record
				RE	:	REAL;	--	Real	part
				IM	:	REAL;	--	Imaginary	part
		end record;

		subtype	POSITIVE_REAL	is	REAL	range	0.0	to	REAL’HIGH;
		subtype	PRINCIPAL_VALUE	is	REAL	range	-MATH_PI	to	MATH_PI;

		type	COMPLEX_POLAR	is record
				MAG	:	POSITIVE_REAL;				--	Magnitude
				ARG	:	PRINCIPAL_VALUE;		--	Angle	in	radians
		end record;

		constant	MATH_CBASE_1	:	COMPLEX	:=	COMPLEX’(1.0,	0.0);
		constant	MATH_CBASE_J	:	COMPLEX	:=	COMPLEX’(0.0,	1.0);
		constant	MATH_CZERO			:	COMPLEX	:=	COMPLEX’(0.0,	0.0);

		function	“=”		(L:COMPLEX_POLAR;	R:COMPLEX_POLAR)
																	return	BOOLEAN;
		function	“/=”	(L:COMPLEX_POLAR;	R:COMPLEX_POLAR)
																	return	BOOLEAN;
		function	CMPLX	(X:REAL;	Y:REAL:=0.0)	 return	COMPLEX;
		function	GET_PRINCIPAL_VALUE(X:REAL)	 return	PRINCIPAL_VALUE;
		function	COMPLEX_TO_POLAR	(Z:COMPLEX)	return	COMPLEX_POLAR;
		function	POLAR_TO_COMPLEX	(Z:COMPLEX_POLAR)	return	COMPLEX;
		function	“ABS”	(Z:COMPLEX)							 return	POSITIVE_REAL;
		function	“ABS”	(Z:COMPLEX_POLAR)						return	POSITIVE_REAL;
		function	ARG			(Z:COMPLEX)							 return	PRINCIPAL_VALUE;
		function	ARG			(Z:COMPLEX_POLAR)	 return	PRINCIPAL_VALUE;
		function	“-”			(Z:COMPLEX)							 return	COMPLEX;
		function	“-”			(Z:COMPLEX_POLAR)	 return	COMPLEX_POLAR;
		function	CONJ		(Z:COMPLEX)							 return	COMPLEX;
		function	CONJ		(Z:COMPLEX_POLAR)	 return	COMPLEX_POLAR;
		function	SqRT		(Z:COMPLEX)							 return	COMPLEX;
		function	SqRT		(Z:COMPLEX_POLAR)	 return	COMPLEX_POLAR;
		function	EXP			(Z:COMPLEX)							 return	COMPLEX;
		function	EXP			(Z:COMPLEX_POLAR)	 return	COMPLEX_POLAR;
		function	LOG			(Z:COMPLEX)							 return	COMPLEX;
		function	LOG2		(Z:COMPLEX)							 return	COMPLEX;
		function	LOG10	(Z:COMPLEX)							 return	COMPLEX;
		function	LOG			(Z:COMPLEX_POLAR)	 return	COMPLEX_POLAR;
		function	LOG2		(Z:COMPLEX_POLAR)	 return	COMPLEX_POLAR;
		function	LOG10	(Z:COMPLEX_POLAR)	 return	COMPLEX_POLAR;
		function	LOG			(Z:COMPLEX;	BASE:REAL)	return	COMPLEX;

IEEE

65
Copyright © 1997-2000 HARDI Electronics AB

		function	LOG			(Z:COMPLEX_POLAR;	BASE:REAL)
 return	COMPLEX_POLAR;
		function	SIN			(Z:COMPLEX)							 return	COMPLEX;
		function	SIN			(Z:COMPLEX_POLAR)	 return	COMPLEX_POLAR;
		function	COS			(Z:COMPLEX)							 return	COMPLEX;
		function	COS			(Z:COMPLEX_POLAR)	 return	COMPLEX_POLAR;
		function	SINH		(Z:COMPLEX)							 return	COMPLEX;
		function	SINH		(Z:COMPLEX_POLAR)	 return	COMPLEX_POLAR;
		function	COSH		(Z:COMPLEX)							 return	COMPLEX;
		function	COSH		(Z:COMPLEX_POLAR)	 return	COMPLEX_POLAR;
		function	“+”			(L:COMPLEX;	R:COMPLEX)	return	COMPLEX;
		function	“+”			(L:REAL;				R:COMPLEX)	return	COMPLEX;
		function	“+”			(L:COMPLEX;	R:REAL)				return	COMPLEX;
		function	“+”			(L:COMPLEX_POLAR;	R:COMPLEX_POLAR)
																	 return	COMPLEX_POLAR;
		function	“+”			(L:REAL;	R:COMPLEX_POLAR)	return	COMPLEX_POLAR;
		function	“+”			(L:COMPLEX_POLAR;	R:REAL)	return	COMPLEX_POLAR;
		function	“-”			(L:COMPLEX;	R:COMPLEX)				return	COMPLEX;
		function	“-”			(L:REAL;				R:COMPLEX)				return	COMPLEX;
		function	“-”			(L:COMPLEX;	R:REAL)							return	COMPLEX;
		function	“-”			(L:COMPLEX_POLAR;	R:COMPLEX_POLAR)
																		return	COMPLEX_POLAR;
		function	“-”			(L:REAL;	R:COMPLEX_POLAR)	return	COMPLEX_POLAR;
		function	“-”			(L:COMPLEX_POLAR;	R:REAL)	return	COMPLEX_POLAR;
		function	“*”			(L:COMPLEX;	R:COMPLEX)				return	COMPLEX;
		function	“*”			(L:REAL;				R:COMPLEX)				return	COMPLEX;
		function	“*”			(L:COMPLEX;	R:REAL)							return	COMPLEX;
		function	“*”			(L:COMPLEX_POLAR;	R:COMPLEX_POLAR)
																		return	COMPLEX_POLAR;
		function	“*”			(L:REAL;	R:COMPLEX_POLAR)	return	COMPLEX_POLAR;
		function	“*”			(L:COMPLEX_POLAR;	R:REAL)	return	COMPLEX_POLAR;
		function	“/”			(L:COMPLEX;	R:COMPLEX)				return	COMPLEX;
		function	“/”			(L:REAL;				R:COMPLEX)				return	COMPLEX;
		function	“/”			(L:COMPLEX;	R:REAL)							return	COMPLEX;
		function	“/”			(L:COMPLEX_POLAR;	R:COMPLEX_POLAR)
																	 return	COMPLEX_POLAR;
		function	“/”			(L:REAL;	R:COMPLEX_POLAR)	return	COMPLEX_POLAR;
		function	“/”			(L:COMPLEX_POLAR;	R:REAL)	return	COMPLEX_POLAR;
end package	MATH_COMPLEX;

IEEE

Copyright © 1997-2000 HARDI Electronics AB
66

VHDL guide
Introduction
This chapter describes how VHDL code is written at HARDI Electronics
AB. This coding method is used and taught at the training course ”VHDL
for design and modelling”.

File notation
Files for the five design units in VHDL are named according to the fol-
lowing:

	Entity	 Name_e.vhd
	Architecture	 Name_a.vhd
	Package	 Name_p.vhd
	Package	Body	 Name_b.vhd
 Configuration Name_c.vhd

Libraries are named arbitrarily.

Predefined packages
It is recommended to use the packages standardized by IEEE (see pages
56-65). Non standardized packages, for example STD_LOGIC_ARITH,
STD_LOGIC_SIGNED, NUMERIC_SIGNED, STD_LOGIC_UNSIGNED
and NUMERIC_UNSIGNED, are to be avoided.

VHDL syntax
Reserved words and objects
All reserved words are written with upper-case letters. Objects (constants,
variables, signals and files) are written with lower-case letters as compound
words, and with upper-case letters separating the words. The first letter is
always lower-case.

	Counter:	PROCESS
 BEGIN
 WAIT	UNTIL	clock	=	‘1’;
			numberOfCycles	<=	numberOfCycles	+	1;
 END	PROCESS	Counter;

Types
Predefined types are written with upper-case letters. Userdefined types are
written just as objects, but with the first letter as upper-case.

 TYPE	Matrix	IS ARRAY	(NATURAL	RANGE <>, NATURAL	RANGE <>) OF BIT;
 SUBTYPE	MyNumbers	IS	NATURAL	RANGE	0	TO	7;

Attributes, packages and libraries
Attributes, packages and libraries are written with upper-case letters ex-
cept for user-defined attributes and packages that are written with lower-
case letters (packages start with an upper-case letter).

 WAIT	UNTIL	clk’EVENT	AND	clk	=	‘1’;

 LIBRARY IEEE;
 USE IEEE.STD_LOGIC_1164.ALL;

	ATTRIBUTE	syn_encoding	OF	State	:	TYPE	IS	”onehot”;

VHDL guide

67
Copyright © 1997-2000 HARDI Electronics AB

Hexadecimal values
Hexadecimal values are written using upper-case letters.

	myVariable	:=	X”AB14”;

Replacement characters
Replacement characters are not used (LRM 13.10).

Indentation
Indentation is used to make the VHDL code well structured and easy to read.
Declarative regions and expressions are indented two spaces. TAB is not used
since the TAB setting may differ between different computers.

 ARCHITECTURE Behave OF Counter IS
 BEGIN
 Count:	PROCESS(choose)
			 VARIABLE	myNumber	:	INTEGER	:=	0;
 BEGIN
			 IF	choose	=	‘1’	THEN
							myNumber	:=	myNumber	+	1;
					 REPORT	”Adding”;
			 ELSE
							myNumber	:=	myNumber	-	1;
					 REPORT	”Subtracting”;
			 END	IF;
					outputData	<=	myNumber;
 END	PROCESS Count;
 END ARCHITECTURE	Behave;

Indentation of the CASE statement
CASE statements are indented to clearly show the different conditions.

 CASE	state	IS
			WHEN	Start	=>	IF	i	=	‘0’	THEN
																			nextState	<=	Stop;
																	ELSE
																			nextState	<=	Start;
																	END	IF;
			WHEN	Stop		=>	nextState	<=	Start;
 END	CASE;

Line construction
A line shall not include more than 80 characters. Longer lines shall be divided
into several lines and all new lines shall continue at a similar expression
on the previous line.

 IF	myVeryVeryLongVariableName	AND
				mySecondVeryVeryLongVariableName	THEN	...

 PORT	(clk						: IN BIT;
							myNumber	: IN INTEGER;
							ok							: OUT BOOLEAN);

Comments
Comments are placed either before the code to be commented, or on the
same line.

	--	This	process	adds	two	numbers
 Adder:	PROCESS(number1,	number2)	IS
 BEGIN
			sum	<=	number1	+	number2;	--	Here	is	the	addition
 END	PROCESS	Adder;

Concurrent statements
Concurrent statements are separated by an empty line.

VHDL guide

Copyright © 1997-2000 HARDI Electronics AB
68

 ARCHITECTURE Behave OF Design IS
 BEGIN
 ASSERT a	=	b
 REPORT	”a	is	not	equal	to	b”;

			clock	<=	NOT	clock	AFTER	20	ns;

 PROCESS(clock)
 BEGIN
 IF	clock	=	‘1’	THEN
							q	<=	d;
			 END	IF;
 END	PROCESS;
	END ARCHITECTURE	Behave;

Operators
Space is used to separate operators binding harder or as hard as binary ’+’
and ’-’. Operators written as text are always preceded by a space.
 With space Without space

	 +	 *	
	 -	 /	
	 MOD,	REM,	ABS	 **
	 shift,	rotation
	 logical
	 comparison

	mySignal								<=	((in1	+	in2	-	in3)*in4**2)/in5;
	myArray									:=	myArray	SLA	2;
	myLogicalSignal	<=	in4	AND	in5;
	myBoolean							<=	a	>	b;

Assignments
Every assignment is written on a separate line justified vertically according
to equal lines.

	outData	<=									inData	AFTER	5	ns;
	dataBus	<=	GUARDED memory(address);	

Declarations
Each declaration is written on a separate line justified vertically according
to equal lines.

 SIGNAL	outData	:									BIT;
 SIGNAL	dataBus	:	Resolve	INTEGER	BUS;

Associations
Named associations using more than one line are justified vertically. Named
association is preferably used instead of positional association since the as-
sociation then is independent of the order of the associations.

 PORT	MAP(data	=>	outData,	address	=>	address,
										wr			=>	wr,						rd						=>	rd);

Naming of concurrent statements
Concurrent statements shall be named to simplify simulation. The name shall
directly be followed by a ‘:’, then a space and then the named concurrent
statement. The name is always started by an upper-case letter.

	Clockpulse:	clock	<=	NOT	clock	AFTER	5	ns;

	Adder:	PROCESS(number1,	number2)	IS
 BEGIN
			sum	<=	number1	+	number2;
 END	PROCESS	Adder;

VHDL guide

69
Copyright © 1997-2000 HARDI Electronics AB

Loops
Nested loops shall be named. NEXT and EXIT shall denote which loop
they belong to.

	L1:	WHILE	a	>	b	LOOP
			L2:	FOR	i	IN	a	TO	b	LOOP
					a	:=	i	-	b;
					b	:=	b	-	1;
					EXIT	L1	WHEN	a	=	b;
			END	LOOP	L2;
 END	LOOP	L1;

END
END shall be qualified when the syntax permits it.

 ENTITY	Adder	IS
			PORT(number1,	number2	:	IN INTEGER;
								sum														:	OUT	INTEGER);
 END	ENTITY	Adder;

Simulation and synthesis
Variables and signals
Variables are prefered over signals since they need less simulation memory
and are handled faster.

Enumerated types
Enumerated types are prefered for state machines.

 TYPE	state	IS	(Start,	Glitch,	Pulse,	Stop);

Constraints
Integers must be constrained to avoid 32 bit data paths in code written for
synthesis.

 SIGNAL	data	:	INTEGER	RANGE	0	TO	255;

Named constants are used when constraining parameters.

	CONSTANT	length		:	NATURAL	:=	5;
	SUBTYPE		MyArrayType	IS	BIT_VECTOR(length	-	1	DOWNTO	0);
	SIGNAL			myArray	:	MyArrayType;

VHDL guide

Copyright © 1997-2000 HARDI Electronics AB
70

VHDL’87 and VHDL’93, differences
This chapter describes the most essential differences between VHDL’87
and VHDL’93.

Syntax
VHDL’93 has a more symmetric syntax, especially for the conclusion of
composite statements and the five design units. Below follow examples
of conclusions different in the two versions of the standard (note that the
VHDL’87 syntax is permitted also in VHDL’93):

 VHDL’87 VHDL’93 See page

	 end	entity_name;	 end	entity	entity_name; 24	
	 end	arch_name;	 end architecture	arch_name;	 25
	 end	pck_name;	 end package	pck_name;	 22
	 end	pck_name;	 end package body	pck_name; 23
	 end	conf_name;	 end configuration	conf_name; 26,	48
	 end component;	 end component	comp_name; 44
	 end	fn_name;	 end function	fn_name; 31
	 end	proc_name;	 end procedure	proc_name;	 32
	 end record;	 end record	rec_name;	 9

Below follow examples where the start of statements differ:

 VHDL’87 VHDL’93 See page

	 blk_name:	block	 blk_name:	block is 41
 proc_name:	process proc_name:	process is 38
 component	comp_name	 component comp_name	is	 44

Above the previous examples VHDL’93 permits labeling of all statements.
Composite statements may then use the label also at the end of the statement,
for example:

	Control:	IF	a	>	b	THEN
			...
 END IF	Control;

That is not permitted in VHDL’87.

GENERATE
The GENERATE statement (see page 45) has in VHDL’93 been enhanced
with a declarational part and has also been raised to a block with a local
scope. The GENERATE statement in VHDL’87 does not have a declarational
part. It is however possible to write code compatible with both standards by
avoiding the declarational part and by putting a BLOCK statement within
the GENERATE statement.

Concurrent signal assignment
Conditional concurrent signal assignments (see page 41) must in VHDL’87
have an concluding ELSE condition. The reserved word UNAFFECTED,
that is new to VHDL’93, was included to be able to leave a signal unaffected
during an assignment, i.e. to keep its previous value:

	a	<=	b	WHEN	s=’1’	ELSE	a;	--	VHDL’87	requires	a	concluding	ELSE
	a	<=	b	WHEN	s=’1’;								--	Works	in	VHDL’93
	a	<=	b	 WHEN	t=”00”	ELSE --	Works	in	VHDL’93
					 UNAFFECTED WHEN	t=”01”	ELSE
						c;

VHDL’87 and VHDL’93

71
Copyright © 1997-2000 HARDI Electronics AB

Files
The handling of files differ quite a lot between VHDL’87 and VHDL’93 (see
page 19-21). Most changes are not backwards compatible. Below follow
examples of the different versions of file declarations:

	--	VHDL’87:
 FILE	f1	:	myFile							IS IN		”name_in_file_system”;
 FILE	f2	:	mySecondFile	IS OUT	”name_in_file_system”;

	--	VHDL’93:
 FILE	f1	:	myFile							OPEN	READ_MODE		IS ”name_in_file_system”;
 FILE	f2	:	mySecondFile	OPEN	WRITE_MODE	IS ”name_in_file_system”;

Input files may be written in VHDL code compatible with both VHDL’87
and VHDL’93, but for output files that is not possible:

 -- Declaration of an input file both for VHDL’87 and VHDL’93
 FILE	f	:	myFile	IS ”name_in_file_system”;

The predefined subprograms FILE_OPEN and FILE_CLOSE does not
exist in VHDL’87.
File parameters for subprograms do not have a mode in VHDL’93 as they
do in VHDL’87. Input files for subprograms may be written in VHDL code
compatible with both VHDL’87 and VHDL’93:

 -- Subprogram with a file parameter for both VHDL’87 and VHDL’93
 PROCEDURE	ReadFile(FILE	f	:	myFile;	value	:	OUT	INTEGER);

Functions using files outside their local scope must in VHDL’93 be declared
as IMPURE. IMPURE does not exist in VHDL’87.

Character set
The character set in VHDL’93 (see page 7, 56-57) is completely ISO
8859-1 : 1987(E) compatible and includes 256 characters. The character
set in VHDL’87 is limited to the first 128 characters and does not include
international characters, not even in comments. Many VHDL’87 tools do
however support international charactersr in comments.

Extended identifiers
VHDL’93 permits the usage of extended identifiers. An extended identifier
always starts and ends with a ‘\’ (backslash) and may include for example spa-
ces and reserved words. Note that extended identifiers are case sensitive.

Shared variables
VHDL’93 permits shared variables (see page 17) in concurrent declaration
statements.

Impure functions
An impure function does not only work via its parameters and may therefore
return different values with identical input parameters. A function calling
an impure function, or a procedure with side-effects (a procedure not only
working via its parameters), must be declared as impure. The function NOW,
that returns current simulation time, is an impure function in VHDL’93. All
functions utilizing NOW must therefore be declared as impure.

VHDL’87 and VHDL’93

Copyright © 1997-2000 HARDI Electronics AB
72

Direct instantiation
In VHDL’93 it is permitted to exclude the component declaration and directly
instantiate an ENTITY or a CONFIGURATION DECLARATION. This is
called direct instantiation (see pages 46, 47). In VHDL’87 a component
declaration is needed.

Port associations
In VHDL’93 it is permitted to have a constant value as actual parameter for
an input port in a parameter association list (see pages 47-50). In VHDL’87
an actual parameter must be a signal.
VHDL’93 does also permit, above type conversion functions, that direct type
conversion (type conversion functions between closely related types) is used
between formal and actual parameters (see pages 43, 44, 47). In VHDL’93
it is also possible to have a slice as formal parameter.

Attributes
A number of new attributes (see pages 51-55) are added to VHDL’93. They
are ‘ASCENDING, ‘IMAGE, ‘VALUE, ‘DRIVING, ‘DRIVING_VALUE,
‘SIMPLE_NAME, ‘INSTANCE_NAME and ‘PATH_NAME.

The lack of the attribute ‘IMAGE in VHDL’87 may be quite annoying and
one must write functions that convert values to text strings. In some cases
it is possible to utilize STD.TEXTIO.READ and STD.TEXTIO.WRITE to
create such functions, at least for the predefined types:

	FUNCTION	INTEGER_IMAGE(i	:	INTEGER)	RETURN	STRING	IS
 USE	STD.TEXTIO.ALL;	
			--	Determines	the	number	of	characters	in	the	string	
		 FUNCTION	length(i	:	INTEGER)	RETURN	NATURAL	IS
 VARIABLE	l			:	LINE;	
					VARIABLE	tmp	:	NATURAL;
 BEGIN
					WRITE(l,i);	
					tmp	:=	l’LENGTH;	
					DEALLOCATE(l);	--	Remove	the	line	pointer	
					RETURN	tmp;	
			END FUNCTION	length;	
	 VARIABLE	st	:	STRING(1	TO	length(i));	
	 VARIABLE	l		:	LINE;	
 BEGIN
			WRITE(l,i);	
			st	:=	l.ALL;	
			DEALLOCATE(l);	--	Remove	the	line	pointer	
	 RETURN	st;
 END FUNCTION	INTEGER_IMAGE;

The attributes ‘STRUCTURE and ‘BEHAVIOR were removed to
VHDL’93.

REPORT
The REPORT statement is new to VHDL’93. In VHDL’87 it is possible to
utilize REPORT in combination with ASSERT:

 ASSERT	FALSE	REPORT	”...”;

VHDL’87 and VHDL’93

73
Copyright © 1997-2000 HARDI Electronics AB

Signal delay mechanisms
INERTIAL is new to VHDL’93 and is used to express an inertial delay (see
page 37). In VHDL’93 it is possible to combine INERTIAL and TRANS-
PORT in a signal assignment using REJECT. That is not possible in VHDL’87
and an extra signal is needed to obtain the same functionality:
	
	--	VHDL’93:
	a	<=	REJECT	2	ns	INERTIAL	b	AFTER	5	ns;
	
	--	VHDL’87:
	tmp	<=	b	AFTER	2	ns;
	a			<=	TRANSPORT	tmp	AFTER	3	ns;

Delayed concurrent statements
In VHDL’93 it is possible to declare all concurrent statements active during
simulation (see pages 38-42) as POSTPONED which means that they are
executed as the final delta at a specific occasion. VHDL’87 does not have
that functionality and there are no tricks to manually create it.

Alias
In VHDL’87 aliases (see page 22) may be declared only for objects, while it
in VHDL’93 is possible to declare aliases also for subprograms, operators,
types and for all named entities except ”labels”, ”loop parameters” and
”generate parameters”.

Bit string literals
In VHDL’87 a bit string literal is always of the type BIT_VECTOR. In
VHDL’93 the bit string literals have been generalized to be an alternative
way to write an aggregate of any array type whose elements can have the
values ‘0’ or ‘1’.

	--	Permitted	in	VHDL’93
	LIBRARY	IEEE;	
 USE	IEEE.STD_LOGIC_1164.ALL;	
	...	
 SIGNAL	s	:	STD_LOGIC_VECTOR(0	TO	15);
	...
	s	<=	x”A1B0”;

Unfortunately this generalization may arise ambiguousnesses when over-
loaded subprograms are used. The assignment above should be written like
this in VHDL’87:

	s	<=	TO_STDLOGICVECTOR(x”A1B0”);

This will however result in a compilation error in VHDL’93 since the bit
string literal fits many different array types, and it is therefore not possible
for the compiler to determine which of all conversion functions named
TO_STDLOGICVECTOR to use.
The following line works fine both for VHDL’87 and for VHDL’93:

	s	<=	TO_STDLOGICVECTOR(BIT_VECTOR’(x”A1B0”));

VHDL’87 and VHDL’93

Copyright © 1997-2000 HARDI Electronics AB
74

Index
a
’ACTIVE 54
’ASCENDING Arrays 53
’ASCENDING Types 51
ACCESS 12
Actual parameters 39
AFTER 37, 41, 73
Aggregates 13
ALIAS 22, 73
ARCHITECTURE 27
ARRAY 10
ASSERT 38
ATTRIBUTE 15
Attributes

Predefined 51, 72
User-defined 15

b
‘BEHAVIOR 72
’BASE 51
Backus-Naur-format 7
BIT 8, 56
BIT_VECTOR 8, 57
Bit string literals 73
BLOCK 43
BOOLEAN 8, 56

c
CASE 31
CHARACTER 8, 56, 71
Component configuration 48, 49, 50
Component declaration 46
Component instantiation 47
Concatenation operator (&) 10
Concurrent signal assignment 41, 42, 70
Configuration (default) 48
CONFIGURATION (design unit) 28
Configuration declaration 28, 50
Configuration specification 49
CONSTANT 16

d
’DELAYED 54
’DRIVING 54
’DRIVING_VALUE 18, 54
DEALLOCATE 12
Default configuration 48
Deferred constant declaration 16
DELAY_LENGTH 8, 57
Delay mechanisms 37, 73
Direct instantiation 46, 47, 72

e
’EVENT 54
ENTITY 26
EXIT 32
Extended identifiers 4, 71

f
FILE_OPEN_KIND 8, 57, 71
FILE_OPEN_STATUS 8, 57, 71

File declaration 19, 71
File handling 19, 71
File reading, TEXTIO 20
File writing, TEXTIO 21
Formal parameters 33, 34, 39
FUNCTION 33

g
GENERATE 45, 70
GENERIC 44
GENERIC MAP 44
Generic parameters 44
GROUP 14
GUARD 43

H
’HIGH, Arrays 52
’HIGH, Types 51

i
’IMAGE 51, 72
’INSTANCE_NAME 55
Identifier 4
IEEE standards 56
IF 30
IMPURE FUNCTION 33, 71
Incremental binding 50
INERTIAL 37, 73
INPUT 20
INTEGER 8, 57

L
’LAST_ACTIVE 54
’LAST_EVENT 54
’LAST_VALUE 54
’LEFT, Arrays 52
’LEFT, Types 51
’LEFTOF 52
’LENGTH 53
’LOW, Arrays 52
’LOW, Types 51
Lexical elements 4
LIBRARY 23
LINE 12, 20, 21, 57
Literals 5
LOOP 32

m
MATH_COMPLEX package 64
MATH_REAL package 63

n
Named association

Aggregates 13
Generic parameters 44
Ports 43, 47, 48, 49, 50
Subprograms 33, 34, 39

NATURAL 8, 57
NEW 12
NEXT 32
NOW 29, 71
NULL 5, 12, 31
NUMERIC_BIT package 60
NUMERIC_STD package 61

Index

75
Copyright © 1997-2000 HARDI Electronics AB

o
OPEN 47, 49
Operators

Comparing 8, 10, 11, 12
Concatenation (&) 10
Logical 8, 10
Predefined 8
Rotation 8, 10
Shift 8, 10

OTHERS 13, 31
OUTPUT 21

p
’PATH_NAME 55
’POS 51
’PRED 52
PACKAGE BODY 25
PACKAGE DECLARATION 24
Pointers 12
PORT MAP 43, 44, 47, 72
Positional association

Aggregates 13
Generic parameters 44
Ports 43, 47, 48, 49, 50
Subprograms 33, 34, 39

POSITIVE 8, 57
POSTPONED 38, 40, 41, 42, 73
POSTPONED ASSERT 38, 73
POSTPONED PROCESS 40, 73
Predefined attributes on:

Arrays 52
Named entities 54
Signals 53
Types 51

Predefined operators 9
Predefined packages 56

MATH_COMPLEX 64
MATH_REAL 63
NUMERIC_BIT 60
NUMERIC_STD 61
STANDARD 56
STD_LOGIC_1164 58
TEXTIO 57

Predefined subtypes 8, 56
Predefined types 8, 56
PROCEDURE 34
PROCESS 40
PURE FUNCTION 33

q
’QUIET 54

r
’RANGE 53
’REVERSE_RANGE 53
’RIGHT, Arrays 53
’RIGHT, Types 51
’RIGHTOF 52
READ 20
READLINE 20
REAL 8, 57
RECORD 11
REJECT 37, 73

REPORT 38, 72
Reserved words 6
RETURN 35
Rotation operators 8, 10

s
’SIMPLE_NAME 54
’STABLE 53
’STRUCTURE 72
’SUCC 52
SELECT 42
Sensitivity list 40
SEVERITY 8, 38, 57
SHARED VARIABLE 17, 71
Shift operators 8, 10
SIGNAL 18
Signal assignment 37, 41, 42
Signal declaration 18
Slice 10, 72
STANDARD package 56
STD_LOGIC_1164 package 58
STRING 8, 57
Subprograms

Call 39, 71
Function 33
Procedure 34

Subtypes
Declaration 9
Predefined 8, 56

Syntax description 7

t
’TRANSACTION 54
TEXTIO 19, 20, 21
TEXTIO package 57
TIME 8, 57
TRANSPORT 37, 73
Types

Declaration 9
Predefined 8, 56

u
UNAFFECTED 41, 42
USE 23

v
’VAL 52
’VALUE 51
VARIABLE 17
Variable assignment 36
Variable declaration 17
VHDL’87/93, differences 70
VHDL guide 66

w
WAIT 29
WHEN 41
WORK 23
WRITE 21
WRITELINE 21

Index

A wealth of
experience

Founded in 1987, in the same year that saw the
standardization of the original version of VHDL
by the IEEE, Hardi electronics is a pioneer
in the field of structured design. Our knowledge
and experience ranges from ASIC design with
silicon compilers, to the synthesis of program-
mable devices and the creation of VHDL
designs – the first of which was produced a few
months after the company’s founding.
 We work in the fields of design, training and
consultancy and carry out this work both ac-
cording to the methods that we teach and with
the tools that we sell. It is this philosophy that
has provided us with the kind of in-depth, expert
knowledge of EDA tools and rational working
methods that has contributed to our holding
a position as one of the market leaders in the
structured hardware design industry.
 Those Nordic companies benefiting from our
services include Ericsson, Nokia, ABB, Volvo
and SAAB.

Address: Derbyvägen 6 B, SE-212 35 MALMÖ, Sweden
Tel: +46-40-59 29 00 • Fax: +46-40-59 29 01
Internet: info@hardi.se • http://www.hardi.se

The four lane highway towards
error-free hardware designs

HARDI Electronics AB
Kalkstensvägen 3, SE-224 78 LUND, Sweden

Tel: +46-(0)46-16 29 00 • Fax: +46-(0)46-16 29 01
www.hardi.com • info@hardi.com

We have moved!

Since	the	year	2000	we	develop
hardware	platforms	for	ASIC	Prototyping.
Visit	www.hardi.com	for	info	about	HAPS,
our	ASIC	Prototyping	System.

http://www.hardi.com/
http://www.hardi.com/
http://www.hardi.com/haps/

	Lexical elements
	Definition
	Character set
	Separators
	Delimiters
	Identifiers

	Literals
	Numerical literals
	Enumeration literals
	String literals
	Bit string literals
	The NULL literal

	Reserved words
	Syntax
	Standards
	The Backus-Naur-format

	Types and objects
	Predefined types
	Predefined subtypes
	Types and subtypes
	ARRAY
	RECORD
	ACCESS TYPES (pointers)
	Aggregates
	GROUP
	ATTRIBUTE
	Constant declaration
	Variable declaration
	Signal declaration
	File declaration/File handling
	File reading (TEXTIO)
	File writing (TEXTIO)
	ALIAS

	Libraries
	LIBRARY and USE

	Design units
	PACKAGE DECLARATION
	PACKAGE BODY
	ENTITY
	ARCHITECTURE
	CONFIGURATION

	Sequential statements
	WAIT
	IF
	CASE
	LOOP, NEXT and EXIT
	FUNCTION
	PROCEDURE
	RETURN
	Variable assignment
	Signal assignment

	Concurrent and sequential statements
	ASSERT/REPORT
	Subprogram call

	Concurrent statements
	PROCESS
	WHEN
	SELECT
	BLOCK

	Generic parameters and GENERATE
	GENERIC/GENERIC MAP
	GENERATE

	Components
	Component declaration
	Component instantiation
	Default configuration
	Configuration specification
	Configuration declaration

	Predefined attributes
	Attributes on types
	Attributes on arrays
	Attributes on signals
	Attributes on named entities

	IEEE
	VHDL standards
	Predefined packages
	STANDARD
	TEXTIO
	STD_LOGIC_1164
	NUMERIC_BIT
	NUMERIC_STD
	MATH_REAL
	MATH_COMPLEX

	VHDL guide
	Introduction
	File notation
	Predefined packages
	VHDL syntax
	Simulation and synthesis

	VHDL’87 and VHDL’93, differences
	Index

