
1

BR 1/99 1

Increasing the Initiation Rate

X

*

a0

*

X@1 a1
*

X@2 a2

*

X@3 a3

+
+

+

Y

N2 N3

N4 N5

N6

N7

N8

4 Clocks

The flowgraph below has a longest path of 4 clocks. This means
the computations cannot be completed in less than 4 clocks
because of data dependencies.

However, we CAN
increase the initiation
rate (rate at which
new input values are
accepted!!)

BR 1/99 2

Initiation Rate = 2
Lets look at the operations needed with initiation rate = 2 for
several clock cycles. Successive Sample values are labeled
A,B,C etc.

OperationsClk
Sample A: Sample B Sample C

1 N4(*) N5(*), Input X
2 N2(*),N3(*),N7(+)
3 N6 (+) N4(*) N5(*), Input X
4 N8(+) N2(*),N3(*),N7(+)
5 N6(+) N4(*) N5(*), Input X
6 N8(+) N2(*),N3(*),N7(+)
7 N6(+)
8 N8(+)

BR 1/99 3

Resources

OperationsClk
Sample A: Sample B Sample C

1 N4(*) N5(*), Input X
2 N2(*),N3(*),N7(+)
3 N6(+) N4(*) N5(*), Input X
4 N8(+) N2(*),N3(*),N7(+)
5 N6(+) N4(*) N5(*), Input X
6 N8(+) N2(*),N3(*),N7(+)
7 N6(+)
8 N8(+)

Two multiplies per clock, so need two multipliers (A, B).
In clock #4, Clock #6 we have two additions, so need need two
adders (A, B).

BR 1/99 4

Initiation Rate, Latency

The initiation rate of this design is 2.

The latency is 4.

When inititiation rate ≠ latency, then pipelining is being
done because the computations for more than one input
sample are being done.

Pipelining implies parallelism - more than one sample
computation is in progress at any given clock cycle.

To schedule, need to generalize the table.

BR 1/99 5

Generalized Schedule

Note: The initiation rate must be evenly divisible into the
latency in order to generalize the table.

OperationsClk
Sample J-1: Sample J Sample J+1

I-2 N4(*) N5(*), Input X
I-1 N2(*),N3(*),N7(+)
I+0 N6(+) N4(*) N5(*), Input X
I+1 N8(+) N2(*),N3(*),N7(+)
I+2 N6(+) N4(*) N5(*), Input X
I+3 N8(+) N2(*),N3(*),N7(+)

BR 1/99 6

Schedule Clk I+0
What do we need in Registers at Clock I+0?
For Sample J-1: N2, N3, N7
For Sample J: x@3, x@2, x@1
For Sample J+1: No operations.

Registers: RA: x@3, RB: x@2, RC: x@1, RD: N2, RE: N3,
RF:N7

Schedule Clk I+0:
Sample J-1: N6(N3+N7) RF ← RE + RF overwrite N7 value, don’t need.
Sample J: Input X RE ← X overwrite N3 value, don’t need
Sample J: N4(x@2*a2) RG ← RB * a2 add new register RG to hold N4
Sample J: N5(x@3*a3) RA ← RA * a1 overwrite x@3 value, don’t need.

Finished: Added extra Register RG.

2

BR 1/99 7

Schedule Clk I+1
Registers: RA: N5, RB: x@2, RC: x@1, RD: N2, RE: X,
RF:N6, RG: N4
After Clock, Registers need to be setup for next clock which is:
RA: x@3, RB: x@2, RC: x@1, RD: N2, RE: N3, RF:N7
Schedule Clk I+1:
Sample J-1: N8(N2+N6) Y ← RD + RF output goes to Y bus.
Sample J: N2(x*a0) RD ← RE *a0 overwrite old N2 value, don’t need
Very important that N2 go into RD because this is needed for next clock cycle.

Sample J: N3(x@1*a1) RE ← RC * a1 Need RE=N3 for next clock!!
But what about X value that is in RE??? Next clock, X= X@1 for sample J+1,
so put X into RC register!!!!

Sample J+1: RC=x@1 RC ← RE J+1:x@1 = J:x
Sample J: N7(N4+N5) RF ← RG + RA Need N7 in RF for J+1 sample.
Sample J+1: RA=x@3 RA ← RB J+1: x@3 = J:x@2
Sample J+1: RB=x@2 RB ← RC J+1: x@2 = J:x@1

Finished: no extra registers needed.
BR 1/99 8

Schedule: Clks I+2, I+3

Schedule for Clk I+2 is repeat of Clk I+0!!!

Schedule for Clk I+3 is repeat of Clk I+1!!

Actually, generalized schedule only needs two clocks!

BR 1/99 9

Resource Comparison

ResourcesInit Rate
Multipliers Adders Registers

4 2 1 10
2 2 2 11

Doubling the initiation rate did NOT double the hardware
resources needed. Why?

Because Execution units for InitRate = 4 were not fully
utilized!

BR 1/99 10

Execution Unit Utilization table

Execution Unit UtilizationInit Rate
Mult A Mult B Add A Add B

4 50% (2/4) 50 (2/4) 75% (3/4) N/A
2 100% (2/2) 100% (2/2) 100% (2/2) 50% (1/2)

Note that multipliers were not fully utilized for InitRate = 2,
we used this free time in the schedule for InitRate = 4.

BR 1/99 11

Init Rate = 1
OperationsClk

Sample A: Sample B Sample C Sample D
1 N4(*) N5(*),

Input X
2 N2(*),N3(*),

N7(+)
N4(*) N5(*),
Input X

3 N6(+) N2(*),N3(*),
N7(+)

N4(*) N5(*),
Input X

4 N8(+) N6(+) N2(*),N3(*),
N7(+)

N4(*) N5(*), Input X

5 N8(+) N6(+) N2(*),N3(*),N7(+)
6 N8(+) N6(+)
7 N8(+)

Four multiplies in clock 4, so need four multipliers (A, B, C, D).
Three additions in clock 4, so need three adders (A, B, C).

BR 1/99 12

Resource Comparison Again

ResourcesInit Rate
Multipliers Adders Registers

4 2 1 10
2 2 2 11
1 4 3 ??

Latency for all of these designs is 4 clocks.

This table clearly illustrates the time versus area tradeoff
in Digital Systems.

Will cost you MORE resources to do something in LESS
Time!

3

BR 1/99 13

Less Clock cycles, Lower Clock Period

• Computation Time = #of Clocks * Clock Period
• Increasing the initiation rate will increase the

computation rate in terms of clock cycles
– Less clock cycles between new outputs

• To decrease the clock period (increase clock
frequency), need to have shorter combinational
paths in the design
– PIPELINE the individual execution units!!!!
– Multiplier will have much longer delay than adder, so

will want to pipeline this first

BR 1/99 14

Recall what Pipelining of Multiplier does

MULTIPLIER

No pipelining, output is rdy after combinational delay.

MULTIPLIER
D
F
F

R
E
G

R
E
G

R
E
G

R
E
G

one stage

MULTIPLIER
D
F
F

R
E
G

R
E
G

two stages

D
F
F

MULTIPLIER
D
F
F

R
E
G

R
E
G

D
F
F

D
F
F

three stages

BR 1/99 15

Assume Multiplier is pipelined by 2 stages
Do a solution with Initiation Rate = Latency; 2 mult, 1 adder

Scheduling now takes 6 clocks. N7 depends on N5, N4 -
can’t do this until Clk 4 because multiplier result not
ready.

Adder MultA MultB IO

Clk 1 idle N5 N4 Input X

Clk 2 N3 N2

Clk 3 (n5 rdy,
saved to
register)

(n4 rdy,
saved to
register)

Clk 4 N7 (n3 rdy,
saved to
register)

(n2 rdy,
saved to
register)

Clk 5 N6

Clk 6 N8

BR 1/99 16

When using Pipelined Execution Units, noting
clock cycle cost nodes is helpful

X

*

a0

*

X@1 a1
*

X@2 a2

*

X@3 a3

+
+

+

Y

N2 N3

N4 N5

N6

N7

N8

3 clks 3 clks

3 clks
3 clks

Longest path
is now 6
clocks

BR 1/99 17

Increasing Initiation Rate to 2

OperationsClk
Sample A: Sample B Sample C Sample D

1 N4(*) N5(*),
Input X

2 N2(*),N3(*)
3 N4(*) N5(*),

Input X
4 N7(+) N2(*),N3(*)

5 N6(+) N4(*) N5(*),
Input X

6 N8(+) N7(+) N2(*),N3(*)
7 N6(+) N4(*) N5(*),

Input X
8 N8(+) N7(+) N2(*),N3(*)
9 N6(+)
10 N8(+) N7(+)

Repeating
clocks

BR 1/99 18

Increasing Initiation Rate to 2

OperationsClk
Sample J-2 Sample J-1 Sample J Sample J+1

I-4 N4(*) N5(*),
Input X

I-3 N2(*),N3(*)
I-2 N4(*) N5(*),

Input X
I-1 N7(+) N2(*),N3(*)

I N6(+) N4(*) N5(*),
Input X

I+1 N8(+) N7(+) N2(*),N3(*)
I+2 N6(+) N4(*) N5(*),

Input X
I+3 N8(+) N7(+) N2(*),N3(*)
I+4 N6(+)
I+5 N8(+) N7(+)

Repeating
clocks

4

BR 1/99 19

Adder A Adder B MultA MultB IO

Clk I N6 (j-2) idle N5 (j) N4 (j) Input X

Clk I+1 N8 (j-2) N7 (j-1) N3 (j) N2(j)

Clk I+2 N6 (j-1) idle N5(j+1) N4(j+1) Input X

Clk I+3 N8 (j-1) N7 (j) N3(j+1) N3(j+1)

Clk I+4 N6 (j) idle N5(j+2) N4(j+2) Input X

Clk I+5 N8 (j) N7 (j+1) N3(j+2) N3(j+2)

Schedule, Init Rate =2,
Do a solution with Initiation Rate = Latency; 2 mult, 2 adders

General schedule is I, I+1. 6 clocks shown to complete one
computation. Initiation Rate = 2, Latency = 6. Overlapping
computations of three samples.

