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Digital System Design
• At this point, we are trying to do complex 

datapaths + complex control 
• Faced with problems of :

– Constraints - minimum clock frequency, maximum 
number of clock cycles,  target device,  resource limits 
(don’t have an infinite number of logic cells available)

– Execution unit architecture and number : fast 
adder? Slow adder?  Pipelined or non-pipelined 
multiplier?  SRAM versus registers?  How many do I 
need based on constraints?

– Scheduling : what happens during what clock cycle?

BR 1/99 2

Constraints 
• Two Constraints that can be placed on a digital 

system design are clock period and clock cycle 
constraints 

• A Clock period constraint will define the minimum 
clock frequency.
– Will affect the architecture of your execution units (fast 

adder versus slow adder,  pipelined execution unit versus 
non-pipelined execution unit)

• A clock cycle constraint limits the available number 
of clock cycles to perform operation

• Total computation time: clock period * clock cycles
• Other constraints: Power, device type, Input/Output

BR 1/99 3

Resource Estimation
• Given constraints, would like a lower bound 

estimate on the number of resources needed
• Resource types:  Registers, Execution units 

(adders, multipliers, etc)
• Lets do resource estimation for the equation 

below:

Y = a0 * x + a1 *x@1 + a2 * x@2 + a3 * x@3

FIR 
Computation

X Y
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FIR Filter
Y = a0 * x + a1 *x@1 + a2 * x@2 + a3 * x@3

The equation above is an equation for a 4-Tap Finite Impulse 
Response digital filter. 

Each sample period a new value for X is input to the system. A 
sample period is measured in clock cycles, and the number of 
clock cycles per sample period will be an external constraint. 

X is the value for current sample period.
X@1 is the value for one sample period back.
X@2 is the value for two sample periods back.
X@3 is the value for three sample periods back.

A0, a1,a2,a3 are the filter coefficients.  Changing these 
coefficients change the filter function; assumed to be 
preloaded.

BR 1/99 5

Dataflow Graph
We need a method of visualizing the data dependencies and 
operations to be performed.  One method of doing this is the 
dataflow graph.
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Operations in a Dataflow graph

X
An input operation.  Inputs are assumed 
registered.  An input operation will take 1 
clock cycle. 

Y

An output operation.  Outputs are not assumed to be 
registered because they will be registered by the 
datapath they are being passed to! As such, they 
don’t cost a clock cycle (its cycle cost is in the next 
datapath).

+

An execution unit operation.  Based on clock 
period constraints, execution units can be 
chained (a multiplier output directly feeding an 
adder input without an intervening register) or 
non-chained (all inputs/outputs of execution 
units are registered).
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What is minimum number of clock cycles needed? 
Assume that clock period constraint does not allow execution unit 
chaining (registers are between execution units).  Minimum # of 
clock cycles will be longest path through the datapath.
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clock 
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Minimum 
sample 
period is 4 
clocks. 
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Resource Estimation
Given a clock cycle constraint (sample period), can estimate 
minimum number of needed resources.

Assume the minimum sample period of 4 clocks.

Minimum resource estimation is:

# operations/ # of clocks

Minimum Resource estimation:
# multipliers =  # multiplies/ # clocks = 4/4 =  1

# adders =  # additions/ #clocks = 3 /4  = 1

Minimum resource estimation is  1 multiplier, 1 adder.  
Register estimation is tougher.   Need to store X@1, X@2, 
X@3 + four coefficents.   Need at least 7 registers.
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Scheduling
Scheduling is mapping operations onto execution units. 
Use a scheduling table which lists clock cycles versus 
resources.   Lets first just worry about execution units, and 
not about registers for now.

Resource:                     Adder                             Multiplier                           IO            

Cycle
Start                                                           

#1                             idle                             Reg??←x@3*a3 (N5)           Input X      

#2                             idle Reg??←x@2*a2 (N4)                             

#3                        N7 op (N5+N4)                         Reg?? ←x@1*a1 (N3) 

#4                         idle                                 Reg?? ←x*a0 (N2) 
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Scheduling Failed!
The scheduling failed!  We were not able to schedule the adder 
operations represented by nodes N6 and N8.

The minimum resource estimation is a lower bound; may not 
find a schedule to fit it.

If scheduling fails, the two options:
a.  Increase resources, keep same # of clocks
b. Increase # of clocks, keep same number of resources

We want a minimum sample period, so do option #a.

The bottleneck is the multiplier.  Lets add another multiplier.
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Scheduling  (2nd try)

Resource:          Adder                            Mult A                Mult B                           IO             

Cycle
Start                                                           

#1                             idle                      x@3*a3 (N5)     x@2*a2 (N4) Input X        

#2                 N7 op (N5+N4)               x@1*a1 (N3)     x*a0 (N2) 

#3                 N6 op (N3+N2)                       idle     idle                                          

#4                  N8 op (N7+N6)                      idle     idle                                           

Scheduling succeeds.
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Register Allocation

At this point, need to allocate registers to save temporary 
results.  At beginning of operation, we know that we need to 
have the values  a0,a1,a2,a3,  x@3,x@2,x@1 stored.  So we 
need at least 7 registers.  

The registers holding a0-a3 will not change value during the 
computation, so we will not consider them in our 
scheduling.

Assume at  Start:  RA = x@3, RB=x@2, RC=x@1. 
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Register Scheduling (Clock #1)

Regs: RA = x@3, RB=x@2, RC=x@1. 

Clock 1:
Input X??? Where to put this?  For now, use new register RegD.
Input X:  RD ← X
x@3*a3 (N5):          RA  ← RA  *   a3    (don’t need x@3 after this, destroy RA)
x@2*a2 (N4) ??? ← RB  *   a2   (will need x@2 next time, can’t destroy RB!)

Add another register.  

x@2*a2 (N4)             RE ← RB  *   a2   (will need x@2 next time, can’t destroy RB!)

Scheduling this operations forced us to add two additional registers (RD, RE).  

Now do Clock #2
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Register Scheduling (Clock #2)

Clock 2:
N4 + N5  (N7):          RA ← RE + RA   (destroy RA, don’t need N5 anymore)
x@1*a1 (N3 ):         ?? ← RC  *   a1    (will need x@1 next time, can’t destroy RC!!) 
Look for a free register.   Don’t need RE (N4) after this clock cycle, use it.
x@1*a1 (N3 ):         RE  ← RC  *   a1    (store result in RE).
x*a0 (N2):               ??? ← RD  *   a0   (will need “x” next time, can’t destroy RD!) 

Any free registers?  NO.  Add another register.  

x*a0 (N2):              RF ← RD  *   a0

Scheduling these operations forced us to add one more register (RF).   

Now do Clock #3

Regs: RA = N5,  RB=x@2, RC=x@1, RD=x, RE=N4 
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Register Scheduling (Clock #3, Clock #4)

Clock 3:
N6 op (N3+N2)       RE ← RE + RF    (destroy RE, don’t need N3 anymore)

Regs: RA = N7,  RB=x@2, RC=x@1, RD=x, RE=N3, RF=N2 

Regs: RA = N7,  RB=x@2, RC=x@1, RD=x, RE=N6, RF=N2 

Clock 4:
N8 op (N7+N6)       Yout ← RA + RE    (output is unregistered)

What about initial conditions for next sample period? RA = x@3, RB=x@2, RC=x@1 
??

x@1 ← x                RC ← RD            Note that X in this sample period becomes X@1
x@2 ← x@1          RB ← RC             for the next sample period, x@1 becomes x@2,
x@3 ← x@2          RA ← RB             etc...
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Final Requirements

• For sample period = 4 clocks:
– 2 Multipliers, 1 adder
– 10 registers (RA-RF, plus 4 registers for a0,a1,a2,a3)

• Is this the best hardware allocation?
– Maybe not, if we try harder may be able to remove a 

register or two.

• Lets go with this and try to build the datapath
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Datapath Execution Unit sources, destinations

Mult A:  Left sources:  RA, RC      Right sources: a3, a1
Mult B:  Left sources:  RB, RD       Right sources: a2, a0
Adder:  Left sources:   RE, RA       Right sources:  RA, RF, 
RE

RA src: MultA, Adder, RB
RB src:     RC
RC src:     RD
RD src:     X
RE src: Adder, Mult A, Mult B
RF src:     Multiplier B

a0-a3 registers loaded from external databus X . 
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Datapath 
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Comments
• Saving on Execution units leads to lots of wiring 

and muxes because of the amount of execution 
unit sharing that is required

• Could probably have reduced some of the mux 
requirements by more careful assignment of 
temporary values to registers

• This datapath would require a FSM with four 
states; each state corresponding to a clock cycle.
– Output of FSM would be mux select lines, register 

load lines
– May need extra states if handshaking control 

(input_rdy, output_rdy) is required.
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Increasing number of available clocks
Lets increase sample period from 4 to 5, and see if we can get 
rid of multiplier. 
Resource:                     Adder                             Multiplier                           IO             

Cycle
Start                                                           

#1                             idle                             Reg??←x@3*a3 (N5)           Input X        

#2                             idle Reg??←x@2*a2 (N4)                              

#3                        N7 op (N5+N4)                         Reg?? ←x@1*a1 (N3) 

#4                         idle                                 Reg?? ←x*a0 (N2)            

#5                        N6 op (N2 + N3)                       idle 
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Scheduling Still Failed
Did not schedule Node 8 (N8). There should be a way in 
which we can make better use of the adder.  Try 
restructuring the flowgraph.
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still 4 
clock 
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A flowgraph 
transformation 
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Try again with Sample Period = 5
Resource:                     Adder                             Multiplier                           IO             

Cycle
Start                                                           

#1                             idle                             Reg??←x@3*a3 (N5)           Input X       

#2                             idle Reg??←x@2*a2 (N4)                              

#3                        N7 op (N5+N4)                         Reg?? ←x@1*a1 (N3) 

#4                         N6 op (N3+N7) Reg?? ←x*a0 (N2)            

#5                        N8 op (N2 + N6)                       idle 

Scheduling succeeds with new flowgraph!!!!!!
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Flowgraph for Matrix Multiply

T00 T01 T02 T03
T10 T11 T12 T13
T20 T21 T22 T23
T30 T31 T32 T33

X
Y
Z
W

X’ = X*T00 + Y*T01 + Z*T02 + W*T03 
Y’ = X*T10 + Y*T11 + Z*T12 + W*T13 
Z’ = X*T20 + Y*T21 + Z*T22 + W*T23 
W’ = X*T30 + Y*T31 + Z*T32 + W*T33 

IO Constraint:  Single input bus, single output bus
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Flowgraph for Matrix Multiply (cont)
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Comments on MM Flowgraph

• The main thing to notice about the graph is that 
you don’t have to wait until you have X,Y,Z,W 
before you begin operations
– Once you have X, you can do four multiply 

operations

• Another thing to note is the symmetry and 
parallelism available
– You could have four parallel datapaths, each one 

containing a multiplier and an adder, and produce 
X’, Y’, Z’, W’ from these four datapaths
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Parallel Datapaths for MM

X Y Z W

*
+

*
+

*
+

*
+

X’

Y’

Z’

W’

Datapaths
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On Latency, Initiation Rate

Initiation Rate: Rate at which new values are input

Latency: Number of clocks from input value to 
COMPLETED output value

For the project,  initiation rate will be number of 
clocks from inputting X for one set of (X,Y,W,Z) to 
inputting the next X for a new set of (X,Y,W,Z)
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Defining Initiation Rate, Latency
Input X0
Input Y0 (compute)
Input  Z0 (compute)
Input W0 (compute)
compute
compute
compute
compute
Output X0’
Output Y0’
Output W0’
Output Z0’
Input X1
Input Y1..

Initiation Rate = 12

Latency  = 12

BR 1/99 29

Input X0
Input Y0 (compute)
Input  Z0 (compute)
Input W0 (compute)
compute
compute
compute
compute
Output X0’
Output Y0’
Output W0’
Output Z0’

Input X1
Input Y1 (compute)
Input  Z1(compute)
Input W1 (compute)
compute
compute
compute
compute
Output X1’
Output Y1’
Output W1’
Output Z1’

Input X2
Input Y2 (compute)
Input  Z2(compute)
Input W2 (compute)

….. Etc...

Overlapping 
computation of 
two matrix 
multiplies to 
increase 
initiation rate.

This is a form of  
pipelining!!!

Init Rate=8

Latency=12

Pipelining: more than one 
computation in progress.
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Input X0
Input Y0 (compute)
Input  Z0 (compute)
Input W0 (compute)
compute
compute
compute
compute
Output X0’
Output Y0’
Output W0’
Output Z0’

Input X1
Input Y1 (compute)
Input  Z1(compute)
Input W1 (compute)
compute
compute
compute
compute
Output X1’
Output Y1’
Output W1’
Output Z1’

Init Rate=4

Latency=12

Input X2
Input Y2 (compute)
Input  Z2(compute)
Input W2 (compute)
compute
compute
compute
compute
Output X2’
Output Y2’
Output W2’
Output Z2’

Note that for this overlap 
case the input bus is 
constantly busy, and the 
output bus is constantly 
busy.

Input X3
Input Y3 (compute)
Input  Z3(compute)
Input W3 (compute)
compute
compute
compute
compute
etc….


