
1

BR 1/00 1

Verilog

• Verilog is an alternative language to VHDL for
specifying RTL for logic synthesis

• VHDL similar to Ada programming language in
syntax

• Verilog similar to C/Pascal programming language
• VHDL more popular with European companies,

Verilog more popular with US companies.
• VHDL more ‘verbose’ than Verilog.
• Verilog and VHDL do RTL modeling equally well.

BR 1/00 2

VHDL vs. Verilog: Process Block

Process Block
VHDL:

process (siga, sigb)
begin

…...
end;

Verilog:
always @ (siga or sigb)

begin
….

end

Both used to specify blocks
of logic with multiple
inputs/outputs

BR 1/00 3

VHDL vs. Verilog: Signal Assignment
VHDL:

signal a, b, c, d: std_logic;

begin

a <= b and c;
d < = (c or b) xor (not (a) and b);

end;

VERILOG:

wire a,b,c,d;

assign a = b & c;
assign d = (c | b) ^ (~a & b);

Logical operators
same as in C.

Declarations for
one-bit wires are
optional.

BR 1/00 4

VHDL vs. Verilog: Interface Declaration
VHDL:

entity mux is
port (a,b, s: in std_logic;

y : out std_logic);

architecture a of mux is
begin

……
end;

VERILOG:
module mux (a,b,s,y);
input a,b,s;
output y;

….
endmodule

BR 1/00 5

VHDL vs. Verilog: Busses
VHDL:
signal a,c: std_logic_vector(7 downto 0);

begin
a(3 downto 0) <= c (7 downto 4);
c(0) <= ‘0’;
c<= “00001010”;

end;

Verilog:
wire [7:0] ;

begin
assign a[3:0] = b[7:4];
assign a[0] <= 0;
assign a = ‘b0000000;

end;
Value specified in binary.

BR 1/00 6

module majconc (a,b,c,y);
input a,b,c;
output y;

assign y = (a & b) | (a & c) | (b &c) ;

endmodule

A Sample Model (RTL), assignment statement

Description Implementation

2

BR 1/00 7

module majconc (a,b,c,y);
input a,b,c;
output y;

reg y;

always @(a or b or c)
begin

y = (a & b) | (a & c) | (b &c) ;
end

endmodule

A Sample Model (RTL), ‘always’ block

Description Implementation

Must use ‘reg’ declaration if
signal assigned from always
block.

Process triggered on any
change on signals a,b,c .Non blocking

assignment BR 1/00 8

module majconc (a,b,c,y);
input a,b,c;
output y;

and I0 (n1, a, b);
and I1 (n2, a, c);
and I2 (n3, b, c);
or I3 (y, n1, n2, n3);

endmodule

A Sample Model (Gate Level Primitives, built into language)

Description Implementation

Gate primitive
name

Instance name

Output

Inputs

VHDL does not
have the
equivalent of
gate-level
primitives

BR 1/00 9

Asynchronous vs Synchronous Inputs

reg q;

always @(posedge clk) begin
if (r) q <= 0;
else q <= d;

Synchronous reset,
high true

reg q;

always @(posedge clk or posedge r)
begin
if (r) then q <= 0;
else q <= d;
end

Asynchronous reset –,
high true.

Need ‘posedge’ on ‘r’
because Verilog syntax
requires if any signals
are edge-triggered in
event list, all signals
must be edge-
triggered.

Style suggested by C. Cummings, SNUG 2002

Non-
blocking
assignment

BR 1/00 10

nonblocking vs blocking assignments

• A nonblocking assignment (<=) samples right hand
side (RHS) at beginning of timestep; with the actual
assignment (the LHS) taking place at the end of the
timestep
– Works like a signal assignment in VHDL

• A blocking assignment (=) will evaluate the RHS
and perform the LHS assignment without
interruption from another Verilog statement
– Works like a variable assignment (:=) in VHDL

• Should use nonblocking assignments in always
blocks used to synthesize/simulate sequential logic.

BR 1/00 11

Nonblocking Assignments

module timetest (y1,y2,a,clk);
output y1,y2;
input a,clk;

reg y1,y2;

always @(posedge clk) begin
y1 <= a;
y2 <= y1;

end

endmodule

Nonblocking assignment D Q

C

D Q

C

a y1 y2

Synthesis results in DFF
chain

BR 1/00 12

More on nonblocking assignments
module timetest (y1,y2,a,clk);
output y1,y2;
input a,clk;

reg y1,y2;

always @(posedge clk) begin
y1 <= a;

end

always @(posedge clk) begin
y2 <= y1;

end

endmodule

With nonblocking
assignments, ordering of
these always blocks
does not affect RTL
simulation or
synthesized gates.

3

BR 1/00 13

When to use blocking assignments
Use blocking assignments for always blocks that are purely
combinational
reg y, t1, t2;

always @(a or b or c or d) begin
t1 = a & b;
t2 = c & d;
y = t1 | t2;

end

RTL simulation and
synthesis results match

BR 1/00 14

Some Rules
• The paper by Cummings lists several rules for

writing Verilog in which RTL simulation will
match synthesized gate level simulation. The
most important of these rules are:
– Use blocking assignments in always blocks that are

purely combinational
– Use only nonblocking assignments in always blocks

that are either purely sequential or have a mixture of
combinational and sequential assignments.

• If you understand the differences between
blocking and nonblocking assignments in terms of
simulation, then these rules are self-evident.

BR 1/00 15

Verilog Vs. VHDL

• Verilog and VHDL are equivalent for RTL modeling
(code that will be synthesized).

• For high level behavioral modeling, VHDL is better
– Verilog does not have ability to define new data types
– Other missing features for high level modeling

• Verilog has built-in gate level and transistor level
primitives
– Verilog much better than VHDL at below the RTL level.

• Bottom Line: You should know both!!!!!

