Introduction To VHDL for Combinational Logic

« VHDL isalanguage used for simulation and
synthesis of digital logic.

¢ A VHDL description of adigital system can be
transformed into a gate level implementation. This
process is know as synthesis.

BR1/00 1

A Sample Model

Description Implementation
library ieee; =
useieee.std_logic_1164.all; e o |

entity majconc is

port (A, B, C:instd_logic;
Y: out std_logic
)

end majconc; e T
ARCHITECTURE a of majconc is
begin

Y <= (A and B) or (A and C) or (B and C);
end a;

BR1/00 2

VHDL Statements
« VHDL has areputation as a complex language (it is!)
* We will use a small subset of the language for our
purposes
* Some VHDL constructs:
— Signal Assignment: A<= B;
— Comparisons = (equal), > (greater than), < (lessthan), etc.
— Boolean operations AND, OR, NOT, XOR
— Sequential statements (CASE, IF, FOR)
— Concurrent statements (when-else)
« READ YOUR BOOK. Wewill cover VHDL by

‘example’; will explain VHDL constructs as we get to
them. The book has many examples.

BR1/00 3

VHDL Combinational Template

¢ Every VHDL model is composed of an entity and
at least one architecture .

Entity describes the interface to the model (inputs,
outputs)

Architecture describes the behavior of the model

¢ Can have multiple architectures for one entity (we
will only use onein this class).

BR1/00 4

A VHDL Template for Combinational Logic

entity model_nameis
port (
list of inputs and outputs);
end model_name;
architecture arch_name of model_nameis

begin

concurrent statement 1

concurrent statement 2

... concurrent statement N;

end arch_name;

All of the text not in italics are VHDL keywords.
VHDL isNOT case sensitive. (ENTITY is same as entity
issame as EnTiTy).

BR1/00 5

Magjority Gate Example
The following is an example of athree input XOR gate (majority
gate) implemented in VHDL

library ieee;
useieee.std_logic_1164.all;
entity majority is
port (A, B, C:instd_logic; -- two dashesisa COMMENT in VHDL
Y: out std_logic
)

end majority;
-- thisis the architecture declaration, uses only one concurrent statement.

ARCHITECTURE concurrent of mgjority is
begin

Y <= (A and B) or (A and C) or (B and C);
end concurrent;

BRI/0O

Majority Gate with Temporary Signals

The following version of the majority gate uses some temporary
signals (entity has been left out, is same).
-- the architecture now uses 4 concurrent statements

ARCHITECTURE newconc of majority is
signal t1, t2, t3: std_logic ;

begin
tl<= AandB;
t2<= AandC;
t3<= Band C;
Y <= tlort2ort3;
end newconc;

Note that temporary signals are declared between architecture
statement and begin statement.

BR1/00 7

Majority Gate with when-else statement

The following version of the majority gate uses a'when-else'
statement:

-- the architecture now uses a when-else statement.

ARCHITECTURE whenelse of majority is

begin
Y <= "1'when ((A and B) or (A and C) or (B and C))
else'0}
end whenelsg;

You will find that there are many different ways to accomplish the
sameresult in VHDL. Thereisusually no best way; just use one
that you feel most comfortable with.

BR1/00 8

Concurrent Versus Sequential Statements

¢ The statements we have looked at so far are called
concurrent statements.
— Each concurrent statement will synthesize to a block of
logic.
« Another class of VHDL statements are called
sequential statements.

— Sequential statements can ONLY appear inside of a process
block.

— A process block is considered to be a single concurrent
statement.

— Can have multiple process blocks in an architecture.

— Usually use process blocks to describe complex
combinational or sequential logic.
BR1/00

Majority Gate using process block and if statement
The entity declaration has been left out (same as before).

ARCHITECTURE ifstate of majority is

begin
main: process (A, B, C)
begin
Y <='0;
if (A ="1") and (B ='1')) then
Y <=1
end if;
if (A ="1") and (C="1")) then
Y <=1,
end if;
if (B="1) and (C="1)) then
Y <=1
end if;
end process main;

end ifstate; BR 1/0(

-- default output assignment.

0 10

Comments on process block model

¢ Thefirst linein the process "main:

process (A, B, C)" hasthe

name of the process (main) and the sensitivity list of the process.

— The process name is user defined, can
— The sensitivity list should contain any

also beleft out (unnamed process).
signals that appear on the right hand

side of an assignment (inputs) or in any boolean for a sequential control

statement.
¢ Theif statement condition must ret

urn a boolean value (TRUE or

FALSE) so that is why the conditional is written as:

((A=1) and (B="1))
Cannot writeit as:
(A andB)

because thiswill return a'std_logic' type (more on types later).

BR1/00

1

Use of if-else

ARCHITECTURE ifelse of majority is

begin /

process (A, B, C)
begin

end process;
end ifelse;

BR1/00

Comments:
+— Process is anonymous (no
name)
Used an 'else’ clause to specify
what the output should be if
theif condition test was not
true.

CAREFUL! The boolean
operators (OR, AND) do not
have any precedence so must
use parenthesis to define
precedence order

12

Unassigned outputsin Process blocks

A common mistake in writing a combinational processisto leave an
output unassigned. If thereis a path through the process in which an
output is NOT assigned a value, then that value is unassigned.

ARCHITECTURE bad of majority is
begin
process (A, B, C)
begin
if (A="1)and (B ="1)) or
(A="1)and (C="1)) or
((B="1)and (C="1))) then
Y <=1,
end if;
end process;
end bad; BR1/00- 13

Commentson ‘bad’ architecture
« Inthe above process, the ELSE clause was left out. If the 'if'
statement condition is false, then the output Y is not assigned a
value.
— In synthesis terms, this means the output Y should have a
LATCH placed oniit!
— The synthesized logic will have alatch placed onthe Y output;

¢ Thisis probably the #1 student mistake in writing processes. To
avoid this problem do one of the following things:

— ALL signal outputs of the process should have DEFAULT
assignments right at the beginning of the process (thisis my
preferred method, is easiest).

— OR, all'if' statements that affect a signal must have ELSE
clauses that assign the signal avalue if the 'if' test is false.

BR1/00 14

Priority circuit example

library ieee;

useieee.std_logic_1164.all;

entity priority is . P : . . .
&,y y5. 6,7 intcogic; | THIS priority circuit has 7 inputs;

dout: out std_logic_vector(2 downto0) | Y7 is highest priority, YO is

); iori
end prioity: lowest priority.
architecture ifels of priority is
begin - il
-- priority circuit, Y7 highest priority input Thre_e bit OUtpUt_Sh(_)U|d mdlca_te
- Y1islowest priority input the highest priority input that isa
PrOces (41, Y203, ¥4, 6.6, ¥7) "1 (ie if Y6="1', Y4="1' then

in , ,

output should be "101"). If no
input is asserted, output should

dlsif (y4 ='1) then dout <= "100"; be"000".
elsif (y3 ='1') then dout <="011";
elsif (y2 =1 then dout <= "010";
elsif (y1 ='1') then dout <= "001";
elsedout <="000";

end process;

endifels;

R 1/00 15

Comments on Priority Example

¢ Thisisthefirst example that used abus. The DOUT signal isa
3 bit output bus.
— std_logic_vector(2 downto 0) describes a3 bit bus where dout(2) is most
significant bit, dout(0) isleast significant bit.
— std_logic_vector (0 to 2) isalso a3 hit bus, but dout(0) isMSB, dout(2) is
LSB. Wewill always use ‘downto’ in this class.
« A bus assignment can be done in many ways:
— dout<="110"; assignsall three bits
— dout(2) <='1'; assignsonly bit #2
— dout(1 downto 0) <="10"; assignstwo bits of the bus.
« Thisarchitecture used the 'elsif' form of the 'if' statement
— Notethat it is 'elsif', NOT ‘elseif'.
— Thiscalled an elsif chain.

BR1/00 16

Priority Circuit with just IF statements.

architecture plainif of priority is By reversing the order of the
begin) o assignments, we can

-- priority circuit, Y 7 highest priority input lish th th

-- Y1islowest priority input aCC_"mF? ! > e S_ame asthe
process (y1, y2,Y3, y4, y5, ¥6, y7) elsif priority chain.

begin

dout <="000; Inaprocess, the LAST

if (y1="1') then dout <= "001"; end if; ; :
if (y2 = ‘1% then dout <= "010". end . | 259Ment to the output is
if (43 = '1) then dout <= "011" end if: | What counts.

if (v4 = 1') then dout <= "100"; end if;
if (y5 = '1') then dout <= "101"; end if;
if (v6 = '1') then dout <= "110"; end if;
if (y7 = 1') then dout <= "111"; end if;
end process;

end plainif;

BR1/00 17

Priority Circuit with when-else statements.

architecture whenelse of priority is

begin No process; just one
-- priority circuit, Y 7 highest priority input concurrent when-else
-- Y1lislowest priority input statement.

-- uses just one when-else concurrent statement.
dout <="111" when (y7 ='1') else

110" when (y6 ="'1)) else

"101" when (y5="1) else

"100" when (y4 ='1) else

"011" when (y3 ='1) else

"010" when (y2 ='1) else

"001" when (yl ='1) else

"000";

end process;
end whenelse;

BR1/00 18

A Bad attempt at a Priority Circuit

architecture bad of priority is

begin

-- priority circuit, Y 7 highest priority input
-- Y1lislowest priority input

-- uses just one when-else concurrent statement.
dout <="111" when (y7 ='1') else "000";
dout <="110" when (y6 = '1') else "000";
dout <="101" when (y5 = '1") else "000";
dout <="100" when (y4 ='1') else "000";
dout <="011" when (y3 ='1") else "000";
dout <="010" when (y2 ='1') else "000";
dout <="001" when (yl1="1") else"000";
dout <="000" ;

end process;
end bad;

BR1/00 19

Commentson “bad” Priority Circuit

« Thisisabad attempt by a neophyte VHDL writer at a priority
circuit. There are multiple things wrong with this description.

¢ There are multiple concurrent statments driving the DOUT
signal. Thismeans MULTIPLE GATE output are tied to dout
signal! Physically, thiswill create an unknown logic condition
on the bus.

« The writer seemsto think that the order of the concurrent
statements makes a difference (ie, the last concurrent statement
just assignsa'000"). The order in which you arrange concurrent
statements MAKES NO DIFFERENCE. The synthesized logic
will be the same.

— Ordering of statements only makes a difference within a process. Thisis why
statements within a process are called 'sequential’ statements; the logic
synthesized reflects the statement ordering (only for assignments to the same
output).

BR1/00 20

4-to-1 mux with 8 bit Datapaths

library ieee;
useieee.std_logic_1164.all;
entity mux4tol_8is
port (ab,c,d: instd_logic_vector(7 downto 0);
sel: in std_logic_vector (1 downto 0);
dout: out std_logic_vector(7 downto 0)

end mux4tol_8;
architecture whenelse of mux4tol_8 is
begin
dout <= b when (sel ="01") else
¢ when (sel ="10") else
dwhen (sel ="11") else
a -- default

end process;
end whenelse;

BRI00 21

Comments on Mux example

« Thisisone way to write a mux, but is not the best way. The
when-else structure is actually a priority structure.

— A mux has no priority between inputs, just asimple
selection.

— The synthesis tool has to work harder than necessary to
understand that all possible choices for sel are specified
and that no priority is necessary.

¢ Just want asimple selection mechanism.

BR1/00 22

4-to-1 Mux using Select Concurrent Statement
architecture select_statement of mux4tol_8 is

begin
with sel select
dout <= bwhen "01",
cwhen "10",
d when "11",
awhen others;

end select_statement;

Some synthesis tools will automatically recognize this structure asa
mux and will find a more efficient implementation than using a when-
else or if statement structure (when-else and if structures define a
priority structure). The others case must be specified.
Thisisa concurrent statement; the sequential version of the select
statement is the case statement.

BR1/00 23

4-t0-1 Mux using Case Sequential Statement

architecture select_statement of mux4tol_8 is
begin i
There can be multiple
process (a, b, ¢, d, sel) statements for each case;
begin o only one statement is needed
casesel is o
when"01" => dout<=b: for each casein this
when"10" => dout<=c; example.
when"11" => dout <=d;
when others => dout <= a;
end case;
end process;
end select_statement;

BR1/00 24

Logical Shift Left by 1

library ieee; ["process (din, shift_en)
useieee.std_logic_1164.all; i
entity Ishift is
port (din: instd_logic_vector(7 downto 0);
shift_en: instd_logic; dout(0) <='0";, -- shift azerointo LSB
dout: out std_logic_vector(7 downto 0) dout (1) <= din(0);
) dout (2) <= din(1);
end Ishift; dout (3) <= din(z);
architecture brute_force of Ishift is dout (4) <=din(3);
begin dout (5) <= din(4);

dout (6) <= din(5);
dout (7) <= din(6);
end if;
end process;
end brute_force;
end Ishift;

Thisis oneway to do it; surely thereis a better way?

BR1/00 25

Logical Shift Left by 1 (better way)

architecture better of Ishift is

begin
process (din, shift_en)
begin
dout <=din; -- default case

if (shift_en ="1) then
dout(0) <='0"; -- shift azero into LSB
dout (7 downto 1) <= din(6 downto 0)
end if;
end process;
end better;
end Ishift;

Thisillustrates the assignment of a segment of one bus to another
bus segment. The bus ranges on each side of the assignment
statement must be the name number of bits (each 6 bitsin this case).

BR1/00 26

4 Bit Ripple Carry Adder

AR BB AR B2 AL BO) A0 BO

v Vv v Vv L2 2 L2 2
cotc) * % lem|t B loa] t B Bl
Co Ci/—Co Ci¢—Co Ci¢—Co Cie—— Cin
S S S S
| | | |
v v v v
Sum(3) Sum(2) Sum(1) Sum(0)

Want to write aVHDL model for a4 bit ripple carry adder.
Logic equation for each full adder is:
sum<= axor b xor ci;
co <= (aandb)or (ci and (aor b));

BR1/00 27

4 Bit Ripple Carry Model

library ieee;
useieee.std_logic_1164.all;
entity adder4bit is
port (ab: instd_logic_vector(3 downto 0);
cin:instd_logic;
cout: out std_logic;
sum: out std_logic_vector(3 downto 0)

);
end adder4bit;
architecture bruteforce of adder4bit is
-- temporary signals for internal carries
signa c: std_logic_vector(4 downto 0); .
begin
process (a, b, cin, ¢)
begin
c(0) <=cin;
-- full adder 0
sum(0) <= a(0) xor b(0) xor c(0);
A1) <=(a(0) and b(0)) or (c(0) and (a(0) or K0)));
-- full adder 1
sum(1) <= a(1) xor b(1) xor c(1);
o2 <=(a1)andb(1)) or (c(1) and (a(1) or (1)),

A - full adder 2

BRI/0O

sum(2) <= a(2) xor b(2) xor c(2);
o3) <=(a2) ad b(2)) or (c(2) and
(a(2) or b(2)));
-- full adder 3
sum(3) <= a(3) xor b(3) xor c(3);
od) <= (a3) and b(3)) or (c(3) and
(a(3) or b(3)));
cout <=c(4);
end process;
end bruteforce;

Straight forward
implementation. Nothing
wrong with this.
However, isthere an
easier way?

28

4 Bit Ripple Carry Model using For Statement

architecture forloop of adder4bit is

begin
process (a, b, cin, c)
begin
c(0) <=cin;
foriin0to 3loop
-- all four full adders
sum(i) <= a(i) xor b(i) xor c(i);

end loop;
cout <=c(4);

end process;
end forloop;

signal c: std_logic_vector(4 downto 0); -- temporary signals for internal carries.

c(i+l) <= (a(i) and b(i)) or (c(i) and (a(i) or b(i)));

BR1/00

29

Comments on for-loop statement

The for-loop can be used to repeat blocks of logic

¢ Theloop variablei isimplicity declared for this
loop; does not have to be declared anywhere else.

¢ To visualize what logic is created, ‘'unroll' the loop
by writing down each loop iteration with loop
indices replaced hard numbers.

BR1/00

30

10

Summary

¢ There are many different ways to write VHDL synthesizable
models for combinational logic.

« Thereisno 'best' way to write amodel; for now, just use
the statements/style that you feel most comfortable with and
can get to work (of course!)

— ThereisNO WAY that we can cover all possible examples in class.
The book has many other VHDL examples.

— | haveintentionally left out MANY, MANY language details. You
can get by with what | have shown you, but feel free to experiment

with other language features that you see discussed in the book or
elsewhere.

BR1/00 31

Summary (cont.)

¢ SEARCH THE www!!i
— The WWW is full of VHDL examples, tutorials, etc.
« TRY IT OUT!!!
— If you have a question about a statement or example, try it out in the
Altera Maxplus package and see what happens!
« Thiscourseis about Digital System DESIGN, not VHDL.
As such, we will only have 3-4 lectures about VHDL, the
rest will be on design topics.

— VHDL isonly ameans for efficiently implementing your design - it
is not interesting by itself.

— You will probably learn multiple synthesis languages in your design
career - it isthe digital design techniques that you use that will be
common to your designs, not the synthesis language.

BR1/00 32

11

