
1

BR 6/01 1

RTL Synthesis
• RTL = Register Transfer Level
• RTL code (Verilog, VHDL, or something else)

completely specifies
– all registers
– Logic operations
– Arithmetic operation

• Synthesis will convert these to meet some
combination of an area + delay constraint
– Boolean minimization techniques used to improve both

area and speed
– Different area, speed constraints will produce different

gate level netlists, but will be functionally equivalent

BR 6/01 2

Random Logic vs Arithmetic RTL

• General boolean minimization techniques work
well for random logic to meet area/speed
constraints

• Not true for Arithmetic operations (addition,
multiplication, etc)
– Design space is too large, and resulting netlists are

usually sub-optimal when compared to structured
netlists

BR 6/01 3

An Example
• What should be synthesized for ‘y <= a + b’

where y, a, b are 32 bit values?
• Many different adder structures to choose from:

– Ripple carry – slow, but area efficient
– Carry select adder - faster than ripple, but more gates
– Carry Save adder – fastest adder architecture for

general logic gates, but requires lots of gates

• Need a methodology that the RTL synthesis tool
can use to choose between various architectures
for an arithmetic operation based on speed/area
constraints

BR 6/01 4

Technology Mapping
• Technology mapping refers to how an RTL

synthesis tool maps boolean operations to a set of
available gates in a chosen technology
– ASIC library (nands, nors, complex gates, DFFs)
– Gate array library (all primitive nands)
– FPGA library (lookup tables + DFFs)

• Part of technology mapping should also include
determining the best structure for arithmetic
operations for a given set of constraints
– I.E. for one technology a 10-bit ripple adder might be a

faster than a 10-bit CLA, while in a different
technology the opposite is true.

BR 6/01 5

Example Technology Mapping
• In just about any ASIC technology (ie standard cell or

gate array), a 12-bit adder is faster done via a CLA
structure than a ripple structure

• In the LUT4 (4-input lookup tables) FPGA technology
from Xilinx and Altera, the opposite is true
– Basic programmable cells can implement a two bit sum and

has fast carry logic as part of the cell
– The delay through a LUT4+programmable routing is much

slower than the dedicated carry logic+routing between cells
– This means that ripple chains are more effective than CLA

structures for higher values of N than other technologies

BR 6/01 6

The Problem
Y <= A + B;

RTL Synthesis ToolTiming, Area
Constraints

Technology
Library

Implementation
Library (CLA,
ripple, etc)

Operator parameters
(operand size,
pipelining, etc).

Gate level netlist

Gate level netlist generated based upon
operator parameters, timing/area
constraints, tech lib, and available
implementations.

2

BR 6/01 7

Synopsys Design Ware

• Design Compiler is the basic RTL synthesis tool
from Synopsys

• DesignWare components and libraries is the method
by which a user can define custom implementations
and technology mappings for arithmetic operations

• The DesignWare Foundation Basic library already
has architectures that tradeoff area/speed for many
arithmetic operations
– These architectures (i.e. Ripple vs CLA) are based on

generic logic gates and use timing information from the
technology library plus area/time constraints to pick an
architecture

BR 6/01 8

adder.vhd Example
library ieee,synopsys;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use synopsys.attributes.all;

entity adder is
generic(N : integer := 4);
port (a,b: in std_logic_vector(N-1 downto 0);

sum: out std_logic_vector(N-1 downto 0));
end adder;
architecture a of adder is
signal tmpa,tmpb: unsigned(N-1 downto 0);
signal tmpsum : unsigned(N-1 downto 0);

begin

tmpa <= unsigned(a); -- type conversion
tmpb <= unsigned(b); -- type conversion
tmpsum <= tmpa + tmpb;
sum <= std_logic_vector(tmpsum); -- type conversion
end a;

Std_logic_arith defines
unsigned,signed types
needed for arithmetic
operations on std_logic.

‘+’ operator only
defined for signed,
unsigned types.

BR 6/01 9

Unsigned vs Signed types

• For addition, unsigned and signed addition uses
the same hardware, so it does not matter which we
use

• For other operations like multiplication, it makes a
difference
– Signed means 2’s complement representation
– Different hardware required for signed vs. unsigned

multiply

BR 6/01 10

Synthesizing with Synopsys
To place Synopsys on your path, do “swsetup synopsys”.

Synopsys synthesis is best used by giving it a command script
that has the synthesis commands.

The directory structure that we will use is:
vhdl_course/synopsys/dware_tut/

/rtl
/gate
/behv

Script, library
file locations

RTL files
Synthesized gate
level files

High level
synthesis files

To run a dc_shell script do:

% dc_shell –f scriptfilename

BR 6/01 11

A Sample Synopsys Script
link_library = {gcmos_unit.db}
target_library = {gcmos_unit.db}
analyze -f vhdl rtl/addN.vhd
elaborate addN -parameters "N=>8“
set_max_delay 10 -to {sum}
compile -ungroup_all -map_effort high

report_timing -path full -delay max -to {sum} -max_paths
3 -nworst 1 > add8_dly10.rpt

report_area >> add8_dly10.rpt

change_names -rule vhdl

write -f vhdl -output gate/add8_dly10.vhd

quit

Specify target library

Analyze design (create
internal representation)

Generate design
instance

Set delay constraint

Do synthesis

Report timing, area

Write gate level file in VHDL format
BR 6/01 12

Operator Inference
• The previous Synopsys script and adder.vhd file uses

inference for choosing an operator architecture
– Inference means that the operator architecture is chosen

based on constraints + technology library

• A delay constraint of 10 is specified from input to
output via set_max_delay command
– This delay has to match the units specified in the target

library
– The gcmos.db library is a generic gate library with only a

few gate primitives
– Has unit delays (delay = 1), unit areas (area = 1) for all

delays, areas

3

BR 6/01 13

Dware Cache
• When Design compiler builds a Design Ware

component of a particular type, architecture and
size (I.e, adder, ripple, 8 bits) this is cached so that
next time will be faster
– Caches both structure and timing information
– Cache resides under ~/synopsys_cache_* (exact

directory name is version dependent.
• Choosing a particular architecture means that DC

has to build architectures of different types to meet
the word size, then evaluate each against area/time
constraints

BR 6/01 14

Controlling the Architecture Choice
• Can directly control which architecture is used for a

particular operator by using a Synopsys pragma to
specify the architecture
– a pragma is a control directive embedded in a comment

• This can be useful if a particular implementation is
required as a starting point for optimization
– NOTE: the chosen architecture is used a starting point – it

will still be modified according to synthesis options
– I.e., you start with a Ripple adder, and are synthesizing for

speed, synthesis transformations will modify it beyond
recognition and will probably not be as good as one that
started from a CLA structure

BR 6/01 15

architecture a of adder is
begin
process(a,b)
variable tmpa,tmpb: unsigned(N-1 downto 0);
variable tmpsum : unsigned(N-1 downto 0);
constant r0 : resource := 0;
attribute map_to_module of r0: constant is "DW01_add";
attribute implementation of r0: constant is "rpl";
attribute ops of r0: constant is "a1";
begin
tmpa := unsigned(a); -- type conversion
tmpb := unsigned(b); -- type conversion
tmpsum := tmpa + tmpb; -- pragma label a1
sum <= std_logic_vector(tmpsum); -- type conversion
end process;

end a;

Manual Architecture Selection
DW component
name

DW architecture
name

Pragma label must be on line where
synthetic operator occurs

BR 6/01 16

Reporting Available Architectures

How does one know the available operators/architectures in a
design ware library?

% dc_shell

dc_shell> report_design_lib DW01

Will list all synthetic operators for a particular library.
DW01 is the library that contains the basic operators for
addition, subtraction, add/sub, inc/dec, multiplication,
comparators, shifts

BR 6/01 17

Component Instantiation
library ieee,synopsys,DW01;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use synopsys.attributes.all;
use DW01.DW01_components.all;
-- instantiate DW01 component directly
entity adder is
generic(N : integer := 16);
port (a,b: in std_logic_vector(N-1 downto 0);

sum: out std_logic_vector(N-1 downto 0));
end adder;
architecture a of adder is
attribute implementation:STRING;
attribute implementation of U1: label is “cla”;
signal l0: std_logic;
begin

l0 <= '0';
U1: DW01_add generic map (width => N)

port map (CI =>l0, A =>a, B=>b, SUM => sum,
CO => open);

end a;

Can also instantiate a
component directly
instead of using operator
inference.

Gives user access to ports not available
via synthetic operator (e.g., Ci)

Optional blue lines allow
manual architecture selection.

BR 6/01 18

Creating a Custom DW library

• Suppliers of implementation technologies (ie,
ASIC libraries, PLDs, FPGAs, etc) will also
supply a Design Ware library with custom
architectures for the basic operators

• This library will take advantage of the unique
features of the implementation technology to
create a better mapping than what can be done
using the basic Design Ware mappings

4

BR 6/01 19

Tutorial on Creating Dware libraries
• The synopsys software resides at

/opt/ecad/synopsy/default (call this $synopsys)
• $synopsys/doc/online/dw/dwdg/dwdg_2.pdf

contains a tutorial on creating a custom Dware
library

• Creates an adder that has an ov output (overflow
output) and has two architectures – ripple (“rpl”)
and (“cla”).
– I will not attempt to repeat this entire tutorial here, just hit

the highpoints
– You will need to read this tutorial in order to complete

the next assignment

BR 6/01 20

DWSL_addov.vhd

• The tutorial creates a new Dware library called
DWSL and a component called DWSL_addov

library IEEE;
use IEEE.std_logic_1164.all;
entity DWSL_addov is
generic(width : POSITIVE);
port(A,B : std_logic_vector(width-1 downto 0);

CI : std_logic;
SUM : out std_logic_vector(width-1 downto 0);
OV, CO : out std_logic);

end DWSL_addov;

The ov output is not a true overflow but simply the carry into
the MSB (the xor of ov, co external to model will produce a
true overflow)

BR 6/01 21

DWSL_addov_rpl.vhd
Library IEEE, gcmos;
use IEEE.std_logic_1164.all;
use gcmos.gcmos_components.all;

architecture rpl of DWSL_addov is

signal carry : std_logic_vector(width downto 0);
begin

carry(0) <= CI;
L1: for I in 0 to width-1 generate

U1: fa port map(A(i), B(i), carry(i), SUM(i),
carry(i+1));

end generate;
OV <= carry(width-1);
CO <= carry(width);

end;

This has been modified from
the original tutorial file to
use the gcmos library.

A full adder cell which
produces sum, carry-out
from a, b, and carry-in

The ripple architecture (“rpl”)
BR 6/01 22

DWSL_addov_cla.vhd

• This file is too complex to show on slide but
implements a CLA for N < 17.
– You should look at it to get a feel for how GENERATE

statements can be use to create a complex architecture
• For complex architectures, not possible or difficult

to work for any value of N
– “rpl” works for any value of N, but for “cla” the width

must be less than 17
• For the next assignment, create an architecture for

a carry select adder (see next page)
– Call this architecture “csel” and has to work for N < 33.
– Name file DWSL_addov_csel.vhd

BR 6/01 23

Carry-Select Adder

4bit Ripple Adder4bit Ripple Adder

4bit Ripple Adder

The Carry path is the slowest path in the ripple carry adder.
We can speed it up with the following scheme (8-bit adder):

A[3:0] B[3:0]

Cin‘0’

A[7:4] B[7:4]

Sum[3:0]

A[7:4] B[7:4]

‘1’

1 0

Sum[7:4]

Cout

Note that Cout of 1st 4-bit
stage selects the correct
sum of next stage. Upper
stage requires two 4bit
adders

2/1 mux

BR 6/01 24

Carry-Select Adder (larger N)

Rpl

A[3:0]B[3:0]

Cin

Sum[3:0]

1 0

Sum[8:4]

Co
‘0’

A[8:4] B[8:4]

Rpl

‘1’
A[8:4]B[8:4]

Rpl

0 1

1 0

‘0’

A[15:9] B[15:9]

Rpl

‘1’
Rpl

5 bit rpl
4 bit rpl

7 bit rpl

A[15:9] B[15:9]

Sum[15:9]

5

BR 6/01 25

Carry Select comments
• Critical path is still the carry
• The goal is to match the delay along the carry path to

the final select on the sum mux to delay of the rpl
adder
– Can increase the ripple size at each stage because the carry

delay to the mux select gets longer
– Exact choice of sizes for each stage depends on gate delays

• In your implementation, choose your own stage sizes
– CANNOT make them all them size – you must choose

some scheme for gradual increase
– You know that N will be a maximum of 32, so just pick

some progression of sizes (like 4-5-7-7-9 or 4-5-7-8-8 or
whatever).

BR 6/01 26

Archive dware.zip
Unpacks a directory dware_tut.students . Important files:

• gcmos.lib, gcmos.db GCMOS library

• DWSL_addov.vhd, DWSL_addov_cla.vhd, DWSL_addov_rpl.vhd,
DWSL_addov_csel.vhd - you must modify the ‘csel’ architecture.

• analyze_dwsl.script - pass this script to dc_shell to compile all of
the DWSL*.vhd files. Must execute this after any changes to
DWSL*.vhd files

• rtl/{adder_cla.vhd, adder_rpl.vhd, adder_csel.vhd} -- VHDL
files that have manual component instantiations for addov the three
respective architectures.

BR 6/01 27

Archive dware.zip
• adder_sample.script - a sample dc_shell script for synthesizing

one of the ‘rtl/adder*.vhd’ designs for a particular bit width.
Modify this script or use the Perl script below. The synthesized
design is written to the ‘gate/’ directory.

• make_design.pl – a perl script to assist in generating designs for
different architectures, N values instead of writing a separate
dc_shell script for each case. A sample run is:

make_design.pl adder.template %arch%=rpl %dly%=0 %N%=16

will substitute the values shown for the corresponding strings in the
adder.template file to create a new dc_shell script.

If you don’t feel comfortable using this script, simply write your
own dc_shell script for each case you want to test.

BR 6/01 28

Archive dw_test.zip
• Contains gcmos/ directory that has VHDL

entity/architecture, component package for the
gcmos cell library
– Install as a modelsim library
– Makefile is gcmos/Makefile.gcmos
– Look at these files for any questions on cell names, pin

names, cell functionality.

• Contains dw_test.student directory that should be
used for testing your synthesized
– Rename to dw_test and install as modelsim library
– Makefile.dw_test is included in this directory

BR 6/01 29

Testbench in dw_test
• Files tb16.vhd, tb28.vhd are two testbenches for

testing 16-bit and 28-bit adder implementations
– Generates 100 pairs of random numbers, does sum

using addov component, prints result
– Configurations are included in each testbench file for

the three gate level architectures
• After generating a gate level implementation (ie.,

dware_tut/gate/adder16_rpl.vhd)
– Copy to dw_test directory, edit file to remove the entity

declaration for adder
– Make sure the architecture name, file name for gate

level architecture matches was is expected by the
configurations in the testbench files, and also the
makefile.

BR 6/01 30

Approach
• Read through the DW tutorial referenced

previously
– You do not have to make any modifications to the files

as mentioned in the tutorial, I have already made the
changes and converted them to use the GCMOS library

• Try generating a couple of different sized adders
for “rpl”, “cla” architectures

• Make sure you can simulate these using the dw_test
library (you might even want to write a testbench
for a different sized adder like N=20 to ensure that
you understand the files).

6

BR 6/01 31

Approach (cont.)
• Look at the code in DWSL_addov_rpl.vhd,

DWSL_addov_cla.vhd to understand the GENERATE approach
for creating the adder structure
– Look at the PLD model we covered for more examples of GENERATE

statements
• Fill in the architecture of DWSL_addov_csel.vhd to create a

parameterized carry-select adder
– Should use the fa (full adder), mux2to1 cells primarily
– The full adder (fa) cell function in gcmos.lib is not specified so that

Synopsys will treat it as a black box – this meant the gate level structure
will not be modified via synthesis constraints – easier to debug.

• Generate designs of size N=16, N=28 and test via the dw_test
testbench – your adder should generate the same results as the
other architectures.

BR 6/01 32

How to get help in Synopsys
Within dc_shell, can do “man command_name” to bring up a man
page on that command.

Extensive PDF documents at $synopsys/doc/online

synth/ directory contains all documents for synthesis tools.
Synt/dcrm has dc_shell reference manual.
Synth/dcug has dc_shell user guide. Both of these are good places
to look for answers to questions about dc_shell.

dw/dwug has user guide for Design Ware (basic concepts, usage
examples).

dw/dwdg has notes for creating custom libraries including tutorial.

BR 6/01 33

Before you ask questions
• Have you looked at all of the files/examples ?

– Have you looked inside the files and attempted to
understand the particular VHDL or dc_shell commands
being used?

– Have you looked at the input files required by the script
and output files produced by it?

• Have you looked at the Synopsys PDF
documentation?

• Have you used the ‘man’ facility in dc_shell?

