RTL Synthesis

* RTL = Register Transfer Level
* RTL code (Verilog, VHDL, or something else)

completely specifies

— all registers

— Logic operations

— Arithmetic operation
» Synthesis will convert these to meet some

combination of an area + delay constraint

— Boolean minimization techniques used to improve both

area and speed

— Different area, speed constraints will produce different
gate level netlists, but will be functionally equivalent

BR 6/01 1

Random Logic vs Arithmetic RTL

* General boolean minimization techniques work
well for random logic to meet area/speed
constraints

*+ Not true for Arithmetic operations (addition,
multiplication, etc)

— Design space is too large, and resulting netlists are

usually sub-optimal when compared to structured
netlists

BR 6/01 2

An Example

What should be synthesized for ‘y<=a+b’
where y, a, b are 32 bit values?

Many different adder structures to choose from:

— Ripple carry — slow, but area efficient

— Carry select adder - faster than ripple, but more gates

— Carry Save adder — fastest adder architecture for
general logic gates, but requires lots of gates

* Need a methodology that the RTL synthesis tool

can use to choose between various architectures

for an arithmetic operation based on speed/area

constraints

BR 6/01 3

Technology Mapping

» Technology mapping refers to how an RTL
synthesis tool maps boolean operations to a set of
available gates in a chosen technology

— ASIC library (nands, nors, complex gates, DFFs)
— Gate array library (all primitive nands)
— FPGA library (lookup tables + DFFs)

* Part of technology mapping should also include
determining the best structure for arithmetic
operations for a given set of constraints

— LE. for one technology a 10-bit ripple adder might be a
faster than a 10-bit CLA, while in a different
technology the opposite is true.

BR 6/01 4

Example Technology Mapping

* In just about any ASIC technology (ie standard cell or
gate array), a 12-bit adder is faster done via a CLA
structure than a ripple structure

* In the LUT4 (4-input lookup tables) FPGA technology
from Xilinx and Altera, the opposite is true

— Basic programmable cells can implement a two bit sum and
has fast carry logic as part of the cell

— The delay through a LUT4+programmable routing is much
slower than the dedicated carry logic+routing between cells

— This means that ripple chains are more effective than CLA
structures for higher values of N than other technologies

BR 6/01 5

The Problem

Operator parameters
(operand size,
pipelining, etc).

Tlmlng,'Area ‘ RTL Synthesis Tool ‘
Constraints
Gate level netlist

Gate level netlist generated based upon
operator parameters, timing/area
constraints, tech lib, and available
implementations.

Technology
Library

Implementation
Library (CLA,
ripple, etc)

BR 6/01 6

Synopsys Design Ware

* Design Compiler is the basic RTL synthesis tool
from Synopsys

e DesignWare components and libraries is the method
by which a user can define custom implementations
and technology mappings for arithmetic operations

¢ The DesignWare Foundation Basic library already
has architectures that tradeoff area/speed for many
arithmetic operations

— These architectures (i.e. Ripple vs CLA) are based on
generic logic gates and use timing information from the
technology library plus area/time constraints to pick an
architecture

BR 6/01 7

adder.vhd Example

library ieee, synopsys; Std_logic_arith defines
use ieee.std_|logic_1164.all; : :

— — unsigned,signed types
use ieee.std_logic_arit h.‘ﬁT;// gned,sig; . yp
use synopsys. attributes.all; needed for arithmetic

operations on std_logic.

entity adder is
generic(N: integer := 4);
port (a,b: in std_logic_vector(N-1 downto 0);
sum out std_logic_vector(N-1 downto 0));
end adder;
architecture a of adder is

signal tnpa,tnpb: unsigned(N-1 downto 0); [,
signal tnmpsum: unsigned(N-1 downto 0); +’ operator Only

begin defined for signed,
tnpa <= unsigned(a); -- t conver si on unsigned types.
tnpb <= unsigned(b);—=- type conversion

tnpsum <= tnpa + tnpb;
sum <= std_| ogi c_vector(tnpsun); -- type conversion

end a;
BR 6/01 8

Unsigned vs Signed types

 For addition, unsigned and signed addition uses
the same hardware, so it does not matter which we
use
* For other operations like multiplication, it makes a
difference
— Signed means 2’s complement representation

— Different hardware required for signed vs. unsigned
multiply

BR 6/01 9

Synthesizing with Synopsys

To place Synopsys on your path, do “swsetup synopsys”.

Synopsys synthesis is best used by giving it a command script
that has the synthesis commands.

Script, library

The directory structure that we will use is: g4 Jocations

vhdl course/synopsys/dware 1

Il RTL files
/gate «— Synthesized gate

/behv level files
To run a dc_shell script do: High level
% dc_shell —f scriptfilename synthesis files
BR 6/01 10

A Sample Synopsys Script
link_library = {gcmos_unit.db} < Specify target library

target _library = {gcnos_unit.db} :
anal yze -f vhdl rtl/addN. vhd Analyze deSlgn (create

el aborate addN -paraneters "N=>8" internal representation)
set_max_del ay 10 -to {sun} —

Generate design

instance
to {sun} -max_paths

report_timing -path full -
3 -nworst 1 > add8_dly10.rpt

‘ Set delay constraint

report_area >>

_dl y10. vhd

change_nanes -rule

wite -f vhdl -output gate

quit ‘ Report timing, area

‘ Write gate level file in VHDL format ‘

BR 6/01 11

Operator Inference

* The previous Synopsys script and adder.vhd file uses
inference for choosing an operator architecture
— Inference means that the operator architecture is chosen
based on constraints + technology library
* A delay constraint of 10 is specified from input to
output via set_max_delay command
— This delay has to match the units specified in the target
library
— The gemos.db library is a generic gate library with only a
few gate primitives
— Has unit delays (delay = 1), unit areas (area = 1) for all
delays, areas

BR 6/01 12

Dware Cache

» When Design compiler builds a Design Ware
component of a particular type, architecture and
size (I.e, adder, ripple, 8 bits) this is cached so that
next time will be faster

— Caches both structure and timing information
— Cache resides under ~/synopsys_cache_* (exact
directory name is version dependent.

+ Choosing a particular architecture means that DC
has to build architectures of different types to meet
the word size, then evaluate each against area/time
constraints

BR 6/01 13

Controlling the Architecture Choice

» Can directly control which architecture is used for a
particular operator by using a Synopsys pragma to
specify the architecture

— a pragma is a control directive embedded in a comment
 This can be useful if a particular implementation is
required as a starting point for optimization
— NOTE: the chosen architecture is used a starting point — it
will still be modified according to synthesis options

— Le., you start with a Ripple adder, and are synthesizing for
speed, synthesis transformations will modify it beyond
recognition and will probably not be as good as one that
started from a CLA structure

BR 6/01 14

Manual Architecture Selection
architecture a of adder is
begin DW component

process(a, b) name

variabl e tnpa, tnpb: unsigned(N-1 downto 0);
variabl e tmpsum : unsigned(N-1 downto 0);
constant r0 : resource := 0;

attribute map_to_nodul e of r0: constant is "DW1_add";
attribute inplementation of r0: constant is "rpl" "

attribute ops of r0: constant is "al";

begi n DW architecture
tnpa : = unsigned(a); -- type conversion |pame
tnpb := unsigned(b); -- type conversion
tnpsum: = tnpa + tnpb; -- pragma |abel al
sum <= std_| ogi c_vector (tnpsun); type conversion
end process;
end a; Pragma label must be on line where

synthetic operator occurs

BR 6/01 15

Reporting Available Architectures

How does one know the available operators/architectures in a
design ware library?

% dc_shell
dc shell> report design lib DWO1

Will list all synthetic operators for a particular library.
DWO1 is the library that contains the basic operators for
addition, subtraction, add/sub, inc/dec, multiplication,
comparators, shifts

BR 6/01 16

Component Instantiation

library ieee, synopsys, D\W1; N N
use ieee.std_| ogic_1164.all; Can also instantiate a

use ieee.std_logic_arith.all; component directly

use synopsys.attributes.all; instead of usin: rator
use DW1. DW1_conponents. all; stead ol using operato

-- instantiate DW1 conponent directl inference.

entity adder is
generic(N: integer := 16 H
port (a,b: in std_|logic_vector(N-1 downto 0);
sum out std_|logic_vector(N-1 downto 0));

end adder; . Optional blue lines allow
architecture a of adder is . .
manual archltectgc selection.

attribute inplenentation: STRING -
attribute inplenentation of Ul: label is “cla”;

bi'gigﬂa' 10: std logic; Gives user access to ports not available

10 <=0 via synthetic operator (e.g., Ci)

Ul: DW1_add genec¥t map (w dth => N)
port map (Cl =>l0, A =>a, B=>b SUM => sum
CO => open);
end a; BR 6/01 17

Creating a Custom DW library

* Suppliers of implementation technologies (ie,
ASIC libraries, PLDs, FPGAs, etc) will also
supply a Design Ware library with custom
architectures for the basic operators

* This library will take advantage of the unique
features of the implementation technology to
create a better mapping than what can be done
using the basic Design Ware mappings

BR 6/01 18

Tutorial on Creating Dware libraries

The synopsys software resides at
/Jopt/ecad/synopsy/default (call this $synopsys)
Ssynopsys/doc/online/dw/dwdg/dwdg 2.pdf
contains a tutorial on creating a custom Dware
library
Creates an adder that has an ov output (overflow
output) and has two architectures — ripple (“rpl”)
and (“cla”).
— I'will not attempt to repeat this entire tutorial here, just hit
the highpoints
— You will need to read this tutorial in order to complete
the next assignment

BR 6/01 19

DWSL addov.vhd

* The tutorial creates a new Dware library called
DWSL and a component called DWSL _addov

library I EEE;
use | EEE. std_|l ogic_1164.all;
entity DWBL_addov is
generic(w dth : POSITI VE);
port (A B : std_|l ogic_vector(w dth-1 downto 0);
Cl : std_logic;
SUM : out std_|ogic_vector(w dth-1 downto 0);
OV, CO: out std_logic);
end DWBL_addov;

The ov output is not a true overflow but simply the carry into
the MSB (the xor of ov, co external to model will produce a

true overflow)
BR 6/01 20

DWSL addov_rpl.vhd

Library | EEE, gcnos; This has been modified from
use | EEE. std_| ogic_1164.all; the original tutorial file to
use gcnos. gcnos_conponents. al | ; use the gcmos library

architecture rpl of DWSL_addov is
signal carry : std_logic_vector(w dth downto 0);

begi n

carry(0) <= d;

L1: for | in O to width-1 generate

Ul: fa port map(A(i), B(i), carry(i), SUMi),
iar\ryﬁ*ﬂ#—'\

end generate; A full adder cell which

OV <= carry(w dth-1); -

O <= carry(width): produces sum, carry- lout
end; from a, b, and carry-in
The ripple architecture (“rpl”)

BR 6/01 21

DWSL addov_cla.vhd

* This file is too complex to show on slide but
implements a CLA for N < 17.
— You should look at it to get a feel for how GENERATE
statements can be use to create a complex architecture
» For complex architectures, not possible or difficult
to work for any value of N
— “rpl” works for any value of N, but for “cla” the width
must be less than 17
* For the next assignment, create an architecture for
a carry select adder (see next page)
— Call this architecture “csel” and has to work for N < 33.
— Name file DWSL_addov_csel.vhd

BR 6/01 22

Carry-Select Adder

The Carry path is the slowest path in the ripple carry adder.
We can speed it up with the following scheme (8-bit adder):

A[7:4] B[7:4] A[3:0] B[3:0]

o
4bit Ripple Adder |«—

T Cin
4bit Ripple Adder «—

A[7:4] B[74]

Cout
Sum(3:0]

Note that Cout of 15t 4-bit
stage selects the correct
sum of next stage. Upper
stage requires two 4bit
adders

BR 6/01 23

4bit Ripple Adder

2/1 mux
Sum([7:4]

Carry-Select Adder (larger N)

7 bit rpl 5 bit rp] '
A[15:9] B[15:9] A[8:4] B[8:4] 4bitrpl

l . A[3:01B[3:0]
m Co m Cin
A[8:4]B[8:4]

L um[3:0]

Sum[15:9] Sum[8:4]

BR 6/01 24

Carry Select comments
* Critical path is still the carry

» The goal is to match the delay along the carry path to
the final select on the sum mux to delay of the rpl
adder

— Can increase the ripple size at each stage because the carry
delay to the mux select gets longer

— Exact choice of sizes for each stage depends on gate delays
* In your implementation, choose your own stage sizes

— CANNOT make them all them size — you must choose
some scheme for gradual increase

— You know that N will be a maximum of 32, so just pick
some progression of sizes (like 4-5-7-7-9 or 4-5-7-8-8 or
whatever).

BR 6/01 25

Archive dware.zip
Unpacks a directory dware_tut.students . Important files:
* gcmos.lib, gemos.db GCMOS library

« DWSL _addov.vhd, DWSL _addov_cla.vhd, DWSL_addov_rpl.vhd,
DWSL_addov_csel.vhd - you must modify the ‘csel” architecture.

« analyze_dwsl.script - pass this script to dc_shell to compile all of
the DWSL*.vhd files. Must execute this after any changes to
DWSL*.vhd files

e rtl/{adder _cla.vhd, adder rpl.vhd, adder csel.vhd} -- VHDL
files that have manual component instantiations for addov the three
respective architectures.

BR 6/01 26

Archive dware.zip

* adder _sample.script - a sample dc_shell script for synthesizing
one of the ‘rtl/adder*.vhd’ designs for a particular bit width.
Modity this script or use the Perl script below. The synthesized
design is written to the ‘gate/’ directory.

* make_design.pl — a perl script to assist in generating designs for
different architectures, N values instead of writing a separate
dc_shell script for each case. A sample run is:

make_design.pl adder.template %arch%=rpl %dly%=0 %N%=16

will substitute the values shown for the corresponding strings in the
adder.template file to create a new dc_shell script.

If you don’t feel comfortable using this script, simply write your
own dc_shell script for each case you want to test.

BR 6/01 27

Archive dw_test.zip

» Contains gcmos/ directory that has VHDL
entity/architecture, component package for the
gemos cell library

— Install as a modelsim library

— Makefile is gcmos/Makefile.gcmos

— Look at these files for any questions on cell names, pin
names, cell functionality.

» Contains dw_test.student directory that should be
used for testing your synthesized

— Rename to dw_fest and install as modelsim library
— Makefile.dw _test is included in this directory

BR 6/01 28

Testbench in dw_test

« Files th16.vhd, th28.vhd are two testbenches for
testing 16-bit and 28-bit adder implementations
— Generates 100 pairs of random numbers, does sum
using addov component, prints result

— Configurations are included in each testbench file for
the three gate level architectures

» After generating a gate level implementation (ie.,
dware_tut/gate/adderl16_rpl.vhd)

— Copy to dw_test directory, edit file to remove the entity
declaration for adder

— Make sure the architecture name, file name for gate
level architecture matches was is expected by the
configurations in the testbench files, and also the
makefile.

BR 6/01 29

Approach

» Read through the DW tutorial referenced
previously
— You do not have to make any modifications to the files
as mentioned in the tutorial, I have already made the
changes and converted them to use the GCMOS library
» Try generating a couple of different sized adders
for “rpl”, “cla” architectures
* Make sure you can simulate these using the dw_test
library (you might even want to write a testbench
for a different sized adder like N=20 to ensure that
you understand the files).

BR 6/01 30

Approach (cont.)

* Look at the code in DWSL addov _rpl.vhd,
DWSL_addov_cla.vhd to understand the GENERATE approach
for creating the adder structure

— Look at the PLD model we covered for more examples of GENERATE
statements

« Fill in the architecture of DWSL_addov_csel.vhd to create a
parameterized carry-select adder

— Should use the fa (full adder), mux2tol cells primarily

— The full adder (fa) cell function in gemos.lib is not specified so that
Synopsys will treat it as a black box — this meant the gate level structure
will not be modified via synthesis constraints — easier to debug.

* Generate designs of size N=16, N=28 and test via the dw_test
testbench — your adder should generate the same results as the
other architectures.

BR 6/01 31

How to get help in Synopsys

Within dc_shell, can do “man command_name” to bring up a man
page on that command.

Extensive PDF documents at $synopsys/doc/online

synth/ directory contains all documents for synthesis tools.
Synt/dcrm has dc_shell reference manual.

Synth/dcug has dc_shell user guide. Both of these are good places
to look for answers to questions about dc_shell.

dw/dwug has user guide for Design Ware (basic concepts, usage
examples).
dw/dwdg has notes for creating custom libraries including tutorial.

BR 6/01 32

Before you ask questions

» Have you looked at all of the files/examples ?

— Have you looked inside the files and attempted to
understand the particular VHDL or dc_shell commands
being used?

— Have you looked at the input files required by the script
and output files produced by it?

+ Have you looked at the Synopsys PDF
documentation?

» Have you used the ‘man’ facility in dc_shell?

BR 6/01 33

