
1

2/6/2002 BR 1

Sim #3 – 8 CPU + Arbiter Simulation

• Simulations can be used to obtain quantitative results for
values that have no closed form solution or which are
difficult to predict

• Will use an 8 CPU + Arbiter over a shared bus simulation
as the target of Sim #3.

CPU0 CPU1 CPU2 CPU3 CPU4 CPU5 CPU6 CPU7

Arbiter bgrant,
brequest pairs

2/6/2002 BR 2

Definitions

• IO transaction – CPU asserts breq, is granted the bus by the
arbiter, and assumes mastery of the bus by asserting bbusy.

• Transfer size – the number of clocks bbusy is asserted
during an IO transaction.

• Total Clocks – the total number of clocks in the simulation
• Bus Latency – the number of clocks from assertion of breq

to assertion of bgrant by the arbiter. For this bus protocol, at
least 2 clocks with no bus contention.

• Bus Utilization – the ratio in clock cycles for
(bbusy=‘0’)/(Total Clks) * 100%. Note that this number can
never equal 100% because it always takes at least one clock
to change bus masters.

2/6/2002 BR 3

Fixed Priority vs Round Robin Priority

• A priority scheme refers to the method for selecting a CPU
in the case of simultaneous bus requests

• A fixed priority scheme always uses the same priority
based on bus request#
– The arbiter in this simulation assigns CPU#0 the highest priority,

CPU#7 the lowest
– Disadvantage of fixed priority is that the lowest priority CPU can

starve in the presence of high bus contention
– Advantage is simplicity

• A round robin scheme rotates priority after every IO
transaction
– Idea is that each CPU has equal time at having the highest priority

2/6/2002 BR 4

Overlapped vs Non-overlapped Bus Grant

• For a non-overlapped bus grant approach, the arbiter only
asserts a bus grant line once a previous CPU has released
the bus
– CPU does not have to monitor bbusy line, if granted the bus then

the bus is free
– Takes longer to hand off the bus between bus masters

• For an overlapped bus grant approach, the arbiter will
assert negate the bus grant of the current master, and assert
the bus grant of the next master, while the current master
has the bus
– CPU has to monitor bbusy line to see when bus is free
– Minimizes hand off time between bus masters

• This simulation will always use the overlapped approach.

2/6/2002 BR 5

A Question

• For transfer size = 8 clocks, at what bus utilization does the
difference in bus transfers between the highest and lowest
priority CPUs exceed 20% in a fixed priority scheme?

• To answer the above question, need to simulate the system
at different levels of bus utilization
– The more IO requests a CPU makes, the higher the bus utilization

• Must measure the bus utilization for a fixed number of
clocks

• Must record the number of IO transfers that each CPU
makes during the simulation

• The Sim#3 assignment lists other questions that must be
answered

2/6/2002 BR 6

CPU, Arbiter Model Generics

• The ZIP archive attached to the lab contains the arbiter,
CPU, testbench, configuration models

• Arbiter generic ROUND_ROBIN controls whether rrobin
or fixed priority scheme is used

• CPU generics:
– RND_SEED – a number between 1 and 50 that is used to select a

starting random seed value contained in the rnd2 package.
– CPU_ID – identifies this CPU and is the number placed on the

address bus when this CPU is bus master
– CLK_MAX – when the total number of clocks seen thus far equals

this value, the CPU should halt all activity and assert its active
output to the ‘Z’ value. The active signal in the testbench has a
weak pullup (‘H’) on it – when this signal transitions from ‘0’ to
‘H’ all CPUs have stopped.

2

2/6/2002 BR 7

CPU request_rate Generic
• The request_rate generic will be used to control the number of

IO requests a CPU makes – the higher this number, the more IO
requests the CPU should make.
– The more IO requests, the higher the bus utilization

• The CPU model has a finite state machine – the local state
represents the clocks in which the CPU is not making an IO
request
– The more clocks spent in the local state, the fewer IO requests that are

made
• Declare a boolean array called req_array that has 2000 elements

– For each clock spent in the local state, increment a pointer (index) into
req_array

– If req_array[index] = TRUE, then make an IO request
– Initialize req_array such that request_rate number of values are TRUE,

and use a random number generator to pick these locations in req_array.

2/6/2002 BR 8

rnd2 package
The rnd2 package contained in the ZIP archive contains a set of
functions/procedures for generating random numbers.

The code below shows how to use this package to generate 10
random numbers between 0 and 999 inclusive
process

variable bound_h: Real := 999.0;
variable bound_l: Real := 0.0;
Variable rnd_rec: rnd_rec_t;
variable ll: line;

begin
rnd_rec.distribution := rnd_uniform_d;
rnd_rec.seed := rnd_seeds(5); --random seed
rnd_rec.bound_l := bound_l;
rnd_rec.bound_h := bound_h;
for i in 0 to 9 loop
Rnd_Random(rnd_rec);
write (ll, integer(rnd_rec.rnd));
writeline(OUTPUT,ll);

end loop;
wait;

Record type passed to
rnd_random proc. Fill
in the bounds before
first call.

Init random seed
using a value from
rnd_seeds array; 50
seeds available

Generate random number,
uniform distribution.

2/6/2002 BR 9

Collecting Statistics, Printing Results
• You will need to add a VHDL package of your own that

defines the shared variables needed to collect any statistics
required to answer the questions

• Also need to print out a report once the specified total number
of clocks have been reached (I will use these numbers as a
rough sanity check on your model)

CPU0 TClks: 10000, TIOs: 25, TLatency: 57, LatPerIO: 2.280000e+00
CPU1 TClks: 10000, TIOs: 24, TLatency: 78, LatPerIO: 3.250000e+00
CPU2 TClks: 10000, TIOs: 24, TLatency: 55, LatPerIO: 2.291667e+00
CPU3 TClks: 10000, TIOs: 24, TLatency: 64, LatPerIO: 2.666667e+00
CPU4 TClks: 10000, TIOs: 24, TLatency: 59, LatPerIO: 2.458333e+00
CPU5 TClks: 10000, TIOs: 22, TLatency: 107, LatPerIO: 4.863636e+00
CPU6 TClks: 10000, TIOs: 24, TLatency: 63, LatPerIO: 2.625000e+00
CPU7 TClks: 10000, TIOs: 24, TLatency: 57, LatPerIO: 2.375000e+00
TransferSize: 8 ReqRate: 5 %BusUtil: 15%
AvgIOs: 23 AvgTotalLatency: 67 AvgLatencyPerIO: 2.913043e+00

2/6/2002 BR 10

Plots
By plotting Average IO latency vs Bus Utilization, and IO
transfers versus Bus Utilization can answer the questions.

May need to
change scale on
Bus Utilization
axis to get
higher
resolution in
some cases.

2/6/2002 BR 11

Sanity Checks

• Please do simple sanity checking on your statistics
• Bus Utilization < 100 %
• For low request rates, there is little bus contention, so:

– Latency per IO should be close to 2
– Number of IO transfers made by each CPU should be close to

(Total Clocks)/2000 * req_rate
– Bus utilization will be close to

(Number of IO * Transfer size * #of CPUs)/Total_clocks * 100%

2/6/2002 BR 12

Regression Testing

• Multiple simulations runs have to be performed with different
values of request_rate, transfer_size and priority scheme.

• This is known as regression testing, and it should be automated
to save time
– Automation usually done via an external scripting language such as Perl

• The zip archive contains a Perl script called sim3_sol.pl that can
be used for this.
– Look at the comments in the perl script for usage directions
– The script reads a template file called sim3/cfg_tb.template that contains

place holders for model generic values and produces a new cfg_tb.vhd
file with actual values substituted for model generic values

– Number of simulation runs is determined by parameter specification in
sim3_sol.pl - feel free to modify this script to suit your needs or write
your own in your favorite scripting language.

3

2/6/2002 BR 13

Report, Model Checkoff

• Include your graphs, answers to questions in a file called
‘report.pdf’.

• If you need to expand portions of the graph to get the required
answers, then do so.

• I don’t expect answers past one decimal point (ie. 3.5). I do
expect answers with at least this fidelity (“about 4” is not
acceptable).
– You need to illustrate either via the graphs or model numerical output how

you got your answers.
– If you give me an answer without justification, I will count it as wrong.

• I will run your simulation with my own values for request_rate,
transfer_size, priority scheme and examine your model output.
– I don’t expect your numbers to match mine exactly, but they should be

reasonably close.

