
Copyright  2000, Gray Research LLC. 1

Designing a Simple FPGA-Optimized RISC CPU and System-on-a-Chip
Jan Gray

Gray Research LLC, P.O. Box 6156, Bellevue, WA, 98008
jsgray@acm.org

Abstract – This paper presents the complete design of a simple
FPGA RISC processor core and system-on-a-chip in synthesizable
Verilog. It defines a RISC instruction set architecture and then
describes how to implement every part of the processor. Next, an
interrupt facility is added. The second half of the paper describes the
design and implementation of the system-on-a-chip – on-chip RAM,
peripheral bus, and peripherals. Throughout, FPGA-specific issues
and optimizations are cited. The paper concludes with a comparison
with other FPGA processor cores and a brief discussion of software
tools issues.

1 Introduction
In the past, field programmable gate arrays (FPGAs) have
been used to absorb glue logic, perform signal processing,
and even to prototype system-on-chip (SoC) ASICs. Now
with the advent of large, fast, cheap FPGAs, such as Xilinx
Spartan-II (100,000 1 ns “gates” for $15, quantity one), it is
practical and cost-effective to skip the ASIC and ship volume
embedded systems in a single FPGA plus off-chip RAM and
ROM -- the FPGA implements all of the system logic
including a processor core [1-3].

An FPGA SoC platform offers many potential advantages,
including high integration, short time to market, low NRE
costs, and easy field upgrades of entire systems, even over the
Internet. A soft CPU core enables custom instructions and
function units, and can be reconfigured to enhance SoC
development, debugging, testing, and tuning. And if you
control your own “cores” intellectual property (IP), you will
be less at the mercy of the production and end-of-life
decisions of chip vendors, and can ride programmable logic
price and size improvement curves.

Processor and SoC design is not rocket science, and is no
longer the exclusive realm of elite designers in large
companies. FPGAs are now large and fast enough for many
embedded systems, with soft CPU core speeds in the 33-100
MHz range. HDL synthesis tools and FPGA place-and-route
tools are now fast and inexpensive, and open source software
tools help to bridge the compiler chasm.

To prove the point, this paper and accompanying 50-minute
class will present the complete design and implementation,
including full synthesizable Verilog, of a streamlined, but
real, system-on-a-chip and FPGA RISC processor.

2 Review of FPGA Device Architecture
Our example SoC will target one of the smaller members of
the Xilinx Spartan-II family, the XC2S50-5TQ144, a 2.5V
FPGA in a 144-pin plastic thin quad flat pack. [4] This

SRAM-based device is configured at power-up by an external
configuration ROM. It has a 16 row × 24 column array of
configurable logic blocks (CLBs), eight dual-ported
synchronous 256x16 block RAMs, and 92 I/O blocks (IOBs)
in a sea of programmable interconnect. It has other features,
like four digital locked loops for clock de-skew and
multiplication, that we will not use in the example SoC.

Every CLB has two “slices” and each slice has two 4-input
lookup tables (4-LUTs) and two flip-flops. Each 4-LUT can
implement any logic function of 4 inputs, or a 16×1-bit
synchronous static RAM, or ROM. Each slice also has “carry
logic” to help build fast, compact ripple-carry adders and
some muxes to help cascade 4-LUTs into larger logic
structures.

Each IOB offers input and output buffers and flip-flops. The
output buffer can be 3-stated for bidirectional I/O.

The programmable interconnect routes CLB/IOB output
signals to other CLB/IOB inputs. It also provides wide-fanout
low-skew clock lines, and horizontal long lines which can be
driven by 3-state buffers (TBUFs) near each CLB.

Spartan-II is a member of the Virtex family of FPGAs. All
Virtex devices also provide a number of true dual-ported
256x16 synchronous static RAM blocks. These are very fast,
with zero cycle latency – you present address and control
signals just ahead of the clock rising edge, and the data are
written/read just a few ns afterwards. Our 2S50 device has
eight block RAMs, four each on the left and right edges of
the device.

Spartan-II almost seems to have been designed with CPUs in
mind! Just 16 LUTs can build a single-port 16×16-bit register
file (using LUTs as RAM), a 16-bit adder/subtractor (using
carry logic), or a 4 function 16-bit logic unit. Since each LUT
has a flip-flop, the device is register rich, enabling a
pipelined implementation style; and as each flip-flop has a
dedicated clock enable input, it is easy to stall the pipeline
when necessary. Long line buses and 3-state drivers can form
efficient n-input word-wide multiplexers or can implement an
on-chip 3-state peripheral bus. The block RAMs make
excellent instruction and data memories (or caches).

3 Processor Design
Now let’s get right down to work and design a simple,
FPGA-optimized, 16-bit, 16 register RISC processor core, for
hosting embedded applications written in (integer) C, with
code-size-efficient 16-bit instructions.

Copyright  2000, Gray Research LLC. 2

3.1 Instruction set architecture

First we’ll choose an instruction set architecture. To simplify
the development tools chain, it is tempting to reuse an
existing (legacy) ISA, however a new, custom instruction set
can be better optimized to minimize the area and hence the
cost of an FPGA implementation. In FPGAs, wires
(programmable interconnect) and 4-LUTs are the most
precious resources, and most legacy ISAs were not designed
with that in mind.

Here are the two key ideas behind this new instruction set.

1) Using the zero-cycle latency on-chip block RAM for an
instruction store, (either RAM or i-cache), each new
instruction is available almost immediately. Therefore, as
compared to our earlier CPUs (that sport an instruction
fetch pipeline stage to compensate for the latency of off-
chip memory), it should be possible to build a simpler,
non-pipelined processor with good performance. [5]

2) In a non-pipelined RISC CPU, a two-operand
architecture (all register-register operations of the form
dest = dest op src;) enables the register file to be
implemented with a single bank of dual-port distributed
RAM.

With these two key decisions made, the rest of the design
flows naturally. So here is our streamlined GR0000 16-bit
RISC instruction set architecture. There are sixteen 16-bit
registers, r0-r15, and a 16-bit program counter PC.

There are five instruction formats:

Format 15 12 11 8 7 4 3 0

rr op rd rs fn
ri op rd fn imm
rri op rd rs imm
i12 op imm12
br op cond disp8

and 22 operation plus 16 branch instructions:

Hex Fmt Assembler Semantics
0dsi rri jal rd,imm(rs) rd = pc, pc = imm+rs;
1dsi i12 addi rd,rs,imm rd = imm+rs;
2ds* rr {add sub and xor adc sbc

cmp srl sra } rd,rs [rd =] rd fn rs;
3d*I ri {- rsubi adci rsbci andi xori

rcmpi } rd,imm [rd =] imm fn rd;
4dsi rri lw rd,imm(rs) rd = *(int*)(imm+rs);
5dsi rri lb rd,imm(rs) rd = *(byte*)(imm+rs);
6dsi rri sw rd,imm(rs) *(int*)(imm+rs) = rd;
7dsi rri sb rd,imm(rs) *(byte*)(imm+rs) = rd;
8iii i12 imm imm12 imm'next15:4 = imm12;
9*dd br {br brn beq bne bc bnc bv bnv blt

bge ble bgt bltu bgeu bleu bgtu} lab
if (cond) pc += 2*disp8;

Some instructions are interlocked and uninterruptible. These
include imm, adc*, sbc*, and *cmp*. Imm establishes the

upper 12 bits of the immediate data of the instruction that
follows. The carry-out of adc*/*sbc* becomes the carry-in
of the add*/sub/adc*/*sbc* that follows. *Cmp*
establishes condition codes (not programmer visible) for the
conditional branch which follows. These compose, e.g.

imm 0xABC
rcmpi rd,0xD
ble label

At first glance, this appears quite austere, but note that many
apparently “missing” instructions are easily synthesized.

Assembly Maps to
nop xor r0,r0
mov rd,rs addi rd,rs,0
subi rd,rs,imm addi rd,rs,-imm
neg rd rsubi rd,0
com rd xori rd,-1
or rd,rs mov r1,rd

and r1,rs
xor rd,rs
xor rd,r1

sll rd add rd,rd
lea rd,imm(rs) addi rd,rs,imm
j ea imm ea15:4

jal r1,ea3:0
call fn imm fn15:4

jal r15,fn3:0
ret jal r1,2(r15)
lbs rd,imm(ra)
(load-byte,
sign-extending)

lb rd,imm(ra)
lea r1,0x80
xor rd,r1
sub rd,r1

Multiply, wide shifts, etc. are done in software.

3.2 Clocking

Our non-pipelined implementation will execute up to one
instruction per clock. Assuming the embedded application is
running out of on-chip RAM, only loads need be multi-cycle.

3.3 Core interface
The core interface is relatively simple.

// Copyright (C) 2000, Gray Research LLC.
// All rights reserved. Use subject to the
// XSOC License Agreement, see LICENSE file,
// http://www.fpgapcu.org/xsoc/LICENSE.html.
// Version 2000.11.26

The 16-bit core is parameterized to make it easier to derive 8-
and 32-bit register variants:

`define W 16 // register width
`define N 15 // register MSB
`define AN 15 // address MSB
`define IN 15 // instruction MSB

module gr0040(

Copyright  2000, Gray Research LLC. 3

clk, rst, i_ad_rst,
insn_ce, i_ad, insn, hit, int_en,
d_ad, rdy, sw, sb, do, lw, lb, data);

Reset is synchronous, sampled on rising edge of the clock.
On reset, the processor jumps to address i_ad_rst.

input clk; // clock
input rst; // reset (sync)
input [`AN:0] i_ad_rst; // reset vector

The processor core has a Harvard architecture, with separate
instruction-fetch and load/store-data ports. Here’s the
instruction port:

output insn_ce; // insn clock enable
output [`AN:0] i_ad;// next insn address
input [`IN:0] insn;// current insn
input hit; // insn is valid
output int_en; // OK to intr. now

As each instruction completes, late in the clock cycle, the
core asserts the next instruction address i_ad, qualified by
insn_ce. After clk rises, the system drives insn with the
next instruction word, and asserts hit (“cache hit”).

If insn is not ready, or upon an i-cache miss, hit is
deasserted, so the processor ignores (annuls) the current,
invalid instruction. Therefore, in the implementation that
follows, certain decode signals must be qualified by hit.

Int_en (with insn_ce) signals that the currently completing
instruction is interruptible, and the system may safely insert
an interrupt instruction. Somewhat surprisingly, this signal is
all that is necessary to implement interrupt handling in a
modular way, entirely outside of the processor core itself.

During a load or store instruction, the core requests a data
transfer on the load/store-data port:

output [`AN:0] d_ad;// load/store addr
input rdy; // memory ready
output sw, sb; // executing sw (sb)
output [`N:0] do; // data to store
output lw, lb; // executing lw (lb)
inout [`N:0] data; // results, load data

The data port outputs sw, sb, lw, and lb are valid well ahead
of clk. The system can sample these and determine whether
to assert rdy in the current clock cycle.

Memory is byte addressable, and so d_ad is the big-endian
effective address of the load or store.

During a store instruction, the processor asserts d_ad with do
each cycle until the system signals rdy indicating it has
captured the store data. Sw (store word) data are on do[15:0]
while sb (store byte) data are on do[7:0] only.

During a load instruction, the core asserts d_ad and awaits
rdy to indicate that the load data are valid on data[15:0].
During lb (zero-extending load byte), the system must drive
data[15:8] with 8’b0.

Besides loaded data, the tri-state data bus is also used within
the core to carry all other instruction result values.

3.4 Implementation overview

Here’s a brief overview of the CPU implementation that
follows. The current instruction insn is split into constituent
fields and decoded. Two register operands are read from the
register file. An immediate operand (if any) is formed. Two
operands, a and b are selected. The ALU, consisting of
adder/subtractor, logic unit, and shift right unit, operate upon
a and b. The result multiplexer selects a result to write back
to the register file. Any conditional branch is evaluated
against the prior instruction’s condition code result. The next
PC value is determined. During loads/stores, the data port
signals are driven and the core awaits rdy.

3.5 Instruction decoding

With the current instruction insn in-hand, we pull it apart
into its constituent fields. Note the fn field multiplexer.

// opcode decoding
`define JAL (op==0)
`define ADDI (op==1)
`define RR (op==2)
`define RI (op==3)
`define LW (op==4)
`define LB (op==5)
`define SW (op==6)
`define SB (op==7)
`define IMM (op==8)
`define Bx (op==9)
`define ALU (`RR|`RI)

// fn decoding
`define ADD (fn==0)
`define SUB (fn==1)
`define AND (fn==2)
`define XOR (fn==3)
`define ADC (fn==4)
`define SBC (fn==5)
`define CMP (fn==6)
`define SRL (fn==7)
`define SRA (fn==8)
`define SUM (`ADD|`SUB|`ADC|`SBC)
`define LOG (`AND|`XOR)
`define SR (`SRL|`SRA)

// instruction decoding
wire [3:0] op = insn[15:12];
wire [3:0] rd = insn[11:8];
wire [3:0] rs = insn[7:4];
wire [3:0] fn = `RI ? insn[7:4] : insn[3:0];
wire [3:0] imm = insn[3:0];

Copyright  2000, Gray Research LLC. 4

wire [11:0] i12 = insn[11:0];
wire [3:0] cond = insn[11:8];
wire [7:0] disp = insn[7:0];

3.6 State – register file and program counter

The architected (programmer visible) state consists of the
register file and the program counter.

As with most RISCs, register r0 always reads as zero, but in
gr0000, this is not hardwired, but rather due to a software
convention. As we shall see, during an interrupt, r0 is
borrowed briefly to capture the interrupt return address.

As noted above, each instruction reads a maximum of two
registers (rd and rs), and writes back one result on one of
these ports (rd). This enables a compact implementation,
using only one 16x16 bank of 16x1-bit dual-port distributed
RAMs, consuming 32 4-LUTs. The implementation of the
ram16x16d module, as a vector of 16x1-bit dual-port RAM
primitives, follows in Appendix A.

This RAM is read asynchronously, driving its wr_o or o
outputs when its wr_addr or addr inputs change. It is
written synchronously, storing the input data d to address
wr_addr if rf_we is asserted as clk rises.

In this case, the rd and rs fields select registers that are read
out onto the dreg and sreg buses. (We’ll consider the
peculiar addr port `RI expression momentarily.)

// register file and program counter
wire valid_insn_ce = hit & insn_ce;
wire rf_we = valid_insn_ce & ~rst &

((`ALU&~`CMP)|`ADDI|`LB|`LW|`JAL);
wire [`N:0] dreg, sreg; // d, s registers
ram16x16d regfile(.clk(clk), .we(rf_we),

.wr_addr(rd), .addr(`RI ? rd : rs),

.d(data), .wr_o(dreg), .o(sreg));

Later each cycle, the current result, which is available on the
data bus, is written back into the register file, to the register
designated by the rd field. This write back occurs only for
instructions that produce a result – compute instructions
(except cmp which discards its result), loads, and jal. This is
controlled by rf_we (register file write enable).

The program counter is a 16-bit register, using 16 flip-flops.

reg [`AN:0] pc; // program counter

3.7 Immediate operand

Many instructions include a 4-bit imm immediate operand
field, which is sign- or zero-extended to 16-bits. All such
immediate instructions can also be preceded by an
interlocked immediate prefix imm, that establishes the
uppermost 12-bits of the immediate operand.

The register imm_pre records that there has just been an imm
prefix instruction, and the 12-bit register i12_pre captures
the immediate prefix proper.

// immediate prefix
reg imm_pre; // immediate prefix
reg [11:0] i12_pre; // imm prefix value
always @(posedge clk)

if (rst)
imm_pre <= 0;

else if (valid_insn_ce)
imm_pre <= `IMM;

always @(posedge clk)
if (valid_insn_ce)

i12_pre <= i12;

The resulting immediate operand is one of:

1) a sign-extended 4-bit immediate (addi, all ri format);

2) a zero-extended 4-bit immediate byte offset (lb, sb)

3) a zero-extended scaled-by-two 4-bit immediate word
offset (lw, sw, jal).

Here the scaling is done by taking imm[3:0] and
forming the 5-bit value{imm[0],imm[3:1],1’b0}.
(This helps conserve gates versus a more obvious 2-1
mux of {1’b0,imm} and {imm,1’b0}.)

4) a 16-bit immediate formed by concatenating i12_pre
and imm.

Therefore the immediate operand is formed as follows:

// immediate operand
wire word_off = `LW|`SW|`JAL;
wire sxi = (`ADDI|`ALU) & imm[3];
wire [10:0] sxi11 = {11{sxi}};
wire i_4 = sxi | (word_off&imm[0]);
wire i_0 = ~word_off&imm[0];
wire [`N:0] imm16 = imm_pre ? {i12_pre,imm}

: {sxi11,i_4,imm[3:1],i_0};

3.8 Operand selection

Reviewing the instruction set architecture of section 3.1, we
see that with the exception of the ri format instructions
(op==3), all instructions have two operands: a) either an
immediate constant or the register selected by rd and b) the
register selected by rs. All ri format instructions have two
operands: a) an immediate constant and b) the register
selected by rd. Therefore we obtain operands a and b as
follows.

Operand a is the rd register for rr format instructions and
the immediate operand otherwise.

Operand b is usually the rs register, except for ri format
instructions, in which case it is rd. The preceding regfile’s

Copyright  2000, Gray Research LLC. 5

.addr() port assignment “`RI ? rd : rs” handles this
case, so that either register rd or rs is read out onto sreg.

The code is quite simple:

// operand selection
wire [`N:0] a = `RR ? dreg : imm16;
wire [`N:0] b = sreg;

Now for a technology mapping optimization. The multiplexer
that sources bus a selects between dreg and imm16. The
latter is itself a mux of bits of i12_pre and imm, and the
sign-extension constant sxi. Do a and imm16 together
require two 16-bit muxes? No.

In 4-LUT FPGA, a 2-1 mux of o = sel ? x : y can
obviously be implemented in one 4-LUT per bit:
oi = sel ? xi : yi (three inputs). But in the same 4-
LUTs, you can also implement a 2-1 mux with a ‘force-to-
constant’ feature: oi = mux ? (sel ? xi : yi) : sel.
By encoding `RR and sxi into mux and sel we can
implement these two multiplexers in one LUT per bit.

This is not a transformation our synthesis tools will find, but
we will certainly want to apply it in a hand-optimized
implementation.

All totaled, operand selection requires only about 20 LUTs.

3.9 Arithmetic/logic unit

Now with the two 16-bit operands a and b in hand, we can
perform arithmetic, logic, and right shift operations upon
them. (Compare is simply a “subtract-discard-result” that
establishes condition codes for the conditional branch
instruction which follows.)

The add, subtract, logic unit, and shift “units” all operate
concurrently upon the two operands. Then a multiplexer
selects one of these values as the result of the instruction.

Now let us build the add/subtract unit. Each Virtex 4-LUT
has additional dedicated carry-logic, to implement one 1-bit
slice of a ripple carry adder. This code

wire [`N:0] sumdiff = add ? a + b : a – b;

efficiently implements a 16-bit add, 16-bit subtract, and 16-
bit mux in a single column of 16 4-LUTs – each sumdiffi is
a function of the four inputs, add, ai, bi, and carryi.

But our instruction set places additional demands upon our
add/subtract unit, and its implementation is more complex.
Consider a 64-bit add: (r4,r3,r2,r1)+=(r8,r7,r6,r5):

adc r1,r5 ; carry,r1 = r1 + r5
adc r2,r6 ; carry,r2 = r2 + r6 + carry
adc r3,r7 ; carry,r3 = r3 + r7 + carry
add r4,r8 ; r4 = r4 + r8 + carry

Here we must determine and save carry-out from the adc
instructions, and inject this carry-in to the adc or add
instruction which follows. Ditto for subtracts with carry.

The most straightforward way to code this is:
{co,sumdiff,x} = add ? {a,ci} + {b,1’b1}

: {a,ci} – {b,1’b1};

Unfortunately our synthesis tool doesn’t find the potential
resource sharing. Instead of generating a compact 17 LUT
adder/subtractor, it synthesizes a 17 LUT adder, a 17 LUT
subtractor, and a 17 LUT mux. Lesson: be sure to review the
output of your synthesis tool!

After much experimenting, the author found that by moving
the above expression out into a separate module addsub, the
synthesis tool successfully infers the 17 LUT construction. It
remains to instantiate it:

// adder/subtractor
wire [`N:0] sum;
wire add = ~(`ALU&(`SUB|`SBC|`CMP));
reg c; // carry-in if adc/sbc
wire ci = add ? c : ~c;
wire c_W, x;
addsub adder(.add(add), .ci(ci), .a(a),

.b(b), .sum(sum), .x(x), .co(c_W));

Addsub subtracts when the current instruction is one of sub,
sbc, cmp, rsubi, rsbci, or rcmpi.

The ALU is also responsible for determining the (hidden)
condition codes (z,n,c,v) – zero, negative, carry, and overflow
– for the conditional branch instruction that may follow. The
zero condition is self evident, and any two’s-complement
number is negative if its most-significant bit is set. Carry is
the carry-out of the most-significant-bit of the add/sub,
complemented for subtracts.

Overflow is tricky. An addition overflows if the two most-
significant carry-bits differ, that is,
 (overflow) v = c[W]^c[N];
We already have the most-significant carry-out, c_W, but how
do we obtain the next-most-significant carry? Since

sum[N] = a[N]^b[N]^c[N]
then

c[N] = sum[N]^a[N]^b[N]
therefore
 v = c[W]^sum[N]^a[N]^b[N]

// condition codes
wire z = sum == 0; // zero
wire n = sum[`N]; // negative
wire co = add ? c_W : ~c_W; // carry-out
wire v = c_W^sum[`N]^a[`N]^b[`N];// overflow

We capture these in the condition code vector
{ccz,ccn,ccc,ccv} as each instruction completes.

Copyright  2000, Gray Research LLC. 6

reg ccz, ccn, ccc, ccv; // CC vector
always @(posedge clk)

if (rst)
{ccz,ccn,ccc,ccv} <= 0;

else if (valid_insn_ce)
{ccz,ccn,ccc,ccv} <= {z,n,co,v};

If the current instruction is adc, sbc, adci, or rsbci, we
capture the carry-out in the c register.

// add/subtract-with-carry state
always @(posedge clk)

if (rst)
c <= 0;

else if (valid_insn_ce)
c <= co & (`ALU&(`ADC|`SBC));

With only two functions to compute (and and xor), the logic
unit is trivial. Since each bit of the result logi is a function of
only three inputs (ai, bi, fn0), this synthesizes into 16 LUTs.

// logic unit
wire [`N:0] log = fn[0] ? a^b : a&b;

The right shift-unit is even simpler, just a relabeling of some
wires, total cost 1 LUT:

// shift right
wire [`N:0] sr = {(`SRA?b[`N]:0),b[`N:1]};

Here sra (shift right arithmetic) propagates the most-
significant bit of the a operand – a right arithmetic shift of a
negative number remains a negative number.

3.10 Result multiplexer

The result multiplexer selects a result from among the various
resources sum, log, sr, pc (jal’s link address), and load
data.

The simplest way to implement this is to write explicit ?: or
if/else multiplexers. However, a more frugal
implementation will use the abundant TBUF 3-state drivers
provided in the FPGA interconnect fabric. These implement
the wide n-input multiplexer function “for free”, conserving
precious interconnect and using no LUTs whatsoever.

// result mux
wire sum_en = (`ALU&`SUM) | `ADDI;
assign data = sum_en ? sum : 16'bz;
assign data = (`ALU&`LOG) ? log : 16'bz;
assign data = (`ALU&`SR) ? sr : 16'bz;
assign data = `JAL ? pc : 16'bz;

Note that in this implementation, the processor’s result bus
doubles as the system data bus. On loads, the system drives
data with the 16-bit load result.

Also note it is unnecessary to qualify these decoded
instruction output enables with hit. (Exercise: why?)

3.11 A digression on extensibility

This use of a long-line tri-state bus for results and load data
makes it easy to add new functional units and new memory-
mapped coprocessors. For example, adding a “population
count” instruction to the processor core requires only
decoding the pop-count opcode and driving its result:
`define POP (fn == ‘hB)
wire [`N:0] pop = b[0] + b[1] + … + b[n];
assign data = (`ALU&`POP) ? pop : 16’bz;

It is just as simple to add a barrel-shifter, parallel multiplier,
or multiply-step-assist instruction, etc. if desired.

To add a multi-cycle functional unit (iterative shifter or
multiplier, for instance), it is simplest to attach it as a
peripheral with memory mapped control registers. Here’s
how it such a coprocessor might be used
lea r1,mult ; base of mult control regs
sw r2,0(r1) ; load multiplier
sw r3,2(r1) ; load multiplicand, start mul
; do something useful while we’re waiting
lw r2,4(r1) ; load product, interlocked

3.12 Another technology mapping optimization

We have already gone to some trouble to ensure that the
adder/subtractor is implemented in a single column of LUTs.

However, we can do better than that. Observe that the core of
our ALU (excepting the shift-right circuit) computes

result = addsub ? (add ? a+b : a-b)
: (fn[0] ? a&b : a^b);

By encoding
op = addsub ? add : fn[0];

we obtain
result = addsub ? (op ? a+b : a-b)

: (op ? a&b : a^b);

Since each resulti depends solely upon its carry-in plus
addsub, op, ai, and bi, it can be expressed in a single
column of LUTs.

It goes beyond the scope of this paper, but this optimization
saves 16 LUTs (effectively providing the logic functions and
and xor for free) and saves a bank of 16 TBUFs. This is an
important savings in TBUF-constrained designs such as
multiprocessors.

To take advantage of this optimization, the or and andn
(and-not) instructions were deleted from the architecture. The
author was all too happy to trade off a more expensive or
emulation sequence (shown earlier) for a 10% smaller core.

Copyright  2000, Gray Research LLC. 7

3.13 Conditional branches

Whether a conditional branch is taken depends upon the
current condition code vector {ccz,ccn,ccc,ccv} and the
cond field of the branch instruction.

// conditional branch decoding
`define BR 0
`define BEQ 2
`define BC 4
`define BV 6
`define BLT 8
`define BLE 'hA
`define BLTU 'hC
`define BLEU 'hE

// conditional branches
reg br, t;
always @(hit or cond or op or

ccz or ccn or ccc or ccv) begin
case (cond&4'b1110)
`BR: t = 1;
`BEQ: t = ccz;
`BC: t = ccc;
`BV: t = ccv;
`BLT: t = ccn^ccv;
`BLE: t = (ccn^ccv)|ccz;
`BLTU: t = ~ccz&~ccc;
`BLEU: t = ccz|~ccc;
endcase
br = hit & `Bx & (cond[0] ? ~t : t);

end

Here br is set if the current instruction is a valid, taken
branch.

3.14 Address/PC unit

The first instruction to execute is at the reset vector address,
i_ad_rst.

After that, the next instruction to execute is either the next
sequential instruction, the taken branch target, or the target of
the jal jump-and-link.

On a taken branch, pc is incremented by the sign-extended 8-
bit branch displacement field disp, multiplied by two.

On a jal, the jump target is the effective address sum formed
by the adder. Concurrently the current pc is driven onto the
result bus and written back into the destination register.

Otherwise, execution continues with the next sequential
instruction. If the current instruction is valid (hit is true), pc
is incremented by +2. If not, pc is incremented by zero – in
effect, re-fetching the current instruction from the instruction
store. This is exactly the right behavior on an i-cache miss.

We can implement this efficiently by resource sharing.
Instead of muxing pc+2*disp and pc+2, we can mux the pc
increment value and add that to pc.

// jumps, branches, insn fetch
wire [6:0] sxd7 = {7{disp[7]}};
wire [`N:0] sxd16 = {sxd7,disp,1'b0};
wire [`N:0] pcinc = br ? sxd16 : {hit,1'b0};
wire [`N:0] pcincd = pc + pcinc;
assign i_ad = (hit & `JAL) ? sum : pcincd;

The pcinc multiplexer requires 8 LUTs. On its face, it would
appear that pcincd, a 16-bit adder, and the i_ad mux, a 16-
bit mux, would each require 16 LUTs to implement. Indeed,
that’s what our synthesis tool does. However, it is possible to
implement circuits of the form o = add ? (a + b) : c in
a single LUT per bit, 16 LUTs total. Here again we can save
significant resources by explicit technology mapping in a
subsequent hand-optimized implementation.

On reset, pc is set to i_ad_rst. Thereafter it is clocked as
each valid instruction completes.

always @(posedge clk)
if (rst)

pc <= i_ad_rst;
else if (valid_insn_ce)

pc <= i_ad;

A new instruction is issued each cycle, unless the current
valid instruction is a load or store.In that case, the processor
awaits the rdy signal from the system.

wire mem = hit & (`LB|`LW|`SB|`SW);
assign insn_ce = rst | ~(mem & ~rdy);

3.15 Loads and stores

To load/store registers from/to memory, we must determine
the effective address, initiate a memory transaction, and await
is completion.

The instructions lb, lw, sb, and sw, all use the sum produced
by the adder as the effective address of the load or store.

To initiate a memory transaction, the processor drives d_ad,
do (valid during stores), and the lw, lb, sw, and sb signals.

// data loads, stores
assign d_ad = sum;
assign do = dreg;
assign lw = hit & `LW;
assign lb = hit & `LB;
assign sw = hit & `SW;
assign sb = hit & `SB;

All very simple. During loads, the system drives the load data
onto the result data bus. During lb (zero-extending load
byte) in particular, the system must also drive 8’b0 onto
data[15:8].

During stores, dreg, a register selected by the rd field,
sources the data out bus do.

Copyright  2000, Gray Research LLC. 8

And as we saw in the previous section, during a load or store
instruction, the processor stalls until rdy is asserted.

3.16 Interrupt support

As noted earlier, as an experiment in clean, simple, modular
system architecture, interrupts are implemented outside of the
processor core itself.

Since certain instruction sequences (those commencing with
imm, *cmp*, adc*, or *sbc*) are interlocked, we cannot
tolerate interrupting them mid-sequence. Therefore, the core
provides an interrupt enable output to inform the system that
it is safe to insert an interrupt:

// interrupt support
assign int_en = hit &

~(`IMM|`ALU&(`ADC|`SBC|`CMP));

And this concludes the implementation of our RISC core.

endmodule

Hardly rocket science, don’t you agree?

3.17 Addsub module

Here is that addsub module. This synthesizes to an efficient
17 LUT adder/subtractor.

module addsub(add, ci, a, b, sum, x, co);
input add, ci;
input [15:0] a, b;
output [15:0] sum;
output x, co;
assign {co,sum,x}= add ? {a,ci}+{b,1'b1}

: {a,ci}-{b,1'b1};
endmodule

4 Interrupts
Interrupts are implemented outside of the processor core.

They’re quite simple, really. Since an external agent is
feeding instructions to the core, on an interrupt request it can
“fib” and insert a call intr instruction into the instruction
stream, and defer the rest of the work to the interrupt handler
software. The handler must return in such as away as to run
the interrupted instruction.

The following gr0041 core layers this interrupt facility on
top of the gr0040 processor core. Before we consider the
Verilog source, here are some details.

Assume the start of memory looks like this:
addr code disassembly
0000 0000 jal r0,0(r0) ; iret: return
0002 1EEE addi sp,sp,-2 ; intr: make room

0004 60E0 sw r0,0(sp) ; save ret addr
0006 2005 xor r0,r0 ; zero r0
; insert your interrupt handler code here
0008 40E0 lw r0,0(sp) ; reload ret addr
000A 1EE2 addi sp,sp,2 ; release room
000C 90FA br 0000 ; jump to iret

The interrupt handler is at address 0x0002. The call intr
instruction is jal r0,2(r0), also 0x0002. This jumps to
2+r0 (which is, by convention, 0), e.g. 2+0, saving the return
address in r0 (temporarily violating the convention).

The handler saves the return address on the stack, and then
resets r0 to 0. Once interrupt processing is complete, the
handler reloads r0 with the interrupt return address, and
branches to address 0x0000. There, the instruction
jal r0,0(r0) returns to the interrupted code and (since pc
is 0x0000) reloads r0 with 0 once again.

This is somewhat tricky, but has the strengths that it is quite
hardware-frugal, and does not waste a general purpose
register as a dedicated interrupt return address register. (In the
xr16 FPGA processor [6], r14 is reserved for this purpose.)

Isn’t it expensive to mux jal r0,2(r0), e.g. 0x0002, into
the instruction stream? Doesn’t it waste gates, and worse,
introduce a delay into the critical path? No! The gr0000
family is optimized for Virtex, and assumes a block RAM
instruction store. Virtex block RAMs have a .RSTx() port
that forces their output register to 0x0000. By forcing the
block RAM to fetch insn==0x0000, and then or’ing that
with the value 2’b10, we can insert our call intr
instruction at a cost of a couple of gates and little delay.

It is not a coincidence that jal is assigned opcode 0!

Here’s the code:

module gr0041(
clk, rst, i_ad_rst, int_req,
insn_ce, i_ad, insn, hit, zero_insn,
d_ad, rdy, sw, sb, do, lw, lb, data);

…
input int_req; // interrupt request
output zero_insn; // force insn to 0000

wire int_en; // interrupt enabled
reg int; // call intr in progress

// interrupt request rising edge detection
reg int_req_last, int_pend;
always @(posedge clk)

if (rst)
int_req_last <= 0;

else
int_req_last <= int_req;

always @(posedge clk)
if (rst)

int_pend <= 0;
else if (int)

int_pend <= 0;

Copyright  2000, Gray Research LLC. 9

else if (int_req && ~int_req_last)
int_pend <= 1;

// insert intr at an auspicious time
wire int_nxt = int_pend & int_en & ~int;
always @(posedge clk)

if (rst)
int <= 0;

else if (insn_ce)
int <= int_nxt;

// on int, fetch 0000 and execute 0002,
// which is 'jal r0,2(r0)' -- call intr
assign zero_insn = int_nxt;
wire [`N:0] insn_int = insn | {int, 1'b0};

gr0040 p(
.clk(clk), .rst(rst),
.i_ad_rst(i_ad_rst),
.insn_ce(insn_ce), .i_ad(i_ad),
.insn(insn_int), .hit(hit | int),
.int_en(int_en),
.d_ad(d_ad), .rdy(rdy),
.sw(sw), .sb(sb), .do(do),
.lw(lw), .lb(lb), .data(data));

endmodule

Here the zero_insn output will force the next fetched insn
to 0x0000 on the next insn_ce.

5 XSOC System-on-a-chip
The XSOC system-on-a-chip architecture consists of an
instantiation of one or more processor cores, interrupt
controllers, memory and peripheral controllers, on-chip
instruction/data memories/caches, and peripherals.

In this paper, we build a simple demonstration system,
featuring 1 KB of on-chip dual-ported byte-addressable,
shared program and data RAM, an on-chip bus, and
peripherals – a simple counter/timer and a byte-wide parallel
I/O port. The timer is configured to interrupt the processor
every 64 clock cycles.

The design may be synthesized with or without the I/O, on-
chip bus, and peripherals; either way, you still get the RAM.

XSOC features an on-chip peripheral bus architecture with an
abstract bus control bus. More on that later. For now, note
that these definitions configure the width of the on-chip bus
controls.

// on-chip peripheral bus defines
`define IO // on-chip periphs enabled
`define CN 31 // ctrl bus MSB
`define CRAN 7 // control reg addr MSB
`define DN 15 // data bus MSB
`define SELN 7 // select bus MSB

5.1 System-on-a-chip interface

Like a standalone MCU, this system’s off-chip interface is
very simple – clock and reset, and 8-bit parallel inputs and
outputs. The system uses on-chip RAM for its program and
data storage, saving well over 20 package pins.

module soc(clk, rst, par_i, par_o);
input clk; // clock
input rst; // reset (sync)

input [7:0] par_i; // parallel inputs
output [7:0] par_o; // parallel outputs

In practice, the external rst input is often replaced by an on-
chip reset-on-configuration startup block.

5.2 Embedded processor

The first core in our SoC is the processor itself. All of the
processor control signals remain on-chip.

Note the processor reset address is configured to be 0x0020.

//
// processor ports and control signals
//
wire [`AN:0] i_ad, d_ad;
wire [`N:0] insn, do;
tri [`N:0] data;
wire int_req, zero_insn;
wire rdy, sw, sb, lw, lb;

gr0041 p(
.clk(clk), .rst(rst),
.i_ad_rst(16'h0020), .int_req(int_req),
.insn_ce(insn_ce), .i_ad(i_ad),
.insn(insn), .hit(~rst),
.zero_insn(zero_insn),
.d_ad(d_ad), .rdy(rdy),
.sw(sw), .sb(sb), .do(do),
.lw(lw), .lb(lb), .data(data));

Hit is deasserted on reset because the first instruction fetched
on reset is not valid.

5.3 Wait state control

The rdy line determines when processor load and store
instructions complete.

Stores to on-chip RAM complete in the same cycle as they
are issued, but loads from on-chip RAM must first wait for
the data to be read out on the next clk rising edge. In this
case, rdy is held off until loaded goes true in the second
cycle of the load.

Copyright  2000, Gray Research LLC. 10

//
// rdy (wait state) control
//
reg loaded; // load data in bram out regs
always @(posedge clk)

if (rst)
loaded <= 0;

else if (insn_ce)
loaded <= 0;

else
loaded <= (lw|lb);

The signal io_nxt is asserted if the current load or store is to
a memory-mapped I/O address. In the present design, all
addresses 0x8000-0xFFFF are considered to be I/O
accesses.

(If the design is configured without the on-chip I/O bus,
io_nxt is a constant 0 and most of the subsequent peripheral
I/O support is automatically optimized away.)

`ifdef IO
wire io_nxt = d_ad[`AN];

`else
wire io_nxt = 0;

`endif

To keep the processor cycle time from growing without
bound as each new peripheral is added to the system, the
design holds off all loads and stores to memory mapped I/O
locations until the second cycle of the access. A valid I/O
access is denoted by the io signal.

reg io; // peripheral I/O access underway
always @(posedge clk)

if (rst)
io <= 0;

else if (insn_ce)
io <= 0;

else
io <= io_nxt;

Finally we come to the global rdy signal. If the access is to
on-chip RAM, the access is ready if it is a store, or if it is a
load and the data has already been loaded from RAM (e.g.
second cycle of access). If the access is to a peripheral control
register, the access is ready when the specific peripheral
signals it is ready.

wire io_rdy;
assign rdy = ~io_nxt&~((lw|lb)&~loaded) |

io&io_rdy | rst;

5.4 Embedded RAM

Recall that this entire design has been optimized for, and
made possible by, Virtex dual-port block RAMs. Now we put
them to work.

Each block RAM stores 4096 bits, and has two independently
configurable ports with configurable access widths. The only
restriction on port usage is to not write data on one port while
accessing the same data on another.

In this design, we use two Virtex block RAMs, ramh and
raml (RAM high-byte and low-byte), each configured with
two independent 512x8-bit ports, for a total of 1 KB of shared
RAM. We use the A port on both RAMs as the two byte read-
only instruction fetch port, and the B port on both RAMs as
the two byte read-write data load/store port. Self-modifying
code notwithstanding, no port contention should occur.

(It would also be possible to configure a single block RAM
with dual 256x16 ports, one for instructions, one for data, but
since Virtex block RAMs lack byte-write-enables, this would
complicate byte data stores, requiring read-modify-write
cycles. Using two byte-wide RAMs is much simpler.)

Our gr0041 CPU core assumes that instructions are sourced
by high-speed block RAM. Late in each cycle, the next-
instruction address i_ad is determined, shortly before clk
rises. On interrupt, the zero_insn signal is also asserted.
The RAMs’ A ports latch this address and shortly thereafter
deliver the two selected insn bytes (or 0x0000 if
zero_insn is set).

For loads and stores, the data address d_ad is presented to
both RAMs’ B ports. Since memory is byte-addressable, the
design must ensure that byte stores, output from the core on
do[7:0], are only written to that byte’s block RAM.

On sw (store word), do[15:8] is written to ramh and
do[7:0] is written to raml.

On sb (store byte) to an even address, do[7:0] is written to
ramh, since GR0000 is a big-endian architecture. On sb to an
odd address, do[7:0] is written to raml.

For loads, di[15:8] is loaded from ramh and di[7:0]
from raml. For lw (load word) specifically, di[15:0]
drives data[15:0].

For all lb (load byte) instructions, whether accessing on-chip
RAM or memory-mapped peripheral I/O control registers,
data[15:8] is driven to 8’b0, since lb is zero-extending.

For lb from an even RAM address, di[15:8] drives
data[7:0]. For lb from an odd RAM address, di[7:0]
drives data[7:0].

//
// embedded RAM
//
wire h_we = ~rst&~io_nxt&(sw|sb&~d_ad[0]);
wire l_we = ~rst&~io_nxt&(sw|sb&d_ad[0]);
wire [7:0] do_h = sw ? do[15:8] : do[7:0];
wire [`N:0] di;

RAMB4_S8_S8 ramh(
.RSTA(zero_insn), .WEA(1'b0),

Copyright  2000, Gray Research LLC. 11

.ENA(insn_ce), .CLKA(clk),

.ADDRA(i_ad[9:1]), .DIA(8'b0),

.DOA(insn[15:8]),

.RSTB(rst), .WEB(h_we),

.ENB(1'b1), .CLKB(clk),

.ADDRB(d_ad[9:1]), .DIB(do_h),

.DOB(di[15:8]));

RAMB4_S8_S8 raml(
.RSTA(zero_insn), .WEA(1'b0),
.ENA(insn_ce), .CLKA(clk),
.ADDRA(i_ad[9:1]), .DIA(8'b0),
.DOA(insn[7:0]),
.RSTB(rst), .WEB(l_we),
.ENB(1'b1), .CLKB(clk),
.ADDRB(d_ad[9:1]), .DIB(do[7:0]),
.DOB(di[7:0]));

// load data outputs
wire w_oe = ~io & lw;
wire l_oe = ~io & (lb&d_ad[0] | lw);
wire h_oe = ~io & (lb&~d_ad[0]);
assign data[15:8] = w_oe ? di[15:8] : 8'bz;
assign data[7:0] = l_oe ? di[7:0] : 8'bz;
assign data[7:0] = h_oe ? di[15:8] : 8'bz;
assign data[15:8] = lb ? 8'b0 : 8'bz;

A unique feature of FPGA block RAM (as compared to
traditional embedded MCU RAM) is that it is initialized at
configuration time – and thus can act as a “boot RAM”.
Implementation-wise, it is most convenient to specify initial
program code and data separately in a separate constraint file.

This embedded block RAM is just the thing to use when your
embedded application is modest. By keeping the program on-
chip, you save dozens of I/O pads and the CV2F power they
dissipate.

If the embedded system requires more storage for code or
data, it is straightforward to use further block RAMs. If the
program is larger than available block RAM, it is still
possible to use the block RAM as an instruction cache. The
instruction tags can themselves be stored in the same block
RAM (using the other port), or in a separate block RAM, or
even in separate distributed (LUT) RAM.

Similarly, it is possible to use the embedded RAM as a data
cache. Here design issues include the write policy (write-back
or write-through) and the allocate policy (allocate on write-
miss or not). In current devices it is a challenge to implement
single-cycle stores with a write-back d-cache because a write
to a line may overwrite dirty data from another address that is
occupying that line. It may be necessary to first read out the
dirty data before overwriting the line or a part of it.

5.5 On-chip peripheral bus architecture

The title of this paper is “Designing a Simple FPGA-
Optimized RISC CPU and System-on-a-Chip”. While there
are many strengths to the two emerging industry-standard on-

chip buses, AMBA and CoreConnect, they are neither simple
nor FPGA-optimized, and you’ll probably never live to see
their annotated Verilog source code in a paper such as this.

Instead we’re going to use a bus that is simple, extensible,
and very efficient in its use of programmable logic.

The goals of the on-chip peripheral bus are to enable robust
and easy reuse of peripheral cores, and to help prepare for an
ecology of interoperable cores to come.

An on-chip bus designer must consider two design
communities: core users and core designers. The former will
be more numerous, the latter more experienced. If there are to
be ease-of-use tradeoffs, they should be made in favor of the
core users.

Since FPGAs are so malleable, and since FPGA SoC design
is so new, we need an interface that can evolve to address
new requirements, without invalidating existing designs.

With these considerations in mind, I borrowed some ideas
from the software engineering world, and defined an abstract
control signal bus: all of the common control signals are
collected into an opaque bus named ctrl. In addition, I/O
addresses are decoded into the peripheral select vector sel,
and the ready signals from each peripheral are in per_rdy.
For simplicity, the processor’s result bus data is shared as
the on-chip peripheral data bus. Now let’s see how this on-
chip bus architecture is applied.

5.6 Using a peripheral core

The top-level soc module establishes ctrl, sel, per_rdy,
and data.

To add a peripheral core to a design, a designer need only
instantiate the core, connect ctrl, data, some sel[i],
some per_rdy[i], perhaps an int_req, plus any core-
specific inputs and outputs, of course. Address assignment
and decoding is implicit with the choice of sel[i].

(A software tool to configure peripherals, addresses,
interrupts, and so forth, driven from a system configuration
specification file, would be another reasonable approach.
However the present design is simpler and adequate for our
purposes here.)

Let’s contrast this ease-of-use with that of interfacing to a
traditional peripheral IC. Each IC has its own idiosyncratic
set of control signals, I/O register addresses, chip selects, byte
read and write strobes, ready, interrupt request, etc. They
don’t call it “glue logic” for nothing.

5.7 Implementing a peripheral core

Of course, we can’t just sweep all the complexity under the
rug. Each peripheral core must decode ctrl and recover the
specific control signals it needs – clock, reset, byte write
enables and output enables and so forth. This is done with the

Copyright  2000, Gray Research LLC. 12

ctrl_dec module. Each instance of ctrl_dec combines the
ctrl bus and a particular sel signal to derive peripheral-
specific control signals.

Using ctrl_dec and our on-chip tri-state data bus, the
typical bus interface overhead per peripheral is just one or
two CLBs and perhaps a column of TBUFs.

Earlier I promised easy extensibility. How does control signal
abstraction help? So long as we ‘version’ soc’s ctrl_enc
and ctrl_dec together, and retain the same ctrl_dec
inputs and outputs, we can make arbitrary changes to the
ctrl-encoded bus protocols without invalidating any
existing design source code. Neither core uses nor core
designs are affected. Just resynthesize and go.

And to add new bus features, with new bus control outputs,
we need only provide a new ctrl_dec2 for use by new
peripheral core designs.

5.8 Peripheral bus implementation

Returning to the soc module, let’s see how all this is done.

`ifdef IO
//
// on-chip peripheral bus
//

First, for stores to peripherals on the data bus, soc must
drive the store data outputs do onto the bus. Just as with the
embedded RAM above, byte addressing throws us a curve.

Sw to I/O drives data[15:0] with do[15:0]. However, sb
drives both data[15:8] and data[7:0] with the same byte
value do[7:0].

// peripheral data bus store data outputs
wire swsb = sw | sb;
assign data[7:0] = swsb ? do[7:0] : 8'bz;
assign data[15:8] = sb ? do[7:0] : 8'bz;
assign data[15:8] = sw ? do[15:8] : 8'bz;

Next soc must encode the ctrl and sel buses.

At the start of the second cycle of the access, just as io
becomes valid, we capture d_ad in io_ad, the I/O access
address. Io_ad is used throughout the peripheral I/O
subsystem. Why? After all, io_ad will never differ from
d_ad when io is valid. The answer is this is the most
straightforward way to keep the I/O subsystem, including
peripherals, off the clk-to-clk critical path. This simplifies
the lot of the static timing analyzer, which is used heavily
during the timing-driven place-and-route phase of the FPGA
design implementation. Remember that d_ad is only valid
late in the first cycle of a load or store, so adding further
decoding and use of d_ad downstream in the I/O subsystem
could hurt the minimum cycle time. This way, only the

io_ad register setup time could contribute to the critical
path.

// control, sel bus encoding
reg [`AN:0] io_ad;
always @(posedge clk) io_ad <= d_ad;

We’ll study the ctrl_enc module next.

wire [`CN:0] ctrl;
wire [`SELN:0] sel;
ctrl_enc enc(

.clk(clk), .rst(rst), .io(io),

.io_ad(io_ad), .lw(lw), .lb(lb), .sw(sw),

.sb(sb), .ctrl(ctrl), .sel(sel));

Io_rdy is simply the or-reduction of each sel line element-
wise-gating each per_rdy line. Unassigned per_rdy lines
are treated as 0 by my synthesis tool, so valid accesses to
selected peripherals should be OK. An invalid access to an
unassigned peripheral address might hang, though – a
weakness of the current implementation.

wire [`SELN:0] per_rdy;
assign io_rdy = | (sel & per_rdy);

5.9 Instantiating on-chip peripherals

Now for the two peripherals. The counter/timer is assigned
sel[0], e.g. addresses 0x8000-0x80FF and other aliases.
Here we elide an explicit interrupt controller, and instead
assign the processor’s sole int_req input to the timer.

By default, the counter/timer operates in timer mode. It
counts every clock cycle that its i input port is set, so here it
counts each cycle. Each time it counts up from the initial
count 0xFFC0 to overflow at 0x0000, it asserts int_req,
and resets the count to 0xFFC0. This has the effect of
interrupting the processor every 64 cycles.

//
// peripherals
//

timer timer(
.ctrl(ctrl), .data(data),
.sel(sel[0]), .rdy(per_rdy[0]),
.int_req(int_req), .i(1'b1),
.cnt_init(16'hFFC0));

The 8-bit parallel input/output port is assigned sel[1],
addresses 0x8100-0x81FF.

Both peripherals assert their rdy signal on the appropriate
element of the per_rdy vector.

pario par(
.ctrl(ctrl), .data(data),
.sel(sel[1]), .rdy(per_rdy[1]),
.i(par_i), .o(par_o));

Copyright  2000, Gray Research LLC. 13

Of course, if the no-IO configuration applies, no peripheral
can raise int_req.
`else

assign int_req = 0;
`endif

This concludes the soc module.

endmodule

5.10 Control bus encoder

The control bus encoder ctrl_enc establishes the abstract
ctrl bus and the sel bus. Ctrl and sel each partially
decode the I/O access. The two parts ctrl and sel[i] are
subsequently brought together in each peripherali’s instance
of ctrl_dec.

Ctrl_enc decodes io_addr and establishes I/O bus byte-
enables for both output enables oe[] and write enables we[]
for up to four byte lanes, anticipating a 32-bit peripheral bus.

`ifdef IO

module ctrl_enc(
clk, rst, io, io_ad, lw, lb, sw, sb,
ctrl, sel);

input clk;
input rst;
input io;
input [`AN:0] io_ad;
input lw, lb, sw, sb;
output [`CN:0] ctrl;
output [`SELN:0] sel;

Since the on-chip bus can be up to 32-bits wide – four byte
“lanes” – a byte- or 16-bit-wide peripheral will reside on a
subset of lanes (data[7:0] or data[15:0]).

// on-chip bus abstract control bus
wire [3:0] oe, we;
assign oe[0] = io & (lw | lb);
assign oe[1] = io & lw;
assign oe[2] = 0;
assign oe[3] = 0;
assign we[0] = io & (sw | sb);
assign we[1] = io & sw;
assign we[2] = 0;
assign we[3] = 0;
assign ctrl={oe,we,io_ad[`CRAN:0],rst,clk };

assign sel[0] = io & (io_ad[11:8] == 0);
assign sel[1] = io & (io_ad[11:8] == 1);
assign sel[2] = io & (io_ad[11:8] == 2);
assign sel[3] = io & (io_ad[11:8] == 3);
assign sel[4] = io & (io_ad[11:8] == 4);
assign sel[5] = io & (io_ad[11:8] == 5);

assign sel[6] = io & (io_ad[11:8] == 6);
assign sel[7] = io & (io_ad[11:8] == 7);

endmodule

All very straightforward; note that some signals are validated
by io.

5.11 Control bus decoder

Both core users and core designers must treat the specific
contents of ctrl as subject to change without notice –
because it is. Instead, core users are oblivious to ctrl
specifics, and core designers embed an instance of the
ctrl_dec control bus decoder into their cores, to obtain the
specific control signals they need.

Recall that ctrl and sel each partially decode the I/O
access. The two parts ctrl and sel[i] are subsequently
brought together in each peripherali’s instance of ctrl_dec
to derive its fully decoded I/O byte enables.

module ctrl_dec(
ctrl, sel, clk, rst, oe, we, ad);

input [`CN:0] ctrl;// abstract control bus
input sel; // peripheral select
output clk; // clock
output rst; // reset
output [3:0] oe; // byte output enables
output [3:0] we; // byte wire enables
output [`CRAN:0] ad;// ctrl reg addr

wire [3:0] oe_, we_;
assign { oe_, we_, ad, rst, clk } = ctrl;
assign oe[0] = sel & oe_[0];
assign oe[1] = sel & oe_[1];
assign oe[2] = sel & oe_[2];
assign oe[3] = sel & oe_[3];
assign we[0] = sel & we_[0];
assign we[1] = sel & we_[1];
assign we[2] = sel & we_[2];
assign we[3] = sel & we_[3];

endmodule

For maximum flexibility, even the bus clock and reset regime
is abstracted into the ctrl bus.

6 Peripherals
This section briefly describes the two peripheral cores used in
our example system-on-a-chip.

6.1 8-bit parallel I/O port

This core is trivial. Given ctrl and sel, ctrl_dec provides
clock and byte write and output enables. This core uses only
we[0] and oe[0], the enables for data[7:0]. Unused

Copyright  2000, Gray Research LLC. 14

enables are optimized away by the synthesis and/or place-
and-route software.

Pario never needs to insert wait states. It drives rdy with its
sel input – if it is selected, it is ready (done this cycle).

On a byte write, pario latches data[7:0] to o[7:0]. On a
read, it drives i[7:0] onto data[7:0].

// 8-bit parallel I/O peripheral
module pario(ctrl, data, sel, rdy, i, o);
input [`CN:0] ctrl;
inout [`DN:0] data;
input sel;
output rdy;
input [7:0] i;
output [7:0] o;
reg [7:0] o;

wire clk;
wire [3:0] oe, we;
ctrl_dec d(.ctrl(ctrl), .sel(sel),

.clk(clk), .oe(oe), .we(we));
assign rdy = sel;

always @(posedge clk)
if (we[0])

o <= data[7:0];
assign data[7:0] = oe[0] ? i[7:0] : 8'bz;

endmodule

6.2 16-bit counter/timer

Besides the on-chip bus interface signals, timer has two
additional inputs, i and cnt_init.

In timer mode, i is a counter clock enable – the counter is
incremented as clock rises when i is true. In counter mode,
timer counts clk synchronized rising-edge transitions on i.
Cnt_init defines the initial count value, loaded on reset and
reloaded on count overflow.

If enabled, timer can signal an interrupt request int_req
when the count overflows. This request remains asserted until
the processor writes to the interrupt reset control register.

The two control registers are read-write. Register 0 is the
configuration register. Bit 0 enables interrupts on overflow.
Bit 1 determines whether timer operates as a counter (0) or
timer (1).

Register 1 is the interrupt request register. It is set to 1 on
counter overflow, and is reset on write.

// 16-bit timer/counter peripheral
module timer(
ctrl, data, sel, rdy, int_req, i, cnt_init);

input [`CN:0] ctrl;

inout [`DN:0] data;
input sel;
output rdy, int_req;
input i;
input [15:0] cnt_init;

wire clk, rst;
wire [3:0] oe, we;
wire [`CRAN:0] ad;
ctrl_dec d(.ctrl(ctrl), .sel(sel),

.clk(clk), .rst(rst), .oe(oe),

.we(we), .ad(ad));
assign rdy = sel;

// CR#0: counter control register
// * resets to non-interrupting timer
// * readable
// * bit 0: int_en: interrupt enable
// * bit 1: timer: 1 if timer, 0 if counter
reg timer, int_en;
always @(posedge clk)

if (rst)
{timer,int_en} <= {2'b11};

else if (we[0] & ~ad[1])
{timer,int_en} <= data[1:0];

// tick counter when:
// * timer mode: i (enabled) on clk
// * counter mode: i rising edge on clk
reg i_last;
always @(posedge clk) i_last <= i;
wire tick = (timer&i | ~timer&i&~i_last);

// counter/timer
reg [15:0] cnt;
wire [15:0] cnt_nxt;
wire v; // overflow (wrap-around to 0)
assign {v,cnt_nxt} = cnt + 1;
always @(posedge clk) begin

if (rst)
cnt <= cnt_init;

else if (tick) begin
if (v)

cnt <= cnt_init;
else

cnt <= cnt_nxt;
end

end

// CR#1: interrupt request register
// * resets to no-request
// * readable
// * bit 0: interrupt request
// * cleared on writes to CR#1
// * set on counter overflow with int_en
reg int_req;
always @(posedge clk)

if (rst)
int_req <= 0;

else if (we[0] && ad[1])
int_req <= 0;

else if (tick && v && int_en)
int_req <= 1;

Copyright  2000, Gray Research LLC. 15

// read CR#0 or CR#1
assign data[1:0]

= oe[0] ? (ad[1]==0 ? {timer,int_en}
: int_req)

: 2'bz;

endmodule

`endif

And that’s all there is to our whole system-on-a-chip.

7 Results
Using Synplicity Synplify, this design synthesizes in a few
seconds, and using Xilinx Alliance 3.1i, it is mapped, placed,
and routed in less than a minute.

The complete system occupies 2 block RAMs, 257 4-LUTs,
71 flip-flops, and 130 TBUFs. The design consumes just
16% of the logic resources of a Spartan-II-50, one of the
smallest devices in that product family. It has a minimum
cycle time under 27 ns, disappointingly shy of 40 MHz in a
Spartan-II-5 speed grade. Of that 27 ns, 14 ns are spent in
logic and 13 ns in routing signals between logic outputs and
inputs. That’s push-button synthesis for you – quick and easy,
but you can often lose some quality of results.

In comparison, the author has also placed-and-routed a highly
optimized version of this design sans IO. Certain optimizable
structures, cited earlier, are hand-technology-mapped. The
datapath is floorplanned using RLOCs to build RPMs
(relationally-placed macros), to reduce routing delays. This
design yields 50 MHz in the same part and speed grade. It is
floorplanned as 8 rows by 6 columns of CLBs, and fits in less
than 200 logic cells (less than 50 CLBs).

This figure depicts eight gr0040 cores implemented in a
single 16x24 CLB XCV50E, the smallest member of the
Xilinx Virtex-E family. (Virtex-E is a Virtex derivative with
additional columns of block RAM). Just as with our soc
above, each of the eight processors in this design has a
private 1 KB embedded program/data RAM.

Figure 1: 8 gr0040's in an XCV50E

8 Comparisons
Let’s compare the gr0040 core with published data for other
FPGA processor cores: the Xilinx KCPSM 8-bit MCU [7],
gr0050 (a hypothetical 32-bit stretch of gr0000), the pipelined
xr16 RISC [6], the 16- and 32-bit Altera Nios RISC cores [8-
9], and the ARC configurable RISC core in its “basecase”
configuration (in a 2S150-6) [10].

This is certainly an apples-to-oranges comparison, since these
cores each support a vastly different set of features, and the
instruction sets differ. The only thing they may have in
common is they are all (perhaps excepting KCPSM) designed
to host integer C code.

For area units, we use logic cells, which correspond to one 4-
LUT and one FF. (Xilinx “logic cells” are comparable to
Altera “logic elements”.) For frequency, where possible, we
use the published frequency in the slowest (cheapest) speed
grade of the device.

Core Data
width

Logic cells Freq
(MHz)

KCPSM 8 35 CLBs
= 140 LCs?

35

gr0040 16 200 50
xr16 16 300 65
Nios 16 1100 LEs 50

gr0050 hyp 32 330 est ?
Nios 32 1700 LEs 50
ARC

basecase
32 1538 slices

= 3000+ LCs?
37

Table 1: Approximate core sizes and speeds

Since this is such an apples-to-oranges comparison, there is
little one should conclude from this data, except perhaps that
there does not appear to be a correlation between core size
and clock speed.

9 Software development tools
One of the barriers to entry for would-be custom processor
designers is software tools support. Even if it is no longer
“rocket science” to design a new processor, maybe it is rocket
science to obtain even a minimal C compiler tools chain that
targets the new instruction set.

Fortunately there are two excellent retargetable free C
compilers, GCC [11] and lcc [12].

GCC is the gold standard for embedded system compilers. It
is used to build several free OSs and RTOSs. It is
accompanied by various C runtime libraries, assemblers,
linkers, librarians, and debuggers. Unfortunately it is huge
and sprawling and complex.

Lcc on the other hand, is small and simple. It is accompanied
by an excellent textbook that describes its inner workings.

Copyright  2000, Gray Research LLC. 16

The author (formerly a compiler developer) implemented his
first lcc custom target in a single day. The big drawback of
lcc is it is not GCC – it is incapable of compiling most of the
interesting open source software, including GCC’s C runtime
libraries, because this code tends to make use of either C++
and/or GCC extensions.

For many purposes, lcc is more than adequate.

For this project, the author ported lcc to gr0040. This
involved creating a new machine description, derived from
the pre-existing xr16 machine description, by changing only
40 lines of code. Here’s a typical change:
< reg: ADDI2(reg,reg) "add r%c,r%0,r%1\n" 1

> reg: ADDI2(reg,reg) \

"?mov r%c,r%0\nadd r%c,r%1\n" 1

This is an instruction template that describes how to add two
arbitrary general purpose registers r%0 and r%1 and store the
sum in register r%c. On xr16, there is a three-operand add.
On gr0000, there is not. Instead, this gr0000 template says to
(optionally) move r%0 to r%c (if r%c is not r%0) and then
add r%1 to r%c.

Similarly, the gr0040 assembler and instruction set simulator
were derived from the xr assembler/simulator. Here the
changes were more extensive, totaling approximately 400
new lines of code.

10 Conclusion
It is possible for mere mortals to build a compact, reasonably
fast embedded processor, and even a complete system-on-a-
chip, in a small fraction of a small FPGA, if the processor and
system are designed to make the best use of the FPGA.

11 Appendix A: ram16x16d module
Here’s the 16x16-bit dual-port RAM implementation. It
overrides Synplify synthesis, directly instantiating sixteen
RAM16X1D primitives in an 8 row by 1 column RPM
(relationally placed macro). For simulation, it uses a simpler
behavioral model.

module ram16x16d(clk, we, wr_ad, ad,d,wr_o,o)
/* synthesis syn_hier="hard"*/;

input clk; // write clock
input we; // write enable
input [3:0] wr_ad; // write port addr
input [3:0] ad; // read port addr
input [15:0] d; // write data in
output [15:0] wr_o; // write port data out
output [15:0] o; // read port data out

`ifdef synthesis
RAM16X1D r0(
.A0(wr_ad[0]), .A1(wr_ad[1]),
.A2(wr_ad[2]), .A3(wr_ad[3]),
.DPRA0(ad[0]), .DPRA1(ad[1]),

.DPRA2(ad[2]), .DPRA3(ad[3]),

.D(d[0]), .SPO(wr_o[0]), .DPO(o[0]),

.WCLK(clk), .WE(we))
/* synthesis xc_props="RLOC=R7C0.S0" */;

…
RAM16X1D r15(

.A0(wr_ad[0]), .A1(wr_ad[1]),

.A2(wr_ad[2]), .A3(wr_ad[3]),

.DPRA0(ad[0]), .DPRA1(ad[1]),

.DPRA2(ad[2]), .DPRA3(ad[3]),

.D(d[15]), .SPO(wr_o[15]), .DPO(o[15]),

.WCLK(clk), .WE(we))
/* synthesis xc_props="RLOC=R0C0.S1" */;

`else /* !synthesis */
reg [15:0] mem [15:0];

reg [4:0] i;
initial begin

for (i = 0; i < 16; i = i + 1)
mem[i] = 0;

end

always @(posedge clk) begin
if (we)

mem[wr_ad] = d;
end
assign o = mem[ad];
assign wr_o = mem[wr_ad];

`endif
endmodule

12 References
[1] J. Gray, “FPGA CPU News”, www.fpgacpu.org/.

[2] J. Gray, “Building a RISC System in an FPGA: Part 1:
Tools, Instruction Set, and Datapath; Part 2: Pipeline and
Control Unit Design; Part 3: System-on-a-Chip Design”,
Circuit Cellar Magazine, #116-118, March-May 2000,
www.fpgacpu.org/xsoc/cc.html.

[3] J. Gray, “The XSOC Project Kit”, March 2000,
www.fpgacpu.org/xsoc/.

[4] Xilinx Spartan-II web site,
www.xilinx.com/xlnx/xil_prodcat_landingpage.jsp?title=Spartan-II

[5] J. Gray, “The Myriad Uses of Block RAM”, Oct. 1998,
www.fpgacpu.org/usenet/bb.html.

[6] “The xr16 Processor Core”,
www.fpgacpu.org/xsoc/xr16.html.

[7] K. Chapman, “XAPP213: 8-Bit Microcontroller for
Virtex Devices ”, Oct. 2000,
www.xilinx.com/xapp/xapp213.pdf

[8] “Nios Soft Core Embedded Processor Data Sheet”, June
2000, www.altera.com/document/ds/dsexcnios.pdf.

http://www.fpgacpu.org/xsoc/
http://www.fpgacpu.org/usenet/bb.html
http://www.altera.com/document/ds/dsexcnios.pdf

Copyright  2000, Gray Research LLC. 17

[9] C. Snyder, “FPGA Processor Cores Get Serious”,
Microprocessor Report, Sept. 18, 2000.

[10] “ARC 32-Bit Configurable RISC Processor” data sheet,
July 2000,
www.xilinx.com/products/logicore/alliance/arc/risc_processor.pdf.

[11] “GCC Home Page”, www.gnu.org/software/gcc/.

[12] C. Fraser and D. Hanson, A Retargetable C Compiler:
Design and Implementation, Benjamin Cummings, 1995.
www.cs.princeton.edu/lcc.

13 Legalese
Copyright  2000, Gray Research LLC. All rights reserved.

Any use of design(s) expressed in this paper is subject to the
XSOC License Agreement at
 http://www.fpgacpu.org/xsoc/LICENSE.html
Be sure to read the license terms of grant, disclaimers, etc.
You must agree to the license to use the design(s).

14 Revision history
3/08/01: Added Appendix A detailing the implementation

of the 16x16 dual-port RAM register file.

12/07/00: Removed or and andn from architecture; new
technology mapping optimization does
adder/subtractor/logic in one column of LUTs.

11/27/00: DesignCon2001 final draft.

10/21/00: Incomplete draft #2.

http://www.xilinx.com/products/logicore/alliance/arc/risc_processor.pdf

	Introduction
	Review of FPGA Device Architecture
	Processor Design
	Instruction set architecture
	
	Maps to

	Clocking
	Core interface
	Implementation overview
	Instruction decoding
	State – register file and program counter
	Immediate operand
	Operand selection
	Arithmetic/logic unit
	Result multiplexer
	A digression on extensibility
	Another technology mapping optimization
	Conditional branches
	Address/PC unit
	Loads and stores
	Interrupt support
	Addsub module

	Interrupts
	XSOC System-on-a-chip
	System-on-a-chip interface
	Embedded processor
	Wait state control
	Embedded RAM
	On-chip peripheral bus architecture
	Using a peripheral core
	Implementing a peripheral core
	Peripheral bus implementation
	Instantiating on-chip peripherals
	Control bus encoder
	Control bus decoder

	Peripherals
	8-bit parallel I/O port
	16-bit counter/timer

	Results
	Comparisons
	Software development tools
	Conclusion
	Appendix A: ram16x16d module
	References
	Legalese
	Revision history

