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Abstract – This paper presents the complete design of a simple 
FPGA RISC processor core and system-on-a-chip in synthesizable 
Verilog. It defines a RISC instruction set architecture and then 
describes how to implement every part of the processor. Next, an 
interrupt facility is added. The second half of the paper describes the 
design and implementation of the system-on-a-chip – on-chip RAM, 
peripheral bus, and peripherals. Throughout, FPGA-specific issues 
and optimizations are cited. The paper concludes with a comparison 
with other FPGA processor cores and a brief discussion of software 
tools issues. 

1 Introduction 
In the past, field programmable gate arrays (FPGAs) have 
been used to absorb glue logic, perform signal processing, 
and even to prototype system-on-chip (SoC) ASICs. Now 
with the advent of large, fast, cheap FPGAs, such as Xilinx 
Spartan-II (100,000 1 ns “gates” for $15, quantity one), it is 
practical and cost-effective to skip the ASIC and ship volume 
embedded systems in a single FPGA plus off-chip RAM and 
ROM -- the FPGA implements all of the system logic 
including a processor core [1-3]. 

An FPGA SoC platform offers many potential advantages, 
including high integration, short time to market, low NRE 
costs, and easy field upgrades of entire systems, even over the 
Internet. A soft CPU core enables custom instructions and 
function units, and can be reconfigured to enhance SoC 
development, debugging, testing, and tuning. And if you 
control your own “cores” intellectual property (IP), you will 
be less at the mercy of the production and end-of-life 
decisions of chip vendors, and can ride programmable logic 
price and size improvement curves. 

Processor and SoC design is not rocket science, and is no 
longer the exclusive realm of elite designers in large 
companies. FPGAs are now large and fast enough for many 
embedded systems, with soft CPU core speeds in the 33-100 
MHz range. HDL synthesis tools and FPGA place-and-route 
tools are now fast and inexpensive, and open source software 
tools help to bridge the compiler chasm. 

To prove the point, this paper and accompanying 50-minute 
class will present the complete design and implementation, 
including full synthesizable Verilog, of a streamlined, but 
real, system-on-a-chip and FPGA RISC processor. 

2 Review of FPGA Device Architecture 
Our example SoC will target one of the smaller members of 
the Xilinx Spartan-II family, the XC2S50-5TQ144, a 2.5V 
FPGA in a 144-pin plastic thin quad flat pack. [4] This 

SRAM-based device is configured at power-up by an external 
configuration ROM. It has a 16 row × 24 column array of 
configurable logic blocks (CLBs), eight dual-ported 
synchronous 256x16 block RAMs, and 92 I/O blocks (IOBs) 
in a sea of programmable interconnect. It has other features, 
like four digital locked loops for clock de-skew and 
multiplication, that we will not use in the example SoC. 

Every CLB has two “slices” and each slice has two 4-input 
lookup tables (4-LUTs) and two flip-flops. Each 4-LUT can 
implement any logic function of 4 inputs, or a 16×1-bit 
synchronous static RAM, or ROM. Each slice also has “carry 
logic” to help build fast, compact ripple-carry adders and 
some muxes to help cascade 4-LUTs into larger logic 
structures. 

Each IOB offers input and output buffers and flip-flops. The 
output buffer can be 3-stated for bidirectional I/O. 

The programmable interconnect routes CLB/IOB output 
signals to other CLB/IOB inputs. It also provides wide-fanout 
low-skew clock lines, and horizontal long lines which can be 
driven by 3-state buffers (TBUFs) near each CLB. 

Spartan-II is a member of the Virtex family of FPGAs. All 
Virtex devices also provide a number of true dual-ported 
256x16 synchronous static RAM blocks. These are very fast, 
with zero cycle latency – you present address and control 
signals just ahead of the clock rising edge, and the data are 
written/read just a few ns afterwards. Our 2S50 device has 
eight block RAMs, four each on the left and right edges of 
the device. 

Spartan-II almost seems to have been designed with CPUs in 
mind! Just 16 LUTs can build a single-port 16×16-bit register 
file (using LUTs as RAM), a 16-bit adder/subtractor (using 
carry logic), or a 4 function 16-bit logic unit. Since each LUT 
has a flip-flop, the device is register rich, enabling a 
pipelined implementation style; and as each flip-flop has a 
dedicated clock enable input, it is easy to stall the pipeline 
when necessary. Long line buses and 3-state drivers can form 
efficient n-input word-wide multiplexers or can implement an 
on-chip 3-state peripheral bus. The block RAMs make 
excellent instruction and data memories (or caches). 

3 Processor Design 
Now let’s get right down to work and design a simple, 
FPGA-optimized, 16-bit, 16 register RISC processor core, for 
hosting embedded applications written in (integer) C, with 
code-size-efficient 16-bit instructions. 
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3.1 Instruction set architecture 

First we’ll choose an instruction set architecture. To simplify 
the development tools chain, it is tempting to reuse an 
existing (legacy) ISA, however a new, custom instruction set 
can be better optimized to minimize the area and hence the 
cost of an FPGA implementation. In FPGAs, wires 
(programmable interconnect) and 4-LUTs are the most 
precious resources, and most legacy ISAs were not designed 
with that in mind. 

Here are the two key ideas behind this new instruction set. 

1) Using the zero-cycle latency on-chip block RAM for an 
instruction store, (either RAM or i-cache), each new 
instruction is available almost immediately. Therefore, as 
compared to our earlier CPUs (that sport an instruction 
fetch pipeline stage to compensate for the latency of off-
chip memory), it should be possible to build a simpler, 
non-pipelined processor with good performance. [5] 

2) In a non-pipelined RISC CPU, a two-operand 
architecture (all register-register operations of the form 
dest = dest op src;) enables the register file to be 
implemented with a single bank of dual-port distributed 
RAM. 

With these two key decisions made, the rest of the design 
flows naturally. So here is our streamlined GR0000 16-bit 
RISC instruction set architecture. There are sixteen 16-bit 
registers, r0-r15, and a 16-bit program counter PC. 

There are five instruction formats: 

Format 15 12 11 8 7 4 3 0

rr op rd rs fn
ri op rd fn imm
rri op rd rs imm
i12 op imm12
br op cond disp8

and 22 operation plus 16 branch instructions: 

Hex Fmt Assembler Semantics 
0dsi rri jal rd,imm(rs) rd = pc, pc = imm+rs;
1dsi i12 addi rd,rs,imm rd = imm+rs;
2ds* rr {add sub and xor adc sbc

cmp srl sra } rd,rs [rd =] rd  fn rs;
3d*I ri {- rsubi adci rsbci andi xori

rcmpi } rd,imm [rd =] imm fn rd;
4dsi rri lw rd,imm(rs) rd = *(int*)(imm+rs);
5dsi rri lb rd,imm(rs) rd = *(byte*)(imm+rs);
6dsi rri sw rd,imm(rs) *(int*)(imm+rs) = rd;
7dsi rri sb rd,imm(rs) *(byte*)(imm+rs) = rd;
8iii i12 imm imm12 imm'next15:4 = imm12;
9*dd br {br brn beq bne bc bnc bv bnv blt

bge ble bgt bltu bgeu bleu bgtu} lab
if (cond) pc += 2*disp8;

Some instructions are interlocked and uninterruptible.  These 
include imm, adc*, sbc*, and *cmp*. Imm establishes the 

upper 12 bits of the immediate data of the instruction that 
follows. The carry-out of adc*/*sbc* becomes the carry-in 
of the add*/sub/adc*/*sbc* that follows. *Cmp* 
establishes condition codes (not programmer visible) for the 
conditional branch which follows. These compose, e.g. 

imm 0xABC
rcmpi rd,0xD
ble label 

At first glance, this appears quite austere, but note that many 
apparently “missing” instructions are easily synthesized. 

Assembly Maps to 
nop xor r0,r0
mov rd,rs addi rd,rs,0
subi rd,rs,imm addi rd,rs,-imm
neg rd rsubi rd,0
com rd xori rd,-1
or rd,rs mov r1,rd

and r1,rs
xor rd,rs
xor rd,r1

sll rd add rd,rd
lea rd,imm(rs) addi rd,rs,imm
j ea imm ea15:4

jal r1,ea3:0
call fn imm fn15:4

jal r15,fn3:0
ret jal r1,2(r15)
lbs rd,imm(ra)
(load-byte, 
sign-extending) 

lb rd,imm(ra)
lea r1,0x80
xor rd,r1
sub rd,r1

Multiply, wide shifts, etc. are done in software. 

3.2 Clocking 

Our non-pipelined implementation will execute up to one 
instruction per clock. Assuming the embedded application is 
running out of on-chip RAM, only loads need be multi-cycle. 

3.3 Core interface 
The core interface is relatively simple. 

// Copyright (C) 2000, Gray Research LLC.
// All rights reserved. Use subject to the
// XSOC License Agreement, see LICENSE file,
// http://www.fpgapcu.org/xsoc/LICENSE.html.
// Version 2000.11.26

The 16-bit core is parameterized to make it easier to derive 8- 
and 32-bit register variants: 

`define W 16 // register width
`define N 15 // register MSB
`define AN 15 // address MSB
`define IN 15 // instruction MSB

module gr0040(
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clk, rst, i_ad_rst,
insn_ce, i_ad, insn, hit, int_en,
d_ad, rdy, sw, sb, do, lw, lb, data);

Reset is synchronous, sampled on rising edge of the clock. 
On reset, the processor jumps to address i_ad_rst. 

input clk; // clock
input rst; // reset (sync)
input [`AN:0] i_ad_rst; // reset vector

The processor core has a Harvard architecture, with separate 
instruction-fetch and load/store-data ports. Here’s the 
instruction port: 

output insn_ce; // insn clock enable
output [`AN:0] i_ad;// next insn address
input [`IN:0] insn;// current insn
input hit; // insn is valid
output int_en; // OK to intr. now

As each instruction completes, late in the clock cycle, the 
core asserts the next instruction address i_ad, qualified by 
insn_ce. After clk rises, the system drives insn with the 
next instruction word, and asserts hit (“cache hit”). 

If insn is not ready, or upon an i-cache miss, hit is 
deasserted, so the processor ignores (annuls) the current, 
invalid instruction.  Therefore, in the implementation that 
follows, certain decode signals must be qualified by hit. 

Int_en (with insn_ce) signals that the currently completing 
instruction is interruptible, and the system may safely insert 
an interrupt instruction. Somewhat surprisingly, this signal is 
all that is necessary to implement interrupt handling in a 
modular way, entirely outside of the processor core itself. 

During a load or store instruction, the core requests a data 
transfer on the load/store-data port: 

output [`AN:0] d_ad;// load/store addr
input rdy; // memory ready
output sw, sb; // executing sw (sb)
output [`N:0] do; // data to store
output lw, lb; // executing lw (lb)
inout [`N:0] data; // results, load data

The data port outputs sw, sb, lw, and lb are valid well ahead 
of clk. The system can sample these and determine whether 
to assert rdy in the current clock cycle. 

Memory is byte addressable, and so d_ad is the big-endian 
effective address of the load or store. 

During a store instruction, the processor asserts d_ad with do 
each cycle until the system signals rdy indicating it has 
captured the store data. Sw (store word) data are on do[15:0] 
while sb (store byte) data are on do[7:0] only. 

During a load instruction, the core asserts d_ad and awaits 
rdy to indicate that the load data are valid on data[15:0]. 
During lb (zero-extending load byte), the system must drive 
data[15:8] with 8’b0. 

Besides loaded data, the tri-state data bus is also used within 
the core to carry all other instruction result values. 

3.4 Implementation overview 

Here’s a brief overview of the CPU implementation that 
follows. The current instruction insn is split into constituent 
fields and decoded. Two register operands are read from the 
register file. An immediate operand (if any) is formed. Two 
operands, a and b are selected. The ALU, consisting of 
adder/subtractor, logic unit, and shift right unit, operate upon 
a and b. The result multiplexer selects a result to write back 
to the register file. Any conditional branch is evaluated 
against the prior instruction’s condition code result. The next 
PC value is determined. During loads/stores, the data port 
signals are driven and the core awaits rdy. 

3.5 Instruction decoding 

With the current instruction insn in-hand, we pull it apart 
into its constituent fields. Note the fn field multiplexer.  

// opcode decoding
`define JAL (op==0)
`define ADDI (op==1)
`define RR (op==2)
`define RI (op==3)
`define LW (op==4)
`define LB (op==5)
`define SW (op==6)
`define SB (op==7)
`define IMM (op==8)
`define Bx (op==9)
`define ALU (`RR|`RI)

// fn decoding
`define ADD (fn==0)
`define SUB (fn==1)
`define AND (fn==2)
`define XOR (fn==3)
`define ADC (fn==4)
`define SBC (fn==5)
`define CMP (fn==6)
`define SRL (fn==7)
`define SRA (fn==8)
`define SUM (`ADD|`SUB|`ADC|`SBC)
`define LOG (`AND|`XOR)
`define SR (`SRL|`SRA)

// instruction decoding
wire [3:0] op = insn[15:12];
wire [3:0] rd = insn[11:8];
wire [3:0] rs = insn[7:4];
wire [3:0] fn = `RI ? insn[7:4] : insn[3:0];
wire [3:0] imm = insn[3:0];
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wire [11:0] i12 = insn[11:0];
wire [3:0] cond = insn[11:8];
wire [7:0] disp = insn[7:0];

3.6 State – register file and program counter 

The architected (programmer visible) state consists of the 
register file and the program counter. 

As with most RISCs, register r0 always reads as zero, but in 
gr0000, this is not hardwired, but rather due to a software 
convention. As we shall see, during an interrupt, r0 is 
borrowed briefly to capture the interrupt return address. 

As noted above, each instruction reads a maximum of two 
registers (rd and rs), and writes back one result on one of 
these ports (rd). This enables a compact implementation, 
using only one 16x16 bank of 16x1-bit dual-port distributed 
RAMs, consuming 32 4-LUTs. The implementation of the 
ram16x16d module, as a vector of 16x1-bit dual-port RAM 
primitives, follows in Appendix A. 

This RAM is read asynchronously, driving its wr_o or o 
outputs when its wr_addr or addr inputs change. It is 
written synchronously, storing the input data d to address 
wr_addr if rf_we is asserted as clk rises. 

In this case, the rd and rs fields select registers that are read 
out onto the dreg and sreg buses. (We’ll consider the 
peculiar addr port `RI expression momentarily.) 

// register file and program counter
wire valid_insn_ce = hit & insn_ce;
wire rf_we = valid_insn_ce & ~rst &

((`ALU&~`CMP)|`ADDI|`LB|`LW|`JAL);
wire [`N:0] dreg, sreg; // d, s registers
ram16x16d regfile(.clk(clk), .we(rf_we),

.wr_addr(rd), .addr(`RI ? rd : rs),

.d(data), .wr_o(dreg), .o(sreg));

Later each cycle, the current result, which is available on the 
data bus, is written back into the register file, to the register 
designated by the rd field. This write back occurs only for 
instructions that produce a result – compute instructions 
(except cmp which discards its result), loads, and jal. This is 
controlled by rf_we (register file write enable). 

The program counter is a 16-bit register, using 16 flip-flops. 

reg [`AN:0] pc; // program counter

3.7 Immediate operand 

Many instructions include a 4-bit imm immediate operand 
field, which is sign- or zero-extended to 16-bits. All such 
immediate instructions can also be preceded by an 
interlocked immediate prefix imm, that establishes the 
uppermost 12-bits of the immediate operand. 

The register imm_pre records that there has just been an imm 
prefix instruction, and the 12-bit register i12_pre captures 
the immediate prefix proper. 

// immediate prefix
reg imm_pre; // immediate prefix
reg [11:0] i12_pre; // imm prefix value
always @(posedge clk)

if (rst)
imm_pre <= 0;

else if (valid_insn_ce)
imm_pre <= `IMM;

always @(posedge clk)
if (valid_insn_ce)

i12_pre <= i12;

The resulting immediate operand is one of: 

1) a sign-extended 4-bit immediate (addi, all ri format); 

2) a zero-extended 4-bit immediate byte offset (lb, sb)  

3) a zero-extended scaled-by-two 4-bit immediate word 
offset (lw, sw, jal). 

Here the scaling is done by taking imm[3:0] and 
forming the 5-bit value{imm[0],imm[3:1],1’b0}. 
(This helps conserve gates versus a more obvious 2-1 
mux of {1’b0,imm} and {imm,1’b0}.) 

4) a 16-bit immediate formed by concatenating i12_pre 
and imm. 

Therefore the immediate operand is formed as follows: 

// immediate operand
wire word_off = `LW|`SW|`JAL;
wire sxi = (`ADDI|`ALU) & imm[3];
wire [10:0] sxi11 = {11{sxi}};
wire i_4 = sxi | (word_off&imm[0]);
wire i_0 = ~word_off&imm[0];
wire [`N:0] imm16 = imm_pre ? {i12_pre,imm}

: {sxi11,i_4,imm[3:1],i_0};

3.8 Operand selection 

Reviewing the instruction set architecture of section 3.1, we 
see that with the exception of the ri format instructions 
(op==3), all instructions have two operands: a) either an 
immediate constant or the register selected by rd and b) the 
register selected by rs. All ri format instructions have two 
operands: a) an immediate constant and b) the register 
selected by rd. Therefore we obtain operands a and b as 
follows. 

Operand a is the rd register for rr format instructions and 
the immediate operand otherwise. 

Operand b is usually the rs register, except for ri format 
instructions, in which case it is rd. The preceding regfile’s 
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.addr() port assignment “`RI ? rd : rs” handles this 
case, so that either register rd or rs is read out onto sreg. 

The code is quite simple: 

// operand selection
wire [`N:0] a = `RR ? dreg : imm16;
wire [`N:0] b = sreg;

Now for a technology mapping optimization. The multiplexer 
that sources bus a selects between dreg and imm16. The 
latter is itself a mux of bits of i12_pre and imm, and the 
sign-extension constant sxi. Do a and imm16 together 
require two 16-bit muxes? No. 

In 4-LUT FPGA, a 2-1 mux of o = sel ? x : y can 
obviously be implemented in one 4-LUT per bit: 
oi = sel ? xi : yi (three inputs). But in the same 4-
LUTs, you can also implement a 2-1 mux with a ‘force-to-
constant’ feature: oi = mux ? (sel ? xi : yi ) : sel. 
By encoding `RR and sxi into mux and sel we can 
implement these two multiplexers in one LUT per bit. 

This is not a transformation our synthesis tools will find, but 
we will certainly want to apply it in a hand-optimized 
implementation. 

All totaled, operand selection requires only about 20 LUTs. 

3.9 Arithmetic/logic unit 

Now with the two 16-bit operands a and b in hand, we can 
perform arithmetic, logic, and right shift operations upon 
them. (Compare is simply a “subtract-discard-result” that 
establishes condition codes for the conditional branch 
instruction which follows.) 

The add, subtract, logic unit, and shift “units” all operate 
concurrently upon the two operands. Then a multiplexer 
selects one of these values as the result of the instruction. 

Now let us build the add/subtract unit. Each Virtex 4-LUT 
has additional dedicated carry-logic, to implement one 1-bit 
slice of a ripple carry adder. This code 

wire [`N:0] sumdiff = add ? a + b : a – b;

efficiently implements a 16-bit add, 16-bit subtract, and 16-
bit mux in a single column of 16 4-LUTs – each sumdiffi is 
a function of the four inputs, add, ai, bi, and carryi. 

But our instruction set places additional demands upon our 
add/subtract unit, and its implementation is more complex. 
Consider a 64-bit add: (r4,r3,r2,r1)+=(r8,r7,r6,r5): 

adc r1,r5 ; carry,r1 = r1 + r5
adc r2,r6 ; carry,r2 = r2 + r6 + carry
adc r3,r7 ; carry,r3 = r3 + r7 + carry
add r4,r8 ; r4 = r4 + r8 + carry

Here we must determine and save carry-out from the adc 
instructions, and inject this carry-in to the adc or add 
instruction which follows.  Ditto for subtracts with carry. 

The most straightforward way to code this is: 
{co,sumdiff,x} = add ? {a,ci} + {b,1’b1}

: {a,ci} – {b,1’b1}; 

Unfortunately our synthesis tool doesn’t find the potential 
resource sharing. Instead of generating a compact 17 LUT 
adder/subtractor, it synthesizes a 17 LUT adder, a 17 LUT 
subtractor, and a 17 LUT mux. Lesson: be sure to review the 
output of your synthesis tool! 

After much experimenting, the author found that by moving 
the above expression out into a separate module addsub, the 
synthesis tool successfully infers the 17 LUT construction. It 
remains to instantiate it: 

// adder/subtractor
wire [`N:0] sum;
wire add = ~(`ALU&(`SUB|`SBC|`CMP));
reg c; // carry-in if adc/sbc
wire ci = add ? c : ~c;
wire c_W, x;
addsub adder(.add(add), .ci(ci), .a(a),

.b(b), .sum(sum), .x(x), .co(c_W));

Addsub subtracts when the current instruction is one of sub, 
sbc, cmp, rsubi, rsbci, or rcmpi. 

The ALU is also responsible for determining the (hidden) 
condition codes (z,n,c,v) – zero, negative, carry, and overflow 
– for the conditional branch instruction that may follow. The 
zero condition is self evident, and any two’s-complement 
number is negative if its most-significant bit is set. Carry is 
the carry-out of the most-significant-bit of the add/sub, 
complemented for subtracts. 

Overflow is tricky.  An addition overflows if the two most-
significant carry-bits differ, that is, 
 (overflow) v = c[W]^c[N]; 
We already have the most-significant carry-out, c_W, but how 
do we obtain the next-most-significant carry?  Since 

sum[N] = a[N]^b[N]^c[N]
then 

c[N] = sum[N]^a[N]^b[N]
therefore 
 v = c[W]^sum[N]^a[N]^b[N] 

// condition codes
wire z = sum == 0; // zero
wire n = sum[`N]; // negative
wire co = add ? c_W : ~c_W; // carry-out
wire v = c_W^sum[`N]^a[`N]^b[`N];// overflow

We capture these in the condition code vector 
{ccz,ccn,ccc,ccv} as each instruction completes. 
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reg ccz, ccn, ccc, ccv; // CC vector
always @(posedge clk)

if (rst)
{ccz,ccn,ccc,ccv} <= 0;

else if (valid_insn_ce)
{ccz,ccn,ccc,ccv} <= {z,n,co,v};

If the current instruction is adc, sbc, adci, or rsbci, we 
capture the carry-out in the c register. 

// add/subtract-with-carry state
always @(posedge clk)

if (rst)
c <= 0;

else if (valid_insn_ce)
c <= co & (`ALU&(`ADC|`SBC));

With only two functions to compute (and and xor), the logic 
unit is trivial. Since each bit of the result logi is a function of 
only three inputs (ai, bi, fn0), this synthesizes into 16 LUTs. 

// logic unit
wire [`N:0] log = fn[0] ? a^b : a&b;

The right shift-unit is even simpler, just a relabeling of some 
wires, total cost 1 LUT: 

// shift right
wire [`N:0] sr = {(`SRA?b[`N]:0),b[`N:1]};

Here sra (shift right arithmetic) propagates the most-
significant bit of the a operand – a right arithmetic shift of a 
negative number remains a negative number. 

3.10 Result multiplexer 

The result multiplexer selects a result from among the various 
resources sum, log, sr, pc (jal’s link address), and load 
data. 

The simplest way to implement this is to write explicit ?: or 
if/else multiplexers.  However, a more frugal 
implementation will use the abundant TBUF 3-state drivers 
provided in the FPGA interconnect fabric.  These implement 
the wide n-input multiplexer function “for free”, conserving 
precious interconnect and using no LUTs whatsoever. 

// result mux
wire sum_en = (`ALU&`SUM) | `ADDI;
assign data = sum_en ? sum : 16'bz;
assign data = (`ALU&`LOG) ? log : 16'bz;
assign data = (`ALU&`SR) ? sr : 16'bz;
assign data = `JAL ? pc : 16'bz;

Note that in this implementation, the processor’s result bus 
doubles as the system data bus. On loads, the system drives 
data with the 16-bit load result. 

Also note it is unnecessary to qualify these decoded 
instruction output enables with hit. (Exercise: why?) 

3.11 A digression on extensibility 

This use of a long-line tri-state bus for results and load data 
makes it easy to add new functional units and new memory-
mapped coprocessors. For example, adding a “population 
count” instruction to the processor core requires only 
decoding the pop-count opcode and driving its result: 
`define POP (fn == ‘hB)
wire [`N:0] pop = b[0] + b[1] + … + b[n];
assign data = (`ALU&`POP) ? pop : 16’bz;

It is just as simple to add a barrel-shifter, parallel multiplier, 
or multiply-step-assist instruction, etc. if desired. 

To add a multi-cycle functional unit (iterative shifter or 
multiplier, for instance), it is simplest to attach it as a 
peripheral with memory mapped control registers. Here’s 
how it such a coprocessor might be used 
lea r1,mult ; base of mult control regs
sw r2,0(r1) ; load multiplier
sw r3,2(r1) ; load multiplicand, start mul
; do something useful while we’re waiting
lw r2,4(r1) ; load product, interlocked

3.12 Another technology mapping optimization 

We have already gone to some trouble to ensure that the 
adder/subtractor is implemented in a single column of LUTs. 

However, we can do better than that.  Observe that the core of 
our ALU (excepting the shift-right circuit) computes 

result = addsub ? (add ? a+b : a-b)
: (fn[0] ? a&b : a^b);

By encoding 
op = addsub ? add : fn[0];

we obtain 
result = addsub ? (op ? a+b : a-b)

: (op ? a&b : a^b);

Since each resulti depends solely upon its carry-in plus 
addsub, op, ai, and bi, it can be expressed in a single 
column of LUTs. 

It goes beyond the scope of this paper, but this optimization 
saves 16 LUTs (effectively providing the logic functions and 
and xor for free) and saves a bank of 16 TBUFs. This is an 
important savings in TBUF-constrained designs such as 
multiprocessors. 

To take advantage of this optimization, the or and andn 
(and-not) instructions were deleted from the architecture. The 
author was all too happy to trade off a more expensive or 
emulation sequence (shown earlier) for a 10% smaller core. 
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3.13 Conditional branches 

Whether a conditional branch is taken depends upon the 
current condition code vector {ccz,ccn,ccc,ccv} and the 
cond field of the branch instruction. 

// conditional branch decoding
`define BR 0
`define BEQ 2
`define BC 4
`define BV 6
`define BLT 8
`define BLE 'hA
`define BLTU 'hC
`define BLEU 'hE

// conditional branches
reg br, t;
always @(hit or cond or op or

ccz or ccn or ccc or ccv) begin
case (cond&4'b1110)
`BR: t = 1;
`BEQ: t = ccz;
`BC: t = ccc;
`BV: t = ccv;
`BLT: t = ccn^ccv;
`BLE: t = (ccn^ccv)|ccz;
`BLTU: t = ~ccz&~ccc;
`BLEU: t = ccz|~ccc;
endcase
br = hit & `Bx & (cond[0] ? ~t : t);

end

Here br is set if the current instruction is a valid, taken 
branch. 

3.14 Address/PC unit 

The first instruction to execute is at the reset vector address, 
i_ad_rst. 

After that, the next instruction to execute is either the next 
sequential instruction, the taken branch target, or the target of 
the jal jump-and-link. 

On a taken branch, pc is incremented by the sign-extended 8-
bit branch displacement field disp, multiplied by two. 

On a jal, the jump target is the effective address sum formed 
by the adder.  Concurrently the current pc is driven onto the 
result bus and written back into the destination register. 

Otherwise, execution continues with the next sequential 
instruction. If the current instruction is valid (hit is true), pc 
is incremented by +2. If not, pc is incremented by zero – in 
effect, re-fetching the current instruction from the instruction 
store. This is exactly the right behavior on an i-cache miss. 

We can implement this efficiently by resource sharing. 
Instead of muxing pc+2*disp and pc+2, we can mux the pc 
increment value and add that to pc. 

// jumps, branches, insn fetch
wire [6:0] sxd7 = {7{disp[7]}};
wire [`N:0] sxd16 = {sxd7,disp,1'b0};
wire [`N:0] pcinc = br ? sxd16 : {hit,1'b0};
wire [`N:0] pcincd = pc + pcinc;
assign i_ad = (hit & `JAL) ? sum : pcincd;

The pcinc multiplexer requires 8 LUTs. On its face, it would 
appear that pcincd, a 16-bit adder, and the i_ad mux, a 16-
bit mux, would each require 16 LUTs to implement. Indeed, 
that’s what our synthesis tool does. However, it is possible to 
implement circuits of the form o = add ? (a + b) : c in 
a single LUT per bit, 16 LUTs total. Here again we can save 
significant resources by explicit technology mapping in a 
subsequent hand-optimized implementation. 

On reset, pc is set to i_ad_rst. Thereafter it is clocked as 
each valid instruction completes. 

always @(posedge clk)
if (rst)

pc <= i_ad_rst;
else if (valid_insn_ce)

pc <= i_ad;

A new instruction is issued each cycle, unless the current 
valid instruction is a load or store.In that case, the processor 
awaits the rdy signal from the system. 

wire mem = hit & (`LB|`LW|`SB|`SW);
assign insn_ce = rst | ~(mem & ~rdy);

3.15 Loads and stores 

To load/store registers from/to memory, we must determine 
the effective address, initiate a memory transaction, and await 
is completion. 

The instructions lb, lw, sb, and sw, all use the sum produced 
by the adder as the effective address of the load or store. 

To initiate a memory transaction, the processor drives d_ad, 
do (valid during stores), and the lw, lb, sw, and sb signals. 

// data loads, stores
assign d_ad = sum;
assign do = dreg;
assign lw = hit & `LW;
assign lb = hit & `LB;
assign sw = hit & `SW;
assign sb = hit & `SB;

All very simple. During loads, the system drives the load data 
onto the result data bus. During lb (zero-extending load 
byte) in particular, the system must also drive 8’b0 onto 
data[15:8]. 

During stores, dreg, a register selected by the rd field, 
sources the data out bus do. 
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And as we saw in the previous section, during a load or store 
instruction, the processor stalls until rdy is asserted. 

3.16 Interrupt support 

As noted earlier, as an experiment in clean, simple, modular 
system architecture, interrupts are implemented outside of the 
processor core itself. 

Since certain instruction sequences (those commencing with 
imm, *cmp*, adc*, or *sbc*) are interlocked, we cannot 
tolerate interrupting them mid-sequence. Therefore, the core 
provides an interrupt enable output to inform the system that 
it is safe to insert an interrupt: 

// interrupt support
assign int_en = hit &

~(`IMM|`ALU&(`ADC|`SBC|`CMP));

And this concludes the implementation of our RISC core. 

endmodule

Hardly rocket science, don’t you agree? 

3.17 Addsub module 

Here is that addsub module. This synthesizes to an efficient 
17 LUT adder/subtractor. 

module addsub(add, ci, a, b, sum, x, co);
input add, ci;
input [15:0] a, b;
output [15:0] sum;
output x, co;
assign {co,sum,x}= add ? {a,ci}+{b,1'b1}

: {a,ci}-{b,1'b1};
endmodule

4 Interrupts 
Interrupts are implemented outside of the processor core. 

They’re quite simple, really. Since an external agent is 
feeding instructions to the core, on an interrupt request it can 
“fib” and insert a call intr instruction into the instruction 
stream, and defer the rest of the work to the interrupt handler 
software. The handler must return in such as away as to run 
the interrupted instruction. 

The following gr0041 core layers this interrupt facility on 
top of the gr0040 processor core. Before we consider the 
Verilog source, here are some details. 

Assume the start of memory looks like this: 
addr code disassembly
0000 0000 jal r0,0(r0) ; iret: return
0002 1EEE addi sp,sp,-2 ; intr: make room

0004 60E0 sw r0,0(sp) ; save ret addr
0006 2005 xor r0,r0 ; zero r0
; insert your interrupt handler code here
0008 40E0 lw r0,0(sp) ; reload ret addr
000A 1EE2 addi sp,sp,2 ; release room
000C 90FA br 0000 ; jump to iret

The interrupt handler is at address 0x0002. The call intr 
instruction is jal r0,2(r0), also 0x0002. This jumps to 
2+r0 (which is, by convention, 0), e.g. 2+0, saving the return 
address in r0 (temporarily violating the convention). 

The handler saves the return address on the stack, and then 
resets r0 to 0. Once interrupt processing is complete, the 
handler reloads r0 with the interrupt return address, and 
branches to address 0x0000. There, the instruction 
jal r0,0(r0) returns to the interrupted code and (since pc 
is 0x0000) reloads r0 with 0 once again. 

This is somewhat tricky, but has the strengths that it is quite 
hardware-frugal, and does not waste a general purpose 
register as a dedicated interrupt return address register. (In the 
xr16 FPGA processor [6], r14 is reserved for this purpose.) 

Isn’t it expensive to mux jal r0,2(r0), e.g. 0x0002, into 
the instruction stream? Doesn’t it waste gates, and worse, 
introduce a delay into the critical path? No! The gr0000 
family is optimized for Virtex, and assumes a block RAM 
instruction store. Virtex block RAMs have a .RSTx() port 
that forces their output register to 0x0000. By forcing the 
block RAM to fetch insn==0x0000, and then or’ing that 
with the value 2’b10, we can insert our call intr 
instruction at a cost of a couple of gates and little delay. 

It is not a coincidence that jal is assigned opcode 0! 

Here’s the code: 

module gr0041(
clk, rst, i_ad_rst, int_req,
insn_ce, i_ad, insn, hit, zero_insn,
d_ad, rdy, sw, sb, do, lw, lb, data);

…
input int_req; // interrupt request
output zero_insn; // force insn to 0000

wire int_en; // interrupt enabled
reg int; // call intr in progress

// interrupt request rising edge detection
reg int_req_last, int_pend;
always @(posedge clk)

if (rst)
int_req_last <= 0;

else
int_req_last <= int_req;

always @(posedge clk)
if (rst)

int_pend <= 0;
else if (int)

int_pend <= 0;
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else if (int_req && ~int_req_last)
int_pend <= 1;

// insert intr at an auspicious time
wire int_nxt = int_pend & int_en & ~int;
always @(posedge clk)

if (rst)
int <= 0;

else if (insn_ce)
int <= int_nxt;

// on int, fetch 0000 and execute 0002,
// which is 'jal r0,2(r0)' -- call intr
assign zero_insn = int_nxt;
wire [`N:0] insn_int = insn | {int, 1'b0};

gr0040 p(
.clk(clk), .rst(rst),
.i_ad_rst(i_ad_rst),
.insn_ce(insn_ce), .i_ad(i_ad),
.insn(insn_int), .hit(hit | int),
.int_en(int_en),
.d_ad(d_ad), .rdy(rdy),
.sw(sw), .sb(sb), .do(do),
.lw(lw), .lb(lb), .data(data));

endmodule

Here the zero_insn output will force the next fetched insn 
to 0x0000 on the next insn_ce. 

5 XSOC System-on-a-chip 
The XSOC system-on-a-chip architecture consists of an 
instantiation of one or more processor cores, interrupt 
controllers, memory and peripheral controllers, on-chip 
instruction/data memories/caches, and peripherals. 

In this paper, we build a simple demonstration system, 
featuring 1 KB of on-chip dual-ported byte-addressable, 
shared program and data RAM, an on-chip bus, and 
peripherals – a simple counter/timer and a byte-wide parallel 
I/O port. The timer is configured to interrupt the processor 
every 64 clock cycles. 

The design may be synthesized with or without the I/O, on-
chip bus, and peripherals; either way, you still get the RAM. 

XSOC features an on-chip peripheral bus architecture with an 
abstract bus control bus. More on that later. For now, note 
that these definitions configure the width of the on-chip bus 
controls. 

// on-chip peripheral bus defines
`define IO // on-chip periphs enabled
`define CN 31 // ctrl bus MSB
`define CRAN 7 // control reg addr MSB
`define DN 15 // data bus MSB
`define SELN 7 // select bus MSB

5.1 System-on-a-chip interface 

Like a standalone MCU, this system’s off-chip interface is 
very simple – clock and reset, and 8-bit parallel inputs and 
outputs. The system uses on-chip RAM for its program and 
data storage, saving well over 20 package pins. 

module soc(clk, rst, par_i, par_o);
input clk; // clock
input rst; // reset (sync)

input [7:0] par_i; // parallel inputs
output [7:0] par_o; // parallel outputs

In practice, the external rst input is often replaced by an on-
chip reset-on-configuration startup block. 

5.2 Embedded processor 

The first core in our SoC is the processor itself. All of the 
processor control signals remain on-chip. 

Note the processor reset address is configured to be 0x0020. 

//
// processor ports and control signals
//
wire [`AN:0] i_ad, d_ad;
wire [`N:0] insn, do;
tri [`N:0] data;
wire int_req, zero_insn;
wire rdy, sw, sb, lw, lb;

gr0041 p(
.clk(clk), .rst(rst),
.i_ad_rst(16'h0020), .int_req(int_req),
.insn_ce(insn_ce), .i_ad(i_ad),
.insn(insn), .hit(~rst),
.zero_insn(zero_insn),
.d_ad(d_ad), .rdy(rdy),
.sw(sw), .sb(sb), .do(do),
.lw(lw), .lb(lb), .data(data));

Hit is deasserted on reset because the first instruction fetched 
on reset is not valid. 

5.3 Wait state control 

The rdy line determines when processor load and store 
instructions complete. 

Stores to on-chip RAM complete in the same cycle as they 
are issued, but loads from on-chip RAM must first wait for 
the data to be read out on the next clk rising edge. In this 
case, rdy is held off until loaded goes true in the second 
cycle of the load. 
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//
// rdy (wait state) control
//
reg loaded; // load data in bram out regs
always @(posedge clk)

if (rst)
loaded <= 0;

else if (insn_ce)
loaded <= 0;

else
loaded <= (lw|lb);

The signal io_nxt is asserted if the current load or store is to 
a memory-mapped I/O address. In the present design, all 
addresses 0x8000-0xFFFF are considered to be I/O 
accesses. 

(If the design is configured without the on-chip I/O bus, 
io_nxt is a constant 0 and most of the subsequent peripheral 
I/O support is automatically optimized away.) 

`ifdef IO
wire io_nxt = d_ad[`AN];

`else
wire io_nxt = 0;

`endif

To keep the processor cycle time from growing without 
bound as each new peripheral is added to the system, the 
design holds off all loads and stores to memory mapped I/O 
locations until the second cycle of the access. A valid I/O 
access is denoted by the io signal. 

reg io; // peripheral I/O access underway
always @(posedge clk)

if (rst)
io <= 0;

else if (insn_ce)
io <= 0;

else
io <= io_nxt;

Finally we come to the global rdy signal. If the access is to 
on-chip RAM, the access is ready if it is a store, or if it is a 
load and the data has already been loaded from RAM (e.g. 
second cycle of access). If the access is to a peripheral control 
register, the access is ready when the specific peripheral 
signals it is ready. 

wire io_rdy;
assign rdy = ~io_nxt&~((lw|lb)&~loaded) |

io&io_rdy | rst;

5.4 Embedded RAM 

Recall that this entire design has been optimized for, and 
made possible by, Virtex dual-port block RAMs. Now we put 
them to work. 

Each block RAM stores 4096 bits, and has two independently 
configurable ports with configurable access widths. The only 
restriction on port usage is to not write data on one port while 
accessing the same data on another. 

In this design, we use two Virtex block RAMs, ramh and 
raml (RAM high-byte and low-byte), each configured with 
two independent 512x8-bit ports, for a total of 1 KB of shared 
RAM. We use the A port on both RAMs as the two byte read-
only instruction fetch port, and the B port on both RAMs as 
the two byte read-write data load/store port. Self-modifying 
code notwithstanding, no port contention should occur. 

(It would also be possible to configure a single block RAM 
with dual 256x16 ports, one for instructions, one for data, but 
since Virtex block RAMs lack byte-write-enables, this would 
complicate byte data stores, requiring read-modify-write 
cycles. Using two byte-wide RAMs is much simpler.) 

Our gr0041 CPU core assumes that instructions are sourced 
by high-speed block RAM. Late in each cycle, the next-
instruction address i_ad is determined, shortly before clk 
rises. On interrupt, the zero_insn signal is also asserted. 
The RAMs’ A ports latch this address and shortly thereafter 
deliver the two selected insn bytes (or 0x0000 if 
zero_insn is set). 

For loads and stores, the data address d_ad is presented to 
both RAMs’ B ports. Since memory is byte-addressable, the 
design must ensure that byte stores, output from the core on 
do[7:0], are only written to that byte’s block RAM. 

On sw (store word), do[15:8] is written to ramh and 
do[7:0] is written to raml. 

On sb (store byte) to an even address, do[7:0] is written to 
ramh, since GR0000 is a big-endian architecture. On sb to an 
odd address, do[7:0] is written to raml. 

For loads, di[15:8] is loaded from ramh and di[7:0] 
from raml. For lw (load word) specifically, di[15:0] 
drives data[15:0]. 

For all lb (load byte) instructions, whether accessing on-chip 
RAM or memory-mapped peripheral I/O control registers, 
data[15:8] is driven to 8’b0, since lb is zero-extending. 

For lb from an even RAM address, di[15:8] drives 
data[7:0]. For lb from an odd RAM address, di[7:0] 
drives data[7:0]. 

//
// embedded RAM
//
wire h_we = ~rst&~io_nxt&(sw|sb&~d_ad[0]);
wire l_we = ~rst&~io_nxt&(sw|sb&d_ad[0]);
wire [7:0] do_h = sw ? do[15:8] : do[7:0];
wire [`N:0] di;

RAMB4_S8_S8 ramh(
.RSTA(zero_insn), .WEA(1'b0),
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.ENA(insn_ce), .CLKA(clk),

.ADDRA(i_ad[9:1]), .DIA(8'b0),

.DOA(insn[15:8]),

.RSTB(rst), .WEB(h_we),

.ENB(1'b1), .CLKB(clk),

.ADDRB(d_ad[9:1]), .DIB(do_h),

.DOB(di[15:8]));

RAMB4_S8_S8 raml(
.RSTA(zero_insn), .WEA(1'b0),
.ENA(insn_ce), .CLKA(clk),
.ADDRA(i_ad[9:1]), .DIA(8'b0),
.DOA(insn[7:0]),
.RSTB(rst), .WEB(l_we),
.ENB(1'b1), .CLKB(clk),
.ADDRB(d_ad[9:1]), .DIB(do[7:0]),
.DOB(di[7:0]));

// load data outputs
wire w_oe = ~io & lw;
wire l_oe = ~io & (lb&d_ad[0] | lw);
wire h_oe = ~io & (lb&~d_ad[0]);
assign data[15:8] = w_oe ? di[15:8] : 8'bz;
assign data[7:0] = l_oe ? di[7:0] : 8'bz;
assign data[7:0] = h_oe ? di[15:8] : 8'bz;
assign data[15:8] = lb ? 8'b0 : 8'bz;

A unique feature of FPGA block RAM (as compared to 
traditional embedded MCU RAM) is that it is initialized at 
configuration time – and thus can act as a “boot RAM”. 
Implementation-wise, it is most convenient to specify initial 
program code and data separately in a separate constraint file. 

This embedded block RAM is just the thing to use when your 
embedded application is modest. By keeping the program on-
chip, you save dozens of I/O pads and the CV2F power they 
dissipate. 

If the embedded system requires more storage for code or 
data, it is straightforward to use further block RAMs. If the 
program is larger than available block RAM, it is still 
possible to use the block RAM as an instruction cache. The 
instruction tags can themselves be stored in the same block 
RAM (using the other port), or in a separate block RAM, or 
even in separate distributed (LUT) RAM. 

Similarly, it is possible to use the embedded RAM as a data 
cache. Here design issues include the write policy (write-back 
or write-through) and the allocate policy (allocate on write-
miss or not). In current devices it is a challenge to implement 
single-cycle stores with a write-back d-cache because a write 
to a line may overwrite dirty data from another address that is 
occupying that line. It may be necessary to first read out the 
dirty data before overwriting the line or a part of it. 

5.5 On-chip peripheral bus architecture 

The title of this paper is “Designing a Simple FPGA-
Optimized RISC CPU and System-on-a-Chip”. While there 
are many strengths to the two emerging industry-standard on-

chip buses, AMBA and CoreConnect, they are neither simple 
nor FPGA-optimized, and you’ll probably never live to see 
their annotated Verilog source code in a paper such as this. 

Instead we’re going to use a bus that is simple, extensible, 
and very efficient in its use of programmable logic. 

The goals of the on-chip peripheral bus are to enable robust 
and easy reuse of peripheral cores, and to help prepare for an 
ecology of interoperable cores to come. 

An on-chip bus designer must consider two design 
communities: core users and core designers. The former will 
be more numerous, the latter more experienced. If there are to 
be ease-of-use tradeoffs, they should be made in favor of the 
core users. 

Since FPGAs are so malleable, and since FPGA SoC design 
is so new, we need an interface that can evolve to address 
new requirements, without invalidating existing designs. 

With these considerations in mind, I borrowed some ideas 
from the software engineering world, and defined an abstract 
control signal bus: all of the common control signals are 
collected into an opaque bus named ctrl. In addition, I/O 
addresses are decoded into the peripheral select vector sel, 
and the ready signals from each peripheral are in per_rdy. 
For simplicity, the processor’s result bus data is shared as 
the on-chip peripheral data bus. Now let’s see how this on-
chip bus architecture is applied. 

5.6 Using a peripheral core 

The top-level soc module establishes ctrl, sel, per_rdy, 
and data. 

To add a peripheral core to a design, a designer need only 
instantiate the core, connect ctrl, data, some sel[i], 
some per_rdy[i], perhaps an int_req, plus any core-
specific inputs and outputs, of course.  Address assignment 
and decoding is implicit with the choice of sel[i]. 

(A software tool to configure peripherals, addresses, 
interrupts, and so forth, driven from a system configuration 
specification file, would be another reasonable approach. 
However the present design is simpler and adequate for our 
purposes here.) 

Let’s contrast this ease-of-use with that of interfacing to a 
traditional peripheral IC. Each IC has its own idiosyncratic 
set of control signals, I/O register addresses, chip selects, byte 
read and write strobes, ready, interrupt request, etc. They 
don’t call it “glue logic” for nothing. 

5.7 Implementing a peripheral core 

Of course, we can’t just sweep all the complexity under the 
rug. Each peripheral core must decode ctrl and recover the 
specific control signals it needs – clock, reset, byte write 
enables and output enables and so forth. This is done with the 
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ctrl_dec module. Each instance of ctrl_dec combines the 
ctrl bus and a particular sel signal to derive peripheral-
specific control signals. 

Using ctrl_dec and our on-chip tri-state data bus, the 
typical bus interface overhead per peripheral is just one or 
two CLBs and perhaps a column of TBUFs. 

Earlier I promised easy extensibility. How does control signal 
abstraction help? So long as we ‘version’ soc’s ctrl_enc 
and ctrl_dec together, and retain the same ctrl_dec 
inputs and outputs, we can make arbitrary changes to the 
ctrl-encoded bus protocols without invalidating any 
existing design source code. Neither core uses nor core 
designs are affected. Just resynthesize and go. 

And to add new bus features, with new bus control outputs, 
we need only provide a new ctrl_dec2 for use by new 
peripheral core designs. 

5.8 Peripheral bus implementation 

Returning to the soc module, let’s see how all this is done. 

`ifdef IO
//
// on-chip peripheral bus
//

First, for stores to peripherals on the data bus, soc must 
drive the store data outputs do onto the bus. Just as with the 
embedded RAM above, byte addressing throws us a curve. 

Sw to I/O drives data[15:0] with do[15:0]. However, sb 
drives both data[15:8] and data[7:0] with the same byte 
value do[7:0]. 

// peripheral data bus store data outputs
wire swsb = sw | sb;
assign data[7:0] = swsb ? do[7:0] : 8'bz;
assign data[15:8] = sb ? do[7:0] : 8'bz;
assign data[15:8] = sw ? do[15:8] : 8'bz;

Next soc must encode the ctrl and sel buses. 

At the start of the second cycle of the access, just as io 
becomes valid, we capture d_ad in io_ad, the I/O access 
address. Io_ad is used throughout the peripheral I/O 
subsystem. Why? After all, io_ad will never differ from 
d_ad when io is valid. The answer is this is the most 
straightforward way to keep the I/O subsystem, including 
peripherals, off the clk-to-clk critical path. This simplifies 
the lot of the static timing analyzer, which is used heavily 
during the timing-driven place-and-route phase of the FPGA 
design implementation. Remember that d_ad is only valid 
late in the first cycle of a load or store, so adding further 
decoding and use of d_ad downstream in the I/O subsystem 
could hurt the minimum cycle time. This way, only the 

io_ad register setup time could contribute to the critical 
path. 

// control, sel bus encoding
reg [`AN:0] io_ad;
always @(posedge clk) io_ad <= d_ad;

We’ll study the ctrl_enc module next. 

wire [`CN:0] ctrl;
wire [`SELN:0] sel;
ctrl_enc enc(

.clk(clk), .rst(rst), .io(io),

.io_ad(io_ad), .lw(lw), .lb(lb), .sw(sw),

.sb(sb), .ctrl(ctrl), .sel(sel));

Io_rdy is simply the or-reduction of each sel line element-
wise-gating each per_rdy line. Unassigned per_rdy lines 
are treated as 0 by my synthesis tool, so valid accesses to 
selected peripherals should be OK. An invalid access to an 
unassigned peripheral address might hang, though – a 
weakness of the current implementation. 

wire [`SELN:0] per_rdy;
assign io_rdy = | (sel & per_rdy);

5.9 Instantiating on-chip peripherals 

Now for the two peripherals. The counter/timer is assigned 
sel[0], e.g. addresses 0x8000-0x80FF and other aliases. 
Here we elide an explicit interrupt controller, and instead 
assign the processor’s sole int_req input to the timer. 

By default, the counter/timer operates in timer mode. It 
counts every clock cycle that its i input port is set, so here it 
counts each cycle. Each time it counts up from the initial 
count 0xFFC0 to overflow at 0x0000, it asserts int_req, 
and resets the count to 0xFFC0. This has the effect of 
interrupting the processor every 64 cycles. 

//
// peripherals
//

timer timer(
.ctrl(ctrl), .data(data),
.sel(sel[0]), .rdy(per_rdy[0]),
.int_req(int_req), .i(1'b1),
.cnt_init(16'hFFC0));

The 8-bit parallel input/output port is assigned sel[1], 
addresses 0x8100-0x81FF. 

Both peripherals assert their rdy signal on the appropriate 
element of the per_rdy vector. 

pario par(
.ctrl(ctrl), .data(data),
.sel(sel[1]), .rdy(per_rdy[1]),
.i(par_i), .o(par_o));
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Of course, if the no-IO configuration applies, no peripheral 
can raise int_req. 
`else

assign int_req = 0;
`endif

This concludes the soc module. 

endmodule

5.10 Control bus encoder 

The control bus encoder ctrl_enc establishes the abstract 
ctrl bus and the sel bus. Ctrl and sel each partially 
decode the I/O access. The two parts ctrl and sel[i] are 
subsequently brought together in each peripherali’s instance 
of ctrl_dec. 

Ctrl_enc decodes io_addr and establishes I/O bus byte-
enables for both output enables oe[] and write enables we[] 
for up to four byte lanes, anticipating a 32-bit peripheral bus. 

`ifdef IO

module ctrl_enc(
clk, rst, io, io_ad, lw, lb, sw, sb,
ctrl, sel);

input clk;
input rst;
input io;
input [`AN:0] io_ad;
input lw, lb, sw, sb;
output [`CN:0] ctrl;
output [`SELN:0] sel;

Since the on-chip bus can be up to 32-bits wide – four byte 
“lanes” – a byte- or 16-bit-wide peripheral will reside on a 
subset of lanes (data[7:0] or data[15:0]). 

// on-chip bus abstract control bus
wire [3:0] oe, we;
assign oe[0] = io & (lw | lb);
assign oe[1] = io & lw;
assign oe[2] = 0;
assign oe[3] = 0;
assign we[0] = io & (sw | sb);
assign we[1] = io & sw;
assign we[2] = 0;
assign we[3] = 0;
assign ctrl={oe,we,io_ad[`CRAN:0],rst,clk };

assign sel[0] = io & (io_ad[11:8] == 0);
assign sel[1] = io & (io_ad[11:8] == 1);
assign sel[2] = io & (io_ad[11:8] == 2);
assign sel[3] = io & (io_ad[11:8] == 3);
assign sel[4] = io & (io_ad[11:8] == 4);
assign sel[5] = io & (io_ad[11:8] == 5);

assign sel[6] = io & (io_ad[11:8] == 6);
assign sel[7] = io & (io_ad[11:8] == 7);

endmodule

All very straightforward; note that some signals are validated 
by io. 

5.11 Control bus decoder 

Both core users and core designers must treat the specific 
contents of ctrl as subject to change without notice – 
because it is. Instead, core users are oblivious to ctrl 
specifics, and core designers embed an instance of the 
ctrl_dec control bus decoder into their cores, to obtain the 
specific control signals they need. 

Recall that ctrl and sel each partially decode the I/O 
access. The two parts ctrl and sel[i] are subsequently 
brought together in each peripherali’s instance of ctrl_dec 
to derive its fully decoded I/O byte enables. 

module ctrl_dec(
ctrl, sel, clk, rst, oe, we, ad);

input [`CN:0] ctrl;// abstract control bus
input sel; // peripheral select
output clk; // clock
output rst; // reset
output [3:0] oe; // byte output enables
output [3:0] we; // byte wire enables
output [`CRAN:0] ad;// ctrl reg addr

wire [3:0] oe_, we_;
assign { oe_, we_, ad, rst, clk } = ctrl;
assign oe[0] = sel & oe_[0];
assign oe[1] = sel & oe_[1];
assign oe[2] = sel & oe_[2];
assign oe[3] = sel & oe_[3];
assign we[0] = sel & we_[0];
assign we[1] = sel & we_[1];
assign we[2] = sel & we_[2];
assign we[3] = sel & we_[3];

endmodule

For maximum flexibility, even the bus clock and reset regime 
is abstracted into the ctrl bus. 

6 Peripherals 
This section briefly describes the two peripheral cores used in 
our example system-on-a-chip. 

6.1 8-bit parallel I/O port 

This core is trivial. Given ctrl and sel, ctrl_dec provides 
clock and byte write and output enables.  This core uses only 
we[0] and oe[0], the enables for data[7:0]. Unused 
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enables are optimized away by the synthesis and/or place-
and-route software. 

Pario never needs to insert wait states. It drives rdy with its 
sel input – if it is selected, it is ready (done this cycle). 

On a byte write, pario latches data[7:0] to o[7:0]. On a 
read, it drives i[7:0] onto data[7:0]. 

// 8-bit parallel I/O peripheral
module pario(ctrl, data, sel, rdy, i, o);
input [`CN:0] ctrl;
inout [`DN:0] data;
input sel;
output rdy;
input [7:0] i;
output [7:0] o;
reg [7:0] o;

wire clk;
wire [3:0] oe, we;
ctrl_dec d(.ctrl(ctrl), .sel(sel),

.clk(clk), .oe(oe), .we(we));
assign rdy = sel;

always @(posedge clk)
if (we[0])

o <= data[7:0];
assign data[7:0] = oe[0] ? i[7:0] : 8'bz;

endmodule

6.2 16-bit counter/timer 

Besides the on-chip bus interface signals, timer has two 
additional inputs, i and cnt_init. 

In timer mode, i is a counter clock enable – the counter is 
incremented as clock rises when i is true. In counter mode, 
timer counts clk synchronized rising-edge transitions on i. 
Cnt_init defines the initial count value, loaded on reset and 
reloaded on count overflow. 

If enabled, timer can signal an interrupt request int_req 
when the count overflows. This request remains asserted until 
the processor writes to the interrupt reset control register. 

The two control registers are read-write. Register 0 is the 
configuration register. Bit 0 enables interrupts on overflow. 
Bit 1 determines whether timer operates as a counter (0) or 
timer (1). 

Register 1 is the interrupt request register. It is set to 1 on 
counter overflow, and is reset on write. 

// 16-bit timer/counter peripheral
module timer(
ctrl, data, sel, rdy, int_req, i, cnt_init);

input [`CN:0] ctrl;

inout [`DN:0] data;
input sel;
output rdy, int_req;
input i;
input [15:0] cnt_init;

wire clk, rst;
wire [3:0] oe, we;
wire [`CRAN:0] ad;
ctrl_dec d(.ctrl(ctrl), .sel(sel),

.clk(clk), .rst(rst), .oe(oe),

.we(we), .ad(ad));
assign rdy = sel;

// CR#0: counter control register
// * resets to non-interrupting timer
// * readable
// * bit 0: int_en: interrupt enable
// * bit 1: timer: 1 if timer, 0 if counter
reg timer, int_en;
always @(posedge clk)

if (rst)
{timer,int_en} <= {2'b11};

else if (we[0] & ~ad[1])
{timer,int_en} <= data[1:0];

// tick counter when:
// * timer mode: i (enabled) on clk
// * counter mode: i rising edge on clk
reg i_last;
always @(posedge clk) i_last <= i;
wire tick = (timer&i | ~timer&i&~i_last);

// counter/timer
reg [15:0] cnt;
wire [15:0] cnt_nxt;
wire v; // overflow (wrap-around to 0)
assign {v,cnt_nxt} = cnt + 1;
always @(posedge clk) begin

if (rst)
cnt <= cnt_init;

else if (tick) begin
if (v)

cnt <= cnt_init;
else

cnt <= cnt_nxt;
end

end

// CR#1: interrupt request register
// * resets to no-request
// * readable
// * bit 0: interrupt request
// * cleared on writes to CR#1
// * set on counter overflow with int_en
reg int_req;
always @(posedge clk)

if (rst)
int_req <= 0;

else if (we[0] && ad[1])
int_req <= 0;

else if (tick && v && int_en)
int_req <= 1;



Copyright   2000, Gray Research LLC. 15 

// read CR#0 or CR#1
assign data[1:0]

= oe[0] ? (ad[1]==0 ? {timer,int_en}
: int_req)

: 2'bz;

endmodule

`endif

And that’s all there is to our whole system-on-a-chip. 

7 Results 
Using Synplicity Synplify, this design synthesizes in a few 
seconds, and using Xilinx Alliance 3.1i, it is mapped, placed, 
and routed in less than a minute. 

The complete system occupies 2 block RAMs, 257 4-LUTs, 
71 flip-flops, and 130 TBUFs.  The design consumes just 
16% of the logic resources of a Spartan-II-50, one of the 
smallest devices in that product family.  It has a minimum 
cycle time under 27 ns, disappointingly shy of 40 MHz in a 
Spartan-II-5 speed grade. Of that 27 ns, 14 ns are spent in 
logic and 13 ns in routing signals between logic outputs and 
inputs. That’s push-button synthesis for you – quick and easy, 
but you can often lose some quality of results. 

In comparison, the author has also placed-and-routed a highly 
optimized version of this design sans IO.  Certain optimizable 
structures, cited earlier, are hand-technology-mapped. The 
datapath is floorplanned using RLOCs to build RPMs 
(relationally-placed macros), to reduce routing delays. This 
design yields 50 MHz in the same part and speed grade. It is 
floorplanned as 8 rows by 6 columns of CLBs, and fits in less 
than 200 logic cells (less than 50 CLBs). 

This figure depicts eight gr0040 cores implemented in a 
single 16x24 CLB XCV50E, the smallest member of the 
Xilinx Virtex-E family.  (Virtex-E is a Virtex derivative with 
additional columns of block RAM).  Just as with our soc 
above, each of the eight processors in this design has a 
private 1 KB embedded program/data RAM. 

 
Figure 1: 8 gr0040's in an XCV50E 

8 Comparisons 
Let’s compare the gr0040 core with published data for other 
FPGA processor cores: the Xilinx KCPSM 8-bit MCU [7], 
gr0050 (a hypothetical 32-bit stretch of gr0000), the pipelined 
xr16 RISC [6], the 16- and 32-bit Altera Nios RISC cores [8-
9], and the ARC configurable RISC core in its “basecase” 
configuration (in a 2S150-6) [10]. 

This is certainly an apples-to-oranges comparison, since these 
cores each support a vastly different set of features, and the 
instruction sets differ. The only thing they may have in 
common is they are all (perhaps excepting KCPSM) designed 
to host integer C code. 

For area units, we use logic cells, which correspond to one 4-
LUT and one FF. (Xilinx “logic cells” are comparable to 
Altera “logic elements”.)  For frequency, where possible, we 
use the published frequency in the slowest (cheapest) speed 
grade of the device. 

Core Data 
width 

Logic cells Freq 
(MHz) 

KCPSM 8 35 CLBs 
= 140 LCs? 

35 

gr0040 16 200 50 
xr16 16 300 65 
Nios 16 1100 LEs 50 

gr0050 hyp 32 330 est ? 
Nios 32 1700 LEs 50 
ARC 

basecase 
32 1538 slices 

= 3000+ LCs? 
37 

Table 1: Approximate core sizes and speeds 

Since this is such an apples-to-oranges comparison, there is 
little one should conclude from this data, except perhaps that 
there does not appear to be a correlation between core size 
and clock speed. 

9 Software development tools 
One of the barriers to entry for would-be custom processor 
designers is software tools support. Even if it is no longer 
“rocket science” to design a new processor, maybe it is rocket 
science to obtain even a minimal C compiler tools chain that 
targets the new instruction set. 

Fortunately there are two excellent retargetable free C 
compilers, GCC [11] and lcc [12]. 

GCC is the gold standard for embedded system compilers.  It 
is used to build several free OSs and RTOSs. It is 
accompanied by various C runtime libraries, assemblers, 
linkers, librarians, and debuggers.  Unfortunately it is huge 
and  sprawling and complex. 

Lcc on the other hand, is small and simple. It is accompanied 
by an excellent textbook that describes its inner workings. 
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The author (formerly a compiler developer) implemented his 
first lcc custom target in a single day.  The big drawback of 
lcc is it is not GCC – it is incapable of compiling most of the 
interesting open source software, including GCC’s C runtime 
libraries, because this code tends to make use of either C++ 
and/or GCC extensions. 

For many purposes, lcc is more than adequate. 

For this project, the author ported lcc to gr0040. This 
involved creating a new machine description, derived from 
the pre-existing xr16 machine description, by changing only 
40 lines of code. Here’s a typical change: 
< reg: ADDI2(reg,reg) "add r%c,r%0,r%1\n" 1
---
> reg: ADDI2(reg,reg) \

"?mov r%c,r%0\nadd r%c,r%1\n" 1 

This is an instruction template that describes how to add two 
arbitrary general purpose registers r%0 and r%1 and store the 
sum in register r%c. On xr16, there is a three-operand add. 
On gr0000, there is not. Instead, this gr0000 template says to 
(optionally) move r%0 to r%c (if r%c is not r%0) and then 
add r%1 to r%c. 

Similarly, the gr0040 assembler and instruction set simulator 
were derived from the xr assembler/simulator. Here the 
changes were more extensive, totaling approximately 400 
new lines of code. 

10 Conclusion 
It is possible for mere mortals to build a compact, reasonably 
fast embedded processor, and even a complete system-on-a-
chip, in a small fraction of a small FPGA, if the processor and 
system are designed to make the best use of the FPGA. 

11 Appendix A: ram16x16d module 
Here’s the 16x16-bit dual-port RAM implementation. It 
overrides Synplify synthesis, directly instantiating sixteen 
RAM16X1D primitives in an 8 row by 1 column RPM 
(relationally placed macro). For simulation, it uses a simpler 
behavioral model. 

module ram16x16d(clk, we, wr_ad, ad,d,wr_o,o)
/* synthesis syn_hier="hard"*/;

input clk; // write clock
input we; // write enable
input [3:0] wr_ad; // write port addr
input [3:0] ad; // read port addr
input [15:0] d; // write data in
output [15:0] wr_o; // write port data out
output [15:0] o; // read port data out

`ifdef synthesis
RAM16X1D r0(
.A0(wr_ad[0]), .A1(wr_ad[1]),
.A2(wr_ad[2]), .A3(wr_ad[3]),
.DPRA0(ad[0]), .DPRA1(ad[1]),

.DPRA2(ad[2]), .DPRA3(ad[3]),

.D(d[0]), .SPO(wr_o[0]), .DPO(o[0]),

.WCLK(clk), .WE(we))
/* synthesis xc_props="RLOC=R7C0.S0" */;

…
RAM16X1D r15(

.A0(wr_ad[0]), .A1(wr_ad[1]),

.A2(wr_ad[2]), .A3(wr_ad[3]),

.DPRA0(ad[0]), .DPRA1(ad[1]),

.DPRA2(ad[2]), .DPRA3(ad[3]),

.D(d[15]), .SPO(wr_o[15]), .DPO(o[15]),

.WCLK(clk), .WE(we))
/* synthesis xc_props="RLOC=R0C0.S1" */;

`else /* !synthesis */
reg [15:0] mem [15:0];

reg [4:0] i;
initial begin

for (i = 0; i < 16; i = i + 1)
mem[i] = 0;

end

always @(posedge clk) begin
if (we)

mem[wr_ad] = d;
end
assign o = mem[ad];
assign wr_o = mem[wr_ad];

`endif
endmodule
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13 Legalese 
Copyright   2000, Gray Research LLC. All rights reserved. 

Any use of design(s) expressed in this paper is subject to the 
XSOC License Agreement at 
 http://www.fpgacpu.org/xsoc/LICENSE.html 
Be sure to read the license terms of grant, disclaimers, etc. 
You must agree to the license to use the design(s). 

14 Revision history 
3/08/01: Added Appendix A detailing the implementation 

of the 16x16 dual-port RAM register file. 

12/07/00: Removed or and andn from architecture; new 
technology mapping optimization does 
adder/subtractor/logic in one column of LUTs. 

11/27/00: DesignCon2001 final draft. 

10/21/00: Incomplete draft #2. 
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