
April 26, 1999 11:53 g02-appa Sheet number 1 Page number 685 black

685

a p p e n d i x

A
VHDL Reference

a b c d e f g h

1

2

3

4

5

6

7

8

12. a2–a4, Bc8–b7



April 26, 1999 11:53 g02-appa Sheet number 2 Page number 686 black

686 A P P E N D I X A • VHDL Reference

This appendix describes the features of VHDL that are used in this book. It is meant to
serve as a convenient reference for the reader. Hence only brief descriptions are provided,
along with examples. The reader is encouraged to first study the introduction to VHDL in
sections 2.9 and 4.12.5.

Another useful source of information on VHDL is the MAX+plusII CAD system that
accompanies the book. The on-line help included with the software describes how to use
VHDL with MAX+plusII, and the “templates” provided with the Text Editor tool are a
convenient guide to VHDL syntax. We describe how to access these features of the CAD
tools in Appendix B.

In some ways VHDL uses an unusual syntax for describing logic circuits. The prime
reason is that VHDL was originally intended to be a language for documenting and simu-
lating circuits, rather than for describing circuits for synthesis. This appendix is not meant
to be a comprehensive VHDL manual. While we discuss almost all the features of VHDL
that are useful in the synthesis of logic circuits, we do not discuss any of the features that are
useful only for simulation of circuits or for other purposes. Although the omitted features
are not needed for any of the examples used in this book, a reader who wishes to learn more
about using VHDL can refer to specialized books [1–7].

How Not to Write VHDL Code
In section 2.9 we mentioned the most common problem encountered by designers who

are just beginning to write VHDL code. The tendency for the novice is to write code
that resembles a computer program, containing many variables and loops. It is difficult
to determine what logic circuit the CAD tools will produce when synthesizing such code.
This book contains more than 100 examples of complete VHDL code that represents a wide
range of logic circuits. In all of these examples, the code is easily related to the described
logic circuit. The reader is encouraged to adopt the same style of code. A good general
guideline is to assume that if the designer cannot readily determine what logic circuit is
described by the VHDL code, then the CAD tools are not likely to synthesize the circuit
that the designer is trying to describe.

Since VHDL is a complex language, errors in syntax and usage are quite common.
Some problems encountered by our students, as novice designers, are listed at the end of
this appendix in section A.11. The reader may find it useful to examine these errors in an
effort to avoid them when writing code.

Once complete VHDL code is written for a particular design, it is useful to analyze the
resulting circuit synthesized by the CAD tools. Much can be learned about VHDL, logic
circuits, and logic synthesis by studying the circuits that are produced automatically by the
CAD tools.

A.1 Documentation in VHDL Code

Documentation can be included in VHDL code by writing a comment. The two characters
‘-’, ‘-’ denote the beginning of the comment. The VHDL compiler ignores any text on a
line after the ‘- -’.



April 26, 1999 11:53 g02-appa Sheet number 3 Page number 687 black

A.2 Data Objects 687

Example A.1

- - this is a VHDL comment

A.2 Data Objects

Information is represented in VHDL code as data objects. Three kinds of data objects
are provided: signals, constants, and variables. For describing logic circuits, the most
important data objects are signals. They represent the logic signals (wires) in the circuit.
The constants and variables are also sometimes useful for describing logic circuits, but they
are used infrequently.

A.2.1 Data Object Names

The rules for specifying data object names are simple: any alphanumeric character may
be used in the name, as well as the ‘_’ underscore character. There are four caveats. A
name cannot be a VHDL keyword, it must begin with a letter, it cannot end with an ‘_’
underscore, and it cannot have two successive ‘_’ underscores. Thus examples of legal
names arex, x1, x_y, andByte. Some examples of illegal names are 1x, _y, x_ _y, and
entity. The latter name is not allowed because it is a VHDL keyword. We should note that
VHDL is not case sensitive. Hence x is the same as X, and ENTITY is the same as entity.
To make the examples of VHDL code in this book more readable, we use uppercase letters
in all keywords.

To avoid confusion when using the word signal, which can mean either a VHDL data
object or a logic signal in a circuit, we sometimes write the VHDL data object as SIGNAL.

A.2.2 Data Object Values and Numbers

We use SIGNAL data objects to represent individual logic signals in a circuit, multiple logic
signals, and binary numbers (integers). The value of an individual SIGNAL is specified
using apostrophes, as in ’0’ or ’1’. The value of a multibit SIGNAL is given with double
quotes. An example of a four-bit SIGNAL value is "1001", and an eight-bit value is
"10011000". Double quotes can also be used to denote a binary number. Hence while
"1001" can represent the four SIGNAL values ’1’, ’0’, ’0’, ’1’, it can also mean the integer
(1001)2 = (9)10. Integers can alternatively be specified in decimal by not using quotes, as
in 9 or 152. The values of CONSTANT or VARIABLE data objects are specified in the
same way as for SIGNAL data objects.

A.2.3 SIGNAL Data Objects

SIGNAL data objects represent the logic signals, or wires, in a circuit. There are three
places in which signals can be declared in VHDL code: in an entity declaration (see section



April 26, 1999 11:53 g02-appa Sheet number 4 Page number 688 black

688 A P P E N D I X A • VHDL Reference

A.4.1), in the declarative section of an architecture (see section A.4.2), and in the declarative
section of a package (see section A.5). A signal has to be declared with an associatedtype,
as follows:

SIGNAL signal_name : type_name ;

The signal’stype_namedetermines the legal values that the signal can have and its legal
uses in VHDL code. In this section we describe 10 signal types: BIT, BIT_VECTOR,
STD_LOGIC, STD_LOGIC_VECTOR, STD_ULOGIC, SIGNED, UNSIGNED, INTE-
GER, ENUMERATION, and BOOLEAN.

A.2.4 BIT and BIT_VECTOR Types

These types are predefined in the VHDL Standards IEEE 1076 and IEEE 1164. Hence no
library is needed to use these types in the code. Objects of BIT type can have the values
’0’ or ’1’. An object of BIT_VECTOR type is a linear array of BIT objects.

Example A.2
SIGNAL x1 : BIT ;
SIGNAL C : BIT_VECTOR (1 TO 4) ;
SIGNAL Byte : BIT_VECTOR (7 DOWNTO 0) ;

The signalsC andByteillustrate the two possible ways of defining a multibit data object.
The syntax “lowest_index TO highest_index” is useful for a multibit signal that is simply
an array of bits. In the signalC the most-significant (left-most) bit is referenced using
lowest_index, and the least-significant (right-most) bit is referenced using highest_index.
The syntax “highest_index DOWNTO lowest_index” is useful if the signal represents a
binary number. In this case the most-significant (left-most) bit has the index highest_index,
and the least-significant (right-most) bit has the index lowest_index.

The multibit signalC represents four BIT objects. It can be used as a single four-bit
quantity, or each bit can be referred to individually. The syntax for referring to the signals
individually isC (1), C (2), C (3), orC (4). An assignment statement such as

C <= "1010" ;

results inC (1)= 1, C (2)= 0, C (3)= 1, andC (4)= 0.
The signalBytecomprises eight BIT objects. The assignment statement

Byte<= "10011000" ;

results inByte(7) = 1, Byte(6) = 0, and so on toByte(0) = 0.

A.2.5 STD_LOGIC and STD_LOGIC_VECTOR Types

The STD_LOGIC type was added to the VHDL Standard in IEEE 1164. It provides more
flexibility than the BIT type. To use this type, we must include the two statements



April 26, 1999 11:53 g02-appa Sheet number 5 Page number 689 black

A.2 Data Objects 689

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

These statements provide access to thestd_logic_1164package, which defines the
STD_LOGIC type. We describe VHDL packages in section A.5. In general, they are
used as a place to store VHDL code, such as the code that defines a type, which can then
be used in other source code files. The following values are legal for a STD_LOGIC data
object: 0, 1, Z,−, L, H, U, X, and W. Only the first four are useful for synthesis of logic
circuits. The value Z represents high impedance, and− stands for “don’t care.” The value
L stands for “weak 0,” H means “weak 1,” U means “uninitialized,” X means “unknown,”
and W means “weak unknown.” The STD_LOGIC_VECTOR type represents an array of
STD_LOGIC objects.

Example A.3

SIGNAL x1, x2, Cin, Cout, Sel : STD_LOGIC ;
SIGNAL C : STD_LOGIC_VECTOR (1 TO 4) ;
SIGNAL X, Y, S : STD_LOGIC_VECTOR (3 DOWNTO 0) ;

STD_LOGIC objects are often used in logic expressions in VHDL code.
STD_LOGIC_VECTOR signals can be used as binary numbers in arithmetic circuits by
including in the code the statement

USE ieee.std_logic_signed.all ;

Thestd_logic_signedpackage specifies that it is legal to use the STD_LOGIC_VECTOR
signals with arithmetic operators, like + (see section A.7.1). The VHDL compiler should
generate a circuit that works for signed numbers. An alternative is to use the package
std_logic_unsigned. In this case the compiler should generate a circuit that works for
unsigned numbers.

A.2.6 STD_ULOGIC Type

In this book we use the STD_LOGIC type in most examples of VHDL code. This type
is actually asubtypeof the STD_ULOGIC type. Signals that have the STD_ULOGIC
type can take the same values as the STD_LOGIC signals that we have been using. The
only difference between STD_ULOGIC and STD_LOGIC has to do with the concept of
a resolution function. In VHDL a resolution function is used to determine what value a
signal should take if there are two sources for that signal. For example, two tri-state buffers
could both have their outputs connected to a signal,x. At some given time one buffer might
produce the output value ’Z’ and the other buffer might produce the value 1. A resolution
function is used to determine that the value ofx should be 1 in this case. The STD_LOGIC
type allows multiple sources for a signal; it resolves the correct value using a resolution
function that is provided as part of thestd_logic_1164package. The STD_ULOGIC type



April 26, 1999 11:53 g02-appa Sheet number 6 Page number 690 black

690 A P P E N D I X A • VHDL Reference

does not permit signals to have multiple sources. We have introduced STD_ULOGIC for
completeness only; it is not used in this book.

A.2.7 SIGNED and UNSIGNED Types

Thestd_logic_signedandstd_logic_unsignedpackages mentioned in section A.2.5 make
use of another package, calledstd_logic_arith. This package defines the type of circuit
that should be used to implement the arithmetic operators, such as +. Thestd_logic_arith
package defines two signal types, SIGNED and UNSIGNED. These types are identical to
the STD_LOGIC_VECTOR type because they represent an array of STD_LOGIC signals.
The purpose of the SIGNED and UNSIGNED types is to allow the user to indicate in the
VHDL code what kind of number representation is being used. The SIGNED type is used
in code for circuits that deal with signed (2’s complement) numbers, and the UNSIGNED
type is used in code that deals with unsigned numbers.

Example A.4 Assume thatA andB are signals with the SIGNED type. Assume thatA is assigned the
value "1000", andB is assigned the value "0001". VHDL provides relational operators
(see Table A.1 in section A.3) that can be used to compare the values of two signals. The
comparisonA< B evaluates to true because the signed values areA= −8 andB= 1. On
the other hand, ifA andB are defined with the UNSIGNED type, thenA < B evaluates to
false because the unsigned values areA= 8 andB= 1.

Thestd_logic_signedpackage specifies that STD_LOGIC_VECTOR signals should be
treated like SIGNED signals. Similarly,std_logic_unsigned specifies that
STD_LOGIC_VECTOR signals should be treated like UNSIGNED signals. It is an arbi-
trary choice whether code is written using STD_LOGIC_VECTOR signals in conjunction
with the std_logic_signedor std_logic_unsignedpackages or using SIGNED and UN-
SIGNED signals with thestd_logic_arithpackage.

Thestd_logic_arithpackage, and hence thestd_logic_signedandstd_logic_unsigned
packages, are not actually a part of the VHDL standards. They are provided by Synopsys
Inc., which is a vendor of CAD software. However, these packages are included with most
CAD systems that support VHDL, and they are widely used in practice.

A.2.8 INTEGER Type

The VHDL standard defines the INTEGER type for use with arithmetic operators. In this
book the STD_LOGIC_VECTOR type is usually preferred in code for arithmetic circuits,
but the INTEGER type is used occasionally. An INTEGER signal represents a binary
number. The code does not specifically give the number of bits in the signal, as it does
for STD_LOGIC_VECTOR signals. By default, an INTEGER signal has 32 bits and can
represent numbers from−(231− 1) to 231− 1. This is one number less than the normal 2’s
complement range; the reason is simply that the VHDL standard specifies an equal number
of negative and positive numbers. Integers with fewer bits can also be declared, using the
RANGE keyword.



April 26, 1999 11:53 g02-appa Sheet number 7 Page number 691 black

A.2 Data Objects 691

Example A.5

SIGNAL X : INTEGER RANGE−127 TO 127 ;

This definesX as an eight-bit signed number.

A.2.9 BOOLEAN Type

An object of type BOOLEAN can have the values TRUE or FALSE, where TRUE is
equivalent to 1 and FALSE is 0.

Example A.6

SIGNAL Flag : Boolean ;

A.2.10 ENUMERATION Type

A SIGNAL of ENUMERATION type is one for which the possible values that the signal
can have are user specified. The general form of an ENUMERATION type is

TYPE enumerated_type_name IS (name {, name}) ;

The curly brackets indicate that one or more additional items can be included. We use these
brackets in this manner in several places in the appendix. The most common example of
using the ENUMERATION type is for specifying the states for a finite-state machine.

Example A.7

TYPE State_type IS (stateA, stateB, stateC) ;
SIGNAL y : State_type ;

This declares a signal namedy, for which the legal values arestateA, stateB, andstateC.
When the code is translated by the VHDL compiler, it automatically assigns bit patterns
(codes) to representstateA, stateB, andstateC.



April 26, 1999 11:53 g02-appa Sheet number 8 Page number 692 black

692 A P P E N D I X A • VHDL Reference

A.2.11 CONSTANT Data Objects

A CONSTANT is a data object whose value cannot be changed. Unlike a SIGNAL, a
CONSTANT does not represent a wire in a circuit. The general form of a CONSTANT
declaration is

CONSTANT constant_name : type_name := constant_value ;

The purpose of a constant is to improve the readability of code, by using the name of the
constant in place of a value or number.

Example A.8

CONSTANT Zero : STD_LOGIC_VECTOR (3 DOWNTO 0) := "0000" ;

Then the wordZerocan be used in the code to indicate the constant value "0000".

A.2.12 VARIABLE Data Objects

A VARIABLE, unlike a SIGNAL, does not necessarily represent a wire in a circuit. VARI-
ABLE data objects are sometimes used to hold the results of computations and for the index
variables in loops. We will give some examples in section A.9.7.

A.2.13 Type Conversion

VHDL is a strongly type-checked language, which means that it does not permit the value
of a signal of one type to be assigned to another signal that has a different type. Even for
signals that intuitively seem compatible, such as BIT and STD_LOGIC, using the two types
together is not permitted. To avoid this problem, we generally use only the STD_LOGIC
and STD_LOGIC_VECTOR types in this book. When it is necessary to use code that has a
mixture of types, type-conversion functions can be used to convert from one type to another.

Assume thatX is defined as an eight-bit STD_LOGIC_VECTOR signal andY is an
INTEGER signal defined with the range from 0 to 255. An example of a conversion function
that allows the value ofY to be assigned toX is

X <= CONV_STD_LOGIC_VECTOR(Y, 8) ;

This conversion function has two parameters: the name of the signal to be converted and
the number of bits inX. The function is provided as part of thestd_logic_arithpackage;
hence that package must be included in the code using the appropriate LIBRARY and USE
clauses. Other conversion functions are described in the MAX+plusII on-line help.



April 26, 1999 11:53 g02-appa Sheet number 9 Page number 693 black

A.3 Operators 693

A.2.14 Arrays

We said above that the BIT_VECTOR and STD_LOGIC_VECTOR types are arrays of BIT
and STD_LOGIC signals, respectively. The definitions of these arrays, which are provided
as part of the VHDL standards, are

TYPE BIT_VECTOR IS ARRAY (NATURAL RANGE<>) OF BIT ;
TYPE STD_LOGIC_VECTOR IS ARRAY (NATURAL RANGE<>) OF STD_LOGIC ;

The sizes of the arrays are not set in the definitions; the syntax (NATURAL RANGE<>)
has the effect of allowing the user to set the size of the array when a data object of either
type is declared. Arrays of any type can be defined by the user. For example

TYPE Byte IS ARRAY (7 DOWNTO 0) OF STD_LOGIC ;
SIGNAL X : Byte ;

declares the signalX with the typeByte, which is an eight-element array of STD_LOGIC
data objects.

An example that defines a two-dimensional array is

TYPE RegArray IS ARRAY(3 DOWNTO 0) OF STD_LOGIC_VECTOR(7 DOWNTO 0) ;
SIGNAL R : RegArray ;

This code definesR as an array with four elements. Each element is an eight-bit
STD_LOGIC_VECTOR signal. The syntaxR(i), where 3≥ i ≥ 0, is used to refer to
elementi of the array. The syntaxR(i)(j), where 7≥ j ≥ 0, is used to refer to one bit in
the arrayR(i). This bit has the type STD_LOGIC. An example using theRegArraytype is
given in section 10.2.6.

A.3 Operators

VHDL provides Boolean operators, arithmetic operators, and relational operators. They
are categorized in an unusual way, shown in Table A.1, according to the precedence of
the operators. Note that operators in the same category do not have precedence over one
another. There is no precedence among any Boolean operators. Thus a logic expression

x1 AND x2 AND x3 OR x4

does not have thex1x2x3+ x4 meaning that would be expected because AND does not have
precedence over OR. In fact, this expression is not even legal in VHDL as written above.
To be both legal and have the desired meaning, it must be written as

(x1 AND x2 AND x3) OR x4

For the relational operators, /= meansnot equal,<= meansless than or equal, and>=
meansgreater than or equal.



April 26, 1999 11:53 g02-appa Sheet number 10 Page number 694 black

694 A P P E N D I X A • VHDL Reference

Table A.1 The VHDL operators.

Operator Class Operator

Highest precedence Miscellaneous **, ABS, NOT

Multiplying *, /, MOD, REM

Sign +,−
Adding +,−, &

Relational =, /=,<,<=,>,>=

Lowest precedence Logical AND, OR, NAND, NOR, XOR, XNOR

A.4 VHDL Design Entity

A circuit or subcircuit described with VHDL code is called adesign entity, or justentity.
Figure A.1 shows the general structure of an entity. It has two main parts: theentity
declaration, which specifies the input and output signals for the entity, and thearchitecture,
which gives the circuit details.

Entity declaration

Architecture

Entity

Figure A.1 The general structure of a VHDL design entity.



April 26, 1999 11:53 g02-appa Sheet number 11 Page number 695 black

A.4 VHDL Design Entity 695

A.4.1 ENTITY Declaration

The input and output signals in an entity are specified using the ENTITY declaration, as
indicated in Figure A.2. The name of the entity can be any legal VHDL name. The square
brackets indicate an optional item. The input and output signals are specified using the
keyword PORT. Whether each port is an input, output, or bidirectional signal is specified
by themodeof the port. The available modes are summarized in Table A.2. If the mode of
a port is not specified, it is assumed to have the mode IN.

Table A.2 The possible modes for signals that are entity ports.

Mode Purpose

IN Used for a signal that is an input to an entity.

OUT Used for a signal that is an output from an entity. The value of the signal can not be used
inside the entity. This means that in an assignment statement, the signal can appear only
to the left of the<= operator.

INOUT Used for a signal that is both an input to an entity and an output from the entity.

BUFFER Used for a signal that is an output from an entity. The value of the signal can be used
inside the entity, which means that in an assignment statement, the signal can appear both
on the left and right sides of the<= operator.

A.4.2 Architecture

An ARCHITECTURE provides the circuit details for an entity. The general structure of an
architecture is shown in Figure A.3. It has two main parts: thedeclarative regionand the
architecture body. The declarative region appears preceding the BEGIN keyword. It can
be used to declare signals, user-defined types, and constants. It can also be used to declare
components and to specify attributes; we discuss the COMPONENT and ATTRIBUTE
keywords in sections A.6 and A.10.13, respectively.

The functionality of the entity is specified in the architecture body, which follows the
BEGIN keyword. This specification involves statements that define the logic functions in
the circuit, which can be given in a variety of ways. We will discuss a number of possibilities
in the sections that follow.

ENTITY entity_name IS
PORT ( [SIGNAL] signal_name {, signal_name} : [mode] type_name {;

SIGNAL] signal_name {, signal_name} : [mode] type_name } ) ;
END entity_name ;

Figure A.2 The general form of an entity declaration.



April 26, 1999 11:53 g02-appa Sheet number 12 Page number 696 black

696 A P P E N D I X A • VHDL Reference

ARCHITECTURE architecture_name OF entity_name IS
[SIGNAL declarations]
[CONSTANT declarations]
[TYPE declarations]
[COMPONENT declarations]
[ATTRIBUTE specifications]

BEGIN
{COMPONENT instantiation statement ;}
{CONCURRENT ASSIGNMENT statement ;}
{PROCESS statement ;}
{GENERATE statement ;}

END [architecture_name] ;

Figure A.3 The general form of an architecture.

Example A.9 Figure A.4 gives the VHDL code for an entity namedfulladd, which represents a full-adder
circuit. (The full-adder is discussed in section 5.2.) The entity declaration specifies the
input and output signals. The input portCin is the carry-in, and the bits to be added are the
input portsx andy. The output ports are the sum,s, and the carry-out,Cout. The input and
output signals are called theports of the entity. This term is adopted from the electrical
jargon in which it refers to an input or output connection in an electrical circuit.

The architecture defines the functionality of the full-adder using logic equations. The
name of the architecture can be any legal VHDL name. We chose the name LogicFunc for
this simple example. In terms of the general form of the architecture in Figure A.3, a logic
equation is a type of concurrent assignment statement. These statements are described in
section A.7.

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY fulladd IS
PORT ( Cin, x, y : IN STD_LOGIC ;

s, Cout : OUT STD_LOGIC ) ;
END fulladd ;

ARCHITECTURE LogicFunc OF fulladd IS
BEGIN

s<= x XOR y XOR Cin ;
Cout<= (x AND y) OR (x AND Cin) OR (y AND Cin) ;

END LogicFunc ;

Figure A.4 Code for a full-adder.



April 26, 1999 11:53 g02-appa Sheet number 13 Page number 697 black

A.5 Package 697

A.5 Package

A VHDL package serves as a repository. It is used to hold VHDL code that is of general
use, like the code that defines a type. The package can be included for use in any number of
other source code files, which can then use the definitions provided in the package. Like an
architecture, introduced in section A.4.2, a package can have two main parts: thepackage
declarationand thepackage body. The package_bodyis an optional part, which we do
not use in this book; one use of a package body is to define VHDL functions, such as the
conversion functions introduced in section A.2.13.

The general form of a package declaration is depicted in Figure A.5. Definitions
provided in the package, such as the definition of a type, can be used in any source code
file that includes the statements

LIBRARY library_name ;
USE library_name.package_name.all ;

The library_namerepresents the location in the computer file system where the package is
stored. A library can either be provided as part of a CAD system, in which case it is termed
a system library, or be created by the user, in which case it is called auser library. An
example of a system library is theieeelibrary. We discussed four packages in that library in
section A.2:std_logic_1164, std_logic_signed, std_logic_unsigned, andstd_logic_arith.

A special case of a user library is represented by the file-system directory where the
VHDL source code file that declares a package is stored. This directory can be referred
to by the library namework, which stands forworking directory. Hence, if a source code
file that contains a package declaration calleduser_ package_nameis compiled, then the
package can be used in another source code file (which is stored in the same file-system
directory) by including the statements

LIBRARY work ;
USE work.user_package_name.all ;

Actually, for the special case of thework library, the LIBRARY clause is not required,
because the work library is always accessible.

Figure A.5 shows that the package declaration can be used to declare signals and
components. Components are discussed in the next section. A signal declared in a package
can be used by any design entity that accesses the package. Such signals are similar in

PACKAGE package_name IS
[TYPE declarations]
[SIGNAL declarations]
[COMPONENT declarations]

END package_name ;

Figure A.5 The general form of a PACKAGE declaration.



April 26, 1999 11:53 g02-appa Sheet number 14 Page number 698 black

698 A P P E N D I X A • VHDL Reference

concept to global variables used in computer programming languages. In contrast, a signal
declared in an architecture can be used only inside that architecture. Such signals are
analogous to local variables in a programming language.

A.6 Using Subcircuits

A VHDL entity defined in one source code file can be used as a subcircuit in another
source code file. In VHDL jargon the subcircuit is called acomponent. A subcircuit
must be declared using acomponent declaration. This statement specifies the name of the
subcircuit and gives the names of its input and output ports. The component declaration
can appear either in the declaration region of an architecture or in a package declaration.
The general form of the statement is shown in Figure A.6. The syntax used is similar to the
syntax in an entity declaration.

Once a component declaration is given, the component can beinstantiatedas a subcir-
cuit. This is done using acomponent instantiationstatement. It has the general form

instance_name : component_name PORT MAP (
formal_name => actual_name {, formal_name => actual_name} ) ;

Eachformal_nameis the name of a port in the subcircuit. Eachactual_nameis the name
of a signal in the code that instantiates the subcircuit. The syntax “formal_name =>” is
provided so that the order of the signals listed after the PORT MAP keywords does not have
to be the same as the order of the ports in the corresponding COMPONENT declaration.
In VHDL jargon this is called thenamed association. If the signal names following the
PORT MAP keywords are given in the same order as in the COMPONENT declaration,
then “formal_name =>” is not needed. This is called thepositional association.

An example using a component (subcircuit) is shown in Figure A.7. It gives the code
for a four-bit ripple-carry adder built using four instances of thefulladd subcircuit. The
inputs to the adder are the carry-in,Cin, and the 2 four-bit numbersX andY. The output
is the four-bit sum,S, and the carry-out,Cout. We have chosen the name Structure in the
architecture because the hierarchical style of code that uses subcircuits is often called the
structuralstyle. Observe that a three-bit signal, C, is declared to represent the carry-outs
from stages 0, 1, and 2. This signal is declared in the architecture, rather than in the entity
declaration, because it is used internally in the circuit and is not an input or output port.

COMPONENT component_name
[GENERIC (parameter_name : integer := default_value {;

parameter_name : integer := default_value} ) ;]
PORT ( [SIGNAL] signal_name {, signal_name} : [mode] type_name {;

SIGNAL] signal_name {, signal_name} : [mode] type_name } ) ;
END COMPONENT ;

Figure A.6 The general form of a component declaration.



April 26, 1999 11:53 g02-appa Sheet number 15 Page number 699 black

A.6 Using Subcircuits 699

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY adder IS
PORT ( Cin : IN STD_LOGIC ;

X, Y : IN STD_LOGIC_VECTOR(3 DOWNTO 0) ;
S : OUT STD_LOGIC_VECTOR(3 DOWNTO 0) ;
Cout : OUT STD_LOGIC ) ;

END adder ;

ARCHITECTURE Structure OF adder IS
SIGNAL C : STD_LOGIC_VECTOR(1 TO 3) ;
COMPONENT fulladd

PORT ( Cin, x, y : IN STD_LOGIC ;
s, Cout : OUT STD_LOGIC) ;

END COMPONENT ;
BEGIN

stage0: fulladd PORT MAP ( Cin , X(0), Y(0), S(0), C(1) ) ;
stage1: fulladd PORT MAP ( C(1), X(1), Y(1), S(1), C(2) ) ;
stage2: fulladd PORT MAP ( C(2), X(2), Y(2), S(2), C(3) ) ;
stage3: fulladd PORT MAP (

x => X(3), y => Y(3), Cin => C(3), s => S(3), Cout => Cout ) ;
END Structure ;

Figure A.7 Code for a four-bit adder, using component instantiation.

The next statement in the architecture gives the component declaration for thefulladd
subcircuit. The architecture body instantiates four copies of the full-adder subcircuit. In the
first three instantiation statements, we have used positional association because the signals
are listed in the same order as given in the declaration for the fulladd component in Figure
A.4. The last instantiation statement gives an example of named association. Note that it
is legal to use the same name for a signal in the architecture that is used for a port name
in a component. An example of this is theCout signal. The signal names used in the
instantiation statements implicitly specify how the component instances are interconnected
to create the adder entity.

A second example of component instantiation is shown in Figure A.8. A package called
lpm_componentsin the library namedlpm is included in the code. This package represents
a collection of components called theLibrary of Parameterized Modules (LPM), which is
a standardized library of circuit building blocks that are generally useful for implementing
logic circuits. The MAX+plusII CAD system includes the LPM components as standard
building blocks for creating logic circuits. Information about the components in the library
can be found in the MAX+plusII on-line help. We describe how to access this information
in Tutorial 3.

The code in Figure A.8 instantiates the LPM component calledlpm_add_sub, which
is introduced in section 5.5.1. It represents an adder/subtractor circuit. The GENERIC



April 26, 1999 11:53 g02-appa Sheet number 16 Page number 700 black

700 A P P E N D I X A • VHDL Reference

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;
LIBRARY lpm ;
USE lpm.lpm_components.all ;

ENTITY adderLPM IS
PORT ( Cin : IN STD_LOGIC ;

X, Y : IN STD_LOGIC_VECTOR(3 DOWNTO 0) ;
S : OUT STD_LOGIC_VECTOR(3 DOWNTO 0) ;
Cout : OUT STD_LOGIC ) ;

END adderLPM ;

ARCHITECTURE Structure OF adderLPM IS
BEGIN

instance: lpm_add_sub
GENERIC MAP (LPM_WIDTH => 4)
PORT MAP (

dataa => X, datab => Y, Cin => Cin, result => S, Cout => Cout ) ;
END Structure ;

Figure A.8 Instantiating a four-bit adder from the LPM library.

keyword is used to set the number of bits in the adder/subtractor to 4. We discuss generics
in section A.8. The function of each PORT on thelpm_add_subcomponent is self-evident
from the port names used in the instantiation statement.

A.6.1 Declaring a COMPONENT in a Package

Figure A.5 shows that a component declaration can be given in a package. An example
is shown in Figure A.9. It defines the package namedfulladd_package, which provides
the component declaration for thefulladd entity. This package can be stored in a separate

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

PACKAGE fulladd_package IS
COMPONENT fulladd

PORT ( Cin, x, y : IN STD_LOGIC ;
s, Cout : OUT STD_LOGIC ) ;

END COMPONENT ;
END fulladd_package ;

Figure A.9 An example of a package declaration.



April 26, 1999 11:53 g02-appa Sheet number 17 Page number 701 black

A.7 Concurrent Assignment Statements 701

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;
USE work.fulladd_package.all ;

ENTITY adder IS
PORT ( Cin : IN STD_LOGIC ;

X, Y : IN STD_LOGIC_VECTOR(3 DOWNTO 0) ;
S : OUT STD_LOGIC_VECTOR(3 DOWNTO 0) ;
Cout : OUT STD_LOGIC ) ;

END adder ;

ARCHITECTURE Structure OF adder IS
SIGNAL C : STD_LOGIC_VECTOR(1 TO 3) ;

BEGIN
stage0: fulladd PORT MAP ( Cin, X(0), Y(0), S(0), C(1) ) ;
stage1: fulladd PORT MAP ( C(1), X(1), Y(1), S(1), C(2) ) ;
stage2: fulladd PORT MAP ( C(2), X(2), Y(2), S(2), C(3) ) ;
stage3: fulladd PORT MAP ( C(3), X(3), Y(3), S(3), Cout ) ;

END Structure ;

Figure A.10 Using a component defined in a package.

source code file or can be included at the end of the file that defines thefulladd entity (see
Figure A.4). Any source code that includes the statement “USE work.fulladd_package.all”
can use thefulladd component as a subcircuit. Figure A.10 shows how a four-bit ripple-
carry adder entity can be written to use the package. The code is the same as that in Figure
A.7 except that it includes the extra USE clause for the package and deletes the component
declaration statement from the architecture.

A.7 Concurrent Assignment Statements

A concurrent assignment statement is used to assign a value to a signal in an architecture
body. An example was given in Figure A.4, in which the logic equations illustrate one type
of concurrent assignment statement. VHDL provides four different types of concurrent
assignment statements: simple signal assignment, selected signal assignment, conditional
signal assignment, and generate statements.

A.7.1 Simple Signal Assignment

A simple signal assignment statement is used for a logic or an arithmetic expression. The
general form is



April 26, 1999 11:53 g02-appa Sheet number 18 Page number 702 black

702 A P P E N D I X A • VHDL Reference

signal_name<= expression ;

where<= is the VHDLassignment operator. The following examples illustrate its use.

SIGNAL x1, x2, x3, f : STD_LOGIC ;
·
·
·

f <= (x1 AND x2) OR x3 ;

This definesf in a logic expression, which involves single-bit quantities. VHDL also
supports multibit logic expressions, as in

SIGNAL A, B, C : STD_LOGIC_VECTOR (1 TO 3) ;
·
·
·

C <= A AND B ;

This results inC (1)=A(1)·B(1), C (2)=A(2)·B(2), andC (3)=A(3)·B(3).
An example of an arithmetic expression is

SIGNAL X, Y, S : STD_LOGIC_VECTOR (3 DOWNTO 0) ;
·
·
·

S <= X + Y ;

This represents a four-bit adder, without carry-in and carry-out. We can alternatively declare
a carry-in signal,Cin, and a five-bit signal,Sum, as follows

SIGNAL Cin : STD_LOGIC ;
SIGNAL Sum : STD_LOGIC_VECTOR (4 DOWNTO 0) ;

Then the statement

Sum <= (’0’ & X) + Y + Cin ;

represents the four-bit adder with carry-in and carry-out. The four sum bits areSum(3)
to Sum(0), while the carry-out is the bitSum(4). The syntax (’0’ & X) uses the VHDL
concatenate operator, &, to put a 0 on theleft end of the signalX. The reader should
not confuse this use of the & symbol with the logical AND operation, which is the usual
meaning of this symbol; in VHDL the logical AND is indicated by the word AND, and &
means concatenate. The concatenate operation prepends a 0 digit ontoX, creating a five-bit
number. VHDL requires at least one of the operands of an arithmetic expression to have the



April 26, 1999 11:53 g02-appa Sheet number 19 Page number 703 black

A.7 Concurrent Assignment Statements 703

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;
USE ieee.std_logic_signed.all ;

ENTITY adder IS
PORT ( Cin : IN STD_LOGIC ;

X, Y : IN STD_LOGIC_VECTOR(3 DOWNTO 0) ;
S : OUT STD_LOGIC_VECTOR(3 DOWNTO 0) ;
Cout : OUT STD_LOGIC ) ;

END adder ;

ARCHITECTURE Behavior OF adder IS
SIGNAL Sum : STD_LOGIC_VECTOR(4 DOWNTO 0) ;

BEGIN
Sum<= (’0’ & X) + Y + Cin ;
S<= Sum(3 DOWNTO 0) ;
Cout<= Sum(4) ;

END Behavior ;

Figure A.11 Code for a four-bit adder, using arithmetic expressions.

same number of bits as the signal used to hold the result. The complete code for the four-bit
adder with carry signals is given in Figure A.11. We should note that this is a different way
(it is actually a better way) to describe a four-bit adder, in comparison with the structural
code in Figure A.7. Observe that the statement “S<= Sum(3 DOWNTO 0)” assigns the
lower four bits of theSumsignal, which are the four sum bits, to the outputS.

A.7.2 Assigning Signal Values Using OTHERS

Assume that we wish to set all bits in the signalSto 0. As we already know, one way to do
so is to write “S<= "0000" ;”. If the number of bits inS is large, a more convenient way
of expressing the assignment statement is to use the OTHERS keyword, as in

S<= (OTHERS => ’0’) ;

This statement also sets all bits inS to 0. But it has the benefit of working for any number
of bits, not just four. In general, the meaning of (OTHERS => Value) is to set each bit of
the destination operand toValue. An example of code that uses this construct is shown in
Figure A.28.



April 26, 1999 11:53 g02-appa Sheet number 20 Page number 704 black

704 A P P E N D I X A • VHDL Reference

A.7.3 Selected Signal Assignment

A selected signal assignment statement is used to set the value of a signal to one of several
alternatives based on a selection criterion. The general form is

[label:] - - an optional label can be placed here
WITH expression SELECT

signal_name<= expression WHEN constant_value{,
expression WHEN constant_value} ;

Example A.10

SIGNAL x1, x2, Sel, f : STD_LOGIC ;
·
·
·

WITH Sel SELECT
f <= x1 WHEN ’0’,

x2 WHEN OTHERS ;

This code describes a 2-to-1 multiplexer withSelas the select input. In a selected signal
assignment, all possible values of the select input,Selin this case, must be explicitly listed
in the code. The word OTHERS provides an easy way to meet this requirement. OTHERS
represents all possible values not already listed. In this case the other possible values are
1, Z,−, and so on. Another requirement for the selected signal assignment is that each
WHEN clause must specify a criterion that is mutually exclusive of the criteria in all other
WHEN clauses.

A.7.4 Conditional Signal Assignment

Similar to the selected signal assignment, the conditional signal assignment is used to set a
signal to one of several alternative values. The general form is

[label:]
signal_name<= expression WHEN logic_expression ELSE

{expression WHEN logic_expression ELSE}
expression ;

An example is

f <= ’1’ WHEN x1 = x2 ELSE ’0’ ;



April 26, 1999 11:53 g02-appa Sheet number 21 Page number 705 black

A.7 Concurrent Assignment Statements 705

One key difference in comparison with the selected signal assignment has to be noted.
The conditions listed after each WHEN clause need not be mutually exclusive, because the
conditions are given a priority from the first listed to the last listed. This is illustrated by
the example in Figure A.12. The code represents a priority encoder in which the highest-
priority request is indicated as the output of the circuit. (Encoder circuits are described in
Chapter 6.) The output,f, of the priority encoder comprises two bits whose values depend
on the three inputs,req1, req2, andreq3. If req1 is 1, thenf is set to 01. Ifreq2 is 1,
thenf is set to 10, but only ifreq1 is not also 1. Hencereq1 has higher priority thanreq2.
Similarly, req1 andreq2 have higher priority thanreq3. Thus ifreq3 is 1, thenf is 11, but
only if neitherreq1 norreq2 is also 1. For this priority encoder, if none of the three inputs
is 1, thenf is assigned the value 00.

A.7.5 GENERATE Statement

There are two variants of the GENERATE statement: the FOR GENERATE and the IF
GENERATE. The general form of both types is shown in Figure A.13. The IF GENERATE
statement is seldom needed, but FOR GENERATE is often used in practice. It provides a
convenient way of repeating either a logic equation or a component instantiation. Figure
A.14 illustrates its use for component instantiation. The code in the figure is equivalent to
the code given in Figure A.7.

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY priority IS
PORT ( req1, req2, req3 : IN STD_LOGIC ;

f : OUT STD_LOGIC_VECTOR(1 DOWNTO 0) ) ;
END priority ;

ARCHITECTURE Behavior OF priority IS
BEGIN

f <= "01" WHEN req1 = ’1’ ELSE
"10" WHEN req2 = ’1’ ELSE
"11" WHEN req3 = ’1’ ELSE
"00" ;

END Behavior;

Figure A.12 A priority encoder described with a conditional signal assignment.



April 26, 1999 11:53 g02-appa Sheet number 22 Page number 706 black

706 A P P E N D I X A • VHDL Reference

generate_label:
FOR index_variable IN range GENERATE

statement ;
{statement ;}

END GENERATE ;

generate_label:
IF expression GENERATE

statement ;
{statement ;}

END GENERATE ;

Figure A.13 The general forms of the GENERATE statement.

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;
USE work.fulladd_package.all ;

ENTITY adder IS
PORT ( Cin : IN STD_LOGIC ;

X, Y : IN STD_LOGIC_VECTOR(3 DOWNTO 0) ;
S : OUT STD_LOGIC_VECTOR(3 DOWNTO 0) ;
Cout : OUT STD_LOGIC ) ;

END adder ;

ARCHITECTURE Structure OF adder IS
SIGNAL C : STD_LOGIC_VECTOR(0 TO 4) ;

BEGIN
C(0)<= Cin ;
Generate_label:
FOR i IN 0 TO 3 GENERATE

bit: fulladd PORT MAP ( C(i), X(i), Y(i), S(i), C(i+1) ) ;
END GENERATE ;
Cout<= C(4) ;

END Structure ;

Figure A.14 An example of component instantiation with FOR GENERATE.



April 26, 1999 11:53 g02-appa Sheet number 23 Page number 707 black

A.9 Sequential Assignment Statements 707

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;
USE work.fulladd_package.all ;

ENTITY addern IS
GENERIC ( n : INTEGER := 4 ) ;
PORT ( Cin : IN STD_LOGIC ;

X, Y : IN STD_LOGIC_VECTOR(n−1 DOWNTO 0) ;
S : OUT STD_LOGIC_VECTOR(n−1 DOWNTO 0) ;
Cout : OUT STD_LOGIC ) ;

END addern ;

ARCHITECTURE Structure OF addern IS
SIGNAL C : STD_LOGIC_VECTOR(0 TO n) ;

BEGIN
C(0)<= Cin ;
Generate_label:
FOR i IN 0 TO n−1 GENERATE

stage: fulladd PORT MAP ( C(i), X(i), Y(i), S(i), C(i+1) ) ;
END GENERATE ;
Cout<= C(4) ;

END Structure ;

Figure A.15 An n-bit adder.

A.8 Defining an Entity with GENERICs

The code in Figure A.14 represents an adder for four-bit numbers. It is possible to make
this code more general by introducing a parameter in the code that represents the number
of bits in the adder. In VHDL jargon such a parameter is called a GENERIC. Figure A.15
gives the code for ann-bit adder entity, namedaddern. The GENERIC keyword is used to
define the number of bits,n, to be added. This parameter is used in the code, both in the
definitions of the signalsX, Y, andSand in the FOR GENERATE statement that instantiates
then full-adders.

It is possible to use the GENERIC feature with components that are instantiated as
subcircuits in other code. In section A.10.10 we give an example that uses theaddernentity
as a subcircuit.

A.9 Sequential Assignment Statements

The order in which the concurrent assignment statements in an architecture body appear
does not affect the meaning of the code. Many types of logic circuits can be described



April 26, 1999 11:53 g02-appa Sheet number 24 Page number 708 black

708 A P P E N D I X A • VHDL Reference

using these statements. However, VHDL also provides another type of statements, called
sequential assignment statements, for which the order of the statements in the code can
affect the semantics of the code. There are three variants of the sequential assignment
statements: IF statement, CASE statement, and loop statements.

A.9.1 PROCESS Statement

Since the order in which the sequential statements appear in VHDL code is significant,
whereas the ordering of concurrent statements is not, the sequential statements must be
separated from the concurrent statements. This is accomplished using a PROCESS state-
ment. The PROCESS statement appears inside an architecture body, and it encloses other
statements within it. The IF, CASE, and LOOP statements can appear only inside a pro-
cess. The general form of a PROCESS statement is shown in Figure A.16. Its structure is
somewhat similar to an architecture. VARIABLE data objects can be declared (only) inside
the process. Any variable declared can be used only by the code within the process; we say
that thescopeof the variable is limited to the process. To use the value of such a variable
outside the process, the variable’s value can be assigned to a signal. The various elements
of the process are best explained by giving some examples. But first we need to introduce
the IF, CASE, and LOOP statements.

The IF, CASE, and LOOP statements can be used to describe either combinational or
sequential circuits. We will introduce these statements by giving some examples of com-
binational circuits because they are easier to understand. Sequential circuits are described
in section A.10.

A.9.2 IF Statement

The general form of an IF statement is given in Figure A.17. An example using an IF
statement for combinational logic is

[process_label:]
PROCESS [( signal name {, signal name} )]

[VARIABLE declarations]
BEGIN

[WAIT statement]
[Simple Signal Assignment Statements]
[Variable Assignment Statements]
[IF Statements]
[CASE Statements]
[LOOP Statements]

END PROCESS [process_label] ;

Figure A.16 The general form of a PROCESS statement.



April 26, 1999 11:53 g02-appa Sheet number 25 Page number 709 black

A.9 Sequential Assignment Statements 709

IF expression THEN
statement ;
{statement ;}

ELSIF expression THEN
statement ;
{statement ;}

ELSE
statement ;
{statement ;}

END IF ;

Figure A.17 The general form of an IF statement.

IF Sel = ’0’ THEN
f <= x1 ;

ELSE
f <= x2 ;

END IF ;

This code defines the 2-to-1 multiplexer that was used as an example of a selected signal as-
signment in the previous section. Examples of sequential logic described with IF statements
are given in section A.10.

A.9.3 CASE Statement

The general form of a CASE statement is shown in Figure A.18. Theconstant_valuecan
be a single value, such as 2, a list of values separated by the| pipe, such as 2|3, or a range,
such as 2 to 4. An example of a CASE statement used to describe combinational logic is

CASE expression IS
WHEN constant_value =>

statement ;
{statement ;}

WHEN constant_value =>
statement ;
{statement ;}

WHEN OTHERS =>
statement ;
{statement ;}

END CASE ;

Figure A.18 The general form of a CASE statement.



April 26, 1999 11:53 g02-appa Sheet number 26 Page number 710 black

710 A P P E N D I X A • VHDL Reference

CASE Sel IS
WHEN ’0’ =>

f <= x1 ;
WHEN OTHERS =>

f <= x2 ;
END CASE ;

This code represents the same 2-to-1 multiplexer described in section A.9.2 using the IF
statement. Similar to a selected signal assignment, all possible valuations of the expression
used for the WHEN clauses must be listed; hence the OTHERS keyword is needed. Also, all
WHEN clauses in the CASE statement must be mutually exclusive. Examples of sequential
circuits described with the CASE statement are given in section A.10.11.

A.9.4 Loop Statements

VHDL provides two types of loop statements: the FOR-LOOP statement and the WHILE-
LOOP statement. Their general forms are shown in Figure A.19. These statements are used
to repeat one or more sequential assignment statements in much the same way as a FOR
GENERATE statement is used to repeat concurrent assignment statements. Examples of
the FOR-LOOP are given in section A.9.7.

A.9.5 Using a Process for a Combinational Circuit

An example of a PROCESS statement is shown in Figure A.20. It includes the code for
the IF statement from section A.9.2. The signalsSel, x1, andx2 are shown in parentheses
after the PROCESS keyword. They indicate which signals the process depends on and are
called thesensitivity listof the process. For a process that describes combinational logic,
as in this example, the sensitivity list includes all input signals used inside the process.

[loop_label:]
FOR variable_name IN range LOOP

statement ;
{statement ;}

END LOOP [loop_label] ;

[loop_label:]
WHILE boolean_expression LOOP

statement ;
{statement ;}

END LOOP [loop_label] ;

Figure A.19 The general forms of FOR-LOOP and
WHILE-LOOP statements.



April 26, 1999 11:53 g02-appa Sheet number 27 Page number 711 black

A.9 Sequential Assignment Statements 711

PROCESS ( Sel, x1, x2 )
BEGIN

IF Sel = ’0’ THEN
f <= x1

ELSE
f <= x2 ;

END IF ;
END PROCESS ;

Figure A.20 A PROCESS statement.

In VHDL jargon a process is described as follows. When the value of a signal in the
sensitivity list changes, the process becomesactive. Once active, the statements inside the
process are “evaluated” in sequential order. Any signal assignments made in the process
take effect only after all the statements inside the process have been evaluated. We say that
the signal assignment statements inside the process arescheduledand will take effect at the
end of the process.

The process describes a logic circuit and is translated into logic equations in the same
manner as the concurrent assignment statements in an architecture body. The concept of the
process statements being evaluated in sequence provides a convenient way of understanding
the semantics of the code inside a process. In particular, a key concept is that if multiple
assignments are made to a signal inside a process, only the last one to be evaluated has any
effect. This is illustrated in the next example.

A.9.6 Statement Ordering

The IF statement in Figure A.20 describes a multiplexer that assigns either of two inputs,
x1 or x2, to the outputf. Another way of describing the multiplexer with an IF statement
is shown in Figure A.21. The statement “f<= x1 ;” is evaluated first. However, the
signalf may not actually be changed to the value ofx1, because there may be a subsequent
assignment tof in the code inside the process statement. At this point in the process,x1
represents thedefaultvalue for f if no other assignment tof is evaluated. If we assume

PROCESS ( Sel, x1, x2 )
BEGIN

f <= x1 ;
IF Sel = 1 THEN

f <= x2 ;
END IF ;

END PROCESS ;

Figure A.21 An example illustrating the ordering of
statements within a PROCESS.



April 26, 1999 11:53 g02-appa Sheet number 28 Page number 712 black

712 A P P E N D I X A • VHDL Reference

thatSel= 1, then the statement “f<= x2 ;” will be evaluated. The effect of this second
assignment tof is to override the default assignment. Hence the result of the process is that
f is set to the valuex2 whenSel= 1. If we assume thatSel= 0, then the IF condition fails
andf is assigned its default value,x1.

This example illustrates the effect of the ordering of statements inside a process. If the
two statements were reversed in order, then the IF statement would be evaluated first and
the statement “f<= x1 ;” would be evaluated last. Hence the process would always result
in f being set to the value ofx1.

Implied Memory
Consider the process in Figure A.22. It is the same as the process in Figure A.21 except

that the default assignment statement “f<= x1 ;” has been removed. Because the process
does not specify a default value forf, and there is no ELSE clause in the IF statement, the
meaning of the process is thatf should retain its present value when the IF condition is not
satisfied. The following expression is generated by the VHDL compiler for this process

f = Sel· x2+ Sel· f
Hence whenSel= 0, the value ofx2 is “remembered” at the outputf. In VHDL jargon this
is calledimplied memoryor implicit memory. Although it is rarely useful for combinational
circuits, we will show shortly that implied memory is the key concept used to describe
sequential circuits.

A.9.7 Using a VARIABLE in a PROCESS

We mentioned earlier that VHDL provides VARIABLE data objects, in addition to SIGNAL
data objects. Unlike a signal, a variable data object does not represent a wire in a circuit.
Therefore, a variable can be used to describe the functionality of a logic circuit in ways that
are not possible using a signal. This concept is illustrated in Figure A.23. The intent of
the code is to describe a logic circuit that counts the number of bits in the three-bit signal
X that are equal to 1. The count is output using the signal calledCount, which is a two-bit
unsigned integer. Notice thatCountis declared with the modeBufferbecause it is used in
the architecture body on both the left and right sides of an assignment operator. Table A.2
explains the meaning of theBuffermode.

PROCESS ( Sel, x2 )
BEGIN

IF Sel = 1 THEN
f <= x2 ;

END IF ;
END PROCESS ;

Figure A.22 An example of implied memory.



April 26, 1999 11:53 g02-appa Sheet number 29 Page number 713 black

A.9 Sequential Assignment Statements 713

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY numbits IS
PORT ( X : IN STD_LOGIC_VECTOR(1 TO 3) ;

Count : BUFFER INTEGER RANGE 0 TO 3 ) ;
END numbits ;

ARCHITECTURE Behavior OF numbits IS
BEGIN

PROCESS ( X ) - - count the number of bits in X with the value 1
BEGIN

Count<= 0 ; - - the 0 with no quotes is a decimal number
FOR i IN 1 TO 3 LOOP

IF X(i) = ’1’ THEN
Count<= Count + 1 ;

END IF ;
END LOOP ;

END PROCESS ;
END Behavior ;

Figure A.23 A FOR-LOOP that does not represent a sensible circuit.

Inside the process,Countis initially set to 0. No quotes are used for the number 0 in this
case, because VHDL allows a decimal number, which we said in section A.2.2 is denoted
with no quotes, to be assigned to an INTEGER signal. The code gives a FOR-LOOP with
the loop index variablei. For the values ofi from 1 to 3, the IF statement inside the FOR-
LOOP checks the value of bit X(i); if it is 1, then the value ofCountis incremented. The
code given in the figure is legal VHDL code and can be compiled without generating any
errors. However, it will not work as intended, and it does not represent a sensible logic
circuit.

There are two reasons why the code in Figure A.23 will not work as intended. First, there
are multiple assignment statements for the signalCountwithin the process. As explained
for the previous example, only the last of these assignments will have any effect. Hence
if any bit in X is 1, then the statement “Count<= ’0’ ;” will not have the desired effect
of initializing Count to 0, because it will be overridden by the assignment statement in
the FOR-LOOP. Also, the FOR-LOOP will not work as desired, because each iteration for
which X (1) is 1 will override the effect of the previous iteration. The second reason why
the code is not sensible is that the statement “Count<= Count + ’1’ ;” describes a circuit
with feedback. Since the circuit is combinational, such feedback will result in oscillations
and the circuit will not be stable.

The desired behavior of the VHDL code in Figure A.23 can be achieved using a variable,
instead of a signal. This is illustrated in Figure A.24, in which the variableTmp is used
instead of the signalCountinside the process. The value ofTmpis assigned toCountat the



April 26, 1999 11:53 g02-appa Sheet number 30 Page number 714 black

714 A P P E N D I X A • VHDL Reference

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY Numbits IS
PORT ( X : IN STD_LOGIC_VECTOR(1 TO 3) ;

Count : OUT INTEGER RANGE 0 TO 3 ) ;
END Numbits ;

ARCHITECTURE Behavior OF Numbits IS
BEGIN

PROCESS ( X ) - - count the number of bits in X equal to 1
VARIABLE TMP : INTEGER ;

BEGIN
Tmp := 0 ;
FOR i IN 1 TO 3 LOOP

IF X(i) = ’1’ THEN
Tmp := Tmp + 1 ;

END IF ;
END LOOP ;
Count<= Tmp ;

END PROCESS ;
END Behavior ;

Figure A.24 The FOR-LOOP from Figure A.23 using a variable.

end of the process. Observe that the assignment statements toTmpare indicated with the :=
operator, as opposed to the<= operator. The := is called thevariable assignment operator.
Unlike<=, it does not result in the assignment beingscheduleduntil the end of the process.
The variable assignment takes place immediately. Thisimmediateassignment solves the
first of the two problems with the code in Figure A.23. The second problem is also solved
by using a variable instead of a signal. Because the variable does not represent a wire in
a circuit, the FOR-LOOP need not be literally interpreted as a circuit with feedback. By
using the variable, the FOR-LOOP represents only a desiredbehavior, or functionality, of
the circuit. When the code is translated, the VHDL compiler will generate a combinational
circuit that implements the functionality expressed in the FOR-LOOP.

When the code in Figure A.24 is translated by the VHDL compiler, it produces the
circuit with 2 two-bit adders shown in Figure A.25. It is possible to see how this circuit
corresponds to the FOR-LOOP in the code. The result of the first iteration of the loop is
thatCountis set to the value ofX (1). The second iteration then addsX (1) toX (2). This is
realized by the top adder in the figure. The third iteration addsX (3) to the sum produced
from the second iteration. This corresponds to the bottom adder. When this circuit is
optimized by the logic synthesis algorithms, the resulting expressions forCountare



April 26, 1999 11:53 g02-appa Sheet number 31 Page number 715 black

A.9 Sequential Assignment Statements 715

x0x1 y0

0

y1

s0s1

Two-bit adder

X(2) 0 X(1)

x0x1 y0y1

s0s1

Two-bit adder

0 X(3)

Count (0)Count (1)

Figure A.25 The circuit generated from the code in Figure
A.24.

Count(1) = X(1)X(2) + X(1)X(3) + X(2)X(3)
Count(0) = X(1)⊕ X(2) ⊕ X(3)

These expressions represent a full-adder circuit, withCount(0) as the sum output and
Count(1) as the carry-out. It is interesting to note that even though the VHDL code describes
the desired behavior of the circuit in an abstract way, using a FOR-LOOP, in this example
the logic synthesis algorithms produce the most efficient circuit, which is the full-adder.
As we said at the beginning of this appendix and in section 2.9, the style of code in Figure
A.24 should be avoided, because it is often difficult for the designer to envisage what logic
circuit the code represents.

As another example of the use of a variable, Figure A.26 gives the code for ann-bit
NAND gate entity, namedNANDn. The number of inputs to the NAND gate is set by the
GENERIC parametern. The inputs are then-bit signalX, and the output isf . The variable
Tmpis defined in the architecture and originally set to the value of the input signalX (1). In
the FOR LOOP,Tmpis ANDed successively with input signalsX (2) to X (n). SinceTmp
is a variable data object, assignments to it take effect immediately; they are not scheduled
to take effect at the end of the process. The complement ofTmp is assigned tof , thus
completing the description of then-input NAND operation.

Figure A.27 shows the same code given in Figure A.26 but with the data objectTmp
defined as a signal, instead of as a variable. This code gives a wrong result, because only
the last statement included in the process has any effect onTmp. The code results inTmp=
Tmp·X(4), as determined by the last iteration of the FOR LOOP. Also, sinceTmpis never
initialized, its value is unknown. Hence the value of the outputf = Tmpis unknown.



April 26, 1999 11:53 g02-appa Sheet number 32 Page number 716 black

716 A P P E N D I X A • VHDL Reference

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY NANDn IS
GENERIC ( n : INTEGER := 4 ) ;
PORT ( X : IN STD_LOGIC_VECTOR(1 TO n) ;

f : OUT STD_LOGIC ) ;
END NANDn ;

ARCHITECTURE Behavior OF NANDn IS
BEGIN

PROCESS ( X )
VARIABLE Tmp : STD_LOGIC ;

BEGIN
Tmp := X(1) ;
AND_bits: FOR i IN 2 TO n LOOP

Tmp := Tmp AND X(i) ;
END LOOP AND_bits ;
f <= NOT Tmp ;

END PROCESS ;
END Behavior ;

Figure A.26 Using a variable to describe an n-input NAND gate.

Figure A.28 shows one way to describe then-input NAND gate using signals. Here
Tmpis defined as ann-bit signal, which is set to containn 1s using the (OTHERS => ’1’)
construct. The conditional signal assignment specifies thatf is 0 only if all bits in the input
X are 1, thus describing the NAND operation.

A final example of variables used in a sequential circuit is given in section A.10.8. In
general, using both variables and signals in VHDL code can lead to confusion because they
imply different semantics. Since variables do not necessarily represent wires in a circuit,
the meaning of code that uses variables is sometimes ill defined. To avoid confusion, in
this book we use variables only for the loop indices in FOR GENERATE and FOR LOOP
statements. Except for similar purposes, the reader should avoid using variables because
they are not needed for describing logic circuits.

A.10 Sequential Circuits

Although combinational circuits can be described using either concurrent or sequential
assignment statements, sequential circuits can be described only with sequential assignment
statements. We now give some representative examples of sequential circuits.



April 26, 1999 11:53 g02-appa Sheet number 33 Page number 717 black

A.10 Sequential Circuits 717

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY NANDn IS
GENERIC ( n : INTEGER := 4 ) ;
PORT ( X : IN STD_LOGIC_VECTOR(1 TO n) ;

f : OUT STD_LOGIC ) ;
END NANDn ;

ARCHITECTURE Behavior OF NANDn IS
SIGNAL Tmp : STD_LOGIC ;

BEGIN
PROCESS ( X )
BEGIN

Tmp<= X(1) ;
AND_bits: FOR i IN 2 TO n LOOP

Tmp<= Tmp AND X(i) ;
END LOOP AND_bits ;
f <= NOT Tmp ;

END PROCESS ;
END Behavior ;

Figure A.27 The code from Figure A.26 using a signal.

A.10.1 A Gated D Latch

Figure A.29 gives the code for a gated D latch. The process sensitivity list includes both
the latch’s data input,D, and clock,clk. Hence whenever a change occurs in the value of
eitherD or clk, the process becomes active. The IF statement specifies that Q should be set
to the value ofD whenever the clock is 1. There is no ELSE clause in the IF statement. As
we explained for Figure A.22, this implies that Q should retain its present value when the
IF condition is not met.

A.10.2 D Flip-Flop

Figure A.30 gives a process that is slightly different from the one in Figure A.29. The
sensitivity list includes only theClocksignal, which means that the process is active only
when the value ofClockchanges. The condition in the IF statement looks unusual. The
syntax Clock’EVENT represents achangein the value of the clock signal. In VHDL jargon
’EVENT is called anattribute, and combining ’EVENT with a signal name, such asClock,
yields a logical condition. The combination in the IF statement of the two conditions
Clock’EVENT and Clock = ’1’ specifies that Q should be assigned the value ofD when
“a change occurs in the value ofClock, andClock is now 1”. This describes a low-to-high
transition of the clock signal; hence the code describes a positive-edge-triggered D flip-flop.



April 26, 1999 11:53 g02-appa Sheet number 34 Page number 718 black

718 A P P E N D I X A • VHDL Reference

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY NANDn IS
GENERIC ( n : INTEGER := 4 ) ;
PORT ( X : IN STD_LOGIC_VECTOR(1 TO n) ;

f : OUT STD_LOGIC ) ;
END NANDn ;

ARCHITECTURE Behavior OF NANDn IS
SIGNAL Tmp : STD_LOGIC_VECTOR(1 TO n) ;

BEGIN
Tmp<= (OTHERS => ’1’) ;
f <= ’0’ WHEN X = Tmp ELSE ’1’ ;

END Behavior ;

Figure A.28 Using a signal to describe an n-input NAND gate.

The std_logic_1164package defines the two functions namedrising_edgeand
falling_edge. They can be used as a short-form notation for the condition that checks for
the occurrence of a clock edge. In Figure A.30 we could replace the line “IF Clock’EVENT
AND Clock = ’1’ THEN” with the equivalent line “IF rising_edge(Clock) THEN”. We do
not userising_edgeor falling_edgein this book; they are mentioned for completeness.

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY latch IS
PORT ( D, clk : IN STD_LOGIC ;

Q : OUT STD_LOGIC ) ;
END latch ;

ARCHITECTURE Behavior OF latch IS
BEGIN

PROCESS ( D, clk )
BEGIN

IF clk = ’1’ THEN
Q<= D ;

END IF ;
END PROCESS ;

END Behavior ;

Figure A.29 A gated D Latch.



April 26, 1999 11:53 g02-appa Sheet number 35 Page number 719 black

A.10 Sequential Circuits 719

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY flipflop IS
PORT ( D, Clock : IN STD_LOGIC ;

Q : OUT STD_LOGIC ) ;
END flipflop ;

ARCHITECTURE Behavior OF flipflop IS
BEGIN

PROCESS ( Clock )
BEGIN

IF Clock’EVENT AND Clock = ’1’ THEN
Q<= D ;

END IF ;
END PROCESS ;

END Behavior ;

Figure A.30 D flip-flop.

A.10.3 Using a WAIT UNTIL Statement

The process in Figure A.31 uses a different syntax to describe a D flip-flop. Synchronization
with the clock edge is specified using the statement “WAIT UNTIL Clock = ’1’ ;”. This
statement should be read as “wait for the next positive-edge of the clock signal.” A process
that uses a WAIT UNTIL statement is a special case because the sensitivity list is omitted.
Use of this WAIT UNTIL statement implicitly specifies that the sensitivity list includes
only Clock. For our purposes, which is using VHDL for synthesis of circuits, a process can
include a WAIT UNTIL statement only if it is the first statement in the process.

A.10.4 A Flip-Flop with Asynchronous Reset

Figure A.32 gives a process that is similar to the one in Figure A.30. It describes a D
flip-flop with an asynchronous reset, or clear, input. The reset signal has the nameResetn.
WhenResetn= 0, the flip-flop output Q is set to 0. Appending the lettern to a signal name
is a widely used convention to denote an active-low signal.

A.10.5 Synchronous Reset

Figure A.33 shows how a flip-flop with a synchronous reset input can be described.



April 26, 1999 11:53 g02-appa Sheet number 36 Page number 720 black

720 A P P E N D I X A • VHDL Reference

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY flipflop IS
PORT ( D, Clock : IN STD_LOGIC ;

Q : OUT STD_LOGIC ) ;
END flipflop ;

ARCHITECTURE Behavior OF flipflop IS
BEGIN

PROCESS
BEGIN

WAIT UNTIL Clock = ’1’ ;
Q<= D ;

END PROCESS ;
END Behavior ;

Figure A.31 Equivalent code to Figure A.30, using a WAIT UNTIL
statement.

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY flipflop IS
PORT ( D, Resetn, Clock : IN STD_LOGIC ;

Q : OUT STD_LOGIC ) ;
END flipflop ;

ARCHITECTURE Behavior OF flipflop IS
BEGIN

PROCESS ( Resetn, Clock )
BEGIN

IF Resetn = ’0’ THEN
Q<= ’0’ ;

ELSIF Clock’EVENT AND Clock = ’1’ THEN
Q<= D ;

END IF ;
END PROCESS ;

END Behavior ;

Figure A.32 D flip-flop with asynchronous reset.



April 26, 1999 11:53 g02-appa Sheet number 37 Page number 721 black

A.10 Sequential Circuits 721

A.10.6 Instantiating a Flip-Flop from a Library

Because flip-flops are widely used in logic circuits, most CAD systems provide an assort-
ment of flip-flop components that can be instantiated in VHDL code. An example of this
is provided in Figure A.34. It uses a package namedmaxplus2in the library calledaltera.
The maxplus2 package is part of the MAX+plusII system and includes many types of basic
circuit elements. Figure A.34 instantiates the component nameddff, which is a D flip-flop
declared in themaxplus2package. The documentation provided in MAX+plusII specifies
that thedff component has active-low asynchronous reset and preset inputs.

A.10.7 Registers

One possible approach for describing a multibit register is to create an entity that instantiates
multiple flip-flops. A more convenient method is illustrated in Figure A.35. It gives the
same code shown in Figure A.32 but using the four-bit STD_LOGIC_VECTOR inputD
and the four-bit output Q. The code describes a four-bit register with asynchronous clear.

Figure A.36 gives the code for an entity namedregn. It shows how the code in Figure
A.35 can be extended to represent ann-bit register. The number of flip-flops is set by the
generic parametern.

The code in Figure A.37 shows how an enable input can be added to then-bit register
from Figure A.36. When the active clock edge occurs, the flip-flops in the register cannot

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY flipflop IS
PORT ( D, Resetn, Clock : IN STD_LOGIC ;

Q : OUT STD_LOGIC ) ;
END flipflop ;

ARCHITECTURE Behavior OF flipflop IS
BEGIN

PROCESS
BEGIN

WAIT UNTIL Clock = ’1’ ;
IF Resetn = ’0’ THEN

Q<= ’0’ ;
ELSE

Q<= D ;
END IF ;

END PROCESS ;
END Behavior ;

Figure A.33 D flip-flop with synchronous reset.



April 26, 1999 11:53 g02-appa Sheet number 38 Page number 722 black

722 A P P E N D I X A • VHDL Reference

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;
LIBRARY altera ;
USE altera.maxplus2.all ;

ENTITY flipflop IS
PORT ( D, Clock : IN STD_LOGIC ;

Resetn, Presetn : IN STD_LOGIC ;
Q : OUT STD_LOGIC ) ;

END flipflop ;

ARCHITECTURE Behavior OF flipflop IS
BEGIN

Dff_instance: Dff PORT MAP (
D, Clock, Resetn, Presetn, Q ) ;

END Behavior ;

Figure A.34 Instantiating a D flip-flop component.

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY reg4 IS
PORT ( D : IN STD_LOGIC_VECTOR(3 DOWNTO 0) ;

Resetn, Clock : IN STD_LOGIC ;
Q : OUT STD_LOGIC_VECTOR(3 DOWNTO 0) ) ;

END reg4 ;

ARCHITECTURE Behavior OF reg4 IS
BEGIN

PROCESS ( Resetn, Clock )
BEGIN

IF Resetn = ’0’ THEN
Q<= "0000" ;

ELSIF Clock’EVENT AND Clock = ’1’ THEN
Q<= D ;

END IF ;
END PROCESS ;

END Behavior ;

Figure A.35 Code for a four-bit register with asynchronous clear.



April 26, 1999 11:53 g02-appa Sheet number 39 Page number 723 black

A.10 Sequential Circuits 723

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY regn IS
GENERIC ( n : INTEGER := 4 ) ;
PORT ( D : IN STD_LOGIC_VECTOR(n−1 DOWNTO 0) ;

Resetn, Clock : IN STD_LOGIC ;
Q : OUT STD_LOGIC_VECTOR(n−1 DOWNTO 0) ) ;

END regn ;

ARCHITECTURE Behavior OF regn IS
BEGIN

PROCESS ( Resetn, Clock )
BEGIN

IF Resetn = ’0’ THEN
Q<= (OTHERS => ’0’) ;

ELSIF Clock’EVENT AND Clock = ’1’ THEN
Q<= D ;

END IF ;
END PROCESS ;

END Behavior ;

Figure A.36 Code for an n-bit register with asynchronous clear.

change their stored values if the enableE is 0. If E = 1, the register responds to the active
clock edge in the normal way.

A.10.8 Shift Registers

An example of code that defines a four-bit shift register is shown in Figure A.38. The lines
of code are numbered for ease of reference. The shift register has a serial input,w, and
parallel outputs, Q. The right-most bit in the register is Q(4), and the left-most bit is Q(1);
shifting is performed in the right-to-left direction. The architecture declares the signalSreg,
which is used to describe the shift operation. All assignments toSregare synchronized to
the clock edge by the IF condition; henceSregrepresents the outputs of flip-flops. The
statement in line 13 specifies thatSreg(4) is assigned the value ofw. As we explained
previously, this assignment does not take effect immediately but is scheduled to occur at the
end of the process. In line 14 the current value ofSreg(4), before it is shifted as a result of
line 13, is assigned toSreg(3). Lines 15 and 16 complete the shift operation. They assign
the current values ofSreg(3) andSreg(2), before they are changed as a result of lines 14
and 15, toSreg(2) andSreg(1), respectively. Finally,Sregis assigned to the Q outputs.

The key point that has to be appreciated in the code in Figure A.38 is that the assignment
statements in lines 13 to 16 do not take effect until the end of the process. Hence all flip-



April 26, 1999 11:53 g02-appa Sheet number 40 Page number 724 black

724 A P P E N D I X A • VHDL Reference

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY regne IS
GENERIC ( n : INTEGER := 4 ) ;
PORT ( D : IN STD_LOGIC_VECTOR(n−1 DOWNTO 0) ;

Resetn : IN STD_LOGIC ;
E, Clock : IN STD_LOGIC ;
Q : OUT STD_LOGIC_VECTOR(n−1 DOWNTO 0) ) ;

END regne ;

ARCHITECTURE Behavior OF regne IS
BEGIN

PROCESS ( Resetn, Clock )
BEGIN

IF Resetn = ’0’ THEN
Q<= (OTHERS => ’0’) ;

ELSIF Clock’EVENT AND Clock = ’1’ THEN
IF E = ’1’ THEN

Q<= D ;
END IF ;

END IF ;
END PROCESS ;

END Behavior ;

Figure A.37 VHDL code for an n-bit register with an enable input.

flops change their values at the same time, as required in the shift register. We could write
the statements in lines 13 to 16 in any order without changing the meaning of the code.

In section A.9.7 we introduced variables and showed how they differ from signals. As
another example of the semantics involved using variables, Figure A.39 gives the code from
Figure A.38 but withSregdeclared as a variable, instead of as a signal. The statement in
line 13 assigns the value ofw to Sreg(4). SinceSregis a variable, the assignment takes
effect immediately. In line 14 the value ofSreg(4), which has already been changed tow,
is assigned toSreg(3). Hence line 14 results inSreg(3) = w. Similarly, lines 15 and 16
setSreg(2) andSreg(1) to the value ofw. The code does not describe the desired shift
register, but rather loads all flip-flops with the value on the inputw.

For the code in Figure A.39 to correctly describe a shift register, the ordering of lines
13 to 16 has to be reversed. Then the first assignment setsSreg(1) to the value ofSreg(2),
the second setsSreg(2) to the value ofSreg(3), and so on. Each successive assignment
is not affected by the one that precedes it; hence the semantics of using variables does not
cause a problem. As we said in section A.9.7, it can be confusing to use both signals and
variables at the same time because they imply different semantics.



April 26, 1999 11:53 g02-appa Sheet number 41 Page number 725 black

A.10 Sequential Circuits 725

1 LIBRARY ieee ;
2 USE ieee.std_logic_1164.all ;

3 ENTITY shift4 IS
4 PORT ( w, Clock : IN STD_LOGIC ;
5 Q : OUT STD_LOGIC_VECTOR(1 TO 4) ) ;
6 END shift4 ;

7 ARCHITECTURE Behavior OF shift4 IS
8 SIGNAL Sreg : STD_LOGIC_VECTOR(1 TO 4) ;
9 BEGIN
10 PROCESS ( Clock )
11 BEGIN
12 IF Clock’EVENT AND Clock = ’1’ THEN
13 Sreg(4)<= w ;
14 Sreg(3)<= Sreg(4) ;
15 Sreg(2)<= Sreg(3) ;
16 Sreg(1)<= Sreg(2) ;
17 END IF ;
18 END PROCESS ;
19 Q<= Sreg ;
20 END Behavior ;

Figure A.38 Code for a four-bit shift register.

A.10.9 Counters

Figure A.40 shows the code for a four-bit counter with an asynchronous reset input. The
counter also has an enable input. On the positive clock edge, if the enableE is 1, the
count is incremented. IfE = 0, the counter holds its current value. Because counters are
commonly needed in logic circuits, most CAD systems provide a selection of counters that
can be instantiated in a design. For example, MAX+plusII provides the counter defined by
the LPM standard, which is a variable-width counter with options for enabling the counter,
resetting the count to 0, and presetting the count to a specific number.

A.10.10 Using Subcircuits with GENERIC Parameters

We have shown several examples of VHDL entities that include generic parameters. When
these subcircuits are used as components in other code, the generic parameters can be
set to whatever values are needed. To give an example of component instantiation using
generics, consider the circuit shown in Figure A.41. The circuit adds the binary number
represented by thek-bit input X to itself a number of times. Such a circuit is often called
anaccumulator. To store the result of each addition operation, the circuit includes ak-bit
register. The register has an asynchronous reset input,Resetn. It also has an enable input,



April 26, 1999 11:53 g02-appa Sheet number 42 Page number 726 black

726 A P P E N D I X A • VHDL Reference

1 LIBRARY ieee ;
2 USE ieee.std_logic_1164.all ;

3 ENTITY shift4 IS
4 PORT ( w, Clock : IN STD_LOGIC ;
5 Q : OUT STD_LOGIC_VECTOR(1 TO 4) ) ;
6 END shift4 ;

7 ARCHITECTURE Behavior OF shift4 IS
8 BEGIN
9 PROCESS ( Clock )
10 VARIABLE Sreg : STD_LOGIC_VECTOR(1 TO 4) ;
11 BEGIN
12 IF Clock’EVENT AND Clock = ’1’ THEN
13 Sreg(4) := w ;
14 Sreg(3) := Sreg(4) ;
15 Sreg(2) := Sreg(3) ;
16 Sreg(1) := Sreg(2) ;
17 END IF ;
18 Q<= Sreg ;
19 END PROCESS ;
20 END Behavior ;

Figure A.39 The code from Figure A.38, using a variable.

E, which is controlled by a four-bit counter. The counter has an asynchronous clear input
and a count enable input. The circuit operates by first clearing all bits in the register and
counter to 0. Then in each clock cycle, the counter is incremented, and the sum outputs
from the adder are stored in the register. When the counter reaches the value 1111, the
enable inputs on both the register and counter are set to 0 by the NAND gate. Hence the
circuit remains in this state until it is reset again. The final value stored in the register is
equal to 15X.

We can represent the accumulator circuit using several subcircuits described in this
appendix: addern(Figure A.15),NANDn (Figure A.28),regne, andcount4. We placed
the component declaration statements for all of these subcircuits in one package, named
components, which is shown in Figure A.42.

Complete code for the accumulator is given in Figure A.43. It uses the generic pa-
rameterk to represent the number of bits in the inputX. Using this parameter in the code
makes it easy to change the bit-width at a later time if desired. The architecture defines the
signalSumto represent the outputs of the adder; for simplicity, we ignore the possibility of
arithmetic overflow and assume that the sum can be represented usingk bits. The four-bit
signalC represents the outputs from the counter. TheStopsignal is connected to the enable
inputs on the register and counter.

The statement labeledadderinstantiates theaddernsubcircuit. The GENERIC MAP
keywords are used to specify the value of the adder’s generic parameter,n. The syntax



April 26, 1999 11:53 g02-appa Sheet number 43 Page number 727 black

A.10 Sequential Circuits 727

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;
USE ieee.std_logic_unsigned.all ;

ENTITY count4 IS
PORT ( Resetn : IN STD_LOGIC ;

E, Clock : IN STD_LOGIC ;
Q : OUT STD_LOGIC_VECTOR (3 DOWNTO 0) ) ;

END count4 ;

ARCHITECTURE Behavior OF count4 IS
SIGNAL Count : STD_LOGIC_VECTOR (3 DOWNTO 0) ;

BEGIN
PROCESS ( Clock, Resetn )
BEGIN

IF Resetn = ’0’ THEN
Count<= "0000" ;

ELSIF (Clock’EVENT AND Clock = ’1’) THEN
IF E = ’1’ THEN

Count<= Count + 1 ;
END IF ;

END IF ;
END PROCESS ;
Q<= Count ;

END Behavior ;

Figure A.40 An example of a counter.

( n => k ) sets the number of bits in the adder tok. We do not need the carry-in port on
the adder, but a signal must be connected to it. The signalZero_bit, which is set to ’0’ in
the code, is used as a placeholder for the carry-in port (the VHDL syntax does not permit
a constant value, such as ’1’, to be associated directly with a port; hence a signal must be
defined for this purpose). Thek-bit data inputs to the adder areX and the output of the
register, which is namedResult. The sum output from the adder is namedSum, and the
carry-out, which is not used in the circuit, is namedCout.

The regnesubcircuit is instantiated in the statement labeledreg. GENERIC MAP is
used to set the number of bits in the register tok. Thek-bit register input is provided by the
Sumoutput from the adder. The register’s output is namedResult; this signal represents the
output of the accumulator circuit. It has the mode BUFFER in the entity declaration. This
is required in the VHDL syntax for the signal to be connected to a port on an instantiated
component.

Thecount4andNANDncomponents are instantiated in the statements labeledCounter
andNANDgate. We do not have to use the GENERIC MAP keyword forNANDn, because
the default value of its generic parameter is 4, which is the value needed in this application.



April 26, 1999 11:53 g02-appa Sheet number 44 Page number 728 black

728 A P P E N D I X A • VHDL Reference

+

E

Resetn Counter

k
Sum

X

k

Result

E

Resetn Register

ClockResetn

Figure A.41 The accumulator circuit.

A.10.11 A Moore-Type Finite State Machine

Figure A.44 shows the state diagram of a simple Moore machine. The code for this machine
is shown in Figure A.45. The signal namedy represents the state of the machine. It is
declared with an enumerated type,State_type, that has the three possible values A, B, and C.
When the code is compiled, the VHDL compiler automatically performs a state assignment
to select appropriate bit patterns for the three states. The behavior of the machine is defined
by the process with the sensitive list that comprises the reset and clock signals.

The VHDL code includes an asynchronous reset input that puts the machine in state
A. The state table for the machine is defined using a CASE statement. Each WHEN clause
corresponds to a present state of the machine, and the IF statement inside the WHEN clause
specifies the next state to be reached after the next positive edge of the clock signal. Since
the machine is of the Moore type, the outputz can be defined as a separate concurrent
assignment statement that depends only on the present state of the machine. Alternatively,
the appropriate value forz could have been specified within each WHEN clause of the
CASE statement.

An alternative way to describe a Moore-type finite state machine is given in the archi-
tecture in Figure A.46. Two signals are used to describe how the machine moves from one



April 26, 1999 11:53 g02-appa Sheet number 45 Page number 729 black

A.10 Sequential Circuits 729

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

PACKAGE components IS

COMPONENT addern - - n-bit adder
GENERIC ( n : INTEGER := 4 ) ;
PORT ( Cin : IN STD_LOGIC ;

X, Y : IN STD_LOGIC_VECTOR(n−1 DOWNTO 0) ;
S : OUT STD_LOGIC_VECTOR(n−1 DOWNTO 0) ;
Cout : OUT STD_LOGIC ) ;

END COMPONENT ;

COMPONENT regne - - n-bit register with enable
GENERIC ( n : INTEGER := 4 ) ;
PORT ( D : IN STD_LOGIC_VECTOR(n−1 DOWNTO 0) ;

Resetn : IN STD_LOGIC ;
E, Clock : IN STD_LOGIC ;
Q : OUT STD_LOGIC_VECTOR(n−1 DOWNTO 0) ) ;

END COMPONENT ;

COMPONENT count4 - - 4-bit counter with enable
PORT ( Resetn : IN STD_LOGIC ;

E, Clock : IN STD_LOGIC ;
Q : OUT STD_LOGIC_VECTOR (3 DOWNTO 0) ) ;

END COMPONENT ;

COMPONENT NANDn - - n-bit AND gate
GENERIC ( n : INTEGER := 4 ) ;
PORT ( X : IN STD_LOGIC_VECTOR(1 TO n) ;

f : OUT STD_LOGIC ) ;
END COMPONENT ;

END components ;

Figure A.42 Component declarations for the accumulator circuit.

state to another state. The signaly_presentrepresents the outputs of the state flip-flops,
and the signaly_nextrepresents the inputs to the flip-flops. The code has two processes.
The top process describes a combinational circuit. It uses a CASE statement to specify the
values thaty_nextshould have for each value ofy_present. The other process represents
a sequential circuit, which specifies thaty_presentis assigned the value ofy_nexton the
positive clock edge. The process also specifies thaty_presentshould take the valueA when
Resetnis 0, which provides the asynchronous reset.



April 26, 1999 11:53 g02-appa Sheet number 46 Page number 730 black

730 A P P E N D I X A • VHDL Reference

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;
USE work.components.all ;

ENTITY accum IS
GENERIC ( k : INTEGER := 8 ) ;
PORT ( Resetn, Clock : IN STD_LOGIC ;

X : IN STD_LOGIC_VECTOR(k-1 DOWNTO 0) ;
Result : BUFFER STD_LOGIC_VECTOR(k-1 DOWNTO 0) ) ;

END accum ;

ARCHITECTURE Structure OF accum IS
SIGNAL Sum : STD_LOGIC_VECTOR(k-1 DOWNTO 0) ;
SIGNAL C : STD_LOGIC_VECTOR(3 DOWNTO 0) ;
SIGNAL Zero_bit, Cout, Stop : STD_LOGIC ;

BEGIN
Zero_bit<= ’0’ ;
adder: addern

GENERIC MAP ( n => k )
PORT MAP ( Zero_bit, X, Result, Sum, Cout ) ;

reg: regne
GENERIC MAP ( n => k )
PORT MAP ( Sum, Resetn, Stop, Clock, Result ) ;

Counter: count4
PORT MAP ( Clock, Resetn, Stop, C ) ;

NANDgate: NANDn
PORT MAP ( C, Stop ) ;

END Structure ;

Figure A.43 Code for the accumulator circuit.

Although Figures A.45 and A.46 provide functionally equivalent code, when using the
MAX+plusII CAD system, the code in Figure A.45 is preferable. MAX+plusII recognizes
the code in Figure A.45 as a finite state machine. It reports all results of synthesizing or
simulating the code in terms of the states of the machine. For example, when using the
simulator CAD tool, the value of they signal is reported using the names A, B, and C. If
the code in Figure A.46 is used instead, then MAX+plusII reports only the logic values of
the signals. For example, the value of they_presentsignal is shown by the simulator as 00,
or 01, and so on.



April 26, 1999 11:53 g02-appa Sheet number 47 Page number 731 black

A.10 Sequential Circuits 731

C z 1=⁄

Reset

B z 0=⁄A z 0=⁄w 0=

w 1=

w 0=

w 1=

w 0= w 1=

Figure A.44 State diagram of a simple Moore-type FSM.

A.10.12 A Mealy-Type Finite State Machine

A state diagram for a simple Mealy machine is shown in Figure A.47. The corresponding
code is given in Figure A.48. The code is the same as in Figure A.45 except that the output
z is specified using a separate CASE statement. The CASE statement states that when the
FSM is in stateA, zshould be 0, but when in stateB, zshould take the value ofw. This CASE
statement properly describes the logic needed forz. However, it is not obvious why we
have used a second CASE statement in the code, rather than specify the value ofz inside the
CASE statement that defines the state table for the machine. This approach would not work
properly because the CASE statement for the state table is nested inside the IF statement
that waits for a clock edge to occur. Hence if we placed the code forz inside this CASE
statement, then the value ofz could change only as a result of a clock edge. This does not
meet the requirements of the Mealy-type FSM, because the value ofzdepends not only on
the state of the machine but also on the value of the inputw.

A.10.13 Manual State Assignment for a Finite State Machine

Instead of having the VHDL compiler determine the state assignment, it is possible to
encode the state bits manually. One way to do this in the MAX+plusII system is to use
an ATTRIBUTE specification. An attribute provides information about a VHDL element,
such as a type. An example showing how an attribute is used for a finite state machine is
given in Figure A.49. The code represents the Moore machine from Figure A.45 with the
addition of two ATTRIBUTE specifications. The attributes specify that the state encoding
should be 00 for state A, 01 for state B, and 11 for state C.



April 26, 1999 11:53 g02-appa Sheet number 48 Page number 732 black

732 A P P E N D I X A • VHDL Reference

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY moore IS
PORT ( Clock : IN STD_LOGIC ;

w : IN STD_LOGIC ;
Resetn : IN STD_LOGIC ;
z : OUT STD_LOGIC ) ;

END moore ;

ARCHITECTURE Behavior OF moore IS
TYPE State_type IS (A, B, C) ;
SIGNAL y : State_type ;

BEGIN
PROCESS ( Resetn, Clock )
BEGIN

IF Resetn = ’0’ THEN
y <= A ;

ELSIF (Clock’EVENT AND Clock = ’1’) THEN
CASE y IS

WHEN A =>
IF w = ’0’ THEN

y <= A ;
ELSE

y <= B ;
END IF ;

WHEN B =>
IF w = ’0’ THEN

y <= A ;
ELSE

y <= C ;
END IF ;

WHEN C =>
IF w = ’0’ THEN

y <= A ;
ELSE

y <= C ;
END IF ;

END CASE ;
END IF ;

END PROCESS ;

z<= ’1’ WHEN y = C ELSE ’0’ ;
END Behavior ;

Figure A.45 An example of a Moore-type finite state machine.



April 26, 1999 11:53 g02-appa Sheet number 49 Page number 733 black

A.10 Sequential Circuits 733

ARCHITECTURE Behavior OF moore IS
TYPE State_type IS (A, B, C) ;
SIGNAL y_present, y_next : State_type ;

BEGIN
PROCESS ( w, y_present )
BEGIN

CASE y_present IS
WHEN A =>

IF w = ’0’ THEN
y_next<= A ;

ELSE
y_next<= B ;

END IF ;
WHEN B =>

IF w = ’0’ THEN
y_next<= A ;

ELSE
y_next<= C ;

END IF ;
WHEN C =>

IF w = ’0’ THEN
y_next<= A ;

ELSE
y_next<= C ;

END IF ;
END CASE ;

END PROCESS ;

PROCESS ( Clock, Resetn )
BEGIN

IF Resetn = ’0’ THEN
y_present<= A ;

ELSIF (Clock’EVENT AND Clock = ’1’) THEN
y_present<= y_next ;

END IF ;
END PROCESS ;

z<= ’1’ WHEN y_present = C ELSE ’0’ ;
END Behavior ;

Figure A.46 Code equivalent to Figure A.45, using two processes.



April 26, 1999 11:53 g02-appa Sheet number 50 Page number 734 black

734 A P P E N D I X A • VHDL Reference

A

w 0= z 0=⁄

w 1= z 1=⁄Bw 0= z 0=⁄

Reset

w 1= z 0=⁄

Figure A.47 State diagram of a Mealy-type FSM.

A.11 Common Errors in VHDL Code

This section lists some common errors that our students have made when writing VHDL
code.

ENTITY and ARCHITECTURE Names
The name used in an ENTITY declaration and the corresponding ARCHITECTURE

must be identical. The code

ENTITY adder IS
...

END adder ;

ARCHITECTURE Structure OF adder4 IS
...

END Structure ;

is erroneous because the ENTITY declaration uses the nameadder, whereas the architecture
uses the nameadder4.

Missing Semicolon
Every VHDL statement must end with a semicolon.

Use of Quotes
Single quotes are used for single-bit data, double quotes for multibit data, and no quotes

are used for integer data. Examples are given in section A.2.

Combinational versus Sequential Statements
Combinational statements include simple signal assignments, selected signal assign-

ments, and generate statements. Simple signal assignments can be used either outside or
inside a PROCESS statement. The other types of combinational statements can be used
only outside a PROCESS statement.



April 26, 1999 11:53 g02-appa Sheet number 51 Page number 735 black

A.11 Common Errors in VHDL Code 735

Sequential statements include IF, CASE, and LOOP statements. Each of these types
of statements can be used only inside a process statement.

Component Instantiation
The following statement contains two errors

control: shiftr GENERIC MAP ( K => 3 ) ;
PORT MAP ( ’1’, Clock, w, Q ) ;

There should be no semicolon at the end of the first line, because the two lines represent a
single VHDL statement. Also, it is illegal to associate a constant value (’1’) with a port on
a component. The following code shows how the two errors can be fixed

SIGNAL High ;
...

High<= ’1’ ;
control: shiftr GENERIC MAP ( K => 3 )

PORT MAP ( High, Clock, w, Q ) ;

Label, Signal, and Variable Names
It is illegal to use any VHDL keyword as a label, signal, or variable name. For example,

it is illegal to name a signalIn or Out. Also, it is illegal to use the same name multiple
times for any label, signal, or variable in a given VHDL design. A common error is to use
the same name for a signal and a variable used as the index in a generate or loop statement.
For instance, if the code uses the generate statement

Generate_label:
FOR i IN 0 TO 3 GENERATE

bit: fulladd PORT MAP ( C(i), X(i), Y(i), S(i), C(i+1) ) ;
END GENERATE ;

then it is illegal to define a signal namedi (or I , because VHDL does not distinguish between
lower and uppercase letters).

Implied Memory
As shown in section A.10, implied memory is used to describe storage elements. Care

must be taken to avoid unintentional implied memory. The code

IF LA = ’1’ THEN
EA <= ’1’ ;

END IF ;

results in implied memory for theEA signal. If this is not desired, then the code can be
fixed by writing



April 26, 1999 11:53 g02-appa Sheet number 52 Page number 736 black

736 A P P E N D I X A • VHDL Reference

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY mealy IS
PORT ( Clock, Resetn : IN STD_LOGIC ;

w : IN STD_LOGIC ;
z : OUT STD_LOGIC ) ;

END mealy ;

ARCHITECTURE Behavior OF mealy IS
TYPE State_type IS (A, B) ;
SIGNAL y : State_type ;

BEGIN
PROCESS ( Resetn, Clock )
BEGIN

IF Resetn = ’0’ THEN
y <= A ;

ELSIF (Clock’EVENT AND Clock = ’1’) THEN
CASE y IS

WHEN A =>
IF w = ’0’ THEN y <= A ;
ELSE y<= B ;
END IF ;

WHEN B =>
IF w = ’0’ THEN y <= A ;
ELSE y<= B ;
END IF ;

END CASE ;
END IF ;

END PROCESS ;

PROCESS ( y, w )
BEGIN

CASE y IS
WHEN A =>

z<= ’0’ ;
WHEN B =>

z<= w ;
END CASE ;

END PROCESS ;
END Behavior ;

Figure A.48 An example of a Mealy-type machine.



April 26, 1999 11:53 g02-appa Sheet number 53 Page number 737 black

A.11 Common Errors in VHDL Code 737

ARCHITECTURE Behavior OF moore IS
TYPE State_type IS (A, B, C) ;
ATTRIBUTE ENUM_ENCODING : STRING ;
ATTRIBUTE ENUM_ENCODING OF State_type : TYPE IS "00 01 11" ;
SIGNAL y_present, y_next : State_type ;

BEGIN
· · · etc.

Figure A.49 An example of specifying the state assignment manually.

IF LA = ’1’ THEN
EA <= ’1’ ;

ELSE
EA <= ’0’ ;

END IF ;

Implied memory also applies to CASE statements. The statement

CASE y IS
WHEN S1 =>

EA <= ’1’ ;
WHEN S2 =>

EB<= ’1’ ;
END CASE ;

does not specify the value of theEAsignal wheny is not equal toS1, and it does not specify
the value ofEB wheny is not equal toS2. To avoid having implied memory for bothEA
andEB, these signals should be assigned default values, as in the code

EA <= ’0’ ; EB <= ’0’ ;
CASE y IS

WHEN S1 =>
EA <= ’1’ ;

WHEN S2 =>
EB<= ’1’ ;

END CASE ;

In general, the designer should attempt to write VHDL code that contains as few errors
as possible because finding the source of an error can often be difficult.



April 26, 1999 11:53 g02-appa Sheet number 54 Page number 738 black

738 A P P E N D I X A • VHDL Reference

A.12 Concluding Remarks

This appendix describes all the important VHDL constructs that are useful for the synthesis
of logic circuits. As mentioned earlier, we do not discuss any features of VHDL that are
useful only for simulation of circuits, or for other purposes. A reader who wishes to learn
more about using VHDL can refer to specialized books [1–7].

References

1. Institute of Electrical and Electronics Engineers, “1076-1993 IEEE Standard VHDL
Language Reference Manual,” 1993.

2. D. L. Perry,VHDL, 3rd ed. (McGraw-Hill: New York, 1998).

3. Z. Navabi,VHDL—Analysis and Modeling of Digital Systems(McGraw-Hill: New
York, 1993).

4. J. Bhasker,A VHDL Primer(Prentice-Hall: Englewood Cliffs, NJ, 1995).

5. K. Skahill,VHDL for Programmable Logic(Addison-Wesley: Menlo Park, CA,
1996).

6. A. Dewey,Analysis and Design of Digital Systems with VHDL(PWS Publishing Co.:
Boston, MA, 1997).

7. S. Yalamanchili,VHDL Starter’s Guide(Prentice-Hall: Upper Saddle River, NJ,
1998).


