
Advanced High-level HDL Design Techniques Copyright 1999, Synplicity Inc. 1

Advanced High-level HDL Design Techniques for Programmable
Logic

Author :
Darron May, Applications Specialist, ALT Technologies Ltd.

Abstract :
Design Methodologies for Programmable Logic focuses on advanced high-level HDL
design techniques for programmable logic. Advanced coding and optimisation
techniques for designs created in VHDL or Verilog will be discussed. Using HDLs
(hardware description languages) for a programmable logic architecture presents a
different set of challenges compared to gate array architectures and this session will
explore issues related to the area and/or speed optimisation of datapath and control
functions (such as complex counters, arithmetic functions, complex state machines,
multipliers, etc.) described in VHDL or Verilog and targeted to various programmable
logic architectures. The paper will cover tips and tricks of coding in HDLÕs for PLD's and
FPGA's and will demonstrate common pitfalls and styling issues for HDL's when
targeting popular architectures. Examples of when to code technology independent
HDL's and when to code technology dependent HDL's will be discussed. Architecture
features to avoid or exploit (e.g. RAMS, instantiating IO's or other vendor primitives,
using carry chains, special routing resources, set/reset flops) will be explored.

Introduction :
The design methods used when writing HDLÕs to target programmable parts can have a
larger impact on design size and timing than when targeting ASICÕs. The methods can
even effect the results you get for different vendors of programmable logic when
targeting through the same synthesis tool. This is largely down to the architectural
differences between different vendors technology and ASICÕs. The lowest level building
block within an ASIC is a two-input logic gate. The ASIC appears as a sea of two-input
logic gates where flip-flops are expensive as they take up as much space as 4 or 5
gates. Within the architecture there is an abundance of routing resources and the delay
characteristics are highly variable and routing dependent. A PLD is constructed from a
fixed AND/OR (sum of product) array which feeds I/O macrocells. The macrocell in a
programmable input/output block that can be configured in a number of ways to take
signals on and off the device. The routing between the resources is fixed therefore the
delays are fixed and well characterised. Flips-flops are very expensive as they tend to
use up a macrocell. FPGAÕs are made up from fixed arrays of logic blocks. In a course
grained architecture these logic blocks can represent 10 to 100 two-input logic gates.
The logic block is normally implemented as a RAM look up table, plus flip-flops.
Flip-flops are plentiful due to the fact that each logic block contains more than one. The
logic blocks are connected by specialised routing resources which actually contain
active elements which configure the connectivity. The delay introduced by the routing is
highly variable and very sensitive to placement and fan-out. Due to the architecture of
FPGAÕs and CPLDÕs other features have had to be introduced to make the devices
implement certain circuit topology more efficiently. These features are detailed in the

Advanced High-level HDL Design Techniques Copyright 1999, Synplicity Inc. 2

following sections. They include carry chains to implement arithmetic functions, wide
decode logic, and special routing resources for global signals such as clocks and reset
lines. Traditional synthesis tools are based on algorithms that suit the two-input logic
gate building block. They utilise Boolean optimisation and library cell substitution based
on timing and area parameters stored in the target library. The fact that the architectures
of CPLDÕs and FPGAÕs are completely different means that new synthesis techniques
are required to make full use of the features of a particular CPLD or FPGA architecture.

Architectural Optimisation :
As has already been discussed, matching algorithms to architectures is very important if
the synthesis tool is to utilise a certain device comparable to an Engineer handcrafting
the design. HDL specifications only define the language for simulation therefore the
synthesis tool is free to implement the logic in any way that maintains the specified
functionality. There are a number of important techniques that need to be employed to
give the synthesis tool the best chance of realising the optimum area or speed possible.
The following few paragraphs contain a short summary of the basic building blocks and
features for some of the most common FPGA and CPLD architectures.

Altera FLEX 8K and 10K families have an Arithmetic mode that uses dedicated routing
to the adjacent cell. The basic cell also has a cascade mode which uses a dedicated
AND function for wide fan-in gates. The sequential elements of the cells each have load
enables. Figure 1 shows how the basic cell can be configured to achieve different kinds
of logic structure.

Figure 1 - Altera Building Block

Advanced High-level HDL Design Techniques Copyright 1999, Synplicity Inc. 3

Lucent Technologies ORCA devices have wide LUTs (Look Up Tables) that can be used
to reduce delay at the expense of area. There is an Arithmetic mode that speeds up
datapath functions and saves area. Each PFU includes special function gates to
implement wide elements. There is also a complex flip-flop with multiplexers to allow
synchronous reset and load enables. These features are shown in figure 2.

Figure 2 - ORCA PFU Features

Xilinx XC4000[E,EX] devices are made up of two 4-input look up tables and one 3-input
look up table with dedicated routing between them. Again this architecture includes
special carry logic for arithmetic functions and each flip-flop has a load enable. The
structure of the CLB (Configurable Logic Block) is shown below in

Advanced High-level HDL Design Techniques Copyright 1999, Synplicity Inc. 4

Figure 3 - Xilinx CLB

Implementing datapath logic (adders, multipliers, counters, etc.) efficiently has posed
significant problems for FPGA synthesis tools. Synthesis vendors started to develop
various solutions which allowed for direct instantiation of macrofunctions in HDL. This is
simple to implement but requires effort on the part of the user and is not retargetable.
What is necessary is the ability to recognise these functions directly from the HDL
and then generate a module for the target architecture. Module generation is a very
important factor for good FPGA synthesis as it can make use of the carry chains and
other architectural features. Many synthesis
tools today do module generation, however module generation on its own does not
mean the best result for a certain application. What is required is the ability to fine tune
the generated module to the application - what is known as context sensitive module
generation. With context sensitive module generation the module is optimised into the
given application producing the best fit in terms of both area and speed. If we take for

Advanced High-level HDL Design Techniques Copyright 1999, Synplicity Inc. 5

example the implementation of an adder, in some architectures the smallest adder is not
always the fastest. In a fine grain architecture it is possible to produce a carry ripple
adder that would produce a small area implementation or a carry look ahead adder
which would produce a fast implementation. Context sensitive module generation would
use the designers input to decide whether a fast speed or low area implementation
would best fit the application. It would also go a bit further than this by producing some
kind of hybrid adder depending on the use of the outputs. For example an eight-bit adder
may have the four least significant bits connected to logic paths that are speed critical
whereas the four most significant bits are connected to lower non-critical logic paths. In
this case the module generator would produce a fast implementation for the bottom
half of the adder and a slower smaller implementation for the top half of the adder. Some
module generators within synthesis tools produce black boxes for the function
recognised in the HDL. This black box is used every time the function is found in the
HDL and is simply instantiated into the finished netlist. Another example of context
sensitive module generation is where the logic at the boundaries of the module is
modified by merging and optimising some of the logic that is part of the module into the
application. For example there may be some kind of extra clock enable logic connected
to a counter with clock enable. It would be possible to optimise this extra control logic
into the logic function that is already implemented in front of the sequential elements
reducing the levels of logic and therefore increasing the speed of operation.

Resource sharing is another area in which the synthesis tool can make large savings in
device area. Automatic resource sharing is done by analysing if-then-else and case
statements to find branches that have arithmetic functions that can be shared. These
branches are mutually exclusive therefore variables can be multiplexed to use the same
arithmetic functions. It is possible to write HDL to share resources however the coder
has to think carefully while architecting the design. The simple example below shows
two code segments, one written with resource sharing, the other without. The code on
the left will produce two adders followed by a multiplexer controlled by the signal sel to
switch between the answers from each adder. The code of the right produces
multiplexers to switch between vector b and vector c followed by one adder. A synthesis
tool with resource sharing will recognise that it can use just one adder with the style of
code on the left, and will use it if instructed or if a better synthesis result will be gained.
The advantage of having a synthesis tool that does automatic resource sharing is that
often it can find more opportunities within the design to share logic than the designer
would.

Timing Driven Synthesis is another very important factor in gaining good quality of
results. A synthesis tool driven by timing has the ability to take in constraints set by the
user to allow it to make decisions during the optimisation stage. Timing can be taken into
consideration during the synthesis process by reducing the levels of logic but this in itself
does not alleviate the need for the designers input.

Advanced High-level HDL Design Techniques Copyright 1999, Synplicity Inc. 6

Figure 4 - Timing Driven

ing good quality of results. A synthesis tool driven by timing has the ability to
take in constraints set by the user to allow it to make decisions during the optimisation
stage. Timing can be taken into consideration during the synthesis process by reducing
the levels of logic but this in itself does not alleviate the need for the designers input.

There may be times when certain paths have to be weighted so that the synthesis tool
can concentrate on them during the optimization process. If the user has no way to feed
the synthesis tool constraints then there would be no control on the final implementation.
This is shown in the simple example above in figure 4. The synthesis tool has produced
the best fit for this nine-input logic function in an XC4000 device. However input H may
be more time critical than input A which has the fastest path to Z. Timing driven
synthesis allows us to make H more critical than the other inputs to ensure that during
the synthesis process H becomes the input to the 3-input LUT giving it the fastest path to
Z.

As has been said previously, most synthesis tools use the same algorithms for
implementing FPGAÕs and CPLDÕs as they do for ASICÕs. This normally involves a
standard approach of matching library elements onto a generic form of the circuit. With
ASICÕs this approach is fine due to the fact that the target library is made up of macros
that are larger than the building blocks of the device. For example implementing a two-
input OR gate would be done with a few transistors. With an FPGA or CPLD the library
used would still have the same kind of macros as the ASIC library, however the way they
are implemented is completely different. The two-input OR gate would be implemented

Advanced High-level HDL Design Techniques Copyright 1999, Synplicity Inc. 7

in a course grain FPGA in a look up table that would have the ability to implement more
than just the OR gate depending on the topology of the circuit. This means that once the
circuit has been implemented a further stage has to be done to map this logic into the
building block of the target. Some synthesis tools try to do this second stage, others rely
on the vendors tools to do this mapping. Either way the method is not as efficient as a
tool that can directly map to the target architecture using the building blocks of the
technology. Direct synthesis uses the building blocks of the technology to tile the circuit.
This can be seen in figure 5 where the inverter and NAND function in the top left hand
corner end up in both look up tables. Replication of theses functions have no impact on
area due to the nature of the look up tables and end up making the implementation
faster and more efficient.

Figure 5 - Tiling Process

this logic into the building block of the target. Some synthesis tools try to do this second
stage, others rely on the vendors tools to do this mapping. Either way the method is not
as efficient as a tool that can directly map to the target architecture using the building
blocks of the technology. Direct synthesis uses the building blocks of the technology to
tile the circuit. This can be seen in figure 5 where the inverter and NAND function in the
top left hand corner end up in both look up tables. Replication of theses functions have
no impact on area due to the nature of the look up tables and end up making the
implementation faster and more efficient.

Advanced High-level HDL Design Techniques Copyright 1999, Synplicity Inc. 8

The benefit of this approach over the traditional synthesis approach can be seen in the
following example illustrated in figure 6. Boolean optimization reduces the two equations
down so that the function of (B or C) NAND NOT(A) is only implemented once. This is
perfectly acceptable when implementing the function in ASIC technology because each
gate takes area and the only disadvantage is the fact that the fan-out will be increased
on the output of the NAND gate. However, in a course grained FPGA, for example, it
would be possible to fit each equation into one four-input look up table as would be
implemented from a handcrafted design. If this optimization had been carried out in this
way then the mapping software is forced to place the common function in one look up
table and the other two parts in separate look up tables. This causes extra delay due to
the two levels of logic plus an area impact as only two look up tables are required.
Whether this replication is done so that the functions are mapped in the most efficient
way is down to the vendors backend tools or the mapping algorithms in the synthesis
tool. Obviously using a synthesis tool that maps directly to the building blocks of the
technology saves runtime and produces better optimized results.

Figure 6 - Direct Synthesis

Using Architecture Features: This section details some of the features within FPGAÕs
and CPLDÕs that should be considered when coding your HDL and also some general

Advanced High-level HDL Design Techniques Copyright 1999, Synplicity Inc. 9

facts about certain architectures. Many devices have global signal routing resources, to
avoid interconnect delay, which need to be utilized to make the most of the technology.
They normally have global set and/or reset lines which generally restrict the designer to
use a single set or reset throughout the design. These reset lines are asynchronous,
therefore if the designer chooses synchronous resets, extra logic is required.
If the code does not follow the restrictions above then the extra high fan-out nets have to
be routed via the data routing channels. This will lead to area, performance, and routing
problems. Another important global resource is the clock routing. Never gate clocks in
your design as this will prohibit the use of dedicated clock routing resources, which may
introduce clock skew in devices that are essentially skew free. Most function blocks
within FPGAÕs have sequential control lines that can be used to get the same effect as a
gated clock. The two code segments below show examples of both gated clock and
clock enable designs. The code on the left hand side produces an AND function that
stops the clock reaching the sequential element. This kind of design is not good practice
and could result in glitches on Gclk if the enb signal changes asynchronously with
respect to Gclk. The code on the right hand size uses a gate in front of the data input to
the sequential element that causes the last value to be fed back to the latch if the enb
signal is not active. The synthesis tool should recognize this and use the clock enable
available in the logic block.

 Gclk <= clk and enb;

 if Gclk'event and Gclk = '1' then

 q <= data;
 end if;

 BAD

 if Gclk'event and Gclk = '1' then
 if enb = '1' then

 q <= data;

 end if;
 end if;

 GOOD

Be aware that Lucent PFUÕs contain 4 DFFÕs and there is one clock enable line per PFU.
This has an impact on mapping as DFFÕs with different enables cannot be packed into
the same PFU. Also consider that you may need to help synthesis by instantiating
components, for example GSR or STARTUP blocks for Lucent and Xilinx, GLOBAL
buffers for Altera, CLKINT for Actel and HIPAD for QuickLogic. If you adhere to the rules
for global reset in your HDL code then a good synthesis tool should be able to
automatically use the GSR facility in the device. The code below shows a good and bad
example for the use of global resets within Xilinx and Lucent devices. Try to use one
reset within your device so that the design can benefit from the use of this global facility.

Advanced High-level HDL Design Techniques Copyright 1999, Synplicity Inc. 10

Pad cells are typically programmable cell resources that may be input or output buffers,
registers, tristate drivers, or high drive pads. Good HDL synthesis tools automatically
select I/O cells to insert where appropriate. If your synthesis tool does not do this, you
have to instantiate the cells manually otherwise you will lose out on the use of the
registers within the I/O. Not using the flip-flops in the I/O has an impact on the
area of the device because the design has to use flip-flops in the core which could be
utilised for other functions. The timing is also effected because instead of having a
register that is directly on the output pin, an internal flip-flop has to be routed out of an
output buffer causing extra delay. This delay will also be dependant on the placement of
the flip-flop within the core. Some technologies such as ORCA do not have flip-flops in
the I/O as they rely on being able to place the flip-flop close to the boundary of the
device. The synthesis tool should have the ability to take input from the designer so that
placement information can be passed onto the place and route tools.

Some FPGAÕs have internal tristate buffers which can be used to implement wide
multiplexers. No synthesis tools make use of these feature therefore it is necessary to
instantiate these buffers manually in the HDL making it non-portable. Using these buffers
can make routing easier and in Xilinx devices will use fewer cell resources. When you do
utilise the tristate buffers you need to be careful of bus contention as the select line
timing becomes important. Device initialisation behaviour can change and power-up is
often not tested during simulation. If you consider a multiplexer whose data lines are all
zero, but selects are ÔxÕ, the tristate drivers could be driving if the selects are not
initialised.

Course grain architectures have special case hardware to improve implementation of
datapath elements. It has been stated previously that synthesis tools should use these
features for operators. Carry chains and cascade logic implement fast paths that would
otherwise be implemented in look up tables. If your synthesis tool does not make use of
these features then it is possible to manually access them by the instantiation of
the carry or cascade primitives or by using vendor generators, such as LPM (Altera),
XBLOX (Xilinx) and ACTGEN (Actel). Remember Ôout = a + bÕ is much easier to specify
so bare this in mind when selecting a

Advanced High-level HDL Design Techniques Copyright 1999, Synplicity Inc. 11

synthesis tool. The real challenge for synthesis is to exploit carry and cascade features
for random logic. It is important to select an FPGA/CPLD architecture to fit the
application you are designing. Antifuse devices are fine grain and do not need dedicated
logic to improve speed, they are fast, but at the expense of area.

FPGA and CPLD architectures normally include, in some form, a section of memory that
can be configuredas RAM or ROM. These RAMs/ROMs are much more efficient for
implementing such functions as tables, fifos, and register files. Even a small register file
could end up utilising all the available registers in an FPGA.
Currently no synthesis tools automatically infer RAMs and ROMs from the HDL; access
is through LPMs or direct instantiation. It is possible to use two dimensional arrays to
produce RAM elements, in some synthesis tools, however this uses the storage
elements within the logic blocks and not the RAM available in the technologies. If the
synthesis tool did infer these RAM elements then a number of rules would have to
be followed. Normally if a designer has chosen a particular architecture for its RAM
capabilities then the application would be well understood. Trying to keep the HDL
independent so that it could be re-targeted would be difficult and probably not possible
due to architectural differences.

Logic and register bits come from different resource pools within the architecture
therefore for most designs register bits can be used freely (unlike ASICs) to reduce
loading and encode state machines. Finite StateMachines implemented in CPLDs and
encoded as one-hot will usually lead to the fastest operational speed, however routing is
harder. Other encoding schemes can work well, such as grey encoding. With FPGA
architectures, one-hot encoding is normally better, however it is important to have
control over the stateencoding when using enumerated types in VHDL. The best
encoding scheme for a given application candepend on many different factors; the
number of states, the amount of next state logic, speed, area etc.

Remember a synchronous design is always a ÔhappyÕ design, it is not possible to model
asynchronous circuitry and guarantee timing.

Technologies tips/tricks and caveats :
The following section covers various hints and warnings when using different Vendor
Architectures. All FPGAs and CPLDs have free resets in their sequential components,
therefore they should be used. If these asynchronous resets are not used then area and
performance will be lost as extra logic and routing resources will be required. Presets
normally cost an input to the look up table, therefore try to incorporate presets in your
design by changing the states of signals.

There are many times in an HDL methodology when you end up with simulation
mismatches and errors dueto modeling differences. Very often these problems are only
down to a few commonly made mistakes. The first is that of initial value assignments
made within the RTL code. Synthesis hardware does not honour initial values as the
initialization can not be tied to any physical signal. Some sequential circuits will never
come out of an un-initialised state if you do not pay careful attention to the reset. Take
care when encoding state machines in FPGAÕs due to the power-up reset to registers. If
you fail to encode the all Ô0Õs state then the implemented circuit will never leave this
state, however the RTL version will function correctly. The

Advanced High-level HDL Design Techniques Copyright 1999, Synplicity Inc. 12

following two pieces of VHDL code show two methods of ensuring that the all Ô0Õs
problem never happens. The first method uses an enumerated type and therefore still
leaves the encoding scheme up to the synthesis tool. However because the enumerated
type has given names to three dummy states so that there are 2Nstates, the others
clause will ensure that we move out of the all Ô0Õs state. If you chose a one-hot
implementation then you need to ensure that the reset takes you away from the all Õ0Õs
condition. The synthesis tool should do this for you as long as it understands
FPGA/CPLD architectures. The secondpiece of code uses constants to encode the
states. In this example we have ensured that the reset state is the all Ô0Õs state therefore
we will automatically move into this state on power-up.

Beware of the global reset facility because some translations to simulation netlists
struggle to properly connect GSR or STARTUP signals. Remember an "x" mismatch is
usually an initialisation problem whereas a Ô1Õ vs. Ô0Õ mismatch is more likely to be a logic
or timing problem.

The semantics of code written for simulation does differ from the semantics of synthesis
code. This means that it is possible to get mismatches between RTL code and the
implemented circuit. The first example of this is when signals are missing from the
sensitivity list of a process in VHDL or an always block in Verilog. In simulation a
process can only be triggered by a change in state on any of the signals in the sensitivity
list. The logic that is implemented by the synthesis tool has to be based on all inputs.
This means that if a signal that is an input to a process is not in the sensitivity list of the
RTL code then there may be differences between the two simulations.

Figure 7 - Missing Sensitivity Variable

The example above, in figure 7, shows the RTL model of a two input multiplexer with
signal b missing from the sensitivity list. If the patterns in the simulation shown are input
into the model it can be seen that there is a difference in the results. This is because
when the falling edge of signal b occurs the process is not triggered therefore the if-then-
else statement is not processed and the out signal keeps its value until the falling edge
of signal a. This is a very simple example, however there may be times when the

Advanced High-level HDL Design Techniques Copyright 1999, Synplicity Inc. 13

function simulated at the RTL level is what the designer wanted however when the
implementation is simulated the results are different. Good synthesis tools will advise the
designer that variables are missing from sensitivity lists.

The way some sequential registers are modelled with the HDLÕs can mean differences in
behaviour between RTL simulations and the gate level model in some circumstances.
For example the following always block will not behave in the same way as the silicon if
reset falls while set remains high.
If set goes high then the block will be triggered and the q output will be set to Ô1Õ. If reset
goes high while set remains high then the block will be triggered and the q output will be
reset to Ô0Õ. However, now if the reset line falls, the q output will remain low even though
set is high which means that the q output should be set to Ô1Õ. In the implemented
version the set and reset will function asynchronously therefore the element will set
again.

When designing with SRAM architectures it is important to try to match the physical and
logic hierarchies. It is very easy to carry out a top-down approach with HDLÕs, however if
there is no balance in the logical hierarchy then a lot of time may be needed in the
floorplanning tools to get the best placement. The devices architecture views the world in
4 quadrants thereby splitting the top level module and minimising connection between
instances, the routability will be improved and the placement will be made far easier.

Estimated gate counts are calculated in different ways by different Vendors. They are
based on an average number of gates implementable by a logic block multiplied by the
number of blocks in the device. The number of gates in the I/O ring, for example the flip-
flops, are then added to this figure. This estimate is not based on circuit topology
therefore care needs to be taken when estimating which device from a family will
be required for a design.

AlteraÕs FLEX 10K and 8K are an SRAM based technology. There are no internal tristate
drivers within these devices therefore care must be taken when tristate busses are
implemented in HDL. It is possible that the devices may blow up when these buses are
implemented as multiplexers. Remember fixed pin location assignment can cause
routing difficulties within these devices. The best methodology, if possible, is to ignore
pin assignments to establish initial area and delay baselines. These devices have EABÕs
(Extended Array Blocks) which are a separate logic resource for implementing RAMÕs,
ROMÕs and look up tables. These blocks can be used to help you to fit the device but at
the expense of sacrificing some performance. Altera do add the estimated capacity of
these blocks to the total estimated gate capacity of their devices therefore, if they are not
used, it is not possible to utilise the device to the maximum levels printed in the
databooks. The larger CPLD devices have ample cell resource but sometimes suffer
from not enough routing resources.

Many Xilinx devices have inadequate routing resources which result in delays being very
unpredictable due to very long routes. The newer families have been improved greatly
so that this is not such an issue. The use of the internal tristates can help with utilisation,
which necessitates having to convert your wide

multiplexers to tristates when routing or fitting becomes a problem.

Advanced High-level HDL Design Techniques Copyright 1999, Synplicity Inc. 14

Lucent Technologies ORCA PFUÕs do not have local VCC or GND taps which means
that they have to be routed - this can cause routing congestion. The mapping program
within the Foundry software tools offers another set of options which can compliment or
compete with your front end synthesis optimisation. It is best to turn off most of the
backend optimisations initially, maybe adding some of them if you have fitting
problems.

Actel and QuickLogic devices can be fully utilised and still route. The delay is very
predictable, however delay is very sensitive to fanout so lower fanout limit to 6-10 for
highest performance. With fine grain architectures there seems to be an under
estimation in gate count which means that the devices can normally end up holding
more gates than the databook suggests.

Conclusions :
FPGA synthesis requires completely different optimisation techniques than for ASICÕs.
An important and difficult goal for FPGA synthesis is to let you design in a technology
independent way but still utilise all of the special case logic to produce good results.
There are a number of techniques, discussed in this paper, that are required to produce
results as close to handcrafted as possible. If quality of results are important to your
design then you should select a synthesis tool that employs these techniques. When
using HDLÕs to design FPGAÕs and CPLDÕs it is important to understand the vendors
architecture because the design methodology used during coding can still have a
significant effect on the overall quality of results.

