
HDL For FPGAs Page 1 January

VHDL / Verilog Coding for FPGAs

Produced by: Technically Speaking, Inc for DynaChip Corporation

Introduction: FPGA designs have traditionally been entered using schematic capture and
vendor specific libraries. This use of proprietary tools and macros gives designers a high
degree of control and optimization at the device level, but it inherently limits the design
to that particular product or technology.

On the other hand, VHDL and Verilog HDL offer a means of describing hardware and
functionality at a very high level --a technology independent vantage. This affords
designers an unprecedented degree of latitude and productivity. Ideally, a target
technology can be chosen at a later point in the design cycle. In the meantime, the chip
or system level functionality can be modeled and completely verified in a behavioral
environment, as shown in figure 1.

Figure 1. Levels of Abstraction for VHDL

Both VHDL and Verilog have their origins in “Hardware Modeling and Verification”.
That means simulation! – and not necessarily synthesis. The IEEE standards 1076
(VHDL) and 1364 (Verilog) are exhaustive with respect to simulation, but define only
broad parameters for synthesis. Considering that potential target technologies—ASICs,
FPGAs, CPLD, Etc. are quite diverse and entirely new ones are being created, it would
be impossible to completely pre-define optimal synthesis requirements for each.

Therefore, completely generic HDL code is usually not optimal for FPGAs.

Behavioral

Logic

RTL

Layout

Fewer details,
Faster design
entry and
simulation

Technology
specific
details, slower
design entry
and simulation

 f

 DFF
 AND_OR2

 logic
 cell

 logic
 cell

HDL For FPGAs Page 2 January

What makes FPGAs unique?

FPGAs are user programmable ASICs. As such, they must accommodate mixed
combinatorial and sequential logic. FPGAs are generally characterized by coarse grain
internal and I/O logic blocks. They may contain LUTs (Look-Up Tables), bi-directional
I/O, dedicated registers and or latches, control muxes, distributed or block RAM, global
Clock buffers, and programmable routing resources.

The DynaChip FPGA family logic cells contain dedicated “And-Or” in addition to
Multiplexer, Arithmetic and RAM logic.

It’s worth noting that the initial primary target technology of VHDL and Verilog were
traditional ASICs, which are characterized by fine grain architectures. That means that
transistors at the substrate level are formed into gates, through the process of metalization
and fabrication. SSI, MSI, and complex logic is built from this starting point.

As compared to traditional ASICs, FPGAs increase flexibility, reduce the total design
cycle and enhance the “time to market”.

However, the flexible programmable FPGA architecture presents a formidable challenge
to HDL synthesis compilers.

HDL For FPGAs Page 3 January

Figure 2. DynaChip Logic Cell DY6000 Family

HDL For FPGAs Page 4 January

Within a given FPGA logic block, a finite amount of combinatorial logic may be
implemented and driven through buffered or registered outputs. The process of selecting
what functionality goes into which logic cells is called mapping.

This is usually the first part of the implementation process as shown in figure 3.

The most challenging aspect of synthesis for FPGAs is that all three stages of
implementation are inter-related, they are in-fact cumulative and dependent. The mapping
affects the placement, which in turn impacts the routing.

Clocks, high fan-out signals, and logic levels are the most difficult items to optimize from
a synthesis standpoint. Each additional logic level represents an irreducible block delay
plus the necessary routing.

The DynaChip FPGA family uses Active Repeaters, a patented technology for buffering
routing resources. This greatly decreases routing delays, increases performance and
predictability by driving fixed loads. Even so, if the logic is poorly mapped, additional
logic levels will undermine the routing advantage.

Figure 3. FPGA Implementation Process

Mappingnetlist Placement Routing

The netlist is derived from the synthesis process.

FPGA Implementation

HDL For FPGAs Page 5 January

Figure 4. DynaChip Active Repeater routing resources.

The bottom-line is that design optimization, as measured in terms of maximum frequency
and or area utilization must start with the synthesis process.

The QOR (Quality of Results) of the synthesis process is driven by two primary factors:
the user coding style and the compiler’s ability to infer optimal logic and or mapping for
the particular FPGA architecture.

The ability to infer also includes any device specific resources or features that enhance
chip level implementation, but are unique to the target FPGA!

The Synthesis Process

In an attempt to understand the broader concepts, lets examine the synthesis process.
There are four distinct steps in VHDL or Verilog compilation.

– Analyzation
The design unit is checked for syntactic errors, once finalized, it is stored in
the “work” library.

– Elaboration
The design hierarchy is fleshed out, starting from the top. A unique copy of
each sub-module instance is created. Loops are unrolled, etc.

– Execution
The model is simulated in discrete time steps in a behavioral environment.
This is driven primarily by events on signals, which then trigger processes.

HDL For FPGAs Page 6 January

– Synthesis
A netlist description of the logic is generated, in either an industry standard
or vendor specific format.

From the standpoint of menu selection, most synthesis compilers do not distinguish
between the “Synthesis” and “Elaboration” stages of processing. This is due largely to
the fact that synthesis must include elaboration. They are nonetheless different and
distinct steps in the overall compilation.

Elaboration is necessary to resolve hierarchy, create unique instances and verify that
data-type restrictions are adhered to. For instance, during elaboration, the use of the ‘+’
operator infers that an adder be built. At this point however, only the behavioral or
functional adder has been defined.

Meanwhile, Synthesis is the process of actually mapping the elaborated design to the
target technology library. At this stage, a decision will be made concerning which
available adder from the vendor’s library to use. That choice is driven by the size
requirements, along with user defined constraints for speed or area. The output of
the synthesis process is the netlist, in either a vendor specific or standardized format.

Again, note that most tools do not use the VHDL terms “analyze” and “elaborate”, rather
they use menu options such as “check syntax” and “compile”.

Figure 5. The Synthesis Compilation Process

11 FPGA Coding Styles Pointers

Module
(entity&Arch)

Analysis Work
Library

Execution
(simulation)

Synthesis

Elaboration

Technology
Library

i.e. DynaChip
DY6000

Netlist

Top Level
Simulation

HDL For FPGAs Page 7 January

We now turn our attention to the actual coding process. We will examine 11 distinct
HDL coding points that enhance design implementation within the DynaChip DY6000
product family and FPGAs in general. They relate to combinatorial logic, registers with
combinatorial inputs, accessing dedicated high-speed carry logic and general guidelines.

Point 1: Prefer case over if/ else if !
Objective: Minimize FPGA logic levels
Benefit: Reduced path delay, increase design frequency.

One of the great benefits of an HDL design approach is the ability to describe relatively
complex and conditional operations using simple “if/else if” or “case” statements. Using
a case statement will generally produce a “flatter” implementation as opposed to an
if/else, which tends to result in “priority encoded” logic.

Z

D

C

B

A

Sel

D

C

B

A

Z

process (A, B, C, D, Sel)
begin
 If (Sel = “00”) then Z <= A;
 elsif (Sel = “01”) then Z <= B;
 elsif (Sel = “10”) then Z <= C;
 elsif (Sel = “11”) then Z <= D;
 end if;
end process ;

process (A, B, C, D, Sel)
begin
 case (Sel) is
 when “00” => Z <= A;
 when “01” => Z <= B;
 when “10” => Z <= C;
 when “11” => Z <= D;
 end case;
end process ;

HDL For FPGAs Page 8 January

Figure 6. VHDL conditional branching example.

There are other important considerations here as well. The first is that if your conditions
are indeed overlapping, (i.e. if x < 3 then…else if x < 5 then…) an if/else if statement will
be required. In that circumstance, priority encoded logic will be necessary to satisfy the
intended functionality. But this invariably leads to cascaded logic levels, which can
dramatically reduce FPGA design performance. Avoiding overlapping conditions may
necessitate re-considering the design style!

Another issue is covering all possibilities within a case statement. In VHDL, this is
required, but not so in Verilog. As such, the concept of “full case” (all possible
conditions covered) and “parallel case” (no conditions overlapping) are inherent within
VHDL. This is usually accomplished using an “others” clause. Explicitly declaring each
possible value is usually not practical when using STD_LOGIC or STD_LOGIC_VECTOR,
where each element has nine possible values.

In Verilog, if all conditions are not specified and no “default” clause exist, a latch will be
inferred, which may also affect the total number of logic levels required.

module IF_MUX (Sel, A,B,C, D, Z_out) ;
input [1:0] Sel ;
input A, B, C, D;
output Z_out ;
reg Z_out ;

 always @ (A or B or C or D or Sel)
 begin
 if (Sel = = 2’b00) Z_out = A ;
 else if (Sel == 2’b01) Z_out = B ;
 else if (Sel == 2’b10) Z_out = C ;
 else Z_out = D ;
 end
endmodule

module CASE_MUX (Sel, A,B,C, D, Z_out) ;
input [1:0] Sel ;
input A, B, C, D;
output Z_out ;
reg Z_out ;

 always @ (A or B or C or D or Sel)
 begin
 case (Sel)
 2’b00: Z_out = A ;
 2’b01: Z_out = B ;
 2’b10: Z_out = C ;
 default: Z_out = D ;
 endcase
 end
endmodule

Figure 7. Verilog conditional branching execution.

For Verilog, if the code doesn’t appear to cover all possible conditions, but actually does
in the context of the design, it may be helpful to add the “full case” and or “parallel
case” compiler directive to prevent latch inference or priority encoding of logic.

For VHDL or Verilog, do not describe the default assignment as being to ‘0’. This will
cause an additional gate on the output of the mux, an assignment to don’t care is
preferable.

When using VHDL and the DynaChip architecture, another recommendation would be
to use “bit” and “bit_vector” data-types (Mux only), and explicitly declare all possible
values, thus avoiding the “others” or “default” clause that may produce a nand of all

HDL For FPGAs Page 9 January

other inputs. If this happens, the nand will force an additional logic level due to the
inverted output.

Point 2: Group Arithmetic Operators Using Parentheses.
Objective: Minimize FPGA logic levels
Benefit: Reduce path delay, increase design frequency, enhance code readability.

For both VDHL and Verilog, all operators (including logical) are modeled as 2 input
functions. The expression:

 Z <= A + B ; (VHDL) or assign Z = A + B ; (Verilog)

will elaborate to a 2 input adder with the operands A and B as inputs. With only two
operands, this is appropriate. However when multiple operands exist, the process may
yield unexpected results.

 Z <= A + B + C + D; (VHDL) or assign Z = A + B+ C + D; (Verilog)

HDL For FPGAs Page 10 January

Yields a series of 2 input cascaded adders that may create multiple logic levels depending
on the bit-width of the operands. Group operators with parentheses to control synthesis!

Figure 8. Grouping operators with parentheses.

Point 3: Avoid Inadvertent Latch Inference
Objective: Minimize FPGA logic levels
Benefit: Reduce path delay and area requirements, enhance design stability.

For both VHDL and Verilog the use of a “if” statement without an explicit “else” clause
is usually considered incomplete, and will infer a transparent latch to preserve data in the
event that the “if” condition is not true.

Z <= A + B + C + D ; Z <= (A + B) + (C + D) ;

B

A

C
D

Z

3 logic levels

D

Z

A

B

C

2 logic levels

+
++

+
+

+

Using parenthesis to group operators has three important benefits:

- Forces minimal logic level implementation.
- Eliminates operator precedence ambiguity.
- Enhances code readability.

HDL For FPGAs Page 11 January

Figure 9. Inadvertent Latch Inference

Point 4: Avoid Inadvertent Latch Inference via “ incomplete combinatorial process”
Objective: Minimize FPGA logic levels
Benefit: Reduced path delay and area requirements, enhance design stability.

Within a combinatorial VHDL process or Verilog always block, each output must be
assigned to each time the process resumes execution. If this is not the case, a latch will
inferred on that output.

process (D, En)
begin
if (En = ‘1’) then
Q <= D ;
end if ;
end process ;

D
En

Q

What happens when En /= ‘1’ ?
The current value of Q will
need to be maintained .

QD

En

 If you intend to simply gate a input signal with a control or enable, you must specify the
appropriate “else” statement assigning ‘0’ to the output.

If a latch is intended, then code it as shown, be sure however that the target FPGA
technology supports internal latches without creating timing hazards and mutli logic levels.

HDL For FPGAs Page 12 January

In the following example, there are two outputs referenced in the process, but depending
on the selector expression (the signal “Sel”), only one output is actually assigned to.

BAD_MUX : process (A, B, C, D, Sel,)
 begin

 case (Sel) is
 when “00” => Out_1 <= A;

 when “01” => Out_1 <= B;
 when “10” => Out_2 <= C;

 when “11” => Out_2 <= D;
 end case;
end process;

This leads to a transparent latch on the Out_1 and Out_2 signals because an explicit
assignment is not made each time the process executes. For example, if Sel = “10”, the
current value of Out_1 will need to be maintained, hence the latch.

 The are few approaches to avoid this:

1. Explicitly assign to each output under all conditions.
2. Include all outputs in an “others” (VHDL) or “default” (Verilog) clause.
3. The best recommendation however is to separate the outputs into different functional

blocks, and to use concurrent statements instead of processes or always blocks. In
VHDL, this is a conditional signal assignment, in Verilog, it is a data-flow construct.

VHDL Verilog

Out_1<= A when Sel = “00” else
 B when Sel = “01” ;

Out_2<= C when Sel = “10” else
 D when Sel = “11” ;

assign Out_1 = (A &(Sel==2’b00))| (B &(Sel==2’b01));

assign Out _2 = (C &(Sel==2’b10)) | (D &(Sel==2’b11));

 Figure 10. Concurrent signal assignment is VHDL / Verilog

Point 5: Avoid Assigning Intermediate Logic Terms.
Objective: Minimize FPGA logic levels
Benefit: Reduce path delay and area requirements.

Using variables or signals, it is quite common and intuitive to assign intermediate
combinatorial logic terms to other signals. Functionality speaking, this is quite
appropriate.

HDL For FPGAs Page 13 January

The problem however, is that FPGAs used either LUT or dedicated And-Or logic to
implement such functionality. These structures are generally one dimensional in nature,
such that a certain of inputs resolve to a single output. See figure 11.

Figure 11. LUT or Dedicated And-Or Logic

That means that if an intermediate value is assigned to more than one target, it will
necessitate an additional logic level to meet the fan-out requirement.

Figure 12. Replicating Gate Inputs

As shown in figure 12, replicating the input gate eliminates the fan-out requirement and
allows the logic to be combined to the minimal logic-level. It may be a single logic level
if the total number of inputs does not exceed the fan-in capability of the FPGA logic cell.

Point 6: If using if/else if, make critical signal first in the conditional branches
Objective: Reduce path delay for critical signals.
Benefit: Faster design performance.

When using “if/else if” for multi-conditional execution, priority encoded logic will likely
be generate. This is always true when the conditions overlap, and quite likely when they
do not. It should be noted that if/else if is normally used to indicate priority in a group of
sequential statements.

process (A,B,C,D)
 begin
 F <= A and B or C ;
 G <= A and B or D ;
 end process ;

signal H : bit ;
process (A,B,C,D)
 begin
 H <= A and B ;
 F <= H or C ;
 G <= H or D ;
 end process ;

F

GD

C
B
A

F

GD

C
B
A

 1 Logic Level 2 Logic Levels

H

:

HDL For FPGAs Page 14 January

With that in mind, we should anticipate that the synthesis compiler will build logic in the
same order that the sequential statements are parsed. See figure 13.

Figure 13. Priority Encoding

Ensure that your critical signal is coded first in an “if / else if” statement. This might also
be appropriate if the particular input is a “late arriving” signal.

Point 7: Use OHE (One Hot Encoding) for State Machines.
Objective: Reduce wide gating requirements.
Benefit: Minimal logic levels, faster clock rates.

process (A, B ,C , D , Sel)
 begin
 if (Sel = “00”) then Z = A ;
 elsif (Sel = “01”) then Z = B ;
 elsif (Sel = “10”) then Z = C ;
 elsif (Sel = “11”) then Z = D ;
 end if ;
end process ;

D

C

B

A
Z

First conditional
statement has priority

If ‘A’ is critical path,
code first.

HDL For FPGAs Page 15 January

There are various approaches to state-machine encoding, the most intuitive would be
sequential (binary). However, the larger the state-machine, the greater the number of
terms and control inputs that must be decoded. That means potentially wide gating
requirements and here in lies the problem for FPGAs.

Each logic cell can accommodate combinatorial logic up to its fan-in capability. In the
case of the Xilinx XC4000 and the DynaChip DY6000, that capacity is nine. When that
threshold is exceeded, the logic is cascaded across multiple logic-cell blocks.

As mentioned earlier, this increases the path delay substantially. Each block has a fixed
and irreducible propagation delay, in addition to the routing between blocks. The
DynaChip family has the advantage of fixed routing delays, but the data path would still
suffer from a multi logic-level implementation.

At the same time, FPGAs are “register rich”, with dedicated storage elements within both
the internal core and I/O. One Hot Encoding leverages the unique FPGA architecture by
using flip-flops to actually represent each state, hence the name OHE—one flip-flop is
“hot” or active per state.

The flip-flops are strung together in a shift-register like structure. Contrary to some
interpretations, OHE does not necessarily mean self-decoding (although that may be
possible depending of the exact nature of the logic). There is some requirement for
decoding next-state logic, but the number of input terms is reduced substantially. That
makes it easier to implement in one logic level, using the registered output and
maintaining the maximum clock frequency possible for the device. See figure 14.

At the present time, synthesis compilers supporting the DynaChip product family
generally do not utilize an optimal OHE implementation. The user can however, one-hot
encode the state-machine directly. See figure 15 for VHDL and Verilog examples.

HDL For FPGAs Page 16 January

Figure 14. Sequential Encoding Vs. One Hot

<VHDL>
entity State_Mach is
port (Cond_1, Cond_2, Cond_3 : in boolean ;
 Clk, Rst : std_logic;
 D_out : out std_logic) ;
end State_Mach ;

architecture DynaChip of State_Mach is
subtype My_OHE is bit_vector (3 downto 0); --declare subtype to be used
 constant S1 : My_OHE := “0001” ; -- declare states as constants, of the defined subtype
 constant S2 : My_OHE := “0010” ;
 constant S3 : My_OHE := “0100” ;
 constant S4 : My_OHE := “1000” ;
signal State, Next_State : My_OHE ; -- declare signal of the same subtype
begin
Seq :process (Clk, Rst)
 begin
 if Rst = ‘1’ then State <= S1;
 elsif (Clk’event and Clk =‘1’) then
 State <= Next_State;
 end if ;
end process;
 . . .
Comb: process (Cond_1, Cond_2, Cond_3, State)
 begin
case State is
when S1 =>
if Cond_1 and Cond_2 then
Next_State <= S2 ; else
Next_State <= S3 ;
 . . .

One Hot Encoding (OHE)
One Register Per State

:
:

CS1

CS2

CSn

NS1

NS2

NSn

IN_1

NS1

CS2

NS1

IN_1

S1
“00001”

S2
“00010”

S3
“00100”

...

...

S1

S3

S2

CS1
IN_2

Sequential (Binary) Encoding
Wide Gating Requirement

HDL For FPGAs Page 17 January

<Verilog>
module OHE_Statmach (In1,In2, Clk,Rst,Out1) ;
input In1,In2, Clk,Rst ;
output Out1 ;
reg Out1 ;
reg [2:0] State ; // to hold current value
parameter [2:0] S1 = 3’b001,
 S2 = 3’b010,
 S3 = 3’b100 ;
always @ posede (Clk or Rst)
begin
 if (Rst) begin
 state = S1 ;
 Out1 = 1’b0 ;
 end
else
 case (State)
 // synopsys full_case parallel_case
 S1: . . .
 S2: . . .
 S3: . . .
 default : Out1 = 1‘bx ;
 endcase
end
endmodule

Figure 15. VHDL /Verilog Examples for OHE

Another advantage of OHE (encoding) is that it allows designers to minimize the logic
between the current-state register and the logic being controlled. A sequentially encoded
state-machine usually requires gating the register output along with other state inputs or
control signals.

An optimal FPGA solution would be to use One Hot Encoding, and design the state-
machine so that each state controls only one output, or only valid state per register. This
allows the single register output to drive the logic being controlled at that state. This will
minimize or possibly eliminate gating requirements.

This should be considered a design issue, not merely HDL coding style!

HDL For FPGAs Page 18 January

Point 8: Use LFSR for Terminal Count
Objective: Reduce gating requirements.
Benefit: Minimize logic levels, enhance performance, faster clock rate.

Counters are an integral aspect of digital circuitry. However, a strict binary sequence is
not always required. Given the inherent fan-in limitation for combinatorial logic within
an FPGA, large binary counters may necessitate multiple logic levels to fully decode the
outputs. Once again, this increases the path delay, and reduces the maximum frequency.

Depending on the application, it may be more appropriate to use an LSFR, (Linear
Feedback Shift Register), especially if generating a terminal count is the primary
objective, as in the case of a FIFO.

An LSFR counter is distinguished by its use of flip-flops in a shift-register sequence
along with taps from various stages of the registers. The taps are either XORed or
XNORed. The placement of the taps determines the count sequence, which although is it
pseudo-random (non-binary), it does repeat and is therefore deterministic.

The value of the LSFR in an FPGA is that it leverages the use of the dedicated registers
while minimizes gating requirements. From a coding standpoint, using an LFSR
requires that you place the taps correctly to get a particular count sequence, and that you
safeguard against the counter initializes to an illegal condition and “locking-up”. For
example, a lock-up would occur if all the registers were reset, and a ‘0’ was fed into the
first stage. This possibility exist anytime the maximum count sequence is not used.

Another consideration is whether to use a “one to many” or “many to one” approach. As
shown in figure 16, a “one to many” uses only a single xor (xnor) gate prior to the
registers as opposed to a tree of gates as required by the “many to one” approach.

Figure 16. “One to Many” LFSR

One to Many LFSR
Reset
Clock

HDL For FPGAs Page 19 January

library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.Numeric_STD.all;

entity My_LFSR is
 port (Clk, Rst: in std_logic ;
 Out_1 : out unsigned (3 downto 0)) ; --unsigned integer, defined in package Numeric.std
 end entity;

architecture RTL of My_LFSR is
 constant TAPs : unsigned (3 downto 0) := “1100”; --Taps taken according to desired count sequence
begin
 process (Clk, Rst)
 variable LSFR_Int : unsigned (3 downto 0); -- used to initialize LFSR
 variable Init_Zero, Feedback : std_logic; --
 begin
 if (Rst = ‘1’) then
 LSFR_int := “0000” -- reset counter
 elsif rising_edge (Clk) then
 Init_Zero := ‘0’;
 for I in 0 to 2 loop
 Init_Zero := Init_Zero nor LSFR_Int(I); – generate “nor” logic to allow all possible states
 end loop;
 Feedback := LSFR_Int(3) xor Init_Zero;
 for I in 3 downto 1 loop
 if (TAPs(I-1) = ‘1’) then
 LFSR_Int (I) := LFSR(I-1) xor Feedback;
 else
 LFSR_Int (I) := LFSR(I-1);
 end if;
 end loop;
 LFSR_Int(0) := Feedback;
 end if;
 Out_1 <= LFSR_Int;
 end process;
end architecture RTL;

Figure 17. VHDL Code for 4 bit “One to Many” LFSR (reaches all 16 states)

HDL For FPGAs Page 20 January

Point 9: Avoid Integer Data-type On Outputs & Use Little-Endian Notation.
Objective: Reduce synthesis conflicts.
Benefit: Consistent with back-end tools, enhance code portability.

In both VHDL and Verilog, output ports may be declared as bussed structures (vectors).
The order of the bus is indicated when the signal or port declaration is made.

For VHDL, the following is a valid declaration for the output port ‘Q’:

entity My_Cnt is
 port (Clk, Rst : in std_logic;
 Q : out integer range 0 to 15);
end entity My_Cnt;

Any of the following would also be valid:

 Q : out integer range 15 downto 0
 Q : out std_logic_vector (0 to 3)
 Q : out bit_vector (0 to 3)
 Q : out std_logic_vector (3 downto 0)
 Q : out bit_vector (3 downto 0)

However, the use of integers on outputs is not recommended for RTL coding. If the
range is not specified, the resulting bus will be a minimum word-wide length for the
particular compiler, but not less than 32 bits as required by the IEEE 1076 standard.

Furthermore, Std_logic_vector and bit_vector should be assigned in descending order
from left to right, this makes your code consistent with most back-end P&R tools. You
may avoid some possible errors or conflicts by consistently adhering to this simple rule.

The last thing to note about VHDL is that any vector is an array of individual elements
that have been grouped into a composite data type. The language does not contain built-
in binary weighting, and thus no concept of LSB and MSB exist. Individual elements are
referenced only by their left to right placement within the array. Package standard and
std_logic_1164 define bit_vector and std_logic_vector as unconstrained arrays of type bit
and type std_logic respectively.

Verilog is more concise, a bus may be declared in the module’s port declaration section
as:

output [3:0] Q ;
or
output [0:3] Q ;

HDL For FPGAs Page 21 January

In either case, the MSB is always defined as the left boundary literal. Once again, for
consistency, use the little-endian notation, i.e. output [3:0] Q;.

Point 10: Controlling Hierarchy
Objective: Enhance Synthesis, Place & Route.
Benefit: Better FPGA chip-level implementation.

Hierarchy is created in HDL by instantiating lower level modules into higher level ones.

In VHDL, the procedure is somewhat formal in that the lower-level entity must first be
declared as a component, and then instantiated, along with a port map statement to
indicate how the ports and signals will connect at the higher level.

In Verilog, the component declaration and instantiation are combined.

In either case, the lower level component must exist before it can be referenced at the
higher level. As with schematic capture, using hierarchy lends structure and enhances the
functional understanding of the design. When creating a hierarchical block for an FPGA
target device, there are 3 very important guidelines to remember:

1. Use Registers As Natural Boundaries.
This is consistent with the FPGA architecture and the general concept of RTL. Register
Transfer Level coding is generally defined as what logic (combinatorial) transformations
are necessary between clock edges (sequential).

Figure 18. RTL Coding Model

2. Minimize Clocks Per Hierarchical Block.
Ideally, use only one clock per module. Few things are more difficult for back-end place
& route software than optimizing logic with multiple clocks. Remember that most path
based timing constraints are referenced to a given clock. The mapping, placement and
routing will be guided by those constraints.

HDL For FPGAs Page 22 January

When multiple clocks are present in the same logic block, the constraints are not nearly
as effective, and the implementation may not be optimal for any of the clocks or their
associated logic.

3. Keep Critical Paths to a Single Block.
Keeping critical paths to a single block helps when optimizing all the logic associated
with that signal. On the other hand, when signals cross module boundaries, it is much
more difficult to effectively constrain logic across the total path.

When coding, try to reference the critical signal(s) within processes of a common
architecture.

Point 11: Instantiating Key Components
Objective: Control Synthesis, Enhance Place & Route.
Benefit: Maximal Chip-Level Optimization.

To instantiate means to create an “instance of” a given component. As mentioned
earlier, design hierarchy is created in VHDL and Verilog by instantiating lower level
modules into higher level ones.

To describe any given logic block, you may elect to “infer” the functionality, or
“ instantiate” one or more lower level components. Occasionally the need for device-
level optimization will drive the choice between the two. This degree of optimization
may by necessary to satisfy the overall circuit performance objectives.

When this is the case, the instantiated component may in fact be part of the macro library
for the target technology. The need for this sort of “direct instantiation” arises when the
particular synthesis compiler can not infer the same chip-level optimal implementation
from the generic code!

This situation is common to FPGAs since they often contain unique, dedicated resources
that enhance on-chip performance. In general, synthesis tools create the intended
functionality, but may not properly utilize dedicated and or technology specific resources.

As shown in figure 19, inference is accomplished through the use of standard language
operators and expressions. On the other hand, instantiating a macro from the target
technology requires the same syntax as building any other hierarchical logic, specifically,
the component declaration, the instance and the port mapping designation.

The inherent drawback to library macro instantiation is that it limits the portability of the
code. This however may be necessary to achieve the greater performance objective.

HDL For FPGAs Page 23 January

Furthermore, the negative effect on code portability may be minimized somewhat by
using separate architectures or modules for all technology specific references.

As an example of using library macro instantiation to gain the utmost device-level
optimization, consider the DynaChip DY6000 product family and its high speed carry
logic. This is dedicated routing from each logic block to the next in a given column. The
carry-logic enhances the performance of Adders and Comparators.

Because synthesis tools are constantly evolving, you should consult your specific
compiler’s documentation to determine if they currently support mapping to this valuable
resource, and if so, under what circumstance? Some synthesis tools would make such
mapping decisions due in part to user supplied performance constraints.

The next section contains examples of declaring and instantiating key components from
the DynaChip DY6000 macro library. The ADDRx & ICOMPx macros use the
dedicated carry logic, thus enhancing the overall design performance.

In both VHDL and Verilog, any instantiated component must be visible to the compiler.
Depending on the tool interface, project environment and particularly how vendor
libraries are attached, it may be necessary to compile (analyze) the library so that its
contents are part of the defined work library.

In most cases, however, a reference to the library logical name and particular package is
all that is required. For example in VHDL:

Z = A + B ;

module ADDR32 ...
outputs . . .
inputs . . .
. . .
endmodule

Adder Inferred,
…portable

Target Library
Component
Instantiation
…optimized

Figure 19. Inference Vs. Instantiation

Z <= A + B ;
port (…
component
ADDR32
...end component

HDL For FPGAs Page 24 January

library DynaChip;
use DynaChip.DY6000_Components.all;

This is meant only as an example of the “use” clause, consult your synthesis tool
documentation to determine the exact logical name of the particular DynaChip library.

In addition, it will be necessary to properly and accurately state the ports in the
component declaration. The order is not important, and VHDL is not case sensitive, but
Verilog is! In either case, if the port name and mode (direction) does not match what the
compiler finds, it will complain that the particular port is “not bound”, or “no binding”
exist. Either message indicates that it did not find the port with the exact name and mode
that you specified in the declaration.

Because order is not relevant, always use named association for port mapping when
instantiating vendor library components, most tools require it, and it’s good coding
practice under any circumstance! Figure 20 shows the ports and names for the ADDRx
and ICOMPx macros.

Figure 20. Port names for ADDRx & ICOMPx library macros.

(Note that future releases of the DynaChip library will employ bussed notation, this will
ease the coding requirements when referencing inputs and outputs)

Figure 21 shows VHDL and Verilog examples of instantiating the ADDR8 macro from
the DY6000 library.

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15

B0
B1
B2
B3
B4
B5
B6
B7
B8
B9
B10
B11
B12
B13
B14
B15

CIN

S0

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

S12

S13

S14

S15

ADDR16

COUT

A0

A1

A2

A3

B0

B1

B2

B3

IAEQB

AEQB

ICOMP4

* Consult DynaChip Libraries Guide for
complete functional description

HDL For FPGAs Page 25 January

-- VHDL instantiation using ADDR8 macro

library IEEE;
use IEEE.std_logic_1164.all;
library DynaChip;
use DynaChip.DY6000_Components.all; --example only, consult synthesis tool documentation

entity ADD8 is
 ports (A, B : in std_logic_vector (7 downto 0);
 C_in : in std_logic;
 C_out: out std_logic;
 Sum : out std_logic_vector (7 downto 0);
end entity ADD8;

architecture DYNA_ADDR of ADD8 is

 component ADDR8
 port (A7,A6,A5,A4,A3,A2,A1,A0 : in std_logic;

 B7,B6,B5,B4,B3,B2,B1,B0 : in std_logic;
 S7,S6,S5,S4,S3,S2,S1,S0 : out std_logic;

 CIN : in std_logic;
 COUT : out std_logic
);
 end component;

 signal Ain, Bin, Sout : std_logic_vector (7 downto 0) ;
 signal Carry_In, Carry_Out : std_logic ;

begin
U1: ADDR8 port map (
A7=>Ain(7), A6=>Ain(6), A5=>Ain(5), A4=>Ain(4), A3=>Ain(3), A2=>Ain(2), A1=>Ain(1), A0=>Ain(0),
B7=>Bin(7), B6=>Bin(6), B5=>Bin(5), B4=>Bin(4), B3=>Bin(3), B2=>Bin(2), B1=>Bin(1), B0=>Bin(0),
S7=>Sout(7), S6=>Sout(6), S5=>Sout(5), S4=>Sout(4), S3=>Sout(3), S2=>Sout(2), S1=>Sout(1), S0=>Sout(0),
CIN=>Carry_In, COUT=>Carry_Out

);
end architecture DYNA_ADDR ;

HDL For FPGAs Page 26 January

// Verilog instantiation using ADDR8 macro

uselib DynaChip.DY6000_Components ; //example only, consult synthesis tool documentation

module ADD8 (A, B, C_in, C_out, Sum) ;
input [7:0] A, B ;
output [7:0] Sum ;
input C_in ;
output C_out ;

 wire [7:0] Ain, Bin, Sout ;
 wire Carry_In, Carry_Out ;

ADDR8 : U1 (
A7.(Ain[7]), A6.(Ain[6]), A5.(Ain[5]), A4.(Ain[4]), A3.(Ain[3]), A2.(Ain[2]), A1.(Ain[1]), A0.(Ain[0]),
B7.(Bin[7]), B6.(Bin[6]), B5.(Bin[5]), B4.(Bin[4]), B3.(Bin[3]), B2.(Bin[2]), B1.(Bin[1]), B0.(Bin[0]),
S7.(Sout[7]), S6.(Sout[6]), S5.(Sout[5]), S4.(Sout[4]), S3.(Sout[3]), S2.(Sout[2]), S1.(Sout[1]), S0.(Sout[0]),
CIN.(Carry_In), COUT.(Carry_Out)

);

endmodule

Summary
Optimal HDL coding for FPGAs requires more than generic operators and expressions.
The choice of design and user coding style, synthesis compiler and target technology all
affect the end result.

The best approach is to understand and carefully consider each stage, and its contribution
toward the end objective –maximizing performance within the target technology.

The goal of a high level, pure and technology independent HDL design may be attainable
at some point in the future. Today, however, when targeting FPGAs, you can avoid
unexpected problems and gain considerably better results by keeping the device-level
implementation in mind.

Copyright 1998, Technically Speaking, Inc.
www.technically-speaking.com

