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Abstract: In this paper, we discuss efficient coding and design styles using verilog. This can be 
immensely helpful for any digital designer initiating designs. Here, we address different problems ranging 
from RTL-Gate Level simulation mismatch to race conditions in writing behavioral models. All these 
problems are accompanied by an example to have a better idea, and these can be taken care off if these 
coding guidelines are followed. Discussion of all the techniques is beyond the scope of this paper, however, 
here we try to cover a few of them. 
 
1. Reading a variable before assigning  - Simulation  and Synthesis mismatch 
 
Non-Blocking statements within the always block are executed sequentially. This becomes an issue when 
variables are used in the always block. Variables may be used in some conditional expression or on the 
right hand side of an assignment statement besides being assigned some value. Now if they are used prior 
to being assigned, a mismatch may occur in simulation and synthesis. For pre-synthesis simulation, that 
variable will contain the value assigned to it in the previous pass but it may not happen in gate level 
simulation. 

This can be illustrated by means of a very simple example. In module example1, “Z” is declared as a 
register. It is being used in the right hand side of an assignment statement before being assigned a value in 
the next statement. Register “Z” will hold the value of the previous pass until the assignment statement for 
“Z” is executed, thus, output “Q” will be assigned a stale value in the current pass. The module example1 
was simulated using VCS and the results are as shown in Fig.1a. It is clearly understood by seeing the 
waveform that by change in any input, output “Q” gets the stale value assigned to register “Z” in the 
previous pass. 
 
module example1 (A, B, Q); 
input A, B; 
output Q; 
reg Z; 
always @(A, B, Z) 
begin 
      Q = Z; 
       Z = A | B; 
end 
endmodule 
 
 
 
 
                                               

Fig. 1a 
 
 
Now when this module example1 is synthesized, a simple OR gate is generated. And when we apply the 
same stimulus to the inputs “A” and “B”, we get the waveform as shown in Fig. 1b, which is nothing but a 
simple OR gate. 
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Fig. 1b 
 
 
This results in a mismatch in pre and post-synthesis simulations that can be taken care off by correct 
ordering of assignment statements. 
 
2. Using the sensitivity lists 
 
Synthesis tools assume combinatorial logic from an always block without the keywords posedge or 
negedge. In a combinatorial always block, the resulting logic is derived from the statements inside the 
block only and not at all dependent on the sensitivity list. The synthesis tool will read and compare the 
sensitivity list  with the statements in the always block, and report the part of the code that may cause a pre- 
and post-synthesis simulations mismatch. Putting in extra signals which are not at all used in the body of 
the always block, in the sensitivity list, would do nothing else but result in making the whole simulation 
slower as the  always  block will be evaluated more than it is required. On the other hand if the sensitivity 
list is not complete, the always block will not be evaluated for the signals missing in the sensitivity list 
though used in the always block. But the synthesis tool generates the logic as per the statements in the 
always block assuming a complete sensitivity list, whose functionality will be relatively different from the 
pre-synthesis simulation of the Verilog code having incomplete sensitivity lists. 
 
In the module test1, the sensitivity list is complete; hence, both pre- and post-synthesis simulations match 
the synthesized logic as shown in Fig. 2a. In the next example, a module test2 has an incomplete sensitivity 
list as it contains only one signal “x”. The always statement specifies that whenever an event occurs on 
“x”, the assignment statement is executed and “z” gets a value. If any event occurs on “y”, it will have no 
effect on the value of “z”.  The synthesized logic for the module test2 is a NAND gate as shown in Fig. 2b, 
whose output “z” changes if any of the two signals “x” or “y” change.  As a result, there will be a 
mismatch between the pre- and the post- synthesis simulations. 
 
module test1 (z,a,b,c,d); 
input a, b, c, d; 
output z; 
wire a, b, c, d; 
reg z, temp1, temp2; 
 
always @(a or b or c or d) 
begin 

temp1 = a | b; 
temp2 = c | d; 

            z = temp1 ^ temp2; 
end 
endmodule 
 
module test2 (z, x, y); 
output z; 
input x, y; 
reg z; 
wire x, y; 
always @(x) 

z = ~(x & y); 
endmodule 
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                                   Fig. 2a   
 
 

                                   Fig. 2b    
 

 
3. Full Case Parallel Case 
 
The two directives ‘//synopsys full_case parallel_case’ are the most over used and there is myth that the use 
of these make designs faster and smaller. This may not be true in all the cases, and instead they may cause a 
mismatch in the pre and post-synthesis simulation or may infer latches. 
 
Synopsys full_case directive – 
From synthesis tool perspective, a full_case statement is the one in which every possible binary value is 
considered as a case item. When synopsys tool detects a full_case directive for a non-full case statement, it 
optimizes the logic in a way that outputs are don’t care for unspecified case items.  
Let us consider an example to illustrate synopsys full_case directive. In module example2, a full_case 
directive is used for a non-full case statement. Due to this synopsys assumes that inputs “A” and “B” will 
not be logic 0 at the same time and it does not optimizes the logic for that particular case. Fig. 3 shows the 
inferred circuit for module example2. 
 
module example2(A, B, C, D, Q) 
input A, B, C, D; 
output Q; 
always @(A or B or C or D) 
begin 
 case(1’b1) // synopsys full_case parallel_case 
 A : Q = C; 
 B : Q = D; 
 endcase 
end 
 

 Fig. 3 
 

In pre-synthesis simulation output “Q” will hold the value of the previous pass for “A”=“B”=0. But in the 
post-synthesis simulation it will be logic 0 in this case.  
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When we remove the full_case directive in the same example, synopsys optimizes for the condition of 
“A”=“B”=0 and infers a latch which is active when “A”=“B”=0. This matches the pre-synthesis simulation 
results but a latch is not desirable most of the times. 
 
So, unless we are sure that the particular condition would never occur (“A”=“B”=0 in this example), a 
default case item must be used as shown below. This would ensure that there is no mismatch in pre and 
post-synthesis simulation results. 
 
always @(A or B or C or D) 
begin 
 case(1’b1) // synopsys full_case parallel_case 
 A : Q = C; 
 B : Q = D; 
 default : Q = 1’b0; 
 endcase 
end 
 
Synopsys parallel_case directive – 
A parallel case statement is the one in which it is possible to match the case expression to only one case 
item. When synopsys detects the use of a “parallel_case” directive it optimizes the logic assuming that case 
expression would match only one case item thus preventing the synthesis tool to optimize for unnecessary 
logic leading to a reduction in area. 
 
Let us consider an example to illustrate synopsys parallel_case directive. In module example3, if 
“parallel_case” directive is not used then the design will simulate like a priority encoder, both before and 
after synthesis. When a parallel_case directive is used, design will behave like a priority encoder in the pre-
synthesis simulation but the synthesis tool will infer a non-priority encoder resulting in a mismatch in the 
pre and post-synthesis simulation. 
 
module example3 (out0, out1, out2, in); 
 
output out0, out1, out2; 
input [2:0] in; 
reg [2:0] out0, out1, out2; 
 
always @(in) 
begin 
 {out2, out1, out0} = 3’b0; 
 casez(in) // synopsys parallel_case 
 3’b1?? : out0 = 1’b1; 
 3’b?1? : out1 = 1’b1; 
 3’b??1 : out2 = 1’b1; 
 endcase 
end 
 
endmodule 
 
4. Race Condition 
 
Consider the circuit shown in Fig. 4a. A change in the output of flip-flop FF1 may not meet the hold time 
requirement of the second flip-flop FF2 . The condition may become even worse if there is a skew between 
the clock signals to the  two flip-flops. If the clock signal to the flip-flop FF2 lags that of flip-flop FF1, 
then it is also possible that the output of FF2 may be same as that of FF1. In order to get rid of the 
problem, consider the circuit shown in Fig.4b,  by adding a delay in the input path to the second flip-flop 
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FF2,  the output of FF2 will have sufficient time to change, well before the changes at the output of FF1 
travels to the flip-flop FF2. 
 
Similarly a race condition may occur when two or more statements that are scheduled to execute in the 
same simulation time-step give different results when the order of statement execution is changed. 
 
 

 

 
Fig. 4a 

 
 

 
 

  Fig. 4b. 
 
The IEEE Verilog Standard defines which statements have guaranteed order of execution and which 
statements do not have a guaranteed order of execution. Let us consider an example to understand the 
problem and its solution. 
 
always @(posedge clk) 
begin 
 Q = A; ………………(1) 
end 
always @(posedge clk) 
begin 
 A = B; ………………(2) 
end 
 
In this example, it is uncertain whether the output “Q” will get the old value of “A” or the newly assigned 
value of “A”. To be precise, the order of execution of the statements (1) and (2) is uncertain and may vary 
with different simulators.  
 
This uncertainty can be taken care off in different ways. In the solution shown below, by adding delay, 
right hand side is evaluated at the positive edge of clock and assignment takes place after the delay value. 
This makes sure that the output “Q” always gets the old value. But this solution is not generic as it 
explicitly uses delays. 
 
always @(posedge clk) 
begin 
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 Q = #1 A; ………………(1) 
end 
always @(posedge clk) 
begin 
 A = #1 B; ………………(2) 
end 

 
Instead of using delays, non-blocking statements can be used as shown below. By using non-blocking 
statements it is made sure that right hand side of the statement is evaluated and stored before assignments 
are done. 
 
always @(posedge clk) 
begin 
 Q <= A; ………………(1) 
end 
always @(posedge clk) 
begin 
 A <= B; ………………(2) 
end 
 
 
5. Conclusion 
 
In order to ensure the  success of the design, a designer should be careful from the very start, each line of 
the verilog code must be understood completely and one should not wait for the bug report of the simulator. 
Keeping in mind the proper design techniques from the early stages of the design cycle will significantly 
reduce the time to debug.  
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