A short primer on performing arithmetic with std_logic_vector
The Problem:

std_logic_vector is the most common bus type used in VHDL designs. It is frequently necessary to perform arithmetic operations on std_logic_vector signals and variables. However, the seemingly simple act of incrementing a std_logic_vector signal or adding two std_logic_vector signals together can be surprisingly difficult.

The difficulty arises because of VHDL’s strong type checking. It is very tempting to simply write the following code:

library IEEE;

 use IEEE.std_logic_1164.all;

 use IEEE.std_logic_misc.all;

 use IEEE.std_logic_arith.all;

entity EXAMPLE is

end EXAMPLE;

architecture WRONG of EXAMPLE is

 signal A, B : std_logic_vector(7 downto 0);

begin

 A <= B + 1;

end WRONG;

On the surface, it looks as if we are simply assigning the result of B + 1 to the signal A. However, this code will give the following error when it is analyzed:

**Error: Type mismatch on left and/or right of operand of binary operator.

This error occurs because we are trying to add B, which is of type std_logic_vector, to ‘1’, which is of type integer. Standard VHDL and the packages included in the example (IEEE.std_logic_1164, IEEE.std_logic_misc, and IEEE.std_logic_arith) do not define the addition operation between these two different types.

Consider another example:

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_misc.all;

use IEEE.std_logic_arith.all;

entity EXAMPLE is

end EXAMPLE;

architecture WRONG of EXAMPLE is

signal C, D, E : std_logic_vector(7 downto 0);

begin

C <= D + E;

end WRONG;

Surprisingly, this code also produces the same message when analyzed:

**Error: Type mismatch on left and/or right of operand of binary operator.

In this case, we are adding B and C, which are both of type std_logic_vector. But an error still occurs! Believe it or not, VHDL and the packages included in the example above, do not define any valid arithmetic operations on the std_logic_vector type. But there is a solution!

The Solutions:

Several methods are available to perform the simple arithmetic operations that proved to be so difficult in the examples above:

Solution #1: (My personal favorite)

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_misc.all;

use IEEE.std_logic_arith.all;

entity EXAMPLE is

end EXAMPLE;

architecture SOLUTION1 of EXAMPLE is

signal A, B, C, D, E : std_logic_vector(7 downto 0);

begin

A <= unsigned(B) + 1;

C <= unsigned(D) + unsigned(E);

end SOLUTION1;

This solution produces the desired results; A is assigned the result of B + 1 and C is assigned the result of D + E. The “magic” behind this solution is “type casting”.

The IEEE.std_logic_arith package defines two new types: unsigned and signed. These types are defined in an identical manner as std_logic_vector. Therefore, a signal of type unsigned or signed can hold the same characters as std_logic_vector. For example, a signal of type std_logic_vector, unsigned, or signed can each be assigned the value “01001100”. When two array types can hold identical elements, VHDL allows one type to be converted to the other through “type casting”.

In the solution, unsigned(B), is a “type cast”. This statement converts the signal B from type std_logic_vector to type unsigned. When this is done, the expression, unsigned(B) + 1, is now interpreted as an addition operation between a signal of type unsigned and a constant of type integer. The IEEE.std_logic_arith package includes a definition of a function that adds an unsigned type to an integer type and returns a std_logic_vector type as the result. This is the function that is used to obtain the correct result above.

Signals D and E are added together in a similar manner. First, the two signals are “type cast” as unsigned. Then, a function in the IEEE.std_logic_arith package is used to add the two unsigned types and return a std_logic_vector.

In general, the IEEE.std_logic_arith package defines arithmetic operations between any combination of unsigned, signed, and integer types.

An obvious question is “Why didn’t they just define the arithmetic functions using std_logic_vector so we don’t have to do type casting?”. The reason this was not done is because a signal of std_logic_vector simply holds a string of 1’s and 0’s (as well as other possible values, ‘Z’, ‘U’, etc). The string of 1’s and 0’s can be interpreted differently depending on the number system being used. For example, “10000001” represents the number 129 if the string is interpreted as an unsigned binary number. Conversely, “10000001” also represents the number -127 if the string is interpreted as a 2’s complement binary number. Therefore, the simple expression, “B + 1”, yields two possible results depending on whether B is interpreted to contain an unsigned binary number or a 2’s complement binary number.

By using the “type casting” method above, the VHDL code specifically states how to interpret the binary numbers which are contained within the std_logic_vector.

As a final note, when using this method, it is possible to mix and match unsigned and signed arithmetic. This is not the case with all the solutions that will be presented. For example, the following expressions are valid:

A <= unsigned(D) + signed(E);

B <= signed(E) + unsigned(E);

Solution #2:

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_misc.all;

use IEEE.std_logic_unsigned.all;

entity EXAMPLE is

end EXAMPLE;

architecture SOLUTION2 of EXAMPLE is

signal A, B, C, D, E : std_logic_vector(7 downto 0);

begin

A <= B + 1;

C <= D + E;

end SOLUTION2;

This surprisingly simple looking solution also produces the correct results. The “magic” of this solution is performed by referencing the package, IEEE.std_logic_unsigned.

The IEEE.std_logic_unsigned package contains functions that define arithmetic operations between signals of type std_logic_vector and between signals of type std_logic_vector and type integer. The package assumes that all std_logic_vector signals represent unsigned binary numbers. The explicit type conversions performed in Solution #1 are no longer necessary.

In a similar fashion, a package called IEEE.std_logic_signed also exists. When a reference to this package is included in VHDL source code, then all std_logic_vector signals are assumed to represent 2’s complement binary numbers.

A problem arises if both signed and unsigned operations need to be performed in the same VHDL file. The IEEE.std_logic_unsigned and IEEE.std_logic_signed are mutually exclusive. Consider the following example:

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_misc.all;

use IEEE.std_logic_unsigned.all;

use IEEE.std_logic_signed.all;

entity EXAMPLE is

end EXAMPLE;

architecture WRONG2 of EXAMPLE is

signal A, B, C, D, E : std_logic_vector(7 downto 0);

begin

A <= B + 1;

C <= D + E;

end WRONG2;

Analyzing this example gives the following error message:

**Error: Expression is ambiguous.

The ambiguity of the expressions arise from the fact that it is unclear whether the additions should produce a result assuming unsigned binary numbers or 2’s complement binary numbers.

Finally, it is useful to note that by using the method of Solution #2, it is possible to obtain an entirely different function for the same VHDL code depending on whether the IEEE.std_logic_signed or IEEE.std_logic_unsigned package is referenced. In one case, unsigned arithmetic is performed and in the second case, 2’s complement arithmetic is performed. The two cases will synthesize to different hardware as well as produce different simulation results. This can be seen both as a useful feature as well as a point of confusion. (Hence my preference for Solution #1)

Solution #3:
library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_misc.all;

use IEEE.std_logic_arith.all;

entity EXAMPLE is

end EXAMPLE;

architecture SOLUTION3 of EXAMPLE is

signal A, B, C, D, E : std_logic_vector(7 downto 0);

begin

process(B,D,E)

variable A_INT,B_INT,C_INT,D_INT,E_INT : integer range 0 to 255;

begin

B_INT := conv_integer(unsigned(B));

D_INT := conv_integer(unsigned(D));

E_INT := conv_integer(unsigned(E));

A_INT <= B_INT + 1;

C_INT <= D_INT + E_INT;

A <= conv_std_logic_vector(A_int,A’length);

C <= conv_std_logic_vector(C_int,C’length);

end process;

end SOLUTION3;

This complex looking solution also produces the desired results. This is essentially the “brut force” method of arithmetic with std_logic_vector. The signals are first converted to type integer using the conv_integer function in the IEEE.std_logic_arith package. Note that the signals are also “type cast” to unsigned before the integer conversion is performed. Without the type casting operation, the conv_integer function could not determine the integer value represented by the std_logic_vector.

All arithmetic operations are then performed with integer variables. When the arithmetic is completed, the integer variables are converted back to std_logic_vector to obtain the final result. The conv_std_logic_vector function contained in the IEEE.std_logic_arith package is used to perform the conversion function. Note that the conv_std_logic_vector function requires two parameters; an integer and the size of the resultant std_logic_vector. In the example above, the size parameters are set to A’length and C’length. This is a good practice, since the size parameters do not have to change even if the size of A or C is altered.

This “brut force” solution can be useful if a large amount of arithmetic needs to be performed on std_logic_vector signals. The conversions can be performed at the beginning and end of the VHDL code. All arithmetic operations are then performed on integer variables.

Finally, notice that the integer variables declared in Solution #3 were specified with a limited range (integer range 0 to 255). This is very important since the synthesis tools can use this information to limit the amount of storage required for the variables. Without this limited range, an integer is assumed to be 32 bits wide. (An alternative and more flexible declaration for the integers could have been “integer range 0 to 2**A’length – 1”. This produces an integer with the same range of 0 to 255, but allows the range to increase or decrease if the size of signal A is changed at a later time.)

Final Notes about std_logic_vector arithmetic

The vector size of the result returned from arithmetic operations is important to consider. When two signals of type std_logic_vector (or types signed or unsigned) are added together, the result is returned as a std_logic_vector with a size equal to the larger of the two vectors. Any overflows from the arithmetic operation are discarded. Also, any arithmetic using std_logic_vector and an integer, returns a vector with a size equal to the size of the std_logic_vector.

Certain counting operations can take advantage of the fact that the arithmetic overflow is discarded. Consider the following example:

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_misc.all;

use IEEE.std_logic_arith.all;

entity EXAMPLE is

end EXAMPLE;

architecture COUNTER of EXAMPLE is

signal CLK, RESET : std_logic;

signal A : std_logic_vector(7 downto 0);

begin

process(CLK)

begin

if CLK’event and CLK = ‘1’ then

if RESET = ‘1’ then

A <= (others => ‘0’);

else

A <= unsigned(A) + 1;

end if;

end if;

end process;

end COUNTER;

In the example above, a signal A is incremented once every clock period. The signal A will count from 0 to 255. Once the signal reaches 255, on the next clock edge, the count will cycle back to 0. Hence, “wrapping” at the counter limits is done automatically. This occurs because the overflow is discarded. An explicit check for the overflow condition is not required.

If the overflow from an arithmetic operation is needed in a result, then the following method can be used:

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_misc.all;

use IEEE.std_logic_arith.all;

entity EXAMPLE is

end EXAMPLE;

architecture SAVE_OVERFLOW of EXAMPLE is

signal A : std_logic_vector(8 downto 0);

signal B : std_logic_vector(7 downto 0);

begin

A <= conv_unsigned(unsigned(B),A’length) + 1;

end SAVE_OVERFLOW;

In this example, signal B is declared with a size of 8 bits and signal A is declared with a size of 9 bits. The extra bit in A will contain the overflow from B. To obtain the result, signal B is “type cast” to unsigned, then its size is changed to equal the size of A. The size change is accomplished by using the function conv_unsigned that is provided by the IEEE.std_logic_arith package. The conv_unsigned function returns an unsigned type with a length specified by its second parameter. As in Solution #3, the size parameter for conv_unsigned is set to A’length so that the size of A does not have to be explicitly stated. Therefore, conv_unsigned produces a 9-bit unsigned number which is added to 1, and the result is assigned to A. In this way, the 9-bit answer is obtained.

Note that if conv_unsigned were not used to change the size of B, the VHDL code would produce a run-time error during simulation. This would occur because unsigned(B) + 1 yields an 8 bit result. Since A is declared as 9 bits, a type mismatch occurs.
Please send me your questions or comments:

Bill Sackett

Symbol Technologies, Inc.

