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Chapter 1
Using FPGA Express with VHDL

FPGA Express translates and optimizes a VHDL description to an internal gate-level equivalent for-
mat. This format is then compiled for a given FPGA technology.

To work with VHDL, familiarize yourself with the following concepts:

|+ Hardware Description Languages |
| About VHDL |

|+ About FPGA Express|

I+ Using FPGA Express |

|- A Model of the Design Process |

The United States Department of Defense, as part of its Very-High-Speed Integrated Circuit (VHSIC)
program, developed VHSIC HDL (VHDL) in 1982. VHDL describes the behavior, function, inputs, and
outputs of a digital circuit design. VHDL is similar in style and syntax to modern programming lan-
guages, but includes many hardware-specific constructs.

FPGA Express reads and parses the supported VHDL syntax. Chapter 11 lists all VHDL constructs
and includes the level of Synopsys support provided for each construct.

Hardware Description Languages

Hardware description languages (HDLSs) are used to describe the architecture and behavior of discrete
electronic systems.

HDLs were developed to deal with increasingly complex designs. An analogy is often made to the his-
tory of what can be called software description languages, from machine code (transistors and solder),
to assembly language (netlists), to high-level languages (HDLS).

Top-down, HDL-based system design is most useful in large projects, where several designers or
teams of designers are working concurrently. HDLs provide structured development. After major archi-
tectural decisions have been made, and major components and their connections have been identi-
fied, work can proceed independently on subprojects.

Typical Uses for HDLs

HDLs typically support a mixed-level description where structural or netlist constructs can be mixed
with behavioral or algorithmic descriptions. With this mixed-level capability, you can describe system
architectures at a high level of abstraction; then incrementally refine a design into a particular compo-
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nent-level or gate-level implementation. Alternatively, you can read an HDL design description into
FPGA Express, then direct the compiler to synthesize a gate-level implementation automatically.

Advantages of HDLs

A design methodology that uses HDLs has several fundamental advantages over a traditional
gate-level design methodology. Among the advantages are the following:

* You can verify design functionality early in the design process, and immediately simulate a design
written as an HDL description. Design simulation at this higher level, before implementation at the
gate-level, allows you to test architectural and design decisions.

» FPGA Express provides logic synthesis and optimization, so you can automatically convert a VHDL
description to a gate-level implementation in a given technology. This methodology eliminates the
former gate-level design bottleneck and reduces circuit design time and errors introduced when
hand-translating a VHDL specification to gates. With FPGA Express logic optimization, you can
automatically transform a synthesized design to a smaller and faster circuit. You can apply informa-
tion gained from the synthesized and optimized circuits back to the VHDL description, perhaps to
fine-tune architectural decisions.

» HDL descriptions provide technology-independent documentation of a design and its functionality.
An HDL description is more easily read and understood than a netlist or schematic description.
Since the initial HDL design description is technology-independent, you can later reuse it to generate
the design in a different technology, without having to translate from the original technology.

» VHDL, like most high-level software languages, provides strong type checking. A component that
expects a four-bit-wide signal type cannot be connected to a three- or five-bit-wide signal; this mis-
match causes an error when the HDL description is compiled. If a variable’s range is defined as 1 to
15, an error results from assigning it a value of 0. Incorrect use of types has been shown to be a
major source of errors in descriptions. Type checking catches this kind of error in the HDL descrip-
tion even before a design is generated.

About VHDL

VHDL is one of just a few HDLs in widespread use today. VHDL is recognized as a standard HDL by
the IEEE (IEEE Standard 1076, ratified in 1987) and by the United States Department of Defense
(MIL-STD-454L).

VHDL divides entities (components, circuits, or systems) into an external or visible part (entity name
and connections) and an internal or hidden part (entity algorithm and implementation). After you define
the external interface to an entity, other entities can use that entity when they all are being developed.
This concept of internal and external views is central to a VHDL view of system design. An entity is
defined, with respect to other entities, by its connections and behavior. You can explore alternate
implementations (architectures) of an entity without changing the rest of the design.

After you define an entity for one design, you can reuse it in other designs as needed. You can
develop libraries of entities for use by many designs, or for a family of designs.

The VHDL model of hardware is shown in Figure 1-1.
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Figure 1-1: VHDL Hardware Model
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A VHDL entity (design) has one or more input, output, or inout ports that are connected (wired) to
neighboring systems. An entity is itself composed of interconnected entities, processes, and compo-
nents, all which operate concurrently. Each entity is defined by a particular architecture, which is com-
posed of VHDL constructs such as arithmetic, signal assignment, or component instantiation
statements.

In VHDL, independent processes model sequential (clocked) circuits, using flip-flops and latches, and
combinational (unclocked) circuits, using only logic gates. Processes can define and call (instantiate)
subprograms (subdesigns). Processes communicate with each other by signals (wires).

A signal has a source (driver), one or more destinations (receivers), and a user-defined type, such as
“color” or “number between 0 and 15.”

VHDL provides a broad set of constructs. With VHDL you can describe discrete electronic systems of
varying complexity (systems, boards, chips, modules) with varying levels of abstraction.

VHDL language constructs are divided into three categories by their level of abstraction: behavioral,
dataflow, and structural. These categories are described as follows:

behavioral

The functional or algorithmic aspects of a design, expressed in a sequential
VHDL process.
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dataflow

The view of data as flowing through a design, from input to output. An
operation is defined in terms of a collection of data transformations,
expressed as concurrent statements.

structural

The view closest to hardware; a model where the components of a design
are interconnected. This view is expressed by component instantiations.

FPGA Express Design Process

FPGA Express performs three functions:

» Translates VHDL to an internal format
» Optimizes the block level representation through various optimization methods
» Maps the design’s logical structure for a specific FPGA technology library.

FPGA Express synthesizes VHDL descriptions according to the VHDL synthesis policy defined in
Chapter 2, “Description Styles.” The Synopsys VHDL synthesis policy has three parts: design method-
ology, design style, and language constructs. You use the VHDL synthesis policy to produce high
quality VHDL-based designs.

Using FPGA Express to Compile a VHDL Design

When a VHDL design is read into FPGA Express, it is converted to an internal database format so
FPGA Express can synthesize and optimize the design. When FPGA Express optimizes a design, it
may restructure part or all the design. You control the degree of restructuring. Options include:

 Fully preserving a design’s hierarchy

* Allowing full modules to be moved up or down in the hierarchy

 Allowing certain modules to be combined with others

» Compressing the entire design into one module (called flattening the design) if it is beneficial

The following section describes the design process that uses FPGA Express with a VHDL Simulator.

Design Methodology

Figure 1-2 shows a typical design process that uses FPGA Express and a VHDL Simulator. Each step
of this design model is described in detail.
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@

Figure 1-2: Design Flow
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The steps in Figure 1-2 are explained below.

1. Write a design description in VHDL. This description can be a combination of structural and func-
tional elements (as shown in Chapter 2, “Description Styles"). This description is used with both
FPGA Express and the Synopsys VHDL simulator.

2. Provide VHDL-language test drivers for the simulator. For information on writing these drivers, see
the appropriate simulator manual. The drivers supply test vectors for simulation and gather output

data.

3. Simulate the design by using a VHDL simulator. Verify that the description is correct.

4. Use FPGA Express to synthesize and optimize the VHDL design description into a gate-level
netlist. FPGA Express generates optimized netlists to satisfy timing constraints for a targeted FPGA

architecture.
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5. Use your FPGA development system to link the FPGA technology-specific version of the design to
the VHDL simulator. The development system includes simulation models and interfaces required
for the design flow.

6. Simulate the technology-specific version of the design with the VHDL simulator. You can use the
original VHDL simulation drivers from Step 2 because module and port definitions are preserved
through the translation and optimization processes.

7. Compare the output of the gate-level simulation (Step 6) against the output of the original VHDL
description simulation (Step 3) to verify that the implementation is correct.
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Chapter 2
Description Styles

The style of your initial VHDL description has a major effect on the characteristics of the resulting
gate-level design synthesized by FPGA Express. The organization and style of a VHDL description
determines the basic architecture of your design. Because FPGA Express automates most of the
logic-level decisions required in your design, you can concentrate on architectural tradeoffs.

You can make some of the high-level architectural decisions that are needed by using FPGA Express.
Certain VHDL constructs are well suited for synthesis. To make the decisions and use the constructs,
you need to become familiar with the following concepts:

e Design Hierarchy |

» Data Types |

» Register Selection |

» Asynchronous Designs|

I
|
| « Design Constraints |
|
|
I

« Language Constructs |

Design Hierarchy

FPGA Express maintains the hierarchical boundaries you define when using the structural view in
VHDL. These boundaries have two major effects:

1. Each design entity specified in your VHDL description is synthesized separately and is maintained
as a distinct design. The constraints for the design are maintained, and each design entity can be
optimized separately in FPGA Express.

2. Component instantiations within VHDL descriptions are maintained during input. The instance
name you give each user-defined entity is carried through to the gate-level implementation.

Chapter 3 discusses design entities, and Chapter 7 discusses component instantiations.

Note: FPGA Express does not automatically maintain or create a hierarchy of other nonstructural
VHDL constructs such, as blocks, processes, loops, functions, and procedures. These elements
of a VHDL description are translated in the context of their design. After reading in a VHDL
design, you can group together the logic of a process, function, or procedure within the FPGA
Express Implementation Window.

The choice of hierarchical boundaries has a significant effect on the quality of the synthesized design.
Using FPGA Express, you can optimize a design while preserving these hierarchical boundaries. How-
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ever, FPGA Express only partially optimizes logic across hierarchical modules. Full optimization is
possible across those parts of the design hierarchy that are collapsed in FPGA Express.

Data Types

In VHDL, you must assign a data type to all ports, signals, and variables. The data type of an object
defines the operations that can be applied to it. For example, the AND operator is defined for objects of
type Bl T, but not for objects of type | NTEGER.

Data types are also important when your design is synthesized. The data type of an object determines
its size (bit width) and its bit organization. The proper choice of data types greatly improves design
guality and helps minimize errors.

See Chapter 4 for a discussion of VHDL data types.

Design Constraints

You can describe the performance constraints for a design module within the FPGA Express Imple-
mentation Window. Refer to the FPGA Express User’s Guide for further information.

Register Selection

The placement of registers and the clocking scheme are important architectural decisions. There are
two ways to define registers in your VHDL description. Each method has specific advantages:

* You can directly instantiate registers into a VHDL description, selecting from any element in your
FPGA library. Clocking schemes can be arbitrarily complex. You can choose between a flip-flop and
a latch-based architecture. The major disadvantages of this approach are

» The VHDL description is now specific to a given technology because you choose structural elements
from that technology library. However, you can isolate this portion of your design as a separate
entity, which you then connect to the remainder of the design.

e The description is more difficult to write.

* You can use the VHDL i f and wai t statements to direct FPGA Express to infer latches and
flip-flops from the description. The advantages of this approach directly counter the disadvantages of
the previous approach. When using register inference, the VHDL description is technology-indepen-
dent and is much easier to write. This method allows FPGA Express to select the type of component
inferred, on the basis of constraints. Therefore, if a specific component is necessary, instantiation
should be used. Some types of registers and latches cannot be inferred.

See Chapter 8 for a discussion of register and latch inference.

Asynchronous Designs

You can use FPGA Express to construct asynchronous designs with multiple clocks and gated clocks.
However, although these designs are logically (statically) correct, they might not simulate or operate
correctly, because of race conditions.
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Language Constructs

Another component of the VHDL synthesis policy is the set of VHDL constructs that describe your
design, determine its architecture, and give consistently good results. The remainder of this manual
discusses these constructs and their uses.

The concepts mentioned earlier in this chapter are described in the manual as follows:

Design Hierarchy

Chapter 3 describes the use and importance of hierarchy in VHDL designs.
Chapter 7 explains how to instantiate (apply) existing components.

Data Types

Chapter 4 describes data types and their uses.

Register Selection

You can instantiate registers with the component instantiation statement
discussed in Chapter 3 and Chapter 7. Chapter 6, and Chapter 8 describe
register inference with the VHDL i f and wai t statements.
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Chapter 3
Describing Designs

To describe a design in VHDL, you need to be familiar with the following concepts:

[+_VHDL Entities |
|+ VHDL Constructs |
|+ Defining Designs |

|+ Structural Designs |

VHDL Entities

Designs that are described with VHDL are composed of entities. An entity represents one level of the
design hierarchy and can consist of a complete design, an existing hardware component, or a
VHDL-defined object.

Each design has two parts: the entity specification and the architecture. The specification of an entity is
its external interface. The architecture of an entity is its internal implementation. A design has only one
entity specification (interface), but it can have multiple architectures (implementations). When an entity
is compiled into a hardware design, a configuration specifies the architecture to use. An entity’s speci-
fication and architecture can be contained in separate VHDL source files or in one VHDL source file.

Example 3-1 shows the entity specification of a simple logic gate (a 2-input NAND gate).

Example 3-1: VHDL Entity Specification
entity NAND2 is

port(A B: in BIT; -- Two inputs, A and B
Z:out BIT); -- One output, Z = (A and B)’
end NANDZ2;

Note: In a VHDL description, a comment is prefixed by two hyphens (- - ). All characters from the
hyphens to the end of the line are ignored by FPGA Express. The only exceptions to this rule
are comments that begin with - - pragma or - - synopsys; these comments are FPGA
Express directives.

After an ent i t y statement declares an entity specification, that entity can be used by other entities in
a design. The internal architecture of an entity determines its function.

Examples 3-2, 3-3, and 3-4 show three different architectures for the entity NAND2. The three exam-
ples define equivalent implementations of NAND2. After optimization and synthesis, each implementa-
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tion produces the same circuit, probably a 2-input NAND gate in the target technology. The
architecture description style you use for this entity depends on your own preferences.

Example 3-2 shows how the entity NAND2 can be implemented with two components from a technol-
ogy library. The entity inputs A and B are connected to AND gate U0, producing an intermediate signal

| . Signal | is then connected to inverter U1, producing the entity output Z.

Example 3-2: Structural Architecture for Entity NAND2

architecture STRUCTURAL of NAND2 is

signal 1: BIT;
conmponent AND 2 -- Froma technology library
port(l1, 12: in BIT;
Ol: out BIT);

end comnponent;

conponent | NVERT -- Froma technology library
port(l1l: in BIT;
Ol: out BIT);

end conponent;

begi n
U0: AND 2 port map (11 => A 12 =>B, 0L =>1);
Ul: I NVERT port map (11 =>1, Ol => Z2);

end STRUCTURAL;

Example 3-3 shows how you can define the entity NAND2 by its logical function.

Example 3-3: Dataflow Architecture for Entity NAND2
architecture DATAFLOW of NAND2 is
begi n
Z <= A nand B;
end DATAFLOW

Example 3-4 shows another implementation of NAND2.
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Example 3-4: RTL Architecture for Entity NAND2
architecture RTL of NAND2 is

begin
process(A, B)
begi n
if (A="1")and (B ="1) then
Z<="0,
else
Z<="1,
end if;
end process;
end RTL;

VHDL Constructs

The top-level VHDL constructs work together to describe a design. The description consists of

Entities

The interfaces to other designs.

Architectures

The implementations of design entities. Architectures can specify

connection through instantiation to other entities.

Configurations

The bindings of entities to architectures.

Processes
Collections of sequentially executed statements. Processes are declared
within architectures.

Subprograms
Algorithms that can be used by more than one architecture.

Packages

Collections of declarations used by one or more designs.

Entities

A VHDL design consists of one or more entities. Entities have defined inputs and outputs, and perform
a defined function. Each design has two parts: an entity specification and an architecture. The entity
specification defines the design’s inputs and outputs, and the architecture determines its function.
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You can describe a VHDL design in one or more files. Each file contains entities, architectures, or
packages. Packages define global information that can be used by several entities. You can often
reuse VHDL design files in later design projects.

Figure 3-1 shows a block diagram of a VHDL design’s hierarchical organization into files.

Figure 3-1: Design Organization

VHDL Design

VHDL Files

Packages

Declare constants, data types, components, and subprograms
used by several designs or entities or both.

Entities Architectures
Declare the interfaces to other Define the implementations of
entities and designs. entities.
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Architectures

An architecture determines the function of an entity. Figure 3-2 shows the organization of an architec-
ture. Not all architectures contain every construct shown.

Figure 3-2: Architecture Organization

Architecture

Declarations

Declare signals used to communicate between concurrent statements,
and between concurrent statements and the interface ports. Declare
types, constants, components, and subprograms used in the architecture.

Concurrent Statements

Blocks Component Instantiations
Collect concurrent statements
together. Create an instance of

another entity.
Signal Assignments
Compute values and assign them to

signals. Processes

Procedure Calls Define a new algorithm.

Invoke a predefined algorithm.

An architecture consists of a declaration section where you declare signals, types, constants, compo-
nents, and subprograms, followed by a collection of concurrent statements.

Signals connect the separate pieces of an architecture (the concurrent statements) to each other, and
to the outside world, through interface ports. You declare each signal with a type that determines the
kind of data it carries. Types, constants, components, and subprograms declared in an architecture
are local to that architecture. To use these declarations in more than one entity or architecture, place
them in a package, as described under "Packages" later in this chapter.

Each concurrent statement in an architecture defines a unit of computation that reads signals, per-
forms a computation that is based on the signal values, and assigns computed values to signals. Con-
current statements compute all values simultaneously. Although the order of concurrent statements
has no effect on execution order, the statements often coordinate their processing by communicating
with each other through signals.

The five kinds of concurrent statements are blocks, signal assignments, procedure calls, component
instantiations, and processes. They are described as follows:
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blocks

Group together a set of concurrent statements.

signal assignments

Assign computed values to signals or interface ports.

procedure calls

Call algorithms that compute and assign values to signals.

component instantiations

Create an instance of an entity, connecting its interface ports to signals or
interface ports of the entity being defined. See "Structural Design" later in
this chapter.

processes

Define sequential algorithms that read the values of signals, and compute
new values to assign to other signals. Processes are discussed in the next
section.

Concurrent statements are described in Chapter 7.

Configurations

A configuration specifies one combination of an entity and its associated architecture.

Note: FPGA Express supports only configurations that associate one top-level entity with an architec-
ture.

Processes

Processes contain sequential statements that define algorithms. Unlike concurrent statements,
sequential statements are executed in order. The order allows you to perform step-by-step computa-
tions. Processes read and write signals and interface port values to communicate with the rest of the
architecture and with the enclosing system.

Figure 3-3 shows the organization of constructs in a process. Processes need not use all the con-
structs listed.

Processes are unique in that they behave like concurrent statements to the rest of the design, but they
are internally sequential. In addition, only processes can define variables to hold intermediate values in
a sequence of computations.

Because the statements in a process are sequentially executed, several constructs are provided to
control the order of execution, such asi f and | oop statements.

Chapter 6 describes sequential statements.

3-6 « VeriBest FPGA Synthesis VHDL Reference Manual



VHDL Constructs

Figure 3-3: Process Organization

Process

Declarations

Internal variables that hold temporary values in the sequence

of computations, as well as types, constants, components, and
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Sequential Statements

Signal Assignments loop Statements

Compute values and assign them Execute statements repeatedly.
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Procedure Calls next Statements

Invoke predefined algorithms. Skip remainder of a loop.

Variable Assignments exit Statements

Store intermediate values Terminate the execution

in variables. of a loop.

if Statements wait Statements

Conditionally execute groups of . .

sequential statements. Wait for a clock signal.

case Statements null Statements

Select a group of sequential Perform no action, these are

Statements to execute. placeholders.
Subprograms

Subprograms, like processes, use sequential statements to define algorithms that compute values.
Unlike processes, however, they cannot directly read or write signals from the rest of the architecture.

All communication is through the subprogram'’s interface; each subprogram call has its own set of
interface signals.

The two types of subprograms are functions and procedures. A function returns a single value directly.
A procedure returns zero or more values through its interface. Subprograms are useful because you
can use them to perform repeated calculations, often in different parts of an architecture.

Chapter 6 describes subprograms.
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Packages

You can collect constants, data types, component declarations, and subprograms into a VHDL pack-
age that can then be used by more than one design or entity. Figure 3-4 shows the typical organization

of a package.

Figure 3-4: Typical Package Organization

Package
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Define constant values used
by designs.
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Declare the data types used
by designs.
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Declare interfaces for design
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A package must contain at least one of the constructs listed in Figure 3-4.

» Constants in packages often declare system-wide parameters, such as data-path widths.

» VHDL data type declarations are often included in a package to define data types used throughout a
design. All entities in a design must use common interface types; for example, common address bus

types.
» Component declarations specify the interfaces to entities that can be instantiated in the design.

» Subprograms define algorithms that can be called anywhere in a design.

Packages are often sufficiently general so that you can use them in many different designs. For exam-
ple, the st d_| ogi ¢_1164 package defines data types std_| ogi c andstd _| ogi c_vector.

Using a Package

The use statement allows an entity to use the declarations in a package. The supported syntax of the
use statement is

use LI BRARY_NAME. PACKAGE_NAME. ALL;
LI BRARY NAME s the name of a VHDL library, and PACKAGE NAME is the name of the included pack-
age. A use statement is usually the first statement in a package or entity specification source file.
Synopsys does not support different packages with the same name when they exist in different librar-
ies. No two packages can have the same name.
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Package Structure

Packages have two parts, the declaration and the body:.

package declaration

Holds public information, including constant, type, and

subprogram declarations.

package body

Holds private information, including local types and subprogram

implementations (bodies).

Note: When a package declaration contains subprogram declarations, a corresponding package body

must define the subprogram bodies.

Package Declarations

Package declarations collect information needed by one or more entities in a design. This information
includes data type declarations, signal declarations, subprogram declarations, and component decla-
rations.

Note: Signals declared in packages cannot be shared across entities. If two entities both use a signal

from a given package, each entity has its own copy of that signal.

Although you can declare all this information explicitly in each design entity or architecture in a system,
it is often easier to declare system information in a separate package. Each design entity in the system
can then use the system’s package.

The syntax of a package declaration is

package package nane is

{ package decl arative item}

end [ package_nane | ;

where package nane is the name of this package.

A package decl arati ve_i t emis any of these:

use clause (to include other packages)
Type declaration

Subtype declaration

Constant declaration

Signal declaration

Subprogram declaration

Component declaration
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Example 3-5 shows some package declarations.

Example 3-5: Sample Package Declarations
package EXAMPLE is

type BYTE is range 0 to 255;
subt ype NIBBLE is BYTE range 0 to 15;

constant BYTE FF. BYTE := 255;
si gnal ADDEND: NI BBLE;

conponent BYTE_ADDER
port (A B: in BYTE;
C out BYTE;
OVERFLOW out BOOLEAN);
end conponent;

function MY_FUNCTION (A: in BYTE) return BYTE;
end EXAMPLE;
To use the example declarations above, add a use statement at the beginning of your design descrip-

tion as follows:

use WORK. EXAMPLE. ALL;

entity .

architecture .

Further examples of packages and their declarations are given in the packages supplied by Synopsys.

These packages are listed in Chapter 10.

Package Bodies

Package bodies contain the implementations of subprograms listed in the package declaration. How-
ever, this information is never seen by designs or entities that use the package. Package bodies can
include the implementations (bodies) of subprograms declared in the package declaration and in inter-
nal support subprograms.

The syntax of a package body is
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package body package nane is
{ package body decl arative item}
end [ package nane | ;

where package nane is the name of the associated package.
A package body decl arative_itemis any of these:

* use clause

e Subprogram declaration
* Subprogram body

» Type declaration

e Subtype declaration

» Constant declaration

For an example of a package declaration and body, see the st d_| ogi ¢c_ar i t h package supplied
with FPGA Express. This package is listed in Chapter 10.

Defining Designs
The high-level constructs discussed earlier in this chapter involve

 Entity specifications (interfaces)
 Entity architectures (implementations)
» Subprograms

Entity Specifications

An entity specification defines the characteristics of an entity that must be known before that entity can
be connected to other entities and components.

For example, before you can connect a counter to other entities, you must specify the number and
types of its inputs and outputs. The entity specification defines the ports (inputs and outputs) of an
entity.

The syntax of an entity specification is

entity entity nane is
[ generic( generic_declarations) ; ]
[ port( port_declarations) ; ]

end [ entity nane | ;

entity naneisthe name of the entity, generi c_decl ar at i ons determine local constants used
for sizing or timing the entity, and port _decl ar at i ons determine the number and type of inputs and
outputs. Other declarations are not supported in the entity specification.

Describing Designs « 3-11



Defining Designs

Entity Generic Specifications

Generic specifications are entity parameters. Generics can specify the bit widths of components (such
as adders) or provide internal timing values.

A generic can have a default value. A generic is assigned a nondefault value only when the entity is
instantiated (see “Component Instantiation Statement” on page 3-27*) or configured (see "“Entity Con-
figurations” on page 3-16). Inside an entity, a generic is a constant value.

The syntax of generi ¢c_decl ar ati ons is

generi c(
[ constant_name : type [ := val ue ]
{ ; constant_nane : type | := value ] }

);
const ant _nane is the name of a generic constant, t ype is a previously defined data type, and the
optional val ue is the default value of const ant _nane.

Note: FPGA Express supports only | NTEGER type generics.

Entity Port Specifications

The syntax of port _decl arati ons is
port (

[ port_nanme : node port_type

{ ; port_nane : node port_type}]
);

port _nane is the name of a port; node is eitheri n, out, i nout, or buffer;and port_typeisa
previously defined data type.

The four port modes are

in Can only be read.
out Can only be assigned a value.
i nout Can be read and assigned a value. The value read is that of the port’s

incoming value, not the assigned value (if any).

buffer Similar to out, but can be read. The value read is the assigned value. It
can have only one driver. For more information on drivers, see "Driving
Signals" in Chapter 7..

Example 3-6 shows an entity specification for a 2-input N-bit comparator, with a default bit width of 8.
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Example 3-6: Interface for an N-Bit Counter

-- Define an entity (design) called COW
-- that has 2 N-bit inputs and one output.

entity COW is
generic(N. I NTEGER : = 8); -- default is 8 bits

port(X, Y: in BIT VECTOR(O to N-1);
EQUAL: out BOCLEAN);
end COWMP;

Entity Architectures

Each entity architecture defines one implementation of the entity’s function. An architecture can range
in abstraction from an algorithm (a set of sequential statements within a process) to a structural netlist
(a set of component instantiations).

The syntax of an architecture is

architecture architecture _nane of entity nane is
{ block declarative item}

begin
{ concurrent_statenent }

end [ architecture nane | ;

archi t ect ur e_nane is the name of the architecture, and ent i t y _nane is the name of the entity
being implemented.

A bl ock_decl ar ati ve_i t emis any of these:

* use clause

e Subprogram declaration
e Subprogram body

» Type declaration

e Subtype declaration

» Constant declaration
 Signal declaration

« Component declaration

Concurrent statements are described in Chapter 7.

Example 3-7 shows a complete circuit description for a three-bit counter, entity specification
(COUNTER3), and an architecture (MY_ARCH). This example also includes a schematic of the resulting
synthesized circuit.
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Example 3-7: An Implementation of a Three-Bit Counter

entity COUNTER3 is
port ( CLK: in bit;

RESET: in bit;

COUNT: out integer range 0 to 7);
end COUNTERS;

architecture MY_ARCH of COUNTER3 is
signal COUNT tnp : integer range O to 7;
begi n
process
begi n
wait until (CLK’event and CLK ="1");
-- wait for the clock
if RESET =1’ or COUNT _tmp =7 then
-- Ck. for RESET or max. count
COUNT _tmp <= 0;
else COUNT_tmp <= COUNT _tmp + 1;
-- Keep counting
end if;

end process;
COUNT <= COUNT_tmp;
end MY_ARCH,;
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Figure 3-5: Three-Bit Counter Schematic
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Note: In an architecture, you must not declare constants or signals with the same name as any of the
entity’s ports. If you declare a constant or signal with a port’s name, the new declaration hides
that port name. If the new declaration is included in the architecture declaration (as shown in
Example 3-8) and not in an inner block, FPGA Express reports an error.

Example 3-8: Incorrect Use of a Port Name when Declaring Signals or Constants
entity Xis
port(SIG CONST: in BIT,
QUT1, OUT2: out BIT);
end X;

architecture EXAMPLE of X is
si gnal SIG : BIT;
const ant CONST: BIT :="1";
begin

end EXAMPLE;
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The error messages generated for Example 3-8 are:

si gnal SIG : BIT;
N
Error: (VHDL-1872) line 13
Il egal redeclaration of SIG

constant CONST: BIT :='1";
N
Error: (VHDL-1872) line 14
lllegal redeclaration of CONST.

Entity Configurations

A configuration defines one combination of an entity and architecture for a design.

Note: FPGA Express supports only configurations that associate one top-level entity with an architec-
ture.

The supported syntax for a configuration is

configuration configuration_nanme of entity nane is
for architecture_nane

end for;

end [ configuration_nane | ;

confi gur ati on_nane is the name of this configuration, ent i t y_nane is the name of a top-level
entity, and ar chi t ect ur e_nane is the name of the architecture to use for enti ty_nane.

Example 3-9 shows a configuration for the three-bit counter in Example 3-7. This configuration associ-
ates the counter’s entity specification (COUNTER3) with an architecture (MY_ARCH).

Example 3-9: Configuration of Counter in Example 3-7
configuration MY_CONFI G of COUNTER3 i s
for MY_ARCH
end for;
end MY_CONFI G

Note: If you do not specify a configuration for an entity with multiple architectures, IEEE VHDL speci-
fies that the last architecture read is used. This is determined from the . nT a (most recently
analyzed) file.
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Subprograms

Subprograms describe algorithms that are meant to be used more than once in a design. Unlike com-
ponent instantiation statements, when a subprogram is used by an entity or another subprogram, a
new level of design hierarchy is not automatically created. However, you can manually define a sub-
program as a new level of design hierarchy in the FPGA Express Implementation Window.

Two types of subprograms, procedures and functions, can contain zero or more parameters:

procedures

Procedures have no return value, but can return information to their callers
by changing the values of their parameters.

functions

A function has a single value that it returns to the caller, but it cannot
change the value of its parameters.

Like an entity, a subprogram has two parts—its declaration and its body:

declaration

Declares the interface to a subprogram: its name, its parameters, and its
return value (if any).

body

Defines an algorithm that gives the subprogram’s expected results.

When you declare a subprogram in a package, the subprogram declaration must be in the package
declaration, and the subprogram body must be in the package body. A subprogram defined inside an
architecture has a body, but does not have a corresponding subprogram declaration.

Subprogram Declarations

A subprogram declaration lists the names and types of its parameters and, for functions, the type of its
return value.

The syntax of a procedure declaration is

procedure proc_name [ ( paraneter_decl arations ) |

proc_nane is the name of the procedure.
The syntax of a function declaration is

function func_name [ ( paraneter_decl arations ) |
return type nane ;

func_nane is the name of the function, and t ype nane is the type of the function’s returned value.
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The syntax of par amet er _decl ar at i ons is the same as the syntax of port_decl arati ons:

[ paraneter_nane . node paraneter_type
{ ; paranmeter_name : node paraneter_type}]

par anmet er _nane is the name of a parameter; node is either i n, out , i nout, or buf f er ; and
paranet er_t ype is a previously defined data type.

Procedure parameters can use any mode. Function parameters must use only mode i n. Signal
parameters of type range cannot be passed to a subprogram.

Example 3-10 shows sample subprogram declarations for a function and a procedure.

Example 3-10: Two Subprogram Declarations
type BYTE is array (7 downto 0) of BIT;
type NIBBLE is array (3 downto 0) of BIT;

function IS EVEN(NUM in INTEGER) return BOOLEAN,
-- Returns TRUE if NUMis even.

procedure BYTE _TO N BBLES( B: in BYTE;
UPPER, LOWER: out NI BBLE);
-- Splits a BYTE into UPPER and LOWER hal ves.

Note: When you call a subprogram, actual parameters are substituted for the declared formal param-
eters. Actual parameters are either constant values or signal, variable, constant, or port names.
An actual parameter must support the formal parameter’s type and mode. For example, an input
port cannot be used as an out actual parameter, and a constant can be used only asani n
actual parameter.

Example 3-11 shows some calls to the subprogram declarations from Example 3-10.

Example 3-11: Two Subprogram Calls
signal |INT : | NTEGER
vari abl e EVEN : BOOLEAN,;
INT <= 7;
EVEN : = I S_EVEN(I NT);

vari abl e TOP, BOT: NI BBLE;

BYTE_TO_NI BBLES("00101101", TOP, BOT);
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Subprogram Bodies

A subprogram body defines an implementation of a subprogram’s algorithm.
The syntax of a procedure body is

procedure procedure_nane [ (paraneter_declarations) ] is
{ subprogram decl arative item}

begin
{ sequential statenent }

end [ procedure nane ] ;

The syntax of a function body is

function function name [ (paraneter_decl arations) |
return type nane is
{ subprogram decl arative_ item}
begin
{ sequential statenent }
end [ function_nane | ;

A subprogram decl ar ati ve_i t emis any of these:

» use clause

» Type declaration

e Subtype declaration

» Constant declaration

» Variable declaration

« Attribute declaration

* Attribute specification

» Subprogram declaration
e Subprogram body

Example 3-12 shows subprogram bodies for the sample subprogram declarations in Example 3-10.
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Example 3-12: Two Subprogram Bodies
function IS EVEN(NUM in | NTEGER)
return BOOLEAN is
begin
return ((NUMrem2) = 0);
end | S_EVEN;

procedure BYTE_TO NI BBLES(B: in BYTE;
UPPER, LOWER: out NI BBLE) is

begi n
UPPER : = NI BBLE(B(7 downto 4));
LOVER : = NI BBLE(B(3 downto 0));

end BYTE_TO NI BBLES;

Subprogram Overloading
You can overload subprograms; more than one subprogram can have the same name. Each subpro-
gram that uses a given name must have a different parameter profile.

A parameter profile specifies a subprogram’s number and type of parameters. This information deter-
mines which subprogram is called when more than one subprogram has the same name. Overloaded
functions are also distinguished by the type of their return values.

Example 3-13 shows two subprograms with the same name, but different parameter profiles.

Example 3-13: Subprogram Overloading
type SMALL is range 0 to 100;
type LARCE is range 0 to 10000;

function I'S _ ODD(NUM SMALL) return BOOLEAN;
function |I'S_ODD(NUM LARGE) return BOOLEAN,

signal A NUVBER: SMALL;
si gnal B: BOOLEAN,

B <=1S ODD(A NUMBER); -- WII call the first
-- function above
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Operator Overloading

Predefined operators such as +, and, and nod can also be overloaded. By using overloading, you can
adapt predefined operators to work with your own data types.

For example, you can declare new logic types, rather than use the predefined types Bl T and | NTE-
CGER. However, you cannot use predefined operators with these new types unless you declare over-
loaded operators for the new logic type.

Example 3-14 shows how some predefined operators are overloaded for a new logic type.
Example 3-14: Operator Overloading
type NEW_BIT is ('0’, '1", 'X’);
-- New logic type

function "and"(11, 12: in NEW_BIT) return NEW_BIT,;
function "or" (11, 12: in NEW_BIT) return NEW_BIT;
-- Declare overloaded operators for new logic type

signal A, B, C: NEW_BIT;

C <=(AandB) or C;

VHDL requires overloaded operator declarations to enclose the operator name or symbol in double
guotation marks, because they are infix operators (they are used between operands). If you declared
the overloaded operators without quotation marks, a VHDL tool considers them functions rather than
operators.

Type Declarations

Type declarations define the name and characteristics of a type. Types and type declarations are fully
described in Chapter 4. A type is a named set of values, such as the set of integers, or the set (r ed,
green, bl ue). An object of a given type, such as a signal, can have any value of that type.

Example 3-14 shows a type declaration for type NEW BI T, and some functions and variables of that
type.

Type declarations are allowed in architectures, packages, entities, blocks, processes, and subpro-
grams.

Subtype Declarations

Use subtype declarations to define the name and characteristics of a constrained subset of another
type or subtype. A subtype is fully compatible with its parent type, but only over the subtype’s range.
Subtype declarations are described in Chapter 4.

The following subtype declaration (NEW LOG C) is a subrange of the type declaration in Example 3-14.
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subtype NEW_LOGIC is NEW_BIT range '0’ to '1’;

Subtype declarations are allowed wherever type declarations are allowed: in architectures, packages,
entities, blocks, processes, and subprograms.

Constant Declarations

Constant declarations create named values of a given type. The value of a constant can be read but
not changed.

Constant declarations are allowed in architectures, packages, entities, blocks, processes, and subpro-
grams.

Example 3-15 shows some constant declarations.

Example 3-15: Constant Declarations
constant WIDTH: INTEGER := 8;
constant X : NEW_BIT =X,

You can use constants in expressions, as described in Chapter 5, and as source values in assignment
statements, as described in Chapter 6.

Signal Declarations

Signal declarations create new named signals (wires) of a given type. Signals can be given default (ini-
tial) values. However, these initial values are not used for synthesis.

Signals with multiple drivers (signals driven by wired logic) can have associated resolution functions,
as described in the next section.

Example 3-16 shows two signal declarations.

Example 3-16: Signal Declarations
signal A, B: BIT;
signal INIT: INTEGER :=-1;

Note: Ports are also signals, with the restriction that out ports cannot be read, and i n ports cannot
be assigned a value. You create signals either by port declarations or by signal declarations.
You create ports only by port declarations.

You can declare signals in architectures, entities, and blocks, and use them in processes and subpro-
grams. Processes and subprograms cannot declare signals for internal use.

You can use signals in expressions, as described in Chapter 5. Signals are assigned values by signal
assignment statements, as described in Chapter 6.

Resolution Functions

Resolution functions are used with signals that can be connected (wired together). For example, if two
drivers are directly connected to a signal, the resolution function determines whether the signal value
is the AND, OR, or three-state function of the driving values.

Use resolution functions to assign the driving value when there are multiple drivers. For simulation,
you can write an arbitrary function to resolve bus conflicts.
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Note: A resolution function might change the value of a resolved signal, even if all drivers have the
same value.

The resolution function for a signal is part of that signal’s subtype declaration. You create a resolved
signal in four steps:

-- Step 1

type SIGVAL TYPE is ...

-- signal’s base type is SI GNAL_TYPE

-- Step 2

subtype res type is res function Sl GNAL TYPE

-- name of the subtype is res_type

-- name of function is res_function

-- signal type is res_type (asubtype of SI GNAL_TYPE)
-- Step 3

function res_function (DATA: ARRAY TYPE)
return SIGNAL_TYPE i s

-- declaration of the resolution function
--  ARRAY _TYPE must be an unconstrained array of SI GNAL_TYPE

--Step 4
signal resol ved_signal _nane: res_type;
-- resol ved_si gnal _naneis aresolved signal

1. The signal’'s base type is declared.

2. The resolved signal’s subtype is declared as a subtype of the base type and includes the name of
the resolution function.

3. The resolution function itself is declared (and later defined).
4. Resolved signals are declared as resolved subtypes.

FPGA Express does not support arbitrary resolution functions. Only wired AND, wired OR, and
three-state functions are allowed. FPGA Express requires that you mark all resolution functions with a
special directive indicating the kind of resolution performed.

Note: FPGA Express considers the directive only when creating hardware. The body of the resolution
function is parsed but ignored. Using unsupported VHDL constructs (see Appendix C) gener-
ates errors.

Do not connect signals that use different resolution functions. FPGA Express supports only
one resolution function per network.
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The three resolution function directives are

-- synopsys resolution_nethod wred_and

-- synopsys resol ution_nethod w red_or

-- synopsys resolution_nethod three_state

Note: Pre-synthesis and post-synthesis simulation results might not match if the body of the resolu-
tion function used by the simulator does not match the directive used by the synthesizer.

Example 3-17 shows how to create and use resolved signals, and how to use compiler directives for
resolution functions. The signal’'s base type is the predefined type BI T.

Example 3-17: Resolved Signal and Its Resolution Function
package RES PACK is
functi on RES FUNC(DATA: in BIT _VECTOR) return BIT,;
subt ype RESCLVED BIT is RES FUNC BIT;
end;

package body RES PACK is
function RES FUNC(DATA: in BIT VECTOR) return BIT is
-- pragma resolution_nethod wred _and
begi n
-- The code in this function is ignored by FPGA Express
-- but parsed for correct VHDL syntax

for | in DATA'range loop

if DATA(I) =0’ then
return '0’;

end if;

end loop;

return '1’;

end;
end;

use work.RES_PACK.all;
entity WAND_VHDL is

port(X, Y: in BIT; Z: out RESOLVED_BIT);
end WAND_VHDL;
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architecture WAND VHDL of WAND VHDL i s

begin
Z <= X
Z <=Y,

end WAND_VHDL;

AN2

x [O—
vy [O—

Variable Declarations

Variable declarations define a named value of a given type.

You can use variables in expressions, as described in Chapter 5. Variables are assigned values by
variable assignment statements, as described in Chapter 6.

Example 3-18 shows some variable declarations.

Example 3-18: Variable Declarations
variable A, B: BIT;
variable INIT: NEWBIT;

Note: Variables are declared and used only in processes and subprograms, because processes and
subprograms cannot declare signals for internal use.

Structural Design

FPGA Express works with one or more designs. Each entity (and architecture) in a VHDL description
is translated to a single design in FPGA Express. Designs can also originate from formats other than
VHDL, such as equations, Programmable Logic Arrays (PLAS), state machines, other HDLs, or
netlists.

A design can contain instances of lower-level designs, connected by nets (signals) to the lower-level
design’s ports. These lower-level designs can consist of other entities from a VHDL design, designs
represented in some other Synopsys format, or cells from a technology library. By instantiating designs
within designs, you create a hierarchy.

Hierarchy in VHDL is specified by using component declarations and component instantiation state-
ments. To include a design, you must specify its interface with a component declaration. You can then
create an instance of that design by using the component instantiation statement.

If your design consists only of VHDL entities, every component declaration statement corresponds to
an entity in the design. If your design uses designs or technology library cells not described in VHDL,
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create component declarations without corresponding entities. You can then use FPGA Express to
associate the VHDL component with the non-VHDL design or cell.

Note: To simulate your VHDL design, you must provide entity and architecture descriptions for all
component declarations.

Using Hardware Components

VHDL includes constructs to use existing hardware components. These structural constructs can be
used to define a netlist of components.

The following sections describe how to use components and how FPGA Express configures these
components.

Component Declaration

You must declare a component in an architecture or package before you can use (instantiate) it. A
component declaration statement is similar to the entity specification statement described earlier, in
that it defines the component’s interface.

The syntax for a component declaration is

conponent identifier
[ generic( generic _declarations ) ]
[ port( port_declarations ) ]

end conponent ;

where i dent i fi er is the name of this type of component, and the syntax of
generic_decl arations and port _decl ar at i ons is the same as defined previously for entity
specifications.

Example 3-19 shows a simple component declaration statement.

Example 3-19: Component Declaration of a Two-Input AND Gate
conponent AND2
port(ll, 12: in BIT,;
OL: out BIT);
end conponent;

Example 3-20 shows a component declaration statement that uses a generic parameter.
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Example 3-20: Component Declaration of an N-Bit Adder
conponent ADD
generic(N. POSI Tl VE);

port (X, Y: in BIT_VECTOR(N-1 downto 0);
Z: out BIT_VECTOR(N-1 downto 0);
CARRY: out BIT)
end conponent;

Although the component declaration statement is similar to the entity specification, it serves a different
purpose. The component declaration is required to make the design entity AND2 or ADD usable, or vis-
ible, within an architecture. After a component is declared, it can be used in a design.

Sources of Components

A declared component can come from the same VHDL source file, from a different VHDL source file,
from another format such as Electronic Data Interchange Format (EDIF) or state table, or from a tech-
nology library. If the component is not in one of the current VHDL source files, it must already be com-
piled by FPGA Express.

When a design that uses components is compiled by FPGA Express, previously compiled components
are searched for by name in the following order:

1. Inthe current design.
2. In the input source file or files identified in the FPGA Express Implementation Window.
3. In the libraries of technology-specific FPGA components.

Consistency of Component Ports

FPGA Express checks for consistency among its VHDL entities. For other entities, the port names are
taken from the original design description.

» For components in a technology library, the port names are the input and output pin hames.
e For EDIF designs, the port names are the EDIF port names.

The bit widths of each port must also match. FPGA Express verifies matching for VHDL components,
because the port types must be identical. For components from other sources, FPGA Express checks
when linking the component to the VHDL description.

Component Instantiation Statement

The component instantiation statement instantiates and connects components to form a netlist (struc-
tural) description of a design. A component instantiation statement can create a new level of design
hierarchy.
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The syntax of the component instantiation statement is

i nstance_nanme : conponent_nane
[ generic map (
generic_nanme => expression
{ ., generic_nane => expression }
) 1
port map (
[ port_nanme => ] expression
{ , [ port_name => ] expression }

)

i nst ance_nane is the name of this instance of component type conponent _nane.

The optional generi ¢ map assigns nondefault values to generics. Each generi ¢_nane is the name
of a generic, exactly as declared in the corresponding component declaration statement. Each
expr essi on evaluates to an appropriate value.

The port map assigns the component’s ports to connections. Each port__nane is the name of a port,
exactly as declared in the corresponding component declaration statement. Each expr essi on evalu-
ates to a signal value.

FPGA Express uses the following two rules to decide which entity and architecture are to be associ-
ated with a component instantiation:

1. Each component declaration must have an entity with the same name: a VHDL entity, a design
from another source (format), or a library component. This entity is used for each component
instantiation associated with the component declaration.

2. If a VHDL entity has more than one architecture, the /ast architecture input is used for each compo-
nent instantiation associated with that entity. The . nr a file determines the last architecture ana-
lyzed.

Mapping Generic Values
When you instantiate a component with generics, you can map generics to values. A generic without a
default value must be instantiated with a generi ¢ nap value.

For example, a four-bit instantiation of the component ADD from Example 3-20 might use the following
generi c map.

Ul: ADD generic map (N => 4)
port map (X, Y, Z, CARRY...);

The port map assigns component ports to actual signals; it is described in the next section.
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Mapping Port Connections

You can specify port connections in component instantiation statements with either named or posi-
tional notation. With named notation, the port _name => construct identifies the specific ports of the
component. With positional notation, the expressions for the component ports are simply listed in the
declared port order.

Example 3-21 shows named and positional notation for the U5 component instantiation statement in
Example 3-22.

Example 3-21: Equivalent Named and Positional Association

Us: or2 port map (O =>n6, |1 =>n3, 12 => nl);
-- Naned associ ation

Us: or2 port map (n3, nl, n6);
-- Positional association

Note: When you use positional association, the instantiated port expressions (signals) must be in the
same order as the declared ports.

Example 3-22 shows a structural (netlist) description for the COUNTERS3 design entity from Example 3-
7.
Example 3-22: Structural Description of a Three-Bit Counter
architecture STRUCTURE of COUNTER3 i s
conponent DFF
port (CLK, DATA: in BIT,
Q out BIT);
end conponent;
conponent AND2
port(ll, 12: in BIT,;
O out BIT);
end conponent;
conponent OR2
port(ll, 12: in BIT,;
O out BIT);
end conponent;
conponent NAND2
port(ll, 12: in BIT;
O out BIT);
end conponent;
conponent XNOR2
port(ll, 12: in BIT,;
O out BIT);
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end

conponent ;

component | NV

port(l:

end

G out
conponent ;

signal N1, N2,

begin
ul:
uz2:
u3:
u4:
us:
ue:
uv:
us:
u9:

in BIT;

BIT);

N3, N4, N5, N6, N7, N8, N9: BIT,;

DFF port map(CLK, N1, N2);
DFF port map(CLK, N5, N3);
DFF port map(CLK, N9, MN);
INV port map(N2, N1);

OR2 port map(N3, N1,

NAND2 port
NAND2 port
XNOR2 port
NAND2 port

map( N1,
map( N6,
map( N8,
map( N2,

COUNT(0) <= N2z;
COUNT(1) <= N3;
COUNT(2) <= M4;
end STRUCTURE;

N6) ;
N3, N7);
N7, N5);
N4, N9);
N3, N8);

Technology-Independent Component Instantiation

When you use a structural design style, you might want to instantiate logical components. Synopsys
provides generic technology library GTECH for this purpose. This generic technology library contains
technology-independent logical components such as:

* AND, OR, and NOR gates (2, 3, 4, 5, and 8)

» one-bit adders and half adders

o 2-0f-3 majority

» multiplexors
« flip-flops and latches
» multiple-level logic gates, such as AND-NOT, AND-OR, AND-OR-INVERT

You can use these simple components to create technology-independent designs. Example 3-23
shows how an N-bit ripple-carry adder can be created from N one-bit adders.
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Example 3-23: Design That Uses Technology-Independent Components
library GTECH,
use gtech. gtech_conponents. all;
entity R PPLE_CARRY is
generi c(N. NATURAL);

port (A B: in BIT VECTOR(N-1 downto 0);
CARRY_I N: in BIT,
SUmMm out BIT_VECTOR(N-1 downto 0);

CARRY_QUT: out BIT;);
end Rl PPLE_CARRY,

architecture TECH | NDEP of RIPPLE_CARRY is
si gnal CARRY: BIT_VECTOR(N downto 0);

begin
CARRY(0) <= CARRY_IN;

GEN. for I in O to N1 generate
Ul: GTECH _ADD_ABC port map(

=> A(l),

A
B => B(l),
C  => CARRY(l),

S => SUM 1),
COUT => CARRY(I +1));

end generate GEN,

CARRY_OUT <= CARRY(N):
end TECH_| NDEP;
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Chapter 4
Data Types

VHDL is a strongly typed language. Every constant, signal, variable, function, and parameter is
declared with a type, such as BOOLEAN or | NTEGER, and can hold or return only a value of that type.

VHDL predefines abstract data types, such as BOOLEAN, which are part of most programming lan-
guages, and hardware-related types, such as Bl T, found in most hardware languages. VHDL pre-
defined types are declared in the STANDARD package, which is supplied with all VHDL
implementations (see Example 4-12). Data types addresses information about

| «+ Enumeration Types |

|+ Integer Types |
[+ Array Types |

|+ Record Types |
|+ Predefined VHDL Data Types |

|.s_Unsupported Data Types |
|+ Synopsys Data Types |

The advantage of strong typing is that VHDL tools can catch many common design errors, such as
assigning an eight-bit value to a four-bit-wide signal, or incrementing an array index out of its range.

The following code shows the definition of a new type, BYTE, as an array of eight bits, and a variable
declaration, ADDEND, that uses this type.

type BYTE is array(7 downto 0) of BIT,;

vari abl e ADDEND: BYTE;

The predefined VHDL data types are built from the basic VHDL data types. Some VHDL types are not
supported for synthesis, such as REAL and FI LE.

The examples in this chapter show type definitions and associated object declarations. Although each
constant, signal, variable, function, and parameter is declared with a type, only variable and signal
declarations are shown here in the examples. Constant, function, and parameter declarations are
shown in Chapter 3.

VHDL also provides subtypes, which are defined as subsets of other types. Anywhere a type definition
can appear, a subtype definition can also appear. The difference between a type and a subtype is that
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a subtype is a subset of a previously defined parent (or base) type or subtype. Overlapping subtypes
of a given base type can be compared against and assigned to each other. All integer types, for exam-
ple, are technically subtypes of the built-in integer base type (see "Integer Types," later in this chapter).
Subtypes are described in the last section of this chapter.

Enumeration Types

An enumeration type is defined by listing (enumerating) all possible values of that type.
The syntax of an enumeration type definition is

type type name is ( enuneration_literal
{, enuneration literal} );

t ype nane is an identifier, and each enuner ati on_I it er al is either an identifier (enum 6) or a
character literal (A’ ).

An identifier is a sequence of letters, underscores, and numbers. An identifier must start with a letter
and cannot be a VHDL reserved word, such as TYPE All VHDL reserved words are listed in
Chapter 11.

A character literal is any value of type CHARACTERN single quotes.

Example 4-1 shows two enumeration type definitions and corresponding variable and signal declara-
tions.

Example 4-1: Enumeration Type Definitions
type COLOR is (BLUE, GREEN, YELLOW RED);

type MY_LOGIC is ('0’, '1",'U’, 'Z’);
variable HUE: COLOR;
signal SIG: MY_LOGIC;

HUE := BLUE;
SIG <=7,
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Enumeration Overloading

You can overload an enumeration literal by including it in the definition of two or more enumeration
types. When you use such an overloaded enumeration literal, FPGA Express can usually determine
the literal's type. However, under certain circumstances determination may be impossible. In these
cases, you must qualify the literal by explicitly stating its type (see “Qualified Expressions" in
Chapter 5). Example 4-2 shows how you can qualify an overloaded enumeration literal.

Example 4-2: Enumeration Literal Overloading

type COLOR i s (RED, GREEN, YELLOW BLUE, VI OLET);
type PRIMARY COLOR is (RED, YELLOW BLUE);

A <= COLOR’(RED);

Enumeration Encoding

Enumeration types are ordered by enumeration value. By default, the first enumeration literal is
assigned the value 0, the next enumeration literal is assigned the value 1, and so forth.

FPGA Express automatically encodes enumeration values into bit vectors that are based on each
value’s position. The length of the encoding bit vector is the minimum number of bits required to
encode the number of enumerated values. For example, an enumeration type with five values has a
three-bit encoding vector.

Example 4-3 shows the default encoding of an enumeration type with five values.

Example 4-3: Automatic Enumeration Encoding
type COLOR is (RED, GREEN, YELLOW BLUE, VIOLET);
The enumeration values are encoded as follows:

RED g "ooo0"
GREEN 0O "001"
YELLOW O "010"
BLUE 0O "O11"
VI OLET O "100"

The result is RED < GREEN < YELLOW< BLUE < VI OLET.

You can override the automatic enumeration encodings and specify your own enumeration encodings
with the ENUM_ENCODI NG attribute. This interpretation is specific to FPGA Express.

A VHDL attribute is defined by its name and type, and is then declared with a value for the attributed
type, as shown in Example 4-4 below.

Note: Several VHDL synthesis-related attributes are declared in the ATTRI BUTES package supplied
with FPGA Express. This package is listed in Chapter 10. The section “Synthesis Attributes and
Constraints” on page 1 describes how to use these VHDL attributes.
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The ENUM_ENCODI NG attribute must be a STRI NG containing a series of vectors, one for each enu-
meration literal in the associated type. The encoding vector is specified by '0' s,’1’ s,'D’ s,’U’ s,
and 'Z' s separated by blank spaces. The meaning of these encoding vectors is described in the next
section. The first vector in the attribute string specifies the encoding for the first enumeration literal, the
second vector specifies the encoding for the second enumeration literal, and so on. The
ENUM_ENCODIN@&tribute must immediately follow the type declaration.

Example 4-4 illustrates how the default encodings from Example 4-3 can be changed with the
ENUM_ENCODIN&tribute.

Example 4-4: Using the ENUM_ENCODING Attribute

attri bute ENUM ENCODI NG STRI NG
-- Attribute definition

type COLOR is (RED, GREEN, YELLOW BLUE, VIOLET);
attribute ENUM ENCODI NG of

COLOR: type is "010 000 011 100 0O01";

-- Attribute declaration
The enumeration values are encoded as follows:

RED = "010"
GREEN = "000"
YELLOW = " 011"
BLUE = "100"
VI CLET = "001"

The result is GREEN<VIOLET<RED<YELLOW<BLUE

Note: The interpretation of the ENUM_ENCODIN&tribute is specific to FPGA Express. Other VHDL
tools, such as simulators, use the standard encoding (ordering).
Enumeration Encoding Values
The possible encoding values for the ENUM_ENCODIN@&tribute are:

'0’ BitvalueO
"1’ Bitvalue 1
'D’ Don't-care (can be either 0 or 1).

‘U’ Unknown. If Uappears in the encoding vector for an enumeration, you cannot use that
enumeration literal except as an operand to the = and /= operators. You can read an
enumeration literal encoded with a Ufrom a variable or signal, but you cannot assign it.

For synthesis, the = operator returns FALSEand the /= operator returns TRUE when
either of the operands is an enumeration literal whose encoding contains U.

'Z'  High impedance. See ‘Three-State Inference"”in Chapter 8 for more information.
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Integer Types

The maximum range of a VHDL integer type is —(j—¢—¢) to j—¢—¢ (- 2_147_483_ 647 ..
2 147 _483_647). Integer types are defined as subranges of this anonymous built-in type. Multidigit
numbers in VHDL can include underscores (_) to make them easier to read.

FPGA Express encodes an integer value as a bit vector whose length is the minimum necessary to
hold the defined range and encodes integer ranges that include negative numbers as 2’s-complement
bit vectors.

The syntax of an integer type definition is

type type _nane is range integer_range ;

t ype_nane is the name of the new integer type, and i nt eger_r ange is a subrange of the anony-
mous integer type.

Example 4-5 shows some integer type definitions.

Example 4-5: Integer Type Definitions
type PERCENT is range -100 to 100;
-- Represented as an 8-bit vector
-- (1 sign bit, 7 value bits)

type INTEGER i s range -2147483647 to 2147483647,
-- Represented as a 32-bit vector
-- This is the definition of the | NTEGER type

Note: You cannot directly access the bits of an | NTEGER or explicitly state the bit width of the type.
For these reasons, Synopsys provides overloaded functions for arithmetic. These functions are
defined in the st d_I| ogi ¢ package, listed in Chapter 10.

Array Types

An array is an object that is a collection of elements of the same type. VHDL supports N-dimensional
arrays, but FPGA Express supports only one-dimensional arrays. Array elements can be of any type.
An array has an index whose value selects each element. The index range determines how many ele-
ments are in the array and their ordering (low t o high, or high downt o low). An index can be of any
integer type.

You can declare multidimensional arrays by building one-dimensional arrays where the element type
is another one-dimensional array, as shown in Example 4-6.
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Example 4-6: Declaration of Array of Arrays
type BYTE is array (7 downto 0) of BIT;
type VECTOR is array (3 downto 0) of BYTE;

VHDL provides both constrained arrays and unconstrained arrays. The difference between these two
arrays comes from the index range in the array type definition.
Constrained Array

A constrained array’s index range is explicitly defined; for example, an integer range (1 t o 4).When
you declare a variable or signal of this type, it has the same index range.

The syntax of a constrained array type definition is

type array type nane is
array ( integer_range ) of type nane ;

array_type_nane is the name of the new constrained array type, i nt eger_r ange is a subrange of
another integer type, and t ype_nane is the type of each array element.

Example 4-7 shows a constrained array definition.

Example 4-7: Constrained Array Type Definition
type BYTE is array (7 downto 0) of BIT;
-- A constrai ned array whose index range is
-- (7, 6, 5 4, 3, 2, 1, 0)

Unconstrained Array

You define an unconstrained array’s index range as a type, for example, | NTEGER. This definition
implies that the index range can consist of any contiguous subset of that type’s values. When you
declare an array variable or signal of this type, you also define its actual index range. Different declara-
tions can have different index ranges.

The syntax of an unconstrained array type definition is

type array _type nane is
array (range_type nane range <>)
of el enment type nane ;

array_type_name is the name of the new unconstrained array type,
range_t ype_nane is the name of an integer type or subtype, and
el ement _t ype nane is the type of each array element.

Example 4-8 shows an unconstrained array type definition and a declaration that uses it.

4-6 « VeriBest FPGA Synthesis VHDL Reference Manual



Array Types

Example 4-8: Unconstrained Array Type Definition

type BIT VECTOR is array(l NTEGER range <>) of BIT,

-- An unconstrained array definition

vari able My_VECTOR : BIT_VECTOR(5 downto -5);

The advantage of using unconstrained arrays is that a VHDL tool remembers the index range of each
declaration. You can use array attributes to determine the range (bounds) of a signal or variable of an
unconstrained array type. With this information, you can write routines that use variables or signals of
an unconstrained array type, independently of any one array variable’s or signal’'s bounds. The next

section describes array attributes and how they are used.

Array Attributes
FPGA Express supports the following predefined VHDL attributes for use with arrays:

left

right

high

low

length

range
reverse_range

These attributes return a value corresponding to part of an array’s range. Table 4-1 shows the values
of the array attributes for the variable MYy_VECTOR in Example 4-8.

Table 4-1: Array Index Attributes

MY_VECTOR’left
MY_VECTOR'right
MY_VECTOR’high
MY_VECTOR’low
MY_VECTOR’length
MY_VECTOR’range

MY_VECTOR’
reverse_range

5
11
(5 down to -5)

(-5to 5)

Example 4-9 shows the use of array attributes in a function that ORs together all elements of a given
Bl T_VECTOR (declared in Example 4-8) and returns that value.
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Example 4-9: Use of Array Attributes
function OR ALL (X: in BIT VECTOR) return BIT is

variable OR BIT: BIT;
begi n
OR_BIT :="07;
for I in X’range loop

OR_BIT := OR_BIT or X(I);
end loop;

return OR_BIT;
end;

Note that this function works for a Bl T_VECTOR of any size.

Record Types

A record is a set of named fields of various types, unlike an array, which is composed of identical
anonymous entries. A record’s field can be of any previously defined type, including another record

type.

Note: Constants in VHDL of typer ecor d are not supported for synthesis (the initialization of records
is not supported).

Example 4-11 shows a record type declaration (BYTE_AND | X), three signals of that type, and some
assignments.

Example 4-11: Record Type Declaration and Use
constant LEN: I NTEGER : = 8;

subtype BYTE VEC is BI T_VECTOR(LEN-1 downto 0);

type BYTE_AND I X is

record
BYTE: BYTE_VEC;
I X: | NTEGER range 0 to LEN;

end record;

signal X, Y, Z: BYTE_AND I X;

si gnal DATA: BYTE_VEC,
signal NUM | NTEGER
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X. BYTE <= "11110000";
XIX <=2

DATA <= Y. BYTE;
NUM <= Y.IX

Z <= X
As shown in Example 4-11, you can read values from or assign values to records in two ways:

» By individual field name
X. BYTE <= DATA;
X I X <= LEN;

» From another record object of the same type
Z <= X
Note: A record type object’s individual fields are accessed by the object name, a period, and a field

name: X. BYTE or X. | X. To access an element of the BYTE field’'s array, use the array notation
X. BYTE(2) .

Predefined VHDL Data Types

IEEE VHDL describes two site-specific packages, each containing a standard set of types and opera-
tions: the STANDARD package and the TEXTI O package.

The STANDARD package of data types is included in all VHDL source files by an implicit use clause.
The TEXTI Opackage defines types and operations for communication with a standard programming
environment (terminal and file 1/0O). This package is not needed for synthesis, and therefore FPGA
Express does not support it.

The FPGA Express implementation of the STANDARD package is listed in Example 4-12. This STAN-
DARD package is a subset of the IEEE VHDL STANDARD package. Differences are described in
“Unsupported Data Types" later in this chapter.
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Example 4-12: FPGA Express STANDARD Package
package STANDARD i s

type BOOLEAN is (FALSE, TRUE);
type BIT is ('0’, '1%);

type CHARACTER is (
NUL, SOH, STX, ETX, EOT, ENQ, ACK, BEL,
BS, HT, LF, VT, FF, CR, SO, SI,
DLE, DC1, DC2, DC3, DC4, NAK, SYN, ETB,
CAN, EM, SUB, ESC, FSP, GSP, RSP, USP,

I T
0,°1,'2, '3, 4,5, 6, '7,
8,09, <L,

‘@', 'A,'B’,’C", D", 'E’, 'F, G,
‘H, P, Y, K L, MY N O,
'P,’Q, 'R, 'S, T, UL VLW
XL, Z TN TN,
wal, b, e, d el f, 'g’,
e T KT, 'm0

LRI}

LTS W
Xy, 'z (T Y, '~ DEL);

type INTEGER is range -2147483647 to 2147483647,

subtype NATURAL is INTEGER range 0 to 2147483647;

subtype POSITIVE is INTEGER range 1 to 2147483647,

type STRING is array (POSITIVE range <>)
of CHARACTER,;

type BIT_VECTOR is array (NATURAL range <>)
of BIT;

end STANDARD;
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Data Type BOOLEAN

The BOOLEAN data type is actually an enumerated type with two values, FALSE and TRUE, where
FALSE < TRUE. Logical functions such as equality (=) and comparison (<) functions return a BOOL-
EAN value.

Convert a Bl T value to a BOOLEAN value as follows:
BOOLEAN VAR := (BIT_VAR ='1");
Data Type BIT

The BI T data type represents a binary value as one of two characters,’0’ or’l’ . Logical operations
such as and can take and return BIT values.

Convert a BOOLEANalue to a BIT value as follows:

i f (BOOLEAN VAR) then

BIT_VAR =1
else

BIT_VAR :='0}
end if;

Data Type CHARACTER

The CHARACTER data type enumerates the ASCII character set. Nonprinting characters are repre-
sented by a three-letter name, such as NUL for the null character. Printable characters are represented
by themselves, in single quotation marks, as follows:

variable CHARACTER_VAR: CHARACTER,;

CHARACTER_VAR :="A’;

Data Type INTEGER

The | NTEGER data type represents positive and negative whole numbers and zero.

Data Type NATURAL

The NATURAL data type is a subtype of | NTEGER that is used to represent natural (honnegative) num-
bers.

Data Type POSITIVE

The PCSI Tl VE data type is a subtype of | NTEGER that is used to represent positive (nonzero and
nonnegative) numbers.
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Data Type STRING

The STRI NG data type is an unconstrained array of CHARACTER data types. A STRI NGvalue is
enclosed in double quotation marks, as follows:

vari abl e STRING VAR STRING(1 to 7);

STRI NG_VAR : = "Rosebud";

Data Type BIT_VECTOR
The Bl T_VECTOR data type represents an array of Bl T values.

Unsupported Data Types

Some data types are either not useful for synthesis or are not supported. Unsupported types are
parsed but ignored by FPGA Express. These types are listed and described below.

Chapter 11 describes the level of FPGA Express support for each VHDL construct.

Physical Types

FPGA Express does not support physical types, such as units of measure (for example, nS). Because
physical types are relevant to the simulation process, FPGA Express allows but ignores physical type
declarations.

Floating Point Types

FPGA Express does not support floating point types, such as REAL. Floating point literals, such as
1. 34, are allowed in the definitions of FPGA Express-recognized attributes.

Access Types

FPGA Express does not support access (pointer) types because no equivalent hardware construct
exists.

File Types
FPGA Express does not support file (disk file) types. A hardware file is a RAM or ROM.

SYNOPSYS Data Types

The std_| ogi c_ari t h package provides arithmetic operations and nhumeric comparisons on array
data types. The package also defines two major data types: UNSI GNED and SI GNED. These data
types, unlike the predefined | NTEGER type, provide access to the individual bits (wires) of a numeric
value. For more information, see Chapter 10.

Subtypes

A subtype is defined as a subset of a previously defined type or subtype. A subtype definition can
appear wherever a type definition is allowed.
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Subtypes are a powerful way to use VHDL type checking to ensure valid assignments and meaningful
data handling. Subtypes inherit all operators and subprograms defined for their parent (base) types.

Subtypes are also used for resolved signals to associate a resolution function with the signal type.
(See "Signal Declarations" in Chapter 3 for more information.)

For example, in Example 4-12 NATURAL and PCSI Tl VE are subtypes of | NTEGER and they can be
used with any | NTEGER function. These subtypes can be added, multiplied, compared, and assigned
to each other, as long as the values are within the appropriate subtype’s range. All | NTEGER types and
subtypes are actually subtypes of an anonymous predefined numeric type.

Example 4-13 shows some valid and invalid assignments between NATURAL and POSI Tl VE values.

Example 4-13: Valid and Invalid Assignments between INTEGER Subtypes

vari abl e NAT: NATURAL;
vari able PCS: POCSI Tl VE;

PCS : = 5;

NAT : = PGS + 2;
NAT : = O;
POS : = NAT; -- Invalid; out of range

For exanple, the type BI T_VECTOR is defined as

type BIT_VECTOR is array(NATURAL range <>) of BIT;

If your design uses only 16-bit vectors, you can define a subtype M¥_VECTOR as

subtype MY_VECTOR is BIT_VECTOR(O to 15);

Example 4-14 shows that all functions and attributes that operate on Bl T_VECTOR also operate on
MY_VECTOR

Example 4-14: Attributes and Functions Operating on a Subtype

type BIT_VECTOR is array(NATURAL range <>) of BIT;
subtype MY_VECTOR is BI T_VECTOR(0 to 15);

si gnal VEC1, VEC2: MY_VECTOR;
si gnal SBIT. BIT;
vari abl e UPPER_BOUND: | NTEGER;

if (VECL = VEC2)

VEC1(4) <= S BIT;
VEC2 <= "0000111100001111";

RIGHT_INDEX := VECZI'high;
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Chapter 5
Expressions

Expressions perform arithmetic or logical computations by applying an operator to one or more oper-
ands. Operators specify the computation to be performed. Operands are the data for the computation.

Expressions are discussed as

In the following VHDL fragment, A and B are operands, + is an operator, and A + B is an expression.

C:= A+ B, -- Conmputes the sum of two val ues

You can use expressions in many places in a design description. Expressions can be:

 Assign to variables or signals or used as the initial values of constants.
» Used as operands to other operators.
Used for the return value of functions.

Used for the | N parameters in a subprogram call.

Assigned to the QUT parameters in a procedure body.

» Used to control the actions of statements like i f, | oop, and case.

To understand expressions for VHDL, consider the individual components of operators and operands.
Operators

 Logical operators
Relational operators

Adding operators

Unary (sign) operators
Multiplying operators

Miscellaneous arithmetic operators

Operands

» Computable operands
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* Literals

* Identifiers

* Indexed names
 Slice names

» Aggregates

* Attributes

* Function calls

* Qualified expressions
» Type conversions

Operators
A VHDL operator is characterized by

* Name

» Computation (function)

* Number of operands

» Type of operands (such as Bool ean or Char act er)

» Type of result value

You can define new operators, like functions, for any type of operand and result value. The predefined
VHDL operators are listed in Table 5-1.

Table 5-1: Table 5-1Predefined VHDL Operators

Type Operators Precedence
Logical and or nand | nor | xor Lowest
Relational = /= < <= > >=

Adding + - &

Unary (sign) + -

Multiplying * / nod rem

Miscellaneous * % abs not Highest

Each row in the table lists operators with the same precedence. Each row’s operators have greater
precedence than those in the row above. An operator’'s precedence determines whether it is applied
before or after adjoining operators.

Example 5-1 shows several expressions and their interpretations.
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Example 5-1: Operator Precedence
A+B* C = A+ (B* Q
not BOOL and (NUM = 4) (not BOCOL) and (NUM = 4)

VHDL allows existing operators to be overloaded (applied to new types of operands). For example, the
and operator can be overloaded to work with a new logic type. For more information, see “Operator
Overloading" in Chapter 3.

Logical Operators

Operands of a logical operator must be of the same type. The logical operators and, or, nand,
nor, xor, and not accept operands of type Bl T, type BOOLEAN, and one-dimensional arrays of
Bl T or BOOLEAN. Array operands must be the same size. A logical operator applied to two array oper-
ands is applied to pairs of the two arrays’ elements.

Example 5-2 shows some logical signal declarations and logical operations on them.

Example 5-2: Logical Operators

signal A B, C BI T_VECTOR(3 downto 0);
signal D, E, F, G BIT VECTOR(1 downto 0);
signal H I, J, K BI T;

signal L, M N, O P: BOOLEAN,

A <= B and C

D<= Eor For G

H <= (1 nand J) nand K;

L <= (Mxor N) and (O xor P);

Normally, to use more than two operands in an expression, you must use parentheses to group the
operands. Alternately you can combine a sequence of and, or, or xor operators without parentheses,
such as

A and B and C and D

However, sequences with different operators, such as

A or B xor C

do require parentheses.
Example 5-3 uses the declarations from Example 5-2 to show some common errors.

Example 5-3: Errors in Using Logical Operators

H<=1 and J or K; -- Parenthesis required;
L <= Mnand N nand O nand P; -- Parenthesis required;
A <= B and E; -- Operands nust be the sanme size;
H<=1 or L; -- Operands mnmust be the sanme type;
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Figure 5-1: Common Errors Using Logical Operators
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Relational Operators

Relational operators, such as = or >, compare two operands of the same base type and return a
BOOLEAN value.

IEEE VHDL defines the equality (=) and inequality (/ =) operators for all types. Two operands are
equal if they represent the same value. For array and record types, IEEE VHDL compares correspond-
ing elements of the operands.

IEEE VHDL defines the ordering operators (<, <=, " (relational operator)">>, and =" (relational opera-
tor)">>=) for all enumerated types, integer types, and one-dimensional arrays of enumeration or inte-
ger types.

The internal order of a type’s values determines the result of the ordering operators. Integer values are
ordered from negative infinity to positive infinity. Enumerated values are in the same order as they
were declared, unless you have changed the encoding.

Note: If you set the encoding of your enumerated types (see “Enumeration Encoding" in Chapter 4),
the ordering operators compare your encoded value ordering, not the declaration ordering.
Because this interpretation is specific to FPGA Express, a VHDL simulator continues to use the
declaration’s order of enumerated types.

Arrays are ordered like words in a dictionary. The relative order of two array values is determined by
comparing each pair of elements in turn, beginning from the left bound of each array’s index range. If a
pair of array elements is not equal, the order of the different elements determines the order of the
arrays. For example, bit vector 101011 is less than 1011 because the fourth bit of each vector is dif-
ferent, and O is less than 1.
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If the two arrays have different lengths and the shorter array matches the first part of the longer array,
the shorter one is ordered before the longer. Thus, the bit vector 101 is less than 101000. Arrays are
compared from left to right, regardless of their index ranges (t o or downt o).

Example 5-4 shows several expressions that evaluate to TRUE.

Example 5-4: TRUE Relational Expressions

o=
"101" ="101"
"1" >"011" -- Array comparison
"101" < "110"

To interpret bit vectors such as 011 as signed or unsigned binary numbers, use the relational opera-
tors defined in the FPGA Express st d_| ogi c_ari t h package (listed in Appendix B). The third line in
Example 5-4 evaluates to FALSE if the operands are of type UNSI GNED.

UNSIGNED™1" < UNSIGNED™011" -- Numeric comparison
Example 5-5 shows some relational expressions and the resulting synthesized circuits.

Example 5-5: Relational Operators
signal A, B: BIT_VECTOR(3 downto 0);
signal C, D: BIT_VECTOR(1 downto 0);
signal E, F, G, H, I, J: BOOLEAN;

G <=(A=B);
H <= (C < D);
| <=(C >=D);
J<=(E>F);

Adding Operators

Adding operators include arithmetic and concatenation operators.

The arithmetic operators + and - are predefined by FPGA Express for all integer operands. These
addition and subtraction operators perform conventional arithmetic, as shown in Example 5-6. For
adders and subtracters more than four bits wide, a synthetic library component is used (see Chapter
9).

The concatenation (&) operator is predefined for all one-dimensional array operands. The concatena-
tion operator builds arrays by combining the operands. Each operand of & can be an array or an ele-
ment of an array. Use & to add a single element to the beginning or end of an array, to combine two
arrays, or to build an array from elements, as shown in Example 5-6.
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Example 5-6: Adding Operators

signal A, D BI T VECTOR(3 downto 0);
signal B, C, G BIT_VECTOR(1 downto 0);
signal E: BI T VECTOR(2 downto 0);
signal F, H 1: BIT,

signal J, K, L: INTEGER range 0 to 3;

A <=not B &not C -- Array & array
D<=not E&not F; -- Array & el enent
G<=not H& not |; -- Elenent & el enent

J <= K+ L;

-- Sinple addition

Figure 5-2: Adding Operators
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Unary (Sign) Operators

A unary operator has only one operand. FPGA Express predefines unary operators + and - for all
integer types. The + operator has no effect. The - operator negates its operand. For example,

5 = 45
-(-5)

Example 5-7 shows how unary negation is synthesized.

Example 5-7: Unary (Signed) Operators
signal A B: INTEGER range -8 to 7;

A <= -B;
Figure 5-3: Unary (Signed) Operators
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Multiplying Operators
FPGA Express predefines the multiplying operators (*, / , nod, and r em for all integer types.
FPGA Express places some restrictions on the supported values for the right operands of the multiply-
ing operators, as follows:
* * Integer multiplication: no restrictions.

A multiplication operator is implemented as a synthetic library cell.

« / Integer division: The right operand must be a computable power of 2 (see "Computable Operands,"
later in this chapter). Neither operand can be negative.

This operator is implemented as a bit shift.
nmod Modulus: Same as /.

rem Remainder: Same as /.
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Example 5-8 shows some uses of the multiplying operators whose right operands are all powers of 2.
The resulting synthesized circuit is also shown.

Example 5-8: Multiplying Operators with Powers of 2
signal AL B, C D, E F, G H INTEGER range 0 to 15;

A <= B * 4
C<=D/ 4
E <= F nod 4;
G <= Hrem 4,
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Example 5-9 shows two multiplication operations, one with a four-bit operand times a two-bit constant
(B * 3), and one with two five-bit operands (X * Y). Because the synthetic library is enabled by
default, these multiplications are implemented as synthetic library cells.
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Example 5-9: Multiply Operator (* ) Using Synthetic Cells
signal A, B: INTEGER range 0 to 15;
signal Y, Z: INTEGER range 0 to 31;

signal X | NTEGER range 0 to 1023;
A<=B* 3
X<=Y* Z
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Miscellaneous Arithmetic Operators

FPGA Express predefines the absolute value (abs) and exponentiation (* *) operators for all integer
types. One FPGA Express restriction placed on **, as follows:

** Exponentiation: Left operand must have a computable value of 2 (see “Computable Operands,"
later in this chapter).

Example 5-10 shows how these operators are used and synthesized.
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Example 5-10: Miscellaneous Arithmetic Operators
signal A, B: INTEGER range -8 to 7;

signal C | NTEGER range O to 15;
signal D I NTEGER range 0 to 3;
A <= abs(B);
C<=2** D
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Operands

Operands determine the data used by the operator to compute its value. An operand is said to return
its value to the operator.

There are many categories of operands. The simplest operand is a literal, such as the number 7, or an
identifier, such as a variable or signal name. An operand itself can be an expression. You create
expression operands by surrounding an expression with parentheses.

The operand categories are
Expressions:(A nand B)
Literals:'0’, "101", 435, 16#FF3E#
Identifiers: my_var, my_sig
Indexed names: my_array(7)

Slice names: my_array(7 to 11)
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Fields: ny_record.a field
Aggregates:my_array_type’(others => 1)

Attributes: my_array’range

Function calls: LOOKUP_VAL(my_var_1, my_var_2)
Qualified expressions:BIT_VECTOR'('1' & '0’)

Type conversions: THREE_STATE(0)

The next two sections discuss operand bit widths and explain computable operands. Subsequent sec-
tions describe the operand types listed above.

Operand Bit Width

FPGA Express uses the bit width of the largest operand to determine the bit width needed to imple-
ment an operator in hardware. For example, an INTEGERoperand is 32 bits wide by default. An addi-
tion of two INTEGERoperands causes FPGA Express to build a 32-bit adder.

To use hardware resources efficiently, always indicate the bit width of numeric operands. For example,
use a subrange of INTEGERwhen declaring types, variables, or signals.

type ENOUGH: | NTEGER range 0 to 255;
vari abl e W DE: | NTEGER range -1024 to 1023;
si gnal NARROW | NTEGER range 0 to 7;

Note: During optimization, FPGA Express removes hardware for unused bits.

Computable Operands

Some operators, such as the division operator, restrict their operands to be computable. A computable
operand is one whose value can be determined by FPGA Express. Computability is important because
noncomputable expressions can require logic gates to determine their value.

Following are examples of computable operands:

* Literal values

« for ... | oop parameters, when the loop’s range is computable

» Variables assigned a computable expression

» Aggregates that contain only computable expressions

» Function calls with a computable return value

» Expressions with computable operand

» Qualified expressions, where the expression is computable

» Type conversions, when the expression is computable

» Value of the and or nand operators when one of the operands is a computable 0
» Value of the or or nor operators when one of the operands is a computable 1

5-12 « VeriBest FPGA Synthesis VHDL Reference Manual



Operands

Additionally, a variable is given a computable value if it is an OUT or | NOUT parameter of a procedure
that assigns it a computable value.

Following are examples of noncomputable operands:

 Signals

» Ports

» Variables that are assigned different computable values that depend on a noncomputable condition
 Variables assigned noncomputable values

Example 5-11 shows some definitions and declarations, followed by several computable and honcom-
putable expressions.

Example 5-11: Computable and Noncomputable Expressions
signal S: BIT,

function MIXX(A B, C BIT) return BIT is
begin
if (C="1") then
return(A);
else
return(B);
end if;
end;

procedure COMP(A: BIT; B: out BIT) is
begin

B :=not A;
end;

process(S)
variable VO, V1, V2: BIT;
variable V_INT: INTEGER;

subtype MY_ARRAY is BIT_VECTOR(O to 3);
variable V_ARRAY: MY_ARRAY;

begin
VO =1 -- Computable (value is '1")
V1:=VO0; -- Computable (value is '1")
V2 :=not V1, -- Computable (value is '0’)

for1in 0 to 3 loop
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VINT :=1; -- Conput abl e (val ue depends
end | oop; -- on iteration)

V_ARRAY := MY_ARRAY’'(V1, V2,°0",'0");
-- Computable ("1000")
V1 := MUX(VO, V1, V2); -- Computable (value is '1")
COMP(V1, V2);
V1:=V2; -- Computable (value is '0")
V0 :=S and 0’ -- Computable (value is '0")
V1 :=MUX(S, '1’, ’0’);-- Computable (value is '1")
V1:=MUX(1", 1", S);-- Computable (value is '1")

if (S="1") then

V2 :='0% -- Computable (value is '0")
else

V2 :='1% -- Computable (value is '1")
end if;
VO :=V2; -- Noncomputable; V2 depends

-- onS

V1:.=S; -- Noncomputable; S is signal
V2 :=V1, -- Noncomputable; V1 is no

-- longer computable
end process;

Literals

A literal (constant) operand can be a numeric literal, a character literal, an enumeration literal, or a
string literal. The following sections describe these four kinds of literals.

Numeric Literals

Numeric literals are constant integer values. The two kinds of numeric literals are decimal and based.
A decimal literal is written in base 10. A based literal can be written in a base from 2 to 16 and is com-
posed of the base number, an octothorpe (#), the value in the given base, and another octothorpe (#);
for example, 2#101# is decimal 5.

The digits in either kind of numeric literal can be separated by an underscore (_ ) character.
Example 5-12 shows several different numeric literals, all representing the same value.
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Example 5-12: Numeric Literals
170
170
10#170#
2#1010_1010#
16#AAH

Character Literals

Character literals are single characters enclosed in single quotation marks, for example, A. Character
literals can be used as values for operators and to define enumerated types, such as CHARACTER and
Bl T. See Chapter 4 for more information about the legal character types.

Enumeration Literals

Enumeration literals are values of enumerated types. The two kinds of enumeration literals are charac-
ter literals and identifiers. Character literals were described previously. Enumeration identifiers are
those literals listed in an enumeration type definition. For example:

type SOVE ENUMis ( ENUMID 1, ENUMID 2, ENUMID 3);

If two enumerated types use the same literals, those literals are said to be overloaded. You must qual-
ify overloaded enumeration literals (see "Qualified Expressions,” later in this chapter) when you use
them in an expression unless their type can be determined from context. See Chapter 4 for more infor-
mation.

Example 5-13 defines two enumerated types and shows some enumeration literal values.

Example 5-13: Enumeration Literals
type ENUM_1 is (AAA, BBB, 'A’, 'B’, ZZ2);
type ENUM_2 is (CCC, DDD, 'C’, 'D’, ZZ2);

AAA -- Enumeration identifier of type ENUM_1
‘B’ -- Character literal of type ENUM_1
CccC -- Enumeration identifier of type ENUM_2
D’ -- Character literal of type ENUM_2

ENUM_1'(ZzZZ) -- Qualified because overloaded

String Literals

String literals are one-dimensional arrays of characters, enclosed in double quotes (" "). The two kinds
of string literals are character strings and bit strings. Character strings are sequences of characters in
double quotes; for example, " ABCD' . Bit strings are similar to character strings, but represent binary,
octal, or hexadecimal values; for example, B*1101", O' 15", and X" D" all represent decimal value
13.

A string value’s type is a one-dimensional array of an enumerated type. Each of the characters in the
string represents one element of the array.
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Example 5-14 shows some character-string literals.

Example 5-14: Character-String Literals
"10101"
" ABCDEF"
Note: Null string literals (" ") are not supported.

Bit strings, like based numeric literals, are composed of a base specifier character, a double quotation
mark, a sequence of numbers in the given base, and another double quotation mark. For example,

B" 0101" represents the bit vector 0101. A bit-string literal consists of the base specifier B, O, or X, fol-
lowed by a string literal. The bit-string literal is interpreted as a bit vector, a one-dimensional array of
the predefined type Bl T. The base specifier determines the interpretation of the bit string as follows:

B (binary)
The value is in binary digits (bits, 0 or 1). Each bit in the string represents one BI T in the generated
bit vector (array).

O(octal)
The value is in octal digits (0 to 7). Each octal digit in the string represents three Bl Ts in the gener-
ated bit vector (array).

X (hexadecimal)
The value is in hexadecimal digits (0 to 9 and A to F). Each hexadecimal digit in the string represents
four Bl Ts in the generated bit vector (array).

You can separate the digits in a bit-string literal value with underscores (_) for readability. Example 5-
15 shows several bit-string literals that represent the same value.
Example 5-15: Bit-String Literals
X" AAA!
B"1010_1010_1010"

0'5252"
B"101_010_101_010"

Identifiers
Identifiers are probably the most common operand. An identifier is the name of a constant, variable,
signal, entity, port, subprogram, or parameter and returns the object’s value to an operand.

Example 5-16 shows several kinds of identifiers and their usage. All identifiers are shown in boldface.

Example 5-16: Identifiers
entity EXAMPLE is
port (/NT_PORT: i n | NTEGER;
BI T_PORT: out BIT);
end;

si gnal BIT SIG BIT,
si gnal I NT_SI G | NTEGER;
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INT_SI G <= | NT_PORT; -- Signal assignnment from port
BI T_PORT <= BIT_SIG -- Signal assignnment to port

function FUNG | NT_PARAM | NTEGER)
return | NTEGER;
end function;

constant CONST: | NTEGER : = 2;
vari abl e VAR | NTEGER;
VAR .= FUNQ | NT_PARAM => CONST); -- Function call

Indexed Names

An indexed name identifies one element of an array variable or signal. Slice names identify a
sequence of elements in an array variable or signal; aggregates create array literals by giving a value
to each element of an instance of an array type. Slice names and aggregates are described in the next
two sections.

The syntax of an indexed name is

identifier ( expression)

i denti fi er must name a signal or variable of an array type. The expr essi on must return a value
within the array’s index range. The value returned to an operator is the specified array element.

If expr essi on is computable (see “Computable Operands," earlier in this chapter), the operand is
synthesized directly. If the expression is not computable, hardware that extracts the specified element
from the arrayis synthesized.

Example 5-17 shows two indexed names—one computable and one not computable.
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Example 5-17: Indexed Name Operands
signal A B: BIT VECTOR(O to 3);
signal |I: | NTEGER range 0 to 3;
signal Y, Z: BIT;

Y <= A(l); -- Nonconputabl e index expression
Z <= B(3); -- Conputable index expression
[ >Bld]
[ >BIl1]
ALB] [ >BIl2]
ALZ] [ >—
AL1]
[ >
AL3] l:>_m_Ll24l
Tr1] |:>—‘
Tl [ >——
BI31 [ > [ >z

You can also use indexed names as assignment targets; see "Indexed Name Targets" in Chapter 6.
Slice Names

Slice names return a sequence of elements in an array. The syntax is

identifier ( expression direction expression)

i denti fi er must name a signal or variable of an array type. Each expr essi on must return a value

within the array’s index range, and must be computable. See “Computable Operands," earlier in this
chapter.

The di r ect i on must be either t o or downt 0. The direction of a slice must be the same as the direc-
tion of i denti fi er array type. If the left and right expressions are equal, define a single element.

The value returned to an operator is a subarray containing the specified array elements.

Example 5-18 uses slices to assign an eight-bit input to an eight-bit output, exchanging the lower and
upper four bits.
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Example 5-18: Slice Name Operands
signal A Z: BIT VECTOR(O to 7);

Z(0 to 3) <= A(4 to 7);
Z(4 to 7) <= A(0 to 3);

Al4) [ >—] >718]
ALS] [ >—1 >zr111
ALBl [ >—1 >7121
AL7] [ >—1">7131
ARl [ >—1 >7r141
Al1) [ >—1 >715]
ALzl [ >—1 >7161
AL31 [ >— >z171

In Example 5-18, slices are also used as assignment targets. This usage is described in Chapter 6,
under “Slice Targets."
Limitations on Null Slices

FPGA Express does not support null slices. A null slice is indicated by a null range, such as
(4 to 3), orarange with the wrong direction, such as UP_VAR(3 downt o 2) when the declared
range of UP_VARis ascending (Example 5-19).

Example 5-19 shows three null slices and one noncomputable slice.

Example 5-19: Null and Noncomputable Slices

subtype DO is BI T_VECTOR(4 downto 0);
subtype UP is BIT_VECTOR(O to 7);

vari abl e UP_VAR UpP;
vari abl e DOAMN_VAR DOWWN;

UP_VAR(4 to 3) -- Null slice (null range)

UP_VAR(4 downto 0) -- Null slice (wong direction)
DOM_VAR(0O to 1) -- Null slice (wong direction)
variable |I: INTEGER range 0 to 7;

UP_VAR(I to |+1) -- Nonconput abl e slice
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Limitations on Noncomputable Slices
IEEE VHDL does not allow noncomputable slices—slices whose range contains a honcomputable
expression.

Records and Fields

Records are composed of named fields of any type. For more information, see “Record Types" in
Chapter 4.

In an expression, you can refer to a record as a whole, or you can refer to a single field. The syntax of
field names is

record_nane. field_nane
record_nane is the name of the record variable or signal, and i e/ d_nane is the name of a field in
that record type. Afi el d_nane is separated from the record name by a period (. ). Note that a

record_nane is different for each variable or signal of that record type. A fi el d_nane is the field
name defined for that record type.

Example 5-20 shows a record type definition, and record and field access.

Example 5-20: Record and Field Access
type BYTE_AND I X is

record
BYTE: BI T_VECTOR(7 downto O);
I X: | NTEGER range 0 to 7;

end record;

signal X: BYTE_AND I X;

X -- record
X. BYTE -- field: 8-bit array
X X -- field: integer

A field can be of any type—including an array, record, or aggregate type. Refer to an element of a field
with that type’s notation, for example:

X. BYTE( 2) -- one elenent fromarray field BYTE
X. BYTE(3 downto 0) -- 4-elenent slice of array field BYTE
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Aggregates

Aggregates can be considered array literals, because they specify an array type and the value of each
array element. The syntax is

type _nane'( [choi ce =>] expression
{, [choice =>] expression})

Note that the syntax is more restrictive than the syntax in the Library Reference Manual (LRM).

t ype name must be a constrained array type. The optional choi ce specifies an element index, a
sequence of indexes, or ot her s. Each expr essi on provides a value for the chosen elements, and
must evaluate to a value of the element’s type.

Example 5-21 shows an array type definition and an aggregate representing a literal of that array type.
The two sets of assignments have the same result.

Example 5-21: Simple Aggregate

subtype MY_VECTOR is BIT _VECTOR(1 to 4);
signal X MY_VECTOR;
variable A, B: BIT;

X <=MY_VECTOR'('1’, Anand B, '1’, A or B) -- Aggregate

-- assignment
')'(.(1) <=1’ -- Element
X(2) <= A nand B; -- assignment
X(@3) <="17
X(4) <= A or B;

You can specify an element’s index with either positional or named notation. With positional notation,
each element is given the value of its expression in order, as shown in Example 5-21.

By using named notation, the choi ce => construct specifies one or more elements of the array. The
choice can contain an expression (such as (I nod 2) =>)toindicate a single element index, or a
range (suchas 3 to 5 =>or 7 downto 0 =>)to indicate a sequence of element indexes.

An aggregate can use both positional and named notation, but positional expressions must appear
before named (choi ce) expressions.

It is not necessary to specify all element indexes in an aggregate. All unassigned values are given a
value by including ot hers => expr essi on as the last element of the list.

Example 5-22 shows several aggregates representing the same value.

Example 5-22: Equivalent Aggregates
subtype MY_VECTOR is BIT_VECTOR(1 to 4);

MY_VECTOR'('1’,'1’,°0’, '0°);
MY_VECTOR'(2=>'1,3=>'0", 1 =>'1", 4 =>'0));
MY_VECTOR'('’, '1’, others =>'0’);
MY_VECTOR'(3 =>'0’, 4 =>'0’, others =>'1");
MY_VECTOR'(3 to 4 =>'0’, 2 downto 1 =>'1);
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The ot her s expression must be the only expression in the aggregate. Example 5-23 shows two
equivalent aggregates.

Example 5-23: Equivalent Aggregates Using the others Expression
MY_VECTOR'(others =>'1";
MY_VECTOR'('1’, '1’,'1’,’1");

To use an aggregate as the target of an assignment statement, see “Aggregate Targets" in Chapter 6.

Attributes

VHDL defines attributes for various types. A VHDL attribute takes a variable or signal of a given type
and returns a value. The syntax of an attribute is

object’ attribute

FPGA Express supports the following predefined VHDL attributes for use with arrays, as described
under “Array Types" in Chapter 4:

o left

* right

* high

* low

* length

* range

e reverse_range

FPGA Express also supports the following predefined VHDL attributes for use withwai t andi f state-
ments, as described in Chapter 8, "Register and Three-State Inference":

» event
» stable

In addition to supporting predefined VHDL attributes listed above, FPGA Express has a defined set of
synthesis-related attributes. These FPGA Express-specific attributes can be placed in your VHDL
design description to direct optimization. See “Synthesis Attributes and Constraints" in Chapter 9 for
more information.

Function Calls
A function call executes a named function with the given parameter values. The value returned to an
operator is the function’s return value. The syntax of a function call is

function_nane ( [ paraneter_nane =>] expression
{, [paraneter_nane =>] expression } )

functi on_nane is the name of a defined function. The optional par anet er _nane is an expression
of formal parameters, as defined by the function. Each expr essi on provides a value for its parame-
ter, and must evaluate to a type appropriate for that parameter.
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You can specify parameters in positional or named notation, like aggregate values.

In positional notation, the par anet er _nane => construct is omitted. The first expression provides a
value for the function’s first parameter, the second expression provides a value for the second param-
eter, and so on.

In named notation, par anet er _nane => is specified before an expression; the named parameter
gets the value of that expression.

You can mix positional and named expressions in the same function call, as long as all positional
expressions appear before a named parameter expressions.

Function calls are implemented by logic unless you use the map_t o_ent i t y compiler directive. For
more information, see "Mapping Subprograms to Components" in Chapter 6, and "Component Implica-
tion Directives" in Chapter 9.

Example 5-24 shows a function declaration and several equivalent function calls.

Example 5-24: Function Calls
function FUNC(A, B, C. INTEGER) return BIT;

FUNC(1, 2, 3)
FUNC(B => 2, A =>1, C=>7 nod 4)
FUNC(1, 2, C => -3+6)

Qualified Expressions

Qualified expressions state the type of an operand to resolve ambiguities in an operand’s type. You
cannot use qualified expressions for type conversion (see "Type Conversions").

The syntax of a qualified expression is

type nane’'( expressi on)

t ype_nane is the name of a defined type. expr essi on must evaluate to a value of an appropriate
type.

Note: A single quote, or tick, must appear betweent ype _nane and ( expr essi on) . If the single
guote is omitted, the construction is interpreted as a type conversion (see "Type Conversions").

Example 5-25 shows a qualified expression that resolves an overloaded function by qualifying the type
of a decimal literal parameter.
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Example 5-25: A Qualified Decimal Literal
type R 1 is range O to 10; ~-- Integer 0 to 10
type R2 is range O to 20; -- Integer 0 to 20

function FUNC(A: R 1) return BIT;
function FUNC(A: R 2) return BIT;

FUNC( 5) -- Anbi guous; could be of type R 1,
-- R 2, or | NTEGER

FUNC(R_1'(5)) -- Unambiguous

Example 5-26 shows how qualified expressions resolve ambiguities in aggregates and enumeration lit-
erals.

Example 5-26: Qualified Aggregates and Enumeration Literals
type ARR_1 is array(0 to 10) of BIT;
type ARR_2 is array(0 to 20) of BIT;

(others =>"0) -- Ambiguous; could be of
--type ARR_1 or ARR_2

ARR_1’'(others =>"'0") -- Qualified; unambiguous

type ENUM_1 is (A, B);
type ENUM_2 is (B, C);

B -- Ambiguous; could be of
-- type ENUM_1 or ENUM_2

ENUM_1'(B) -- Qualified; unambiguous

Type Conversions

Type conversions change an expression’s type. Type conversions are different from qualified expres-
sions because they change the type of their expression; whereas qualified expressions simply resolve
the type of an expression.

The syntax of a type conversion is

t ype _nanme( expressi on)
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t ype nane is the name of a defined type. The expr essi on must evaluate to a value of a type that
can be converted into type t ype nane.

» Type conversions can convert between integer types or between similar array types.

» Two array types are similar if they have the same length and if they have convertible or identical ele-
ment types.

« Enumerated types cannot be converted.
Example 5-27 shows some type definitions and associated signal declarations, followed by legal and
illegal type conversions.
Example 5-27: Legal and lllegal Type Conversions
type INT_1 is range 0 to 10;
type INT_2 is range 0 to 20;

type ARRAY 1 is array(1l to 10) of INT_1;
type ARRAY 2 is array(1l to 20) of INT_2;

subtype MY_BIT_VECTOR is BIT_VECTOR(1 to 10);
type BIT_ARRAY 10 is array(1ll to 20) of BIT,;
type BIT _ARRAY 20 is array(0 to 20) of BIT;

signal S_INT: I NT_1;

si gnal S_ARRAY: ARRAY 1;
signal S BIT_VEC. Mr_BIT_VECTOR,
signal S BIT: BI T;

-- Legal type conversions

| NT_2(S_I NT)
-- Integer type conversion

Bl T_ARRAY_10(S _BI T_VEC)
-- Simlar array type conversion

-- Illegal type conversions

BOOLEAN(S BI T);
-- Can'’t convert between enumerated types

INT_1(S_BIT);
-- Can’t convert enumerated types to other types
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Bl T_ARRAY_20(S_BI T_VEQC);
-- Array |l engths not equal

ARRAY_1(S_BI T_VEC);
-- Element types cannot be converted
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Chapter 6
Sequential Statements

Sequential statements like A : = 3 are interpreted one after another, in the order in which they are
written. VHDL sequential statements can appear only in a process or subprogram. A VHDL process is
a group of sequential statements; a subprogram is a procedure or function.

To familiarize yourself with sequential statements, consider the following:

[-_Assignment Statements |

|- Variable Assignment Statement |

|- Signal Assignment Statement |

|- if Statement |
|- case Statement |

|=_loop Statements |

|- next Statement |
|- exit Statement |

L=_Subprograms |

|+ return Statement |

|+ wait Statement |

I» null Statement |

Processes are composed of sequential statements, but processes are themselves concurrent state-
ments (see Chapter 7). All processes in a design execute concurrently. However, at any given time
only one sequential statement is interpreted within each process.

A process communicates with the rest of a design by reading or writing values to and from signals or
ports declared outside the process.

Sequential algorithms can be expressed as subprograms and can be called sequentially (as described
in this chapter) or concurrently (as described in Chapter 7).

Sequential statements are

assignment statements
that assign values to variables and signals.
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flow control statements

that conditionally execute statements (i f and case), repeat statements (for. . . | oop), and skip
statements (next and exi t).

subprograms
that define sequential algorithms for repeated use in a design (pr ocedur e and f unct i on).

wait statement
to pause until an event occurs (nai t).

null statement
to note that no action is necessary (nul ).

Assignment Statements
An assignment statement assigns a value to a variable or signal. The syntax is

target .= expression; -- Variable assignnent
target <= expression; -- Signal assignnent

t ar get is a variable or signal (or part of a variable or signal, such as a subarray) that receives the
value of the expr essi on. The expression must evaluate to the same type as the target. See
Chapter 5 for more information on expressions.

The difference in syntax between variable assignments and signal assignments is that variables use
: = and signals use <=. The basic semantic difference is that variables are local to a process or sub-
program, and their assignments take effect immediately.

Signals need not be local to a process or subprogram, and their assignments take effect at the end of
a process. Signals are the only means of communication between processes. For more information on
semantic differences, see “Signal Assignment,- later in this chapter.

Assignment Targets
Assignment statements have five kinds of targets:

» Simple names, such as ny_var

* Indexed names, suchas ny_array_var (3)
» Slices,suchas ny_array_var(3 to 6)

e Field names, suchas ny_record.a field
» Aggregates, such as (nmy_var1l, ny_var?2)

A assignment target can be either a variable or a signal; the following descriptions refer to both.
Simple Name Targets
The syntax for an assignment to a simple name target is

identifier := expression;, -- Variable assignnment
identifier <= expression; -- Signal assignnment
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i denti fier is the name of a signal or variable. The assigned expression must have the same type
as the signal or variable. For array types, all elements of the array are assigned values.

Example 6-1 shows some assignments to simple name targets.

Example 6-1: Simple Name Targets
variable A, B: BIT;
si gnal C BIT VECTOR(1 to 4);

-- Target Expressi on
A =1 --Variable Ais assigned '’
B :='0; --Variable B is assigned 0’
C <=-1100" -- Signal array C is assigned
-- -1100"

Indexed Name Targets

The syntax for an assignment to an indexed name target is

identifier(index_expression) := expression;
-- Variable assignment

identifier(index_expression) <= expression;
-- Signal assignment

i denti fier is the name of an array type signal or variable. i ndex_expr essi on must evaluate to
an index value for the j dent i fi er array’s index type and bounds but does not have to be comput-
able (see “Computable Operands- in Chapter 5), but more hardware is synthesized if it is not.

The assigned expr essi on must contain the array’s element type.
In Example 6-2, the elements for array variable A are assigned values as indexed names.
Example 6-2: Indexed Name Targets

variable A. BIT_VECTOR(1 to 4);

-- Target Expr essi on;
A(l) :='1"; -- Assigns 1’ to the first
-- element of array A.

A(2) :='1; --Assigns 'l to the second
-- element of array A.

A(3) :='0; --Assigns 0’ to the third
-- element of array A.

A(4) :='0; --Assigns 0’ to the fourth

-- element of array A.
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Example 6-3 shows two indexed name targets. One of the targets is computable and the other is not.
Note the differences in the hardware generated for each assignment.
Example 6-3: Computable and Noncomputable Indexed Name Targets
signal A B: BIT VECTOR(O to 3);
signal 1: INTECGER range 0 to 3;
signal Y, Z: BIT;

A <= -0000";

B <= -0000";

A(l') <=Y; -- Nonconputable i ndex expression
B(3) <= Z; -- Conputable index expression

AN
ALE]
v [>
I AN
I > >c AlLl
i ANJ
el >

AN3
— Al3]
lbgic_#
BlZ]
Bl1l]
Bl#]
Zl b >»Bl3]

Slice Targets

The syntax for a slice target is

identifier(index_expr_1 direction index_expr_2)

i denti fier isthe name of an array type signal or variable. Each i ndex_expr expression must
evaluate to an index value for the i denti fi er array’'s index type and bounds. Both / ndex_expr
expressions must be computable (see -Computable Operands- in Chapter 5), and must lie within the
bounds of the array. di r ect i on must match the i dent i fi er array type’s direction—either t o or
downt o.

6—4 « VeriBest FPGA Synthesis VHDL Reference Manual



Assignment Statements

The assigned expression must contain the array’s element type.
In Example 6-4, array variables A and B are assigned the same value.

Example 6-4: Slice Targets
variable A, B: BIT_VECTOR(1 to 4);

-- Target Expr essi on;
A(l to 2) :=-11"; -- Assigns -11" to the first
-- two elements of array A
A(3 to 4) :=-00"; -- Assigns -00" to the | ast
-- two elenments of array A
B(1 to 4) :=-1100";-- Assigns -1100" to array B

Field Targets

The syntax for a field target is

identifier.field nane

i denti fier isthe name of a record type signal or variable, and fi e/ d_nane is the name of a field
in that record type, preceded by a period (. ). The assigned expression must contain the identified
field’s type. A field can be of any type, including an array, record, or aggregate type.

Example 6-5 assigns values to the fields of record variables A and B.

Example 6-5: Field Targets

type REC is
record
NUM_FI ELD: | NTEGER range -16 to 15;
ARRAY_FI ELD: BIT_VECTOR(3 to 0);
end record;

vari able A, B: REC

-- Target Expr essi on;
A.NUM_FIELD :=-12; -- Assigns -12to record A’s
-- field NUM_FIELD

A.ARRAY_FIELD :=-0011"; -- Assigns -0011" to record
-- A’s field ARRAY_FIELD
A.ARRAY_FIELD(3) :='1"; -- Assigns "1’ to the most-
-- significant bit of record
-- A’s field ARRAY_FIELD

B = A -- Assigns values of record
-- A to corresponding fields
--of B

For more information about field targets see -Record Types- in Chapter 4.
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Aggregate Targets

The syntax for an assignment to an aggregate target is

([choice =>] identifier
{,[choice =>] identifier}) := array_expression;
-- Vari abl e assi gnnment

([choice =>] identifier
{,[choice =>] identifier}) <= array_expression;
-- Signal assignnent

An aggregate assignment assigns arr ay_expr essi on's element values to one or more variable or
signal i denti fiers.

Each choi ce (optional) is an index expression selecting an element or a slice of the assigned
array_expressi on. Each i denti fi er must have the element type of array_expressi on. An
i denti fier can be an array type.

Example 6-6 shows some aggregate targets.

Example 6-6: Aggregate Targets
signal A, B, C, D BIT;
signal S: BIT_VECTOR(1 to 4);

variable E, F. BIT;
variable G BIT_VECTOR(1 to 2);
variable H BIT_VECTOR(1 to 4);

-- Positional notation
S <=(0,'1,'0,°0);
(A,B,C,D)<=S; -- Assigns '0’to A
-- Assigns '1'to B
-- Assigns '0’to C
-- Assigns '0’to D

-- Named notation
(3=>E, 4=>F,
2=>G(1),1=>G(2):=H;
-- Assigns H(1) to G(2)
-- Assigns H(2) to G(1)
-- Assigns H3) to E
-- Assigns H(4) to F
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You can assign array element values to the identifiers by position or by name. In positional notation,
the choi ce => construct is not used. Identifiers are assigned array element values in order, from the
left array bound to the right array bound.

In named notation, the choi ce => construct identifies specific elements of the assigned array. A
choi ce index expression indicates a single element, such as 3. The type of i dent i fi er must match
the assigned expression’s element type.

Positional and named notation can be mixed, but positional associations must appear before named
associations.

Variable Assignment Statement

A variable assignment changes the value of a variable. The syntax is

target := expression,

expr essi on determines the assigned value; its type must be compatible with t ar get . See
Chapter 5 for further information about expressions. t ar get names the variables that receive the
value of expr essi on. See -Assignment Targets- in the previous section for a description of variable
assignment targets.

When a variable is assigned a value, the assignment takes place immediately. A variable keeps its
assigned value until it is assigned a new value.

Signal Assignment Statement

A signal assignment changes the value being driven on a signal by the current process. The syntax is

target <= expression;

expr essi on determines the assigned value; its type must be compatible with t ar get . See

Chapter 5 for further information about expressions. t ar get names the signals that receive the value
of expr essi on. See -Assignment Targets- in this chapter for a description of signal assignment tar-
gets.

Signals and variables behave differently when they are assigned values. The differences lie in the way
the two kinds of assignments take effect, and how that affects the values read from either variables or

signals.

Variable Assignment
When a variable is assigned a value, the assignment takes place immediately. A variable keeps its
assigned value until it is assigned a new value.

Signal Assignment

When a signal is assigned a value, the assignment does not necessarily take effect because the value
of a signal is determined by the processes (or other concurrent statements) that drive it.
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* If several values are assigned to a given signal in one process, only the last assignment is effective.
Even if a signal in a process is assigned, read, and reassigned, the value read (either inside or out-
side the process) is the last assignment value.

« If several processes (or other concurrent statements) assign values to one signal, the drivers are
wired together. The resulting circuit depends on the expressions and the target technology. It may
be invalid, wired AND, wired OR, or a three-state bus. Refer to “Driving Signals- in Chapter 7 for
more information.

Example 6-7 shows the different effects of variable and signal assignments.

Example 6-7: Signal and Variable Assignments

signal Sl1, S2: BIT;
signal S_OUT: BIT_VECTOR(1 to 8);

process( S1, S2 )
vari able V1, V2: BIT;
begi n
V1:='1"; -- This sets the value of V1
V2 :='1"; -- This sets the value of V2
S1<="1"; -- This assignment is the driver for S1
S2<="1"; --This has no effect because of the
-- assignment later in this process

S_OUT(1) <= V1, -- Assigns '1’, the value assigned above
S_OUT(2) <=V2; -- Assigns '1’, the value assigned above
S OUT(3) <= S1; -- Assigns '1’, the value assighed above

S OUT(4) <= S2; -- Assigns '0’, the value assigned bel ow
V1:='0; -- This sets the new value of V1

V2 :='0; -- This sets the new value of V2

S2 <='0"; -- This assignment overri des the

-- previous one since it is the last
-- assignment to this signal in this
-- process

S _OUT(5) <= V1; -- Assigns '0’, the value assigned above

S _OUT(6) <= V2; -- Assigns '0’, the value assighed above

S OUT(7) <= S1; -- Assigns '1’, the value assighed above

S OUT(8) <= S2; -- Assigns '0’, the value assighed above
end process;

If Statement

The i f statement executes a sequence of statements. The sequence depends on the value of one or
more conditions. The syntax is

if condition then

{ sequential statenent }
{ elsif condition then

{ sequential statenent } }
[ else

{ sequential statenent } ]
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end if;

Each condi t i on must be a Boolean expression. Each branch of ani f statement can have one or
more sequenti al _st at enent s.

Evaluating condition

An i f statement evaluates each condi ti on in order. The first (and only the first) TRUE condition
causes the execution of its branch’s statements. The remainder of the i f statement is skipped.

If none of the conditions ar e TRUE, and the el se clause is present, those statements are executed.
If none of the conditions ar e TRUE, and no el se is present, none of the statements is executed.
Example 6-8 shows an i f statement and a corresponding circuit.

Example 6-8: if Statement
signal A, B, C Pl, P2, Z BIT;

if (P1 ="1") then
Z<=A,

elsif (P2 ='0’) then
Z <= B;

else
Z<=C;

end if;

O m

I

A T> Moz L2

]

Using the /f Statement to Imply Registers and Latches

Some forms of the i f statement can be used like the wai t statement, to test for signal edges and
therefore imply synchronous logic. This usage causes FPGA Express to infer registers or latches, as
described in Chapter 8, “Register and Three-State Inference.-
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case Statement

The case statement executes one of several sequences of statements, depending on the value of a
single expression. The syntax is

case expression is
when choi ces =>
{ sequential statenent }
{ when choi ces =>
{ sequential _statenent } }
end case;

expr essi on must evaluate to an | NTEGER or an enumerated type, or an array of enumerated types,
such as Bl T_VECTOR. Each of the choi ces must be of the form

choice { | choice }

Each choi ce can be either a static expression (such as 3) or a static range (suchas 1 to 3). The
type of choi ce_expr essi on determines the type of each choi ce. Each value in the range of the
choi ce_expr essi on type must be covered by one choi ce.

The final choi ce can be ot her s, which matches all remaining (unchosen) values in the range of the
expr essi on type. The ot her s choice, if present, matches expr essi on only if no other choices
match.

The case statement evaluates expr essi on and compares that value to each choi ce value. The
statements following each when clause is evaluated only if the choi ce value matches the expr es-
si on value.

The following restrictions are placed on choices:

» No two choices can overlap.
 If no ot her s choice is present, all possible values of expr essi on must be covered by the set of
choices.
Using Different Expression Types
Example 6-9 shows a case statement that selects one of four signal assignment statements by using
an enumerated expression type.

Example 6-9: case Statement That Uses an Enumerated Type
type ENUMis (PICK A PICK B, PICK C, PICKD);
si gnal VALUE: ENUM

signal A, B, C, D Z BIT,

case VALUE is
when PICK A =>
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Z <= A

when PICK_B =>
Z <= B;

when PICK C =>
Z <= C

when PICK D =>
Z <= D

end case;

D

VALUE[B] D—‘

VALUELL] [ >—

2"

41

Example 6-10 shows a case statement again used to select one of four signal assignment statements,

this time by using an integer expression type with multiple choices.

Example 6-10: case Statement with Integers

signal VALUE is INTEGER range 0 to 15;
signal 71, 72, Z3, z4: BIT,

Z1<="0
22 <="0"
23 <=0
Z4 <=0

case VALUE is

when 0 => -- Matches 0
721 <="1"

when 1|3 => -- Matches 1 or 3
72 <="1",

when4to7|2=> --Matches2,4,5,6,o0r7
73 <="1
when others => -- Matches remaining values,
-- 8 through 15
74 <="17;
end case;
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WALUE (2]
VALUE (1]

V{

VALUE [3] b

VALUE [@] D%c wza
>

Invalid case Statements

Example 6-11 shows four invalid case statements.

Example 6-11: Invalid case Statements
signal VALUE: |INTEGER range 0 to 15;
signal QUT_1: BIT;

case VALUE is -- Must have at | east one when
end case; - - cl ause

case VALUE is -- Values 2 to 15 are not
when 0 => -- covered by choices
OUT_1<="1%

when 1 =>
OUT_1<="0};

end case;

case VALUE is -- Choices 5 to 10 overlap
when 0 to 10 =>
OUT_1<="1%
when 5to 15 =>
OUT_1<="0}
end case;
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loop Statements

A | oop statement repeatedly executes a sequence of statements. The syntax is

[l abel :] [iteration_schene] |oop
{ sequential statenent }
{ next [ label ] [ when condition ] ; }
{ exit [ label ] [ when condition ] ; }
end | oop [/label];

The optional / abel names the loop and is useful for building nested loops. Each type of
i teration_scheneis described in this section.

The next and exi t statements are sequential statements used only within loops. The next state-
ment skips the remainder of the current loop and continues with the next loop iteration. The exi t
statement skips the remainder of the current loop and continues with the next statement after the
exited loop.

VHDL provides three types of loop statements, each with a different iteration scheme:

loop

The basic | oop statement has no iteration scheme. Enclosed statements are executed repeatedly for-
ever until an exi t or next statement is encountered.

while .. loop
Thewhil e .. | oop statement has a Boolean iteration scheme. If the iteration condition evaluates to
TRUE, enclosed statements are executed once. The iteration condition is then reevaluated. While the
iteration condition remains true, the loop is repeatedly executed. When the iteration condition evalu-
ates to FALSE, the loop is skipped, and execution continues with the next statement after the loop.

for .. loop
Thefor .. | oop statement has an integer iteration scheme, where the number of repetitions is
determined by an integer range. The loop is executed once for each value in the range. After the last
value in the iteration range is reached, the loop is skipped, and execution continues with the next
statement after the loop.

Caution  Noncomputable loops (/ oop and whi | e. . | oop statements) must have at least one wai t
statement in each enclosed logic branch. Otherwise, a combinational feedback loop is
created. See “wait Statement,- later in this chapter, for more information.

Conversely, computable loopsdr. . | oop statements) must not contaimai t statements.
Otherwise, a race condition might result.
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| oop Statement

The | oop statement, with no iteration scheme, repeats enclosed statements indefinitely. The syntax is

[l abel :] |oop

{ sequential statenent }
end | oop [/ abel];
The optional / abel names this loop.

sequenti al _st at enent can be any statement described in this chapter. Two sequential statements
are used only with loops: the next statement, which skips the remainder of the current loop iteration,
and the exi t statement, which terminates the loop. These statements are described in the next two
sections.

Note: Al oop statement must have at least one wai t statement in each enclosed logic branch. See
“wait Statement,- later in this chapter, for an example.

while .. loop Statement

The whi | e .. | oop statement repeats enclosed statements as long as its iteration condition evalu-
ates to TRUE. The syntax is

[l abel :] while condition |oop
{ sequential _statenent }
end | oop [/label];
The optional / abel names this loop. condi ti on is any Boolean expression, such as ((A ="1")
or (X<Y))

sequenti al _st at enent can be any statement described in this chapter. Two sequential state-
ments are used only with loops: the next statement, which skips the remainder of the current loop iter-
ation, and the exit statement, which terminates the loop. These statements are described in the next
two sections.

Note: A while..loop statement must have at least one wait statement in each enclosed logic
branch. See -wait Statement,- later in this chapter, for an example.

for .. loop Statement

The for .. loop statement repeats enclosed statements once for each value in an integer range.
The syntax is

[l abel :] for identifier in range |oop
{ sequential _statenent }
end | oop [/ abel];

The optional / abel names this loop.

The use of i denti fi er is specific to the for .. loop statement:
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e jdentifier is not declared elsewhere. It is automatically declared by the loop itself and is local to
the loop. A loop identifier overrides any other identifier with the same name but only within the loop.

» The value of i dent i fi er can be read only inside its loop (i dent i fi er does not exist outside the
loop). You cannot assign a value to a loop identifier.

FPGA Express currently requires that r ange must be a computable integer range(see “Computable
Operands- in Chapter 5), in either of two forms:

i nteger _expression to integer_expression

i nt eger _expressi on downto i/ nteger_expression

Each i nt eger _expr essi on evaluates to an integer.

sequenti al _st at enent can be any statement described in this chapter. Two sequential state-
ments are used only with loops: the next statement, which skips the remainder of the current loop iter-
ation, and the exi t statement, which terminates the loop. These statements are described in the next
two sections.

Note: Afor..| oop statement must not contain any wai t statements.
Afor .. | oop statement executes as follows:

1. A new, local, integer variable is declared with the name identifier.

2. identifier is assigned the first value of r ange, and the sequence of statements is executed
once.

3. identifier is assigned the next value in r ange, and the sequence of statements is executed
once more.

4. Step 3is repeated until j dent i fi er is assigned to the last value in range. The sequence of state-
ments is then executed for the last time, and execution continues with the statement following end
| oop. The loop is then inaccessible.

Example 6-12 shows two equivalent code fragments.

Example 6-12: for..loop Statement with Equivalent Fragment
variable A, B: BIT_VECTOR(1 to 3);

-- First fragnent is a | oop statenent

for I in1to 3 loop
A(l) <= B(1);
end | oop;

-- Second fragnent is three equivalent statements

A(1) <= B(1);
A(2) <= B(2);
A(3) <= B(3);

Sequential Statements ¢ 6-15



next Statement

Br1l [ >—1 >ATl1]
Biz2l [ >—1 >Al2]
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You can use a | oop statement to operate on all elements of an array without explicitly depending on
the size of the array. Example 6-13 shows how the VHDL array attribute 'range can be used—in this
case to invert each element of bit vector A.

Example 6-13: for..loop Statement Operating on an Entire Array
variable A, B: BIT_VECTOR(1 to 10);

for | in A'range loop
A(l) = not B();
end loop;

BI1] AL

BIZ] ALZ1
BI3] AL3T
BL4] AL4]
BIS) ALS1
BIB] ALET
BL7] AL7]
BIA] ALBL

BI3] ALD]

T

Briel ACLE]

Unconstrained arrays and array attributes are described under “Array Types- in Chapter 4.

next Statement

The next statement terminates the current iteration of a loop, then continues with the first statement in
the loop. The syntax is

next [ label ] [ when condition | ;

A next statement with no / abel terminates the current iteration of the innermost enclosing loop.
When you specify a loop | abel , the current iteration of that named loop is terminated.

The optional when clause executes its next statement when its condi t i on (a Boolean expression)
evaluates to TRUE.
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Example 6-14 uses the next statement to copy bits conditionally from bit vector B to bit vector A only
when the next condition evaluates to TRUE.

Example 6-14: next Statement
signal A, B, COPY_ENABLE: BIT_VECTOR (1 to 8);

A <= -00000000";

-- Bis assigned a value, such as -01011011"
-- COPY_ENABLE is assigned a value, such as -11010011"

for I in1lto 8 loop
next when COPY_ENABLE(l) ='0’;
A(l) <= B(I);

end loop;

COPY_ENAELE [11 ANE

[»al1]
BIl11

Bl2]
COPY_ENABLE [ 21

AlZ]

%

B3]
COPY_ENABLE [3]

=]
Z|
&)

[ >»Al3]

Bl4]
COPY_ENABLE [4]

AlL4]

%

p2
ral
X

COPY_ENABLE [5]

[ >»Al5]
BI5]

BIB]
COPY_ENABLE [E]

]
Z|
)

[»ALB]

BIl71
COPY_ENABLE [71]

ALT]

:

>
Z|
&)

COPY_ENABLE [B]

[ >AlB1
BIB]

Example 6-15 shows the use of nested next statements in named loops. This example processes:

» The first element of vector X against the first element of vector Y,
» The second element of vector X against each of the first two elements of vector Y,
» The third element of vector X against each of the first three elements of vector Y,

The processing continues in this fashion until it is completed.
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Example 6-15: Named next Statement
signal X, Y: BIT VECTOR(O to 7);

A_LOOP: for | in X'range loop
| i3._LOOP: for Jin Y’range loop
'n;e;a A_LOOP when I < J;
e.n;jlloop B_LOOP;

end loop A_LOOP;

exit Statement

The exi t statement terminates a loop. Execution continues with the statement following end | oop.
The syntax is

exit [ label ] [ when condition ] ;

An exit statement with no / abel terminates the innermost enclosing loop. When you identify a loop
I abel , that named loop is terminated, as shown earlier in Example 6-15.

The optional when clause executes its exi t statement when its condi t i on (a Boolean expression)
evaluates TRUE.

The exi t and next statements are equivalent constructs. Both statements use identical syntax, and
both skip the remainder of the enclosing (or named) loop. The only difference between the two state-
ments is that exi t terminates its loop, and next continues with the next loop iteration (if any).

Example 6-16 compares two bit vectors. An exi t statement exits the comparison loop when a differ-
ence is found.

Example 6-16: Comparator Using the exit Statement

signal A, B: BIT_VECTOR(1 downto 0);
signal A_ LESS THAN_B: Boolean;

A_LESS_THAN_B <= FALSE;

for I in 1 downto O loop
if (A(l) ='1" and B(l) ='0’) then
A LESS THAN_B <= FALSE;
exit;
elsif (A() ='0" and B(l) ='1’) then

6—18 « VeriBest FPGA Synthesis VHDL Reference Manual



Subprograms

A LESS THAN B <= TRUE;

exit;
el se
nul | ; -- Continue conparing
end if;
end | oop;
AL1]
R I A_LESS_THAN_B
BLA] D >° |
BL11
Subprograms

Subprograms are independent, named algorithms. A subprogram is either a pr ocedur e (zero or
more i n, i nout, or out parameters) orafuncti on (zero or more i n parameters and one r et ur n
value). Subprograms are called by name from anywhere within a VHDL architecture or a package
body. Subprograms can be called sequentially (as described later in this chapter) or concurrently (as
described in Chapter 7).

In hardware terms, a subprogram call is similar to module instantiation, except that a subprogram call
becomes part of the current circuit, whereas module instantiation adds a level of hierarchy to the
design. A synthesized subprogram is always a combinational circuit (use a pr ocess to create a
sequential circuit).

Subprograms, like packages, have subprogram declarations and subprogram bodies. A subprogram
declaration specifies its name, parameters, and return value (for functions). A subprogram body then
implements the operation you want.

Often, a package contains only type and subprogram declarations for use by other packages. The
bodies of the declared subprograms are then implemented in the bodies of the declaring packages.

The advantage of the separation between declarations and bodies is that subprogram interfaces can
be declared in public packages during system development. One group of developers can use the
public subprograms as another group develops the corresponding bodies. You can modify package
bodies, including subprogram bodies, without affecting existing users of that package’s declarations.
You can also define subprograms locally inside an entity, block, or process.

FPGA Express implements procedure and function calls with combinational logic, unless you use the
map_t o_entity compiler directive (see “Mapping Subprograms to Components),- later in this chap-
ter). FPGA Express does not allow inference of sequential devices, such as latches or flip-flops, in
subprograms.
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Example 6-17 shows a package containing some procedure and function declarations and bodies.
The example itself is not synthesizable; it just creates a template. Designs that instantiate procedure
P, however, compile normally.

Example 6-17: Subprogram Declarations and Bodies

package EXAMPLE i s
procedure P (A: in INTEGER, B: inout |NTECER);
-- Declaration of procedure P

function INVERT (A: BIT) return BIT,
-- Declaration of function | NVERT
end EXAMPLE;

package body EXAMPLE is
procedure P (A: in INTEGER, B: inout |INTECER) is
-- Body of procedure P
begi n
B:= A+ B
end;

function INVERT (A: BIT) return BIT is
-- Body of function | NVERT
begi n
return (not A);
end;
end EXAMPLE;

For more information about subprograms, see “Subprograms- in Chapter 3.

Subprogram Calls

Subprograms can have zero or more parameters. A subprogram declaration defines each parameter’s
name, mode, and type. These are a subprogram’s formal parameters. When the subprogram is called,
each formal parameter is given a value, termed the actual parameter. Each actual parameter’s value
(of an appropriate type) can come from an expression, a variable, or a signal.

The mode of a parameter specifies whether the actual parameter can be read from (mode i n), written
to (mode out ), or both read from and written to (mode i nout ). Actual parameters that use modes out
and i nout must be variables or signals, including indexed names (A( 1) ) and slices (A(1 to 3)), but
cannot be constants or expressions.

Procedures and functions are two kinds of subprograms:
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procedure
Can have multiple parameters that use modes i n, i nout, and out . Does not itself return a value.

Procedures are used when you want to update some parameters (modes out and i nout ), or when
you do not need a return value. An example might be a procedure with one i nout bit vector parame-
ter that inverted each bit in place.

function

Can have multiple parameters, but only parameters that use mode i n. Returns its own function value.
Part of a function definition specifies its return value type (also called the function type).

Functions are used when you do not need to update the parameters and you want a single return
value. For example, the arithmetic function ABS returns the absolute value of its parameter.

Procedure Calls

A procedure call executes the named procedure with the given parameters. The syntax is

procedure name [ ( [ nane => ] expression
{ , [ nane => ] expression } ) ] ;

Each expr essi on is called an actual parameter; expr essi on is often just an identifier. If a nane is
present (positional notation), it is a formal parameter name associated with the actual parameter’s
expression.

Formal parameters are matched to actual parameters by positional or named notation. Named and
positional notation can be mixed, but positional parameters must appear before named parameters.

Conceptually, a procedure call is performed in three steps. First, the values of the i n and i nout
actual parameters are assigned to their associated formal parameters. Second, the procedure is exe-
cuted. Third, the values of the i nout and out formal parameters are assigned to the actual parame-
ters.

In the synthesized hardware, the procedure’s actual inputs and outputs are wired to the procedure’s
internal logic.

Example 6-18 shows a local procedure named SWAP that compares two elements of an array and
exchanges these elements if they are out of order. SWAP is repeatedly called to sort an array of three
numbers.
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Example 6-18: Procedure Call to Sort an Array

package DATA TYPES is

type DATA ELEMENT is range 0 to 3;

type DATA ARRAY is array (1 to 3) of DATA ELEMENT;
end DATA TYPES;

use WORK. DATA TYPES. ALL;
entity SORT is
port (I N_ARRAY:
OUT_ARRAY: out
end SORT;

i n DATA_ARRAY;
DATA_ARRAY) ;

architecture EXAMPLE of SORT is
begin

process(| N_ARRAY)

procedur e SWAP( DATA: i nout DATA_ ARRAY;

LON H GH in INTEGER) is
vari abl e TEMP: DATA_ELEMENT,;
begin
i f (DATA(LOW > DATA(HI GH)) then -- Check data
TEMP : = DATA(LOW;
DATA(LOW : = DATA(H G&H); -- Swap data
DATA(H GH) : = TEMP;
end if;
end SWAP;

vari abl e MY_ARRAY: DATA_ARRAY;

begin
MY_ARRAY :

= | N_ARRAY; Read input to variable

Pai r-w se sort

SWAP( WY_ARRAY, 1, 2);:
SWAP( MY_ARRAY, 2, 3);
SWAP( MY_ARRAY, 1, 2);
QUT_ARRAY <= MY_ARRAY;
end process;
end EXAMPLE;

Swap first and second
Swap second and third
Swap first and second again
Wite result to output
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Function Calls
A function call is similar to a procedure call, except that a function call is a type of expression because
it returns a value.

Example 6-19 shows a simple function definition and two calls to that function.

Example 6-19: Function Call
function INVERT (A : BIT) return BIT is
begi n
return (not A);
end;

process
vari able V1, V2, V3: BIT;
begin
V1:="1
V2 := INVERT(V1) xor 1;
V3 := INVERT('0");
end process;

For more information, see “Function Calls,- under “Operands- in Chapter 5.
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return Statement

The r et ur n statement terminates a subprogram. This statement is required in function definitions and
is optional in procedure definitions. The syntax is

return expression ; -- Functions
return ; -- Procedures

The required expr essi on provides the function’s return value. Every function must have at least one
r et ur n statement. The expression’s type must match the declared function type. A function can have
more than one r et ur n statement. Only one r et ur n statement is reached by a given function call.

A procedure can have one or more r et ur n statements, but no expr essi onis allowed. Ar et urn
statement, if present, is the last statement executed in a procedure.

In Example 6-20, the function OPERATE returns either the AND or the OR of its parameters A and B.
The return depends on the value of its parameter OPERATI ON.

Example 6-20: Use of Multiple return Statements
functi on OPERATE(A, B, OPERATION: BIT) return BIT is
begin

if (OPERATION ="1") then
return (A and B);
else
return (A or B);
end if;
end OPERATE;

| RETURNED_VALLE

OFERATION >

Mapping Subprograms to Components (Entities)

In VHDL, entities cannot be invoked from within behavioral code. Procedures and functions cannot
exist as entities (components), but must be represented by gates. You can overcome this limitation
with the compiler directive map_t o_ent i ty, which causes FPGA Express to implement a function or
procedure as a component instantiation. Procedures and functions that use map_to_entity are
represented as components in designs in which they are called.

You can also use the FPGA Express Implementation Window to create a new level of hierarchy from a
VHDL subprogram, as described in the FPGA Express User’s Guide.
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When you add amap_t o_ent ity directive to a subprogram definition, FPGA Express assumes the
existence of an entity with the identified name and the same interface. FPGA Express does not check
this assumption until it links the parent design. The matching entity must have the same input and out-
put port names. If the subprogram is a function, you must also provide ar et urn_port _nane direc-
tive, where the matching entity has an output port of the same name.

These two directives are called component implication directives:

-- pragma map_to_entity entity nane
-- pragma return_port_nane port_nane

Insert these directives after the function or procedure definition. For example:

function MUX FUNC(A B: in TWOBIT; C in BIT) return
TWBIT is

-- pragma map_to_entity MJUX ENTITY
-- pragna return_port_nane Z

When FPGA Express encounters the map_t o_enti t y directive, it parses but ignores the contents of
the subprogram definition. Use - - pragma translate_off and-- pragma translate_onto
hide simulation-specific constructs inamap_t o_entity subprogram.

Note: The matching entity (enti ty_nane) does not need to be written in VHDL. It can be in any for-
mat that FPGA Express supports.

Caution  Thebehavioral description of the subprogram is not checked against the functionality of the
entity overloading it. Presynthesis and post-synthesis simulation results might not match if
differencesin functionality exist between the VHDL subprogram and the overloaded entity.

Example 6-21 shows a function that uses the component implication directives.
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Example 6-21: Using Component Implication Directives on a Function
package MY_PACK is
subtype TWO BIT is BIT_VECTOR(1 to 2);
function MUX_FUNC(A B: in TWOBIT; C in BIT) return
TWO BIT;
end,

package body MY_PACK is

function MUX_FUNC(A B: in TWOBIT; C in BIT) return
TWOBITis

-- pragnma map_to_entity MJX ENTITY
-- pragma return_port_name Z

-- contents of this function are ignored but should
-- match the functionality of the nmodul e MUX_ENTITY
-- so pre- and post simulation will match
begin
if(C ='1’) then
return(A);
else
return(B);
end if;
end;

end;
use WORK.MY_PACK.ALL;

entity TEST is
port(A: in TWO_BIT; C: in BIT; TEST_OUT: out TWO_BIT);
end;

architecture ARCH of TEST is
begin

process

begin

TEST_OUT <= MUX_FUNC(not A, A, C);
-- Component implication call

end process;
end;
use WORK.MY_PACK.ALL;
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-- the following entity 'overloads’ the function

-- MUX_FUNC above

entity MUX_ENTITY is

port(A, B: in TWO_BIT; C: in BIT; Z: out TWO_BIT);

end;

architecture ARCH of MUX_ENTITY is

begin
process
begin
case Cis
when '1' =>Z <= A;
when '0’ => Z <= B;
end case;
end process;
end;

ALL]

ALZ]

MUX_EN

o>z 111
{7121

Example 6-22 shows the same design as Example 6-21, but without the creation of an entity for the

function. The compiler directives have been removed.
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Example 6-22: Using Gates to Implement a Function

package MY_PACK is
subtype TWO BIT is BIT_VECTOR(1 to 2);
function MUX_FUNC(A, B: in TWAOBIT; C in BIT)
return TWO BIT;
end;

package body MY_PACK is

function MUX_FUNC(A B: in TAOBIT; C in BIT)
return TWOBIT is

begin

if(C ='1’) then
return(A);

else
return(B);

end if;

end;
end;

use WORK.MY_PACK.ALL;

entity TEST is
port(A: in TWO_BIT; C: in BIT; Z: out TWO_BIT);
end;

architecture ARCH of TEST is
begin
process
begin
Z <= MUX_FUNC(not A, A, C);
end process;
end;

ATL] [
(1]
c Dj. =
ALZ] ot
Ii ot
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wait Statement

A wai t statement suspends a process until a positive-going edge or negative-going edge is detected
on a signal. The syntax is

wait until signal = value ;
wait until signal’eventand signal = val ue;

wait until not si gnal 'stable
and signal = val ue ;

si gnal is the name of a single-bit signal—a signal of an enumerated type encoded with one bit (see
“Enumeration Encoding- in Chapter 4). val ue must be one of the literals of the enumerated type. If
the signal type is Bl T, the awaited val ue is either '1’ for a positive-going edge or '0’ for a nega-
tive-going edge.

Note: The three forms of the wait statement, a subset of IEEE VHDL, are specific to the current
implementation of FPGA Express.

Inferring Synchronous Logic

A wait statement implies synchronous logic, where si gnal is usually a clock signal. The next sec-
tion describes how FPGA Express infers and implements this logic.

Example 6-23 shows three equivalent wait statements (all positive-edge triggered).

Example 6-23: Equivalent wait Statements
wait until CLK ="1’;
wait until CLK’event and CLK ="1";
wait until not CLK’stable and CLK ='1";

When a circuit is synthesized, the hardware in the three forms of wai t statements does not differ.

Example 6-24 shows a wai t statement used to suspend a process until the next positive edge (a
0-to-1 transition) on signal CLK.

Example 6-24: wait for a Positive Edge
signal CLK: BIT;

process
begin
wait until CLK’event and CLK ='1";
-- Wait for positive transition (edge)

end process;
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Note: IEEE VHDL specifies that a process containing a wai t statement must not have a sensitivity
list. See “Process Statements- in Chapter 7 for more information.

Example 6-25 shows how awai t statement is used to describe a circuit where a value is incremented
on each positive clock edge.

Example 6-25: Loop Using a wait Statement
process
begin
y <= 0;
wait until (clk’'event and clk = '1");
while (y < MAX) loop
wait until (clk’'event and clk = '1");
X<=Yy,;
y<sy+1;
end loop;
end process;

Example 6-26 shows how multiple wai t statements describe a multicycle circuit. The circuit provides
an average value of its input A over four clock cycles.

Example 6-26: Using Multiple wait Statements

process

begin
wait until CLK’event and CLK ='1";
AVE <= A;

wait until CLK’event and CLK ="1";
AVE <= AVE + A;
wait until CLK’event and CLK ="1";
AVE <= AVE + A;
wait until CLK’event and CLK ='1";
AVE <= (AVE + A)/4;

end process;

Example 6-27 shows two equivalent descriptions. The first description uses implicit state logic, and the
second uses explicit state logic.
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Example 6-27: nai t Statements and State Logic
-- Inmplicit State Logic
process
begin
wait until CLOCK’event and CLOCK ="1";
if (CONDITION) then
X<=A
else
wait until CLOCK’event and CLOCK ="1";
end if;
end process;

-- Explicit State Logic

type STATE_TYPE is (SO, S1);
variable STATE : STATE_TYPE;

process
begin
wait until CLOCK’event and CLOCK ="1";
case STATE is
when SO =>
if (CONDITION) then
X<=A;
STATE := SO; -- Set STATE here to avoid an
-- extra feedback loop in the
-- synthesized logic.
else
STATE = S1,
end if;
when S1 =>
STATE := S0;
end case;
end process;

Note: wai t statements can be used anywhere in a process exceptin f or. . | oop statements or sub-
programs. However, if any path through the logic contains one or more wai t statements, all
paths must contain at least one wai t statement.

Example 6-28 shows how a circuit with synchronous reset can be described with wai t statements in
an infinite loop. The reset signal must be checked immediately after each wai t statement. The assign-
ment statements in Example 6-28 (X <= A; and Y <= B;) simply represent the sequential state-
ments used to implement your circuit.
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Example 6-28: Synchronous Reset Using wait Statements
process
begin
RESET LOOP: | oop
wait until CLOCK’'event and CLOCK ="1";
next RESET_LOOP when (RESET ="1");
X<=A;
wait until CLOCK’event and CLOCK ="1";
next RESET_LOOP when (RESET ="1");
Y <=B;
end loop RESET_LOOP;
end process;

Example 6-29 shows two invalid uses of wai t statements. These limitations are specific to FPGA
Express.

Example 6-29: Invalid Uses of the wait Statement

type COLOR is (RED, GREEN, BLUE);

attri bute ENUM ENCODI NG : STRI NG

attri bute ENUM ENCODI NG of COLOR : type is -100 010 001";
signal CLK : COLOR;

process
begin
wait until CLK’event and CLK = RED;
-- lllegal: clock type is not encoded with one bit

end;
process
begin
if (X =Y) then

wait until CLK’event and CLK ="1";

end if;
-- lllegal: not all paths contain vai t statements

end;
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Combinational vs. Sequential Processes

If a process has no wai t statements, the process is synthesized with combinational logic. Computa-
tions performed by the process react immediately to changes in input signals.

If a process uses one or more wai t statements, it is synthesized with sequential logic. The process
computations are performed only once for each specified clock edge (positive or negative edge). The
results of these computations are saved until the next edge by storing them in flip-flops.

The following values are stored in flip-flops:

 Signals driven by the process; see “Signal Assignment Statement- at the beginning of this chapter.
 State vector values, where the state vector can be implicit or explicit (as in Example 6-27).
» Variables that may be read before they are set.

Note: Like the wai t statement, some uses of the i f statement can also imply synchronous logic,
causing FPGA Express to infer registers or latches. These methods are described in Chapter 8,
under “Register and Three-State Inference.-

Example 6-30 uses a wai t statement to store values across clock cycles. The example code com-
pares the parity of a data value with a stored value. The stored value (called CORRECT_PARI TY) is set
from the NEW CORRECT _PARI TY signal if the SET_PARI TY signal is TRUE.

Example 6-30: Parity Tester Using the wait Statement
signal CLOCK: BIT;
signal SET_PARITY, PARI TY_OK: Bool ean;
signal NEW CORRECT _PARITY: BIT;
signal DATA: BIT_VECTOR(O to 3);

process
vari abl e CORRECT_PARI TY, TEMP: BIT,;
begin
wait until CLOCK’event and CLOCK ="1";

-- Set new correct parity value if requested
if (SET_PARITY) then

CORRECT_PARITY := NEW_CORRECT_PARITY;
end if;

-- Compute parity of DATA

TEMP :='0;

for I in DATA’range loop
TEMP := TEMP xor DATA(l);

end loop;

-- Compare computed parity with the correct value
PARITY_OK <= (TEMP = CORRECT_PARITY);
end process;
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Note that two flip-flops are in the synthesized schematic for Example 6-30. The first (input) flip-flop
holds the value of CORRECT _PARI TY. A flip-flop is needed here because CORRECT_PARI TY is read
(when it is compared to TEMP) before it is set (if SET_PARI TY is FALSE). The second (output) flip-flop
stores the value of PARI TY_CK between clock cycles. The variable TEMP is not given a flip-flop
because it is always set before it is read.

null Statement

The nul | statement explicitly states that no action is required. The nul | statement is often used in
case statements because all choices must be covered, even if some of the choices are ignored. The
syntax is

nul | ;

Example 6-31 shows a typical usage of the nul | statement.
Example 6-31: null Statement

signal CONTRCL: | NTEGER range 0 to 7;

signal A Z: BIT;

Z <= A

case CONTROL is

when 0 | 7 => -- If 0 or 7, then invert A
Z <= not A
when ot hers =>
nul | ; -- If not 0 or 7, then do nothing
end case;
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Chapter 7
Concurrent Statements

A VHDL architecture contains a set of concurrent statements. Each concurrent statement defines one
of the interconnected blocks or processes that describe the overall behavior or structure of a design.
Concurrent statements in a design execute continuously, unlike sequential statements (see

Chapter 6), which execute one after another.

The two main concurrent statements are

jprocess statement

A process statement defines a process. Processes are composed of sequential statements (see
Chapter 6), but processes are themselves concurrent statements. All processes in a design execute
concurrently. However, at any given time only one sequential statement is interpreted within each pro-
cess. A process communicates with the rest of a design by reading or writing values to and from sig-
nals or ports declared outside the process.

block statement

A block statement defines a block. Blocks are named collections of concurrent statements, optionally
using locally defined types, signals, subprograms, and components.

VHDL provides two concurrent versions of sequential statements: concurrent procedure calls and con-
current signal assignments.

The component instantiation statement references a previously defined hardware component.
Finally, the gener at e statement creates multiple copies of any concurrent statement.

The concurrent statements consist of

|* process Statements |

|+ block Statement |

|+ Concurrent Procedure Calls |
1

» Concurrent Signal Assignments |

L=_Component Instantiations |

|+ generate Statements |
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process Statements

A pr ocess statement contains an ordered set of sequential statements. The syntax is

[ /abel: ] process [ ( sensitivity list ) ]
{ process _declarative item}

begin
{ sequential _statenent }

end process [ [abel ] ;

An optional | abel names the process. The sensitivity Iist is a list of all signals (including
ports) read by the process, in the following format:

signal _name {, signal nange}

The hardware synthesized by FPGA Express is sensitive to all signals read by the process. To guaran-
tee that a VHDL simulator sees the same results as the synthesized hardware, a process sensitivity list
must contain all signals whose changes require resimulation of that process. FPGA Express checks
sensitivity lists for completeness and issues warning messages for any signals that are read inside a
process but are not in the sensitivity list. An error is issued if a clock signal is read as data in a process.

Note: IEEE VHDL does not allow a sensitivity list if the process includes a wai t statement.

A process_decl arati ve_i t emdeclares subprograms, types, constants, and variables local to the
process. These items can be any of the following items:

» use clause

e Subprogram declaration

* Subprogram body

e Type declaration

e Subtype declaration

» Constant declaration

» Variable declaration

Each sequenti al _st at enent is described in Chapter 6.

Conceptually, the behavior of a process is defined by the sequence of its statements. After the last
statement in a process is executed, execution continues with the first statement. The only exception is
during simulation: if a process has a sensitivity list, the process is suspended (after its last statement)
until a change occurs in one of the signals in the sensitivity list.

If a process has one or more wai t statements (and therefore no sensitivity list), the process is sus-
pended at the first wai t statement whose wait condition is FALSE.

The hardware synthesized for a process is either combinational (not clocked) or sequential (clocked).
If a process includes awai t orif signal’event statement, its hardware contains sequential com-
ponents. The wait and if statements are described in Chapter 6.
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Note: The pr ocess statements provide a natural means for describing conceptually sequential algo-
rithms. If the values computed in a process are inherently parallel, consider using concurrent
signal assignment statements (see “Concurrent Signal Assignments," later in this chapter).

Combinational Process Example

Example 7-1 shows a process that implements a simple modulo-10 counter. The example process is
sensitive to (reads) two signals: CLEAR and | N_COUNT. It drives one signal, OUT_COUNT. If CLEARis
"1’ or IN_COUNTIs 9, then OUT_COUNIE set to zero. Otherwise, OUT_COUNIE set to one more than
IN_COUNT

Example 7-1: Modulo-10 Counter Process
entity COUNTER is

port (CLEAR in BIT,
| N_COUNT: in | NTECER range 0 to 9;
OUT_COUNT: out INTEGER range 0 to 9);
end COUNTER;

architecture EXAMPLE of COUNTER i s
begin
process(| N _COUNT, CLEAR)
begi n
if (CLEAR ="1" or IN_COUNT = 9) then
OUT_COUNT <= 0;
else
OUT_COUNT <= IN_COUNT + 1;
end if;
end process;
end EXAMPLE;
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INCOUNT 2] [
TMLCOUNT IR [
TMEOUNT 1] o

S

THCOUNT (3]

CLERR o

Sequential Process Example

Because the process in Example 7-1 contains no wai t statements, it is synthesized with combina-
tional logic. An alternate implementation of the counter is to retain the count value internally in the pro-
cess with awai t statement.

Example 7-2 shows an implementation of a counter as a sequential (clocked) process. On each 0-to-1
CLQOCK transition, if CLEARIis '1’ or COUNTs 9, COUNTis set to zero; otherwise, COUNTs incre-
mented by 1.

Example 7-2: Modulo-10 Counter Process with wait Statement
entity COUNTER is
port (CLEAR in BIT;
CLOCK: in BIT;
COUNT: buffer |INTEGER range 0 to 9);
end COUNTER;

architecture EXAMPLE of COUNTER i s
begin

process

begi n

wait until CLOCK’event and CLOCK ="1";

if (CLEAR ="1" or COUNT >=9) then
COUNT <=0;
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el se
COUNT <= COUNT + 1;
end if;
end process;
end EXAMPLE;

. .
kf [—>COUNT(B]

cLock [T 5 F—

:fo [ T»COUNTILI
A P
1

COUNT (21

N

In Example 7-2, the value of the variable COUNT is stored in four flip-flops. These flip-flops are gener-
ated because COUNT can be read before it is set, so its value must be maintained from the previous
clock cycle. See “wait Statement" in Chapter 6 for more information.

Driving Signals
If a process assigns a value to a signal, the process is a driver of that signal. If more than one process
or other concurrent statement drives a signal, that signal has multiple drivers.

Example 7-3 shows two three-state buffers driving the same signal (SI G). Chapter 8 shows how to
describe a three-state device in technology-independent VHDL, in the section on “Three-State Infer-
ence."

Example 7-3: Multiple Drivers of a Signal
A_OUT <= A when ENABLE_A else 'Z’;
B_OUT <= B when ENABLE_B else 'Z’;

process(A_OUT)
begin

SIG <= A_OUT;
end process;

process(B_OUT)
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begi n
SIG <= B _QUT;
end process;

ENABLE_B
B SIG
ENABLE_A

A

Bus resolution functions assign the value for a multiply-driven signal. See “Resolution Functions,"
under “Subprograms" in Chapter 3, for more information.

block Statement

A bl ock statement names a set of concurrent statements. Use blocks to organize concurrent state-
ments hierarchically.

The syntax is

| abel : bl ock
{ bl ock declarative item}
begin

{ concurrent_statenent }
end block [ [abel ];

The required / abel names the block.

A bl ock_decl ar at i ve_i t emdeclares objects local to the block and can be any of the following
items:

» use clause

e Subprogram declaration

* Subprogram body

e Type declaration

e Subtype declaration

» Constant declaration

 Signal declaration

« Component declaration

The order of each concurrent st at enent in a block is not significant, because each statement is
always active.

Note: FPGA Express does not support guarded blocks.
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Objects declared in a block are visible to that block and to all blocks nested within. When a child block
(inside a parent block) declares an object with the same name as an object in the parent block, the
child’s declaration overrides that of the parent (inside the child block).

Example 7-4 shows the use of nested blocks.

Example 7-4: Nested Blocks

Bl: bl ock
signal S: BIT;, -- Declaration of "S" in block Bl
begin
S<=Aand B, -- "S" fromBl
B2: bl ock
signal S: BIT;, -- Declaration of "S" in block B2
begi n
S<=Cand b -- "S" fromB2
B3: bl ock
begin
Z <= § -- "S" from B2

end bl ock B3;
end bl ock B2;

Y <= §; -- "S" fromB1
end bl ock B1;
A[>] ANz .
B [ >
c > ANe ;
D [ >

Concurrent Procedure Calls

A concurrent procedure call is a procedure call used as a concurrent statement; it is used in an archi-
tecture or a block, rather than in a process. A concurrent procedure call is equivalent to a process con-
taining a single sequential procedure call. The syntax is the same as that of a sequential procedure
call:

procedure name [ ( [ name => ] expression
{ , [ nane => ] expression } ) ] ;
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The equivalent process is sensitive to all i n and i nout parameters of the procedure. Example 7-5
shows a procedure declaration, then a concurrent procedure call and its equivalent process.

Example 7-5: Concurrent Procedure Call and Equivalent Process

procedure ADD(signal A B: in BIT,;
signal SUM out BIT);

ADD( A, B, SUM; -- Concurrent procedure call

process(A, B) -- The equival ent process
begin
ADD(A, B, SUM; -- Sequential procedure call

end process;

FPGA Express implements procedure and function calls with logic, unless you use the
map_t o_entity compiler directive (see “Mapping Subprograms to Components (Entities)," in Chap-
ter 6).

A common use for concurrent procedure calls is to obtain many copies of a procedure. For example,
assume that a class of Bl T_VECTOR signals must contain only one bit with value 1 and the rest of the
bits value 0. Suppose you have several signals of varying widths that you want monitored at the same
time. One approach is to write a procedure to detect the error in a Bl T_VECTOR signal, then make a
concurrent call to that procedure for each signal.

Example 7-6 shows a procedure CHECK that determines whether a given bit vector contains exactly
one element with value "1’ ; if this is not the case, CHECKsets its out parameter ERRORto TRUE
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Example 7-6: Procedure Definition for Example 7-7

procedure CHECK(signal A: in Bl T_VECTOR;
si gnal ERROR out Bool ean) is

vari abl e FOUND ONE: Bool ean : = FALSE;
-- Set TRUE when a 'Y’
-- is seen

begin

for Iin A’range loop -- Loop across all bits

-- in the vector
if A( ='1"then --Founda’l
if FOUND_ONE then -- Have we already found one?
ERROR <= TRUE; -- Found two '1’s

return; -- Terminate procedure
end if;
FOUND_ONE := TRUE; -- Note that we have
end if; -- seena’l’
end loop;

ERROR <= not FOUND_ONE; -- Error will be TRUE
-- ifno 'l found
end;

Example 7-7 shows the CHECK procedure called concurrently for four different-sized bit vector signals.

Example 7-7: Concurrent Procedure Calls
BLK: bl ock
signal S1: BIT_VECTOR(O to 0);
signal S2: BIT VECTOR(O to 1);
signal S3: BIT_VECTOR(O to 2);
signal S4: BIT _VECTOR(O to 3);

signal E1, E2, E3, E4: Bool ean;

begi n
CHECK(S1, El); -- Concurrent procedure call
CHECK(S2, E2);
CHECK( S3, E3);
CHECK( sS4, E4);
end bl ock BLK;

Concurrent Signal Assignments

A concurrent signal assignment is equivalent to a process containing that sequential assignment.
Thus, each concurrent signal assignment defines a new driver for the assigned signal. The simplest
form of the concurrent signal assignment is

target <= expression;
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t ar get is a signal that receives the value of expr essi on.
Example 7-8 shows the value of the expression A and B concurrently assigned to signal Z.

Example 7-8: Concurrent Signal Assignment

BLK: bl ock
signal A B, Z BIT,
begin

Z <= A and B;
end bl ock BLK;

The other two forms of concurrent signal assignment are conditional signal assignment and selected
signal assignment.

Conditional Signal Assignment

Another form of concurrent signal assignment is the conditional signal assignment. The syntax is

target <= { expression when condition el se }
expressi on;

t ar get is a signal that receives the value of an expr essi on. The expr essi on used is the first one
whose Boolean condi t i on is TRUE.

When a conditional signal assignment statement is executed, each condi t i on is tested in order as
written. The first condi t i on that evaluates TRUE has its expr essi on assigned to t ar get . If no
condi ti onis TRUE, the final expr essi on is assigned to the t ar get . If two or more condi ti ons
are TRUE, only the first one is effective, just like the first TRUE branch of an i f statement.
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Example 7-9 shows a conditional signal assignment, where the target is the signal Z. The signal Zis
assigned from one of the signals A, B, or C. The signal depends on the value of the expressions

ASSI GN_A and ASSI GN_B. Note that the assignment of A takes precedence over that of B, and the
assignment of B takes precedence over that of C, because the first TRUE condition controls the assign-
ment.

Example 7-9: Conditional Signal Assignment

Z <= Awhen ASSIGN_A ="1" else
B when ASSIGN_B ='1" else
G

ASSIGN_A [ >

Example 7-10 shows a process equivalent to the conditional signal assignment in Example 7-9.

Example 7-10: Process Equivalent to Conditional Signal Assignment

process(A, ASSIGN_A, B, ASSIGN_B, C)
begin
if ASSIGN_A ="1" then
Z<=A;
elsif ASSIGN_B ='1’" then
Z <= B;
else
Z<=C;
end if;
end process;

Selected Signal Assignment
The final kind of concurrent signal assignment is the selected signal assignment. The syntax is

Wi th choi ce _expression sel ect
target <= { expression when choices, }
expressi on when choi ces;
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t ar get is a signal that receives the value of an expr essi on. The expr essi on selected is the first
one whose choi ces include the value of choi ce_expr essi on. The syntax of choi ces is the same
as that of the case statement:

choice { | choice }

Each choi ce can be either a static expression (such as 3) or a static range (suchas 1 to 3). The
type of choi ce_expr essi on determines the type of each choi ce. Each value in the range of the
choi ce_expressi on type must be covered by one choi ce.

The final choi ce can be ot her s, which matches all remaining (unchosen) values in the range of the
choi ce_expressi ontype. The ot her s choice, if present, matches choi ce_expr essi on only if
none of the other choices match.

Thewi t h. . sel ect statement evaluates choi ce_expr essi on and compares that value to each
choi ce value. The when clause with the matching choi ce value has its expr essi on assigned to
target.

The following restrictions are placed on choices:

» No two choices can overlap.

 If no ot her s choice is present, all possible values of choi ce_expr essi on must be covered by the
set of choices.

Example 7-11 shows target Z assigned from A, B, C, or D. The assignment depends on the current
value of CONTROL.

Example 7-11: Selected Signal Assignment

signal AL B, C D Z BIT,
signal CONTRCOL: bit_vector(1l down to 0);

wi th CONTROL sel ect
Z <= A when "00",

B when "01",
C when "10",
D when "11";

A
B
C

il
ab

D 41

CONTROL [8] D—‘

CONTROL [1] [>»——

Example 7-12 shows the process equivalent to the selected signal assignment statement in Example
7-11.
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Example 7-12: Process Equivalent to Selected Signal Assignment
process(CONTRCOL, A B, C, D)

begin
case CONTROL is
when 0 =>
Z <= A
when 1 =>
Z <= B;
when 2 =>
Z <= C
when 3 =>
Z <= D
end case;

end process;

Component Instantiations

A component instantiation references a previously defined hardware component, in the current design,
at the current level of hierarchy. You can use component instantiations to define a design hierarchy.
You can also use parts not defined in VHDL, such as components from an FPGA technology library,
parts defined in the Verilog hardware description language, or the generic technology library. Compo-
nent instantiation statements can be used to build netlists in VHDL.

A component instantiation statement indicates

» A name for this instance of the component.

» The name of a component to include in the current entity.
* The connection method for a component’s ports.

The syntax is

i nstance_name : conponent_ _nane port map (
[ port_nanme => ] expression
{, [ port_nane => ] expression } );

i nst ance_name names this instance of the component type conponent _nane.

The port map connects each port of this instance of conponent _nane to a signal-valued expr es-
si onin the current entity. The value of expr essi on can be a signal name, an indexed name, a slice
name, or an aggregate. If expr essi on is the VHDL reserved word open, the corresponding port is
left unconnected.

You can map ports to signals by named or positional notation. You can include both named and posi-
tional connections in the port map, but you must place all positional connections before any named
connections.
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Note: For named association, the component port names must exactly match the declared compo-
nent’'s port names. For positional association, the actual port expressions must be in the same
order as the declared component’s port order.

Example 7-13 shows a component declaration (a 2-input NAND gate) followed by three equivalent
component instantiation statements.
Example 7-13: Component Declaration and Instantiations
conponent ND2
port(A, B: in BIT;, C out BIT);
end conponent;

signal X, Y, Z. BIT,;

Ul: ND2 port map(X, Y, Z2); -- positional

U2: ND2 port map(A => X, C=> 2, B =>Y);-- naned
U3: ND2 port map(X, Y, C=> 2); -- mxed

Example 7-14 shows the component instantiation statement defining a simple netlist. The three
instances, U1, U2, and U3, are instantiations of the 2-input NAND gate component declared in
Example 7-13.

Example 7-14: A Simple Netlist
signal TEMP_1, TEMP2: BIT,
Ul: ND2 port map(A, B, TEMP_1);

U2: ND2 port map(C, D, TEMP_2);
U3: ND2 port map(TEMP_1, TEMP_2, 2);

> w

NDZ

ANRA

a0 g
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generate Statements

A gener at e statement creates zero or more copies of an enclosed set of concurrent statements. The
two kinds of gener at e statements are

for... generate
the number of copies is determined by a discrete range

if... generate

Zero or one copy is made, conditionally

for .. generate Statement

The syntax is

| abel: for identifier in range generate
{ concurrent_statenent }
end generate [ label ] ;

The required / abel names this statement (useful for nested gener at e statements).
The use of the i dent i fi er in this construct is similar to that of the f or . . | oop statement:

e jdentifier is not declared elsewhere. It is automatically declared by the gener at e statement
itself and is entirely local to the loop. A loop identifier overrides any other identifier with the same
name but only within the loop.

» Thevalue i denti fi er can be read only inside its loop, but you cannot assign a value to a loop
identifier. In addition, the value of / dent i fi er cannot be assigned to any parameter whose mode
isout orinout.

FPGA Express requires that r ange must be a computable integer range, in either of these forms:

i nteger _expression to integer_expression
i nt eger _expressi on downto i/ nteger_expression
Each i nt eger _expr essi on evaluates to an integer.

Each concurrent st at enent can be any of the statements described in this chapter, including
other gener at e statements.

A for..generat e statement executes as follows:

1. A new local integer variable is declared with the name i denti fi er.

2. identifier is assigned the first value of r ange, and each concurrent statement is executed
once.

3. identifier is assigned the next value in r ange, and each concurrent statement is executed
once more.

4. Step 3is repeated until i dent i fi er is assigned the last value in r ange. Each concurrent state-
ment is then executed for the last time, and execution continues with the statement following
end generate. The loop i dentifier is deleted.
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Example 7-15 shows a code fragment that combines and interleaves two four-bit arrays A and B into
an eight-bit array C.

Example 7-15: for..generate Statement
signal A, B : bit_vector(3 downto 0);
signal C . bit_vector(7 downto 0);
signal X : bit;

GEN LABEL: for I in 3 downto O generate
C(2*1 + 1) <= A(l) nor X
C(2*1) <= B(I) nor X

end generate GEN_LABEL;

y

a1
B@1

[11
ALB]

O
5

[21
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[31
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(51
ALZ]
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0
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0

(71
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The most common usage of the gener at e statement is to create multiple copies of components, pro-
cesses, or blocks. Example 7-16 demonstrates this usage with components. Example 7-17 shows how
to generate multiple copies of processes.Example 7-16 shows VHDL array attribute 'range used with
the for..generate statement to instantiate a set of COMRomponents that connect corresponding
elements of bit vectors A and B.
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Example 7-16: for..generate Statement Operating on an Entire Array
conponent COWP
port (X : in bit;
Y : out bit);
end conponent;

signal A B: BIT VECTOR(O to 7);

GEN: for | in A'range generate
U: COMP port map (X => A(l),
Y =>B());
end generate GEN;

Unconstrained arrays and array attributes are described under “Array Types" in Chapter 4. Array
attributes are shown in Example 4-9.

if .. generate Statement

The syntax is

| abel: if expression generate
{ concurrent_statenent }
end generate [ label ] ;

I abel identifies (names) this statement. expr essi on is any expression that evaluates to a Boolean
value. A concurrent _st at enent is any of the statements described in this chapter, including other
gener at e statements.

Note: Unlike the i f statement described in Chapter 6, the i f. . gener at e statement has no el se or
el si f branches.
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Youcanusethei f.. gener at e statement to generate a regular structure that has different circuitry at
its ends. Use a f or. . gener at e statement to iterate over the desired width of a design, and a set of
i f..gener at e statements to define the beginning, middle, and ending sets of connections.

Example 7-17 shows a technology-independent description of the following N-bit serial-to-parallel con-
verter. Data is clocked into an N-bit buffer from right to left. On each clock cycle, each bit in an N-bit
buffer is shifted up one bit, and the incoming DATA bit is moved into the low-order bit.

Example 7-17 Typical Use of if..generate Statements

entity CONVERTER i s
generic(N. INTEGER : = 8);

port (CLK, DATA: in BIT,

CONVERT: buffer BIT_VECTOR(N-1 downto 0));

end CONVERTER;

archi tecture BEHAVI OR of CONVERTER i s
signal S : BIT_VECTOR(CONVERT’range);
begin

G: for | in CONVERTrange generate

G1: -- Shift (N-1) data bit into high-order bit
if (I = CONVERTleft) generate
process begin
wait until (CLK’event and CLK ="1");
CONVERT(l) <= S(I-1);
end process;
end generate G1;

G2: -- Shift middle bits up
if (I > CONVERT'right and
| < CONVERT'left) generate

S(I) <= S(I-1) and CONVERT(l);

process begin
wait until (CLK’event and CLK ="1");
CONVERT(l) <= S(I-1);
end process;
end generate G2;

G3: -- Move DATA into low-order bit
if (I = CONVERT'right) generate
process begin
wait until (CLK’event and CLK ='1);
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CONVERT( 1) <= DATA;
end process;
S(1) <= CONVERT(I);
end generate G3;

end generate G
end BEHAVI OR;

Example 7-17: (Continued) Typical Use of if..generate Statements

DATA [ CONVERTIB ]

oL [

CONVERTI11

CONVERT (21

EONVERT 41
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Chapter 8
Register and Three-State Inference

You can generally use several different, but logically equivalent, VHDL descriptions to describe a cir-
cuit.

To write VHDL descriptions to produce efficient synthesized circuits, consider the following topics:

|- Reaqister Inference |

|=_Three-State Inference |

You can use VHDL to make your design more efficient in terms of the synthesized circuit’s area and
speed, as follows:

» A design that needs some, but not all, of its variables or signals stored during operation can be writ-
ten to minimize the number of latches or flip-flops required.

» A design that is described more easily with several levels of hierarchy can be synthesized more effi-
ciently if part of the design hierarchy is collapsed during synthesis.

Register Inference
FPGA Express provides register inferencing using the wai t and i f statements.

A register is a simple, one-bit memory device, either a flip-flop or a latch. A flip-flop is an edge-trig-
gered memory device. A latch is a level-sensitive memory device.

Use the wai t statement to imply flip-flops in a synthesized circuit. FPGA Express creates flip-flops for
all signals, and some variables assigned values in a process with a wai t statement.

The i f statement can be used to imply registers (flip-flops or latches) for signals and variables in the
branches of the i f statement.

To use register inferences, describe latches and flip-flops, and learn efficient use of registers, familiar-
ize yourself with

» Using register inference
» Describing latches
 Describing flip-flops

« Efficient use of registers
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Using Register Inference

Using register inference involves describing clock signals and using wai t and i f statements for regis-
ter inferencing. Recommended models for different types of inferred registers and current Synopsys
restrictions must also be considered.

Describing Clocked Signals

FPGA Express can infer asynchronous memory elements from VHDL descriptions written in a natural
style.

Use thewai t and i f statements to test for the rising or falling edge of a signal. The most common
usages are

process
begin
wait until (edge);

end process;
process (sensitivity Iist)
begin

i f (edge)

end if;
end process;

Another form is
process (sensitivity Iist)
begin

if (...) then

elsif (...)

el sif (edge) then

end if;
end process;

edge refers to an expression that tests for the positive or negative edge of a signal. The syntax of an
edge expression is
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SIGNAL’'event  and SIGNAL ='1" -- rising edge
NOT SIGNAL'stable and SIGNAL ='1’ -- rising edge

SIGNAL’'event  and SIGNAL ='0" -- falling edge
NOT SIGNAL'stable and SIGNAL ='0’ -- falling edge

Inawait statement, edge can also be

signal ='1’ --rising edge
signal ='0’ -- falling edge

An edge expression must be the only condition ofani f oran el si f statement. You can have only
one edge expressioninani f statement, and the i f statement must not have an el se clause. An
edge expression cannot be part of another logical expression nor used as an argument.

if ( edge and RST ='1)
-- lllegal usage; edge must be only condition

Any function( edge);
-- lllegal usage; edge cannot be an argument

if X >5 then

sequential_statement;
elsif edge then

sequential_statement;
else

sequenti al _statenent;

end if;

-- lllegal usage; do not use edge as an intermediate expression.

These lines illustrate three incorrect uses of the edge expression. In the first group, the edge expres-
sion is part of a larger Boolean expression. In the second group, the edge expression is used as an
argument. In the third group, the edge expression is used as an intermediate condition.

wait vs if Statements

Sometimes you can use the wai t and i f statements interchangeably. The i f statement is usually
preferred, because it provides greater control over the inferred register’s capabilities, as described in
the next section.

IEEE VHDL requires that a process with a wai t statement must not have a sensitivity list.
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Ani f edge statement can appear anywhere in a process. The sensitivity list of the process must con-
tain all signals read in the process, including the edge signal. In general, the following guidelines

apply:
» Synchronous processes (processes that compute values only on clock edges) must be sensitive to
the clock signal.

» Asynchronous processes (processes that compute values on clock edges and when asynchronous
conditions are TRUE) must be sensitive to the clock signal (if any), and to inputs that affect asynchro-
nous behavior.

Recommended Use of Register Inference Capabilities
The register inference capability can support styles of description other than those described here.
However, for best results:

» Restrict each process to a single type of memory-element inferencing: latch, latch with asynchro-
nous set or reset, flip-flop, flip-flop with asynchronous reset, or flip-flop with synchronous reset.

» Use the following templates.
LATCH  process(sensitivity [|ist)
begin
i f LATCH_ENABLE t hen

end if;
end process;

LATCH_ASYNC_SET:
attribute async_set _reset of SET : signal is "true";

process(sensitivity list)
begin
if SET then
Q<="1;
elsif LATCH_ENABLE then

end if;

end process;

FF: process(CLK)
begin
if edge then

end if;
end process;
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FF_ASYNC_RESET:
process( RESET, CLK)

begin
i f RESET then
Q<="05
elsif edge then
Q<=..
end if;

end process;

FF_SYNC_RESET:
process(RESET, CLK)
begin
if edge then
if RESET then
Q<="0%
else
Q<=..
end if;
end if;
end process;

Examples of these templates are provided in “Describing Latches" and “Describing Flip-Flops," later in
this chapter.

Restrictions on Register Capabilities

Do not use more than one i f edge expression in a process.

process(CLK A, CLK B)
begin
if(CLK_A’event and CLK_A ='1") then
A <= B;
end if;

if(CLK_B’event and CLK_B ="'1") then -- lllegal
C<=B;
end if;
end process;
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Do not assign a value to a variable or signal on a FALSE branch of ani f edge statement. This
assignment is equivalent to checking for the absence of a clock edge, which has no hardware counter-
part.
process( CLK)
begin
if(CLK’event and CLK ='1") then
SIG <= B;
else
SIG<=C; --lllegal
end if;
end process;

If a variable is assigned a value inside an edge construct, do not read that variable later in the same
process.

process(CLK)

variable EDGE_VAR, ANY_VAR: BIT;

begin
if (CLK’event and CLK =1") then
EDGE_SIGNAL <= X;
EDGE_VAR :=Y;
ANY_VAR :=EDGE_VAR; -- Legal
end if;

ANY_VAR := EDGE_VAR,; -- lllegal
end process;

Do not use an edge expression as an operand.
if not(CLK’event and CLK ='1") then -- lllegal

Delays in Registers

If you use delay specifications with values that may be registered, the simulation to behave differently
from the logic synthesized by FPGA Express. For example, the description in Example 8-1 contains
delay information that causes FPGA Express to synthesize a circuit that behaves unexpectedly.
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Example 8-1: Delays in Registers
conmponent flip _flop (
D, clock: in BIT;
Q out BIT;);
end conponent;

process ( A, C, D, clock );
signal B: BIT,
begin
B <= A after 100ns;

F1. flip_flop port map ( A, C, clock ),
F2: flip_flop port map ( B, D, clock );
end process;

In Example 8-1, B changes 100 nanoseconds after A changes. If the clock period is fewer than 100
nanoseconds, output Dis one or more clock cycles behind output Cwhen the circuit is simulated.
However, because FPGA Express ignores the delay information, A and B change values at the
same time, and so do C and D. This behavior is not the same as in the simulated circuit.

When you use delay information in your designs, make sure the delays do not affect registered values.
In general, you can safely include delay information in your description if it does not change the value
that gets clocked into a flip-flop.

Describing Latches

FPGA Express infers latches from incompletely specified conditional expressions. In Example 8-2,
the i f statement infers a latch because there is no el se clause:

Example 8-2: Latch Inference
process( GATE, DATA)

begin
if (GATE ='1") then
Q <= DATA,;
end if;

end process;

Figure 8-1: Latch Inference

DATA [>—| "0

ok [+ o}

The inferred latch uses CLK as its clock and DATA as its data input, as shown in Example 8-2.
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Automatic Latch Inferencing

A signal or variable that is not driven under all conditions becomes a latched value. As shown in Exam-
ple 8-3, TEMP becomes a latched value because it is assigned only when PHI is 1.

Example 8-3: Automatically Inferred Latch

if(PHI = '1") then
TEMP <= A;
end if;

Figure 8-2: Automatically Inferred Latch
A > ——T_>TEMP

PHT - o}

To avoid inferred latches, assign a value to the signal under all conditions, as shown in Example 8-4.

Example 8-4: Fully Specified Signal: No Latch Inference

if (PHI = '1’) then

TEMP <= A;
else
TEMP <="0;
end if;
PHi g e TEMP
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Restrictions on Latch Inference Capabilities

You cannot read a conditionally assigned variable after the i f statement in which it is assigned. A con-
ditionally assigned variable is assigned a new value under some, but not all, conditions.

Therefore, a variable must always have a value before it is read.

signal X, Y. BIT,

process
vari able VALUE: BIT,
begin

if (condition) then
VALUE : = X;
end if;

Y <= VALUE; -- IIllegal
end;

In simulation, latch inference occurs because signals and variables can hold state over time. A signal
or variable holds its value until that value is reassigned. FPGA Express inserts a latch to duplicate this
holding of state in hardware.

Variables declared locally within a subprogram do not hold their value over time. Every time a subpro-
gram is used, its variables are reinitialized. Therefore, FPGA Express does not infer latches for vari-
ables declared in subprograms. In Example 8-5, no latches are inferred.

Example 8-5: Function without Inferred Latch
functi on MY_FUNC(DATA, GATE : BIT) return BIT is
vari abl e STATE: BIT;

begin
i f GATE then
STATE : = DATA,
end if;

return STATE;
end;

Q <= MY_FUNC(DATA, GATE);
Figure 8-3: Function without Inferred Latch

GATE D
DATA .
=
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Example—Design with Two-Phase Clocks

By using the latch inference capability, you can describe network structures, such as two-phase sys-
tems in a technology-independent manner. Example 8-6 shows a simple two-phase system with
clocks PHI _1 and PHI _2.

Example 8-6: Two-Phase Clocks
entity LATCH VHDL is
port(PH _1, PH _2, A: in BIT;
t: out BIT);
end LATCH VHDL;

architecture EXAMPLE of LATCH VHDL is
signal TEMP, LOOP_BACK: BIT;

begin
process(PH _1, A LOOP_BACK)
begi n
if(PHI_1 ="1") then

TEMP <= A and LOOP_BACK;
end if;
end process;

process(PHI_2, TEMP)
begin

if(PHI_2 ="1") then

LOOP_BACK <= not TEMP;

end if;
end process;
t <= LOOP_BACK;

end EXAMPLE;
Figure 8-4: Two-Phase Clocks
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FPGA Express does not automatically infer dual-phase latches (devices with master and slave clocks).
To use these devices, you must instantiate them as components, as described in Chapter 3.

Describing Flip-Flops
Example 8-7 shows how an edge construct creates a flip-flop.

Example 8-7: Inferred Flip-Flop
process(CLK, DATA)
begin
i f (CLKeventand CLK ="1") t hen
Q <= DATA;
end if;
end process;

Figure 8-5: Inferred Flip-Flop
CATA [>— —1{">a

< > o

Flip-Flop with Asynchronous Reset

Example 8-8 shows how to specify a flip-flop with an asynchronous reset.

Example 8-8: Inferred Flip-Flop with Asynchronous Reset
process(RESET_LOW CLK, SYNC _DATA)

begin
if RESET_LOW="0" then
Q<='0%
elsif (CLK’event and CLK ="1") t hen
Q <= SYNC_DATA;
end if;

end process;

SYNC_DATA a
> ——

CLK

—p
RESET_LON
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Note how the flip-flop in Example 8-8 is wired.

= TheDinput of the flip-flop iswired to SYNC_DATA.

= If thereset condition is computable (see "Computable Operands' in Chapter 5), either the SET or

CLEAR pin of theflip-flop iswired to the RESET (or RESET_LOW signal, as shown in
Example 8-8.

= If the reset conditiOIQANY_SI GNAL in Example 8-9) is not computabBET is wired to
(ANY_SI GNAL AND ASYNC _DATA) andCLEARIs wired to( ANY_SI GNAL AND
NOT( ASYNC_DATA) ) , as shown in Example 8-9

Example 8-9 shows an inferred flip-flop with an asynchronous reset, where the reset condition is not
computable.
Example 8-9: Inferred Flip-Flop with Asynchronous Set or Clear
process (CLK, ANY_SI GNAL, ASYNC DATA, SYNC_DATA)
begi n
if (ANY_SIGNAL) then
Q <= ASYNC_DATA;

el sif (CLK'eventand CLK =1 t hen
Q <= SYNC_DATA;
end if;

end process;

SYNC_DATA -

D S

ANY_SIGNAL [

o]
ASYNC_DATA D”—D°7 ):

CLK >

Example—Synchronous Design with Asynchronous Reset

Example 8-10 describes a synchronous finite state machine (FSM) with an asynchronous reset.
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Example 8-10: Synchronous Finite State Machine with Asynchronous Reset

package MY_TYPES is

type STATE TYPE is (SO, S1, S2, S3);

end MY_TYPES;

use WORK. MY_TYPES. ALL;

entity STATE MACHI NE is

port (CLK, INC, A B: in BIT, RESET:

t: out BIT);
end STATE_MACHI NE;

architecture EXAMPLE of STATE_MACHI NE is
signal CURRENT_STATE, NEXT_STATE: STATE_TYPE;

begin
SYNC: process(CLK, RESET)
begin
if (RESET) then
CURRENT_STATE <= S0;
elsif (CLK’event and CLK ='1") then
CURRENT_STATE <= NEXT_STATE;
end if;
end process SYNC;

FSM: process(CURRENT_STATE, A, B)
begin
t<=A; -- Default assignment
NEXT_STATE <= SO; -- Default assignment

if INC ="1") then
case CURRENT_STATE is
when SO =>
NEXT_STATE <= S1;
when S1 =>
NEXT_STATE <= S2;
t<=B;
when S2 =>
NEXT_STATE <= S3;
when S3 =>
null;
end case;
end if;
end process FSM;

i n Bool ean;
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end EXAMPLE;
Figure 8-6: Synchronous Finite State Machine with Asynchronous Reset
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Attributes

New attributes used to assist register inference are discussed in this section. The attributes are
defined in a VHDL library called Synopsys Attribute’s package.

attribute async_set _reset : string;
attribute sync_set reset : string;

attribute async_set reset _local : string;
attribute sync_set _reset local : string;
attribute async_set reset local _all : string;
attribute sync_set reset local _all : string;

attribute one_hot : string;
attribute one cold : string;

async_set reset

The async_set reset attribute is attached to single-bit signals using the attribute construct. FPGA
Express checks signals with the async_set _reset attribute setto TRUE to determine whether these
signals asynchronously set or reset a latch in the entire design.

The syntax of async_set _reset is
attribute async_set_reset of signal _name,. : signal is "true";

Latch with Asynchronous Set or Clear Inputs

The asynchronous clear signal for a latch is inferred by driving the "Q" pin of your latch to 0. The asyn-
chronous set signal for a latch is inferred by driving the "Q" pin of your latch to 1. Although FPGA
Express does not require that the clear (set) be the first condition in your conditional branch, it is best
to write your VHDL in this manner.
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Example 8-11 shows how to specify a latch with an asynchronous clear input. To specify a latch with
an asynchronous set, change the logic as indicated by the comments.
Example 8-11: Inferred Latch with Asynchronous Clear Input
attribute async_set reset of clear : signal is "true";
process(clear, gate, a)

begin
if (clear="1 ) then
q<='0" ;
elsif (gate = '1’) then
q<=a
end if;

end process;
Figure 8-7: Inferred Latch with Asynchronous Clear
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sync_set_reset

The sync_set _reset attribute is attached to single-bit signals with the attribute constructs. FPGA
Express checks signals with the sync_set _r eset attribute set to TRUE to determine whether these
signals synchronously set or reset a flip-flop in the entire design.

The syntax of sync_set _reset is

attribute sync_set _reset of signal _nane,... : signal is "true";

Flip-Flop with Synchronous Reset Input
Example 8-12 shows how to specify a flip-flop with a synchronous reset.
Example 8-12: Inferred Flip-Flop with Synchronous Reset Input

attribute sync_set reset of RESET, SET : signal is "true";
process(RESET, CLK)

begin
if (CLK’event and CLK ='1") t hen
if RESET='1" then
Q<="05
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el se
Q <= DATA A
end if;
end if;
end process;

process (SET, CLK)

begin
i f (CLKeventand CLK ="1") t hen
if SET="1 t hen
T<="1,
else
T <= DATA_B;
end if;
end if;

end process;

RESET
- >a
DATA

LK > P> P

async_set _reset_local

The async_set _reset | ocal attribute is attached to the label of a process with a value of a dou-
ble-quoted list of single-bit signals. Every signal in the list is treated as though it has the
async_set reset attribute attached in the specified process.

The syntax of async_set _reset | ocal is

attribute async_set_reset_local of process_label : label is
"signal_name,...";
Example 8-13: Asynchronous Set/Reset on a Single Block
library | EEE
library synopsys;
use | EEE. std_| ogic_1164.all;
use synopsys.attributes.all;

entity e_async_set _reset_local is
port(reset, set, gate: in std_logic; y, t: out std_logic);
end e_async_set _reset _| ocal
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architecture rtl of e_async_set _reset _local is

attribute async_set _reset | ocal of direct_set_reset
is "reset, set";

begin

direct _set _reset: process (reset, set)
begin
if (reset ='1") then
y <='0, -- asynchronous reset
elsif (set = '1’) then
y <=1} -- asynchronous set
end if;
end process direct_set_reset;

gated_data: process (gate, reset, set)
begin
if (gate = '1") then
if (reset ='1’) then

t<="0} -- gated data
elsif (set = '1") then
t<="1% -- gated data
end if;
end if;

end process gated_set_reset;

end rtl;

Figure 8-8: Asynchronous Set/Reset on a Single Block
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sync_set_reset_local

The sync_set reset | ocal attribute is attached to the label of a process with a value of a double-
guoted list of single-bit signals. Every signal in the list is treated as though it has the
sync_set _reset attribute attached in the specified process.

The syntax of sync_set reset | ocal is
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attribute sync_set reset |ocal of process |abel : label is
"signal _name,..."

Example 8-14: Synchronous Set/Reset on a Single Block

library | EEE;

library synopsys;

use | EEE. std_l ogic_1164. all;
use synopsys.attributes.all;

entity e_sync_set _reset_local is
port(clk, reset, set, gate : in std logic; y, t: out std logic);
end e_sync_set reset | ocal;

architecture rtl of e_sync_set_reset_local is

attribute sync_set_reset_local of clocked_set _reset : label is "reset,
set";

begi n

cl ocked reset: process (clk, reset, set)
begi n
if (clk’'event and clk ='1’) then

if (reset ='1’) then

y <=0’ -- synchronous reset
else
y <=1 -- synchronous set
end if;
end if;

end process clocked_set_reset;

gated_data: process (clk, gate, reset, set)
begin
if (clk’'event and clk = '1") then
if (gate ='1’) then
if (reset ='1") then

t<="0" -- gated data
elsif (set ='1’) then
t<="1; -- gated data
end if;
end if;
end if;

end process gated_set_reset;

end rtl;

Register and Three-State Inference  8-19



Register Inference

Figure 8-9: Synchronous Set/Reset on a Single Block
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async_set _reset_local_all

The async_set _reset | ocal _all attribute is attached to a process label. The attribute
async_set reset | ocal all specifies that all the signals in the process are used to detect an
asynchronous set or reset condition for inferred latches or flip-flops.

The syntax of async_set _reset |l ocal _all is

attribute async_set _reset _local _all of process _|abel,... : label is "true";
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Example 8-15: Asynchronous Set/Reset on Part of a Design

library | EEE;

library synopsys;

use | EEE. std_| ogic_1164. al | ;
use synopsys.attributes.all;

entity e_async_set _reset _local _all is
port(reset, set, gate, gate2: in std_logic; y, t, w out std_|logic);
end e_async_set _reset _local _all;

architecture rtl of e_async_set _reset local _all is
attribute async_set _reset_local _all of
direct _set reset, direct_set reset too: label is "true";
begi n
direct_set_reset: process (reset, set)
begi n
if (reset ='1") then
y <='0’; -- asynchronous reset
elsif (set = '1") then
y<="1% -- asynchronous set
end if;
end process direct_set_reset;

direct_set_reset_too: process (gate, reset, set)
begin
if (gate = '1") then
if (reset ='1") then

t<="0" -- asynchronous reset
elsif (set = '1") then
t<="1% -- asynchronous set
end if;
end if;

end process direct_set_reset_too;

gated_data: process (gate2, reset, set)
begin
if (gate = '1") then
if (reset ='1") then

w<="0" -- gated data
elsif (set = '1") then
w<="1% -- gated data
end if;
end if;

end process gated_set_reset;

end rtl;
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Figure 8-10: Asynchronous Set/Reset on Part of a Design
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sync_set_reset_local_all

The sync_set reset | ocal _all attribute is attached to a process label. The attribute
sync_set _reset | ocal _all specifies that all the signals in the process are used to detect a syn-
chronous set or reset condition for inferred latches or flip-flops.

The syntax of sync_set _reset | ocal _all is

attribute sync_set _reset local _all of process label,... : label is "true";
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Example 8-11: Example 8-16Synchronous Set/Reset on a Part of a Design

library | EEE;

library synopsys;

use | EEE. std_| ogic_1164.all;
use synopsys.attributes.all;

entity e_sync_set _reset_local _all is
port(clk, reset, set, gate, gate2: in std_logic; y, t, w out std_logic);
end e_sync_set _reset_l| ocal _all;

architecture rtl of e_sync_set _reset _local _all is
attribute sync_set _reset_local _all of

cl ocked_set _reset, clocked_set_reset_too: label is "true";
begin

cl ocked_set _reset: process (clk, reset, set)
begin
if (clk’event and clk = '1’) then

if (reset ='1’) then

y <='0} -- synchronous reset
elsif (set = '1") then
y<='1% -- synchronous set
end if;
end if;

end process clocked_set_reset;

clocked_set_reset_too: process (clk, gate, reset, set)
begin
if (clk’event and clk = '1’) then
if (gate ='1") then
if (reset ='1’) then

t<="0"; -- synchronous reset
elsif (set ='1") then
t<="1, -- synchronous set
end if;
end if;
end if;

end process clocked_set_reset_too;

gated_data: process (clk, gate2, reset, set)
begin
if (clk’event and clk = '1’) then
if (gate ='1") then
if (reset = '1") then

w<="0’; -- gated data
elsif (set ='1’) then
w<="1" -- gated data
end if;
end if;
end if;

end process gated_set_reset;

end rtl;
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Figure 8-11: Synchronous Set/Reset on a Part of a Design
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Note: Use the one_hot and one_col d directives to implement D-type flip-flops with asynchronous
set and reset signals. These two attributes tell FPGA Express that only one of the objects in the

list are active at a time. If you are defining active high signals, use one_hot . For active low,
use one_col d. Each attribute has two objects specified.

one_hot

The one_hot directive takes one argument of a double-quoted list of signals separated by commas.
This attribute indicates that the group of signals are one_hot , in other words, at any time, no more
than one signal can have a Logic 1 value. You must make sure that the group of signals are really
one_hot . FPGA Express does not produce any logic to check this assertion.

The syntax of one_hot is

attribute one_hot signal _nane,... : label is "true";
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Example 8-17: Using one_hot for Set and Reset

library | EEE;

library synopsys;

use | EEE. std_l ogic_1164. all;
use synopsys.attributes.all;

entity e_one_hot is

port(reset, set, reset2, set2: in std_logic; y, t: out std_logic);
attribute async_set reset of reset, set : signal is "true";
attribute async_set reset of reset2, set2 : signal is "true";
attribute one_hot of reset, set : signal is "true";

end e_one_hot;

architecture rtl of e_one_hot is
begi n
direct _set reset: process (reset, set )
begi n
if (reset ='1’) then
y <='0" -- asynchronous reset by "reset"
elsif (set ='1") then
y<='1% -- asynchronous set by "set"
end if;
end process direct_set_reset;
direct_set_reset_too: process (reset2, set2 )

begin
if (reset2 ='1") then
t<="0" -- asynchronous reset by "reset2"
elsif (set2 ='1") then
t<="1"; -- asynchronous set by "~reset2 set2"
end if;

end process direct_set_reset_too;

-- synopsys synthesis_off

process (reset, set)

begin

assert not (reset="1" and set="1")

report "One-hot violation"
severity Error;

end process;

-- synopsys synthesis_on

end rtl;
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Figure 8-12: Using one_hot for Set and Reset

o
L] I—|:> ,
o
e
fo—
L] -,
set2 D‘F
reset2 D&D

one_cold

The one_col d directive is similar to the one_hot directive. one_col d indicates that no more than
one signal in the group can have a Logic 0 value at any time.

The syntax of one_col d is

attribute one_cold signal _nane,... : label is "true";
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Example 8-18

library | EEE;

library synopsys;

use | EEE. std_| ogic_1164. all;
use synopsys.attributes.all;

entity e_one_cold is

Using one_col d for Set and Reset

port (reset, set, reset2, set2: in std logic; y, t: out std_logic);
attribute async_set_reset of reset, set signal is "true";
attribute async_set_reset of reset2, set2 : signal is "true";
attribute one_cold of reset, set signal is "true";
end e_one_col d;
architecture rtl of e_one_cold is
begin

direct _set_reset: process (reset, set )

begin

if (reset ='0’) then

y <=0 -- asynchronous reset by "not reset"

elsif (set ='0’) then

y<='1% -- asynchronous set by "not set"

end if;

end process direct_set_reset;

direct_set_reset_too: process (reset2, set2 )

begin
if (reset2 ='0’) then
t<="0 -- asynchronous reset by "not reset2"
elsif (set2 ='0’) then
t<="1" -- asynchronous set by "(not reset2) (not set2)"
end if;

end process direct_set_reset_too;

-- synopsys synthesis_off

process (reset, set)

begin

assert not (reset="0" and set="0")

report "One-cold violation"
severity Error;

end process;

-- synopsys synthesis_on

end rtl;
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Figure 8-13: Using one_col d for Set and Reset
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FPGA Express Latch and Flip-Flop Inference

FPGA Express inferes latches and flip-flops as follows:

» Asynchronous Flip-Flop Resets
FPGA Express reports asynchronous set and reset conditions of flip-flops.

» Asynchronous Latch Resets
FPGA Express interprets each control object of a latch as synchronous. If you want to asynchro-
nously set or reset a latch, set this variable to TRUE.

* Flip-Flop Feedback Loops
FPGA Express removes all flip-flop feedback loops. For example, feedback loops inferred from a
statement such as Q=Qare removed. With the state feedback removed from a simple D flip-flop, it
becomes a synchronous loaded flip-flop.

* Flip-Flop Inverted Feedback Loops
FPGA Express removes all inverted flip-flop feedback loops. For example, feedback loops inferred
from a statement such as Q=Qare removed and synthesized as T flip-flops.
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* Reporting Inferred Modules
FPGA Express generates a brief report on inferred latches, flip-flops, or three-state devices.

Efficient Use of Registers

Organize your HDL description so that you build only as many flip-flops as the design requires. Exam-
ple 8-19 shows a description where too many flip-flops are implied.
Example 8-19: Circuit with Six Implied Registers
l'ibrary |EEE;
use | EEE.std_logic_1164. all;
use | EEE. std_| ogi c_unsi gned. al | ;

entity ex8 13 is

port ( clk , reset : in std_|ogic;

and_bits , or_bits , xor_bits : out std_logic
)
end ex8_13;

architecture rtl of ex8 13 is
begi n
process
variable count : std _|ogic_vector (2 dowmto 0);
begi n
wait until (clk’'event and clk = '1");
if (reset ='1’) then

count :="000";
else count := count + 1;
end if;

and_bits <= count(2) and count(1) and count(0);
or_bits <= count(2) or count(1) or count(0);
xor_bits <= count(2) xor count(1) xor count(0);
end process;
end rtl;
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Figure 8-14: Circuit with Six Implied Registers
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In Example 8-19, the outputs AND_BI TS, OR BI TS, and XOR _BI TS depend solely on the value of
COUNT. Because COUNT is registered, the three outputs do not need to be registered. To avoid imply-
ing extra registers, assign the outputs from within a process that does not have a wai t statement.
Example 8-20 shows a description with two processes, one with a wai t statement and one without.
This description style lets you choose the signals that are registered and those that are not.

Example 8-20: Circuit with Three Implied Registers
use wor k. ARI THVETI C. al | ;
entity COUNT is

port (CLOCK, RESET: in BIT;
AND BITS, ORBITS, XOR BITS : out BIT);

end COUNT;

architecture RTL of COUNT is
signal COUNT : UNSI GNED (2 downto 0);
begi n

REG process -- Registered logic
begi n
wait until CLOCK’event and CLOCK ="1’;
if (RESET ='1") then
COUNT <="000";
else
COUNT <= COUNT + 1;
end if;
end process;

8-30 ¢ VeriBest FPGA Synthesis VHDL Reference Manual



Register Inference

COMBI N:  process( COUNT) -- Conbinational |ogic
begi n
AND BI TS <= COUNT(2) and COUNT(1l) and COUNT(O0);
OR BITS <= COUNT(2) or CQUNT(1) or COUNT(O);
XOR BI TS <= COUNT(2) xor COUNT(1l) xor COUNT(O0);
end process;
end RTL;
Figure 8-15: Circuit with Three Implied Registers
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This technique of separating combinational logic from registered or sequential logic is useful when
describing finite state machines.

See the following examples in Appendix A:

* Moore machine

» Mealy machine

» Count zeros—sequential version

« Soft drink machine controller—state machine version

Example—Using Synchronous and Asynchronous Processes

You might want to keep some of the values computed by a process in flip-flops, while allowing other
values to change between clock edges.

You can do this by splitting your algorithm between two processes, one with a wai t statement and
one without. Put the registered (synchronous) assignments into the wai t process. Put the other
(asynchronous) assignments into the other process. Use signals to communicate between the two pro-
cesses.

For example, suppose you want to build a design with the following characteristics:

e Inputs A 1, A 2, A 3 and A_4 change asynchronously.
e Qutputt is driven fromone of A 1, A 2, A 3,0rA 4.

 Input CONTRCL is valid only on the positive edge of CLOCK. The value at the edge determines which
of the four inputs is selected during the next clock cycle.
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» Outputt must always reflect changes in the value of the currently selected signal.

The implementation of this design requires two processes. The process with awai t statement syn-
chronizes the CONTRQOL value. The other process multiplexes the output, based on the synchronized
control. The signal SYNC_CONTROL communicates between the two processes.

Example 8-21 shows the code and a schematic of one possible implementation.

Example 8-21: Two Processes: One Synchronous, One Asynchronous

entity SYNC ASYNC is

port (CLOCK: in BIT,
CONTROL: in |INTEGER range 0 to 3;
A in BIT_ VECTOR(O to 3);
t: out BIT);

end SYNC_ASYNC,

architecture EXAMPLE of SYNC ASYNC i s
si gnal SYNC _CONTROL: | NTEGER range 0 to 3;
begin

process
begi n
wait until CLOCK’event and CLOCK ="1’;
SYNC_CONTROL <= CONTROL;

end process;

process (A, SYNC_CONTROL)
begin
t <= A(SYNC_CONTROL);
end process;
end EXAMPLE;
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Figure 8-16: Two Processes: One Synchronous, One Asynchronous
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Three-State Inference

FPGA Express can infer three-state gates (high-impedance output) from enumeration encoding in
VHDL. After inferrence, FPGA Express maps the gates to a specified technology library. See "Enu-
meration Encoding" in Chapter 4 for more information.

When a variable is assigned the value of 'Z’ , the output of the three-state gate is disabled. Example
8-22 shows the VHDL for a three-state gate

Example 8-22: Creating a Three-State Gate in VHDL
signal QUT_VAL, IN VAL: std_|ogic;

if (COND) then
QUT_VAL <= | N_VAL;
el se
OUT_VAL <='Z'; -- assigns high-impedance
end if;

You can assign a high impedance value to a four-bit wide bus with " ZZ2zZz7" .

One three-state device is inferred from a single process. Example 8-23 infers only one three-state
device.
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Example 8-23: Inferring One Three-State Device from a Single Process
process (sela, a, selb, b) begin

t<="7]
if (sela ='1") then
t<=a;
if (selb ='1") then
t<=b;

end process;

Example 8-24 infers two three-state devices.

Example 8-24: Inferring Two Three-State Devices
process (sela, a) begin
if (sela ='1") then
t=a;
elset="z};
end process;

process (selb, b) begin
if (selb =*1") then
t=b;
elset ="z
end process;

The VHDL conditional assignment may also be used for three-state inferencing.

Assigning the Value Z

Assigning variables the value Z is allowed. The value Z can also appear in function calls, return state-
ments, and aggregates. However, except for comparisons to Z, you cannot use Z in an expression.
Example 8-25 shows an incorrect use of Z (in an expression), and Example 8-26 shows a correct use
of Z (in a comparison).

Example 8-25: Incorrect Use of the Value Z in an Expression
OUT_VAL <="Z"and IN_VAL;

Example 8-26: Correct Expression Comparing to Z
if IN_VAL ='Z’ then
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Caution  Expressions comparing to Z are synthesized as though values are not equal to Z.
For example:

if X ="Z" then

is synthesized as:

if FALSE then

If you use expressions comparing values to 'Z’,  the presynthesis and postsynthesis simulation
results might differ. For this reason, FPGA Express issues a warning when it synthesizes such com-
parisons.

Latched Three-State Variables

When a variable is latched (or registered) in the same process in which it is three-stated, the enable of
the three-state Z is also latched (or registered). This process is shown in Example 8-27.

Example 8-27: Three-State Inferred with Registered Enable

-- Creates a flip-flop on input and on enabl e
if (THREESTATE ='0’) then

OUTPUT <="Z;
elsif (CLK’event and CLK ='1") then

if (CONDITION) then

OUTPUT <= INPUT,;

end if;

end if;
Figure 8-17: Three-State Inferred with Registered Enable
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In Example 8-27, the three-state gate has a registered enable signal. Example 8-28 uses two pro-
cesses to instantiate a three-state with a flip-flop only on the input.
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Example 8-28: Example 8-28Latched Three-State with Flip-flop on Input
entity LATCH 3S is
port (CLK, THREESTATE, |NPUT: in std_I ogic;
QUTPUT: out std_logic; CONDITION: in Bool ean);
end LATCH_3S;

architecture EXAMPLE of LATCH 3S is
signal TEMP: std_| ogic;

begin

process(CLK, CONDI TI ON, | NPUT)

begin -- creates three-state
if (CLK’event and CLK ="1") then
if (CONDITION) then
TEMP <= INPUT;
end if;
end if;

end process;
process(THREESTATE, TEMP)
begin
if (THREESTATE ='0’) then
OUTPUT <="Z};
else
OUTPUT <= TEMP;
end if;
end process;
end EXAMPLE;

Figure 8-18: Latched Three-State with Flip-Flop on Input
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Chapter 9
FPGA Express Directives

Synopsys has defined several methods of providing circuit design information directly in your VHDL
source code.

Using FPGA Express directives, you can direct the translation from VHDL to components with spe-
cial VHDL comments. These synthetic comments turn translation on or off, specify one of several
hard-wired resolution methods, and provide a means to map subprograms to hardware components.

Using Synopsys-defined VHDL attributes, you can add synthesis-related signal and constraint infor-
mation to ports, components, and entities. This information is used by FPGA Express during synthe-
sis.

To familiarize yourself with FPGA Express directives, consider the following topics:

|- Notation for FPGA Express Directives |

|+ FPGA Express Directives |

» Synthesis Attributes and Constraints

Notation for FPGA Express Directives

FPGA Express directives are special VHDL comments (synthetic comments) that affect the actions of
FPGA Express. These comments are just a special case of regular VHDL comments, so they are
ignored by other VHDL tools. Synthetic comments are used only to direct the actions of FPGA
Express.

Synthetic comments begin with two hyphens (- - ), just like a regular comment. If the word following
these characters is pr agna or synopsys, the remaining comment text is interpreted by FPGA
Express as a directive.

Note: FPGA Express displays a syntax error if an unrecognized directive is encountered after

-- synopsys or-- pragna.

FPGA Express Directives

The three types of directives are

» Translation stop and start Directives

pragme transl ate_off
pragma transl ate_on
pragma synt hesis_of f
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-- pragnma synthesis_on

» Resolution function directives

-- pragma resolution_nethod wred _and
-- pragma resol ution_nethod wred_or

-- pragma resolution_nethod three_state

» Component implication directives
-- pragma map_to_entity entity nane
-- pragna return_port_nane port_nane

Other directives such as the map_t o operator are used to drive inference of HDL operators such as *,
+,and - .

Translation Stop and Start Directives

Translation directives stop and start the translation of a VHDL source file by FPGA Express.

-- pragnma translate_off
-- pragma translate_on

Thetransl ate_of f andtransl at e_on directives instruct FPGA Express to stop and start synthe-
sizing VHDL source code. The VHDL code between these two directives is, however, checked for syn-
tax.

Translation is enabled at the beginning of each VHDL source file. You can use tr ansl at e_of f and
t ransl at e_on directives anywhere in the text.

The synt hesi s_of f and synt hesi s_on directives are the recommended mechanisms for hiding
simulation-only constructs from synthesis. Any text between these directives is checked for syntax,
but no corresponding hardware is synthesized. The behavior of the synt hesi s_of f and

synt hesi s_on directives is not affected by the variable hdl i n_transl ate_of f _ski p_t ext.

Example 9-1 shows how you can use the directives to protect a simulation driver.
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Example 9-1: Using synthesis_on and synthesis_off Directives

-- The following test driver for entity EXAWMPLE
-- shoul d not be transl ated:

-- pragma synt hesis_off

-- Transl ati on stops

entity DRIVER i s
end,

architecture VHDL of DRIVER is
signal A, B : |INTEGER range 0 to 255;
signal SUM : |INTEGER range 0 to 511;

conmponent EXAMPLE
port (A B: in INTEGER range 0 to 255;
SUM out | NTEGER range 0 to 511);
end conponent;

begin
Ul: EXAWPLE port map(A, B, SUM;
process
begin
for I in 0 to 255 | oop
for Jin 0 to 255 | oop
A<= 1;
B <= J,
wait for 10 ns;
assert SUM = A + B;
end | oop;
end | oop;
end process;
end;

-- pragma synthesis_on
-- Code fromhere on is translated
entity EXAMPLE is
port (A B: in INTEGER range 0 to 255;
SUM out INTEGER range 0 to 511);
end;

architecture VHDL of EXAMPLE is
begin

SUM <= A + B;
end;
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Resolution Function Directives

Resolution function directives determine the resolution function associated with resolved signals (see
“Signal Declarations* in Chapter 3). FPGA Express does not currently support arbitrary resolution
functions. It does support the following three methods:

-- pragma resolution_nethod wred _and
-- pragnma resolution_nethod wred_or

-- pragnma resolution_nethod three_state

Note: Do not connect signals that use different resolution functions. FPGA Express supports only one
resolution function per network.

Component Implication Directives

Component implication directives map VHDL subprograms onto existing components or VHDL enti-
ties. These directives are described under “Mapping Subprograms to Components” in Chapter 6:

-- pragma map_to_entity entity nane
-- pragna return_port_nane port_nane
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Chapter 10
Synopsys Packages

Three Synopsys packages are included with this release:

|- std logic 1164 Package |

Defines a standard for designers to use when describing the interconnection data types used in
VHDL modeling.

|- std_logic_arith Packagel

Provides a set of arithmetic, conversion, and comparison functions for SIGNED, UNSIGNED, INTE-
GER, STD_ULOGIC, STD_LOGIC, and STD_LOGIC_VECTOR types.

|- std logic misc Package |

Defines supplemental types, subtypes, constants, and functions for the std_logic_1164 package.
To understand the contents of each package, review the following sections.

std logic 1164 Package

This package defines the IEEE standard for designers to use when describing the interconnection data
types used in VHDL modeling. The logic system defined in this package might be insufficient for mod-
eling switched transistors, because such a requirement is out of the scope of this effort. Furthermore,
mathematics, primitives, and timing standards are considered orthogonal issues as they relate to this
package and are therefore beyond the scope of this effort.

The st d_| ogi c_1164 package contains Synopsys synthesis directives. Three functions, however,
are not currently supported for synthesis: ri si ng_edge, fal li ng_edge,andi s_x.

To use this package in a VHDL source file, include the following lines at the top of the source file:

l'ibrary |EEE;
use |EEE.std logic_1164. all;

When you analyze your VHDL source file, FPGA Express automatically finds the IEEE library and the
st d_| ogi c_1164 package. However, you must analyze the use packages not contained in the IEEE
and Synopsys libraries before processing a source file that uses them.
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std logic_arith Package

Functions defined in the st d_I| ogi c¢_ari t h package provide conversion to and from the predefined
VHDL data type | NTEGER, and arithmetic, comparison, and Boolean operations. This package lets
you perform arithmetic operations and numeric comparisons on array data types. The package defines
some arithmetic operators (+, -, *, and abs) and the relational operators (<, >, <=, >=, =, and / =).
Note that IEEE VHDL does not define arithmetic operators for arrays and defines the comparison
operators in a manner inconsistent with an arithmetic interpretation of array values.

The package also defines two major data types of its own: UNSI GNED and SI GNED. Details can be
found in “Synopsys Data Types" later in this appendix. The st d_| ogi c_ari t h package is legal
VHDL,; you can use it for both synthesis and simulation.

The std_| ogi c_ari t h package can be configured to work on any array of single-bit types. You
encode single-bit types in one bit with the ENUM_ENCODI NG attribute.

You can make the vector type (for example, st d_| ogi ¢c_vect or) synonymous with either SI GNED
or UNSI GNED. This way, if you plan to use mostly UNSI GNED numbers, you do not need to convert
your vector type to call UNSI GNED functions. The disadvantage of making your vector type synony-
mous with either UNSI GNED or SI GNED is that it causes the standard VHDL comparison functions (=, /
=, <, >, <=, and >=) to be redefined.

Table 10-1 shows that the standard comparison functions for Bl T_VECTOR do not match the SI GNED
and UNSI GNED functions.

Table 10-1: UNSIGNED, SIGNED and BIT_VECTOR Comparison Functions

ARG1 op ARG2 UNSIGNED SIGNED BIT_VECTOR
"000" = "000" TRUE TRUE TRUE

"00" = "000" TRUE TRUE FALSE

"100" = "0100" TRUE FALSE FALSE

"000" < "000" FALSE FALSE FALSE

"00" < "000" FALSE FALSE TRUE

"100" < "0100" FALSE TRUE FALSE

Using the Package

The st d_I| ogi c_ari t h package is in the $synopsys/ packages/ | EEE/ src/
std_| ogi c_arith. vhd subdirectory of the Synopsys root directory. To use this package in a VHDL
source file, include the following lines at the top of the source file:

l'ibrary |EEE;
use |EEE. std logic_arith.all;

Synopsys packages are preanalyzed and do not require further analyzing.
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Modifying the Package

Thestd_| ogi c_arit h package is written in standard VHDL. You can modify or add to it. The appro-
priate hardware is then synthesized.

For example, to convert a vector of multivalued logic to an | NTEGER, you can write the function shown
in Example 10-1. This M\WVL_TO | NTEGER function returns the integer value corresponding to the vec-
tor when the vector is interpreted as an unsigned (natural) number. If unknown values are in the vec-
tor, the return value is -1.

Example 10-1: New Function Based on a std_logic_arith Package Function
l'ibrary |EEE;
use |EEE.std logic_1164. all;

functi on MWL_TO_| NTEGER( ARG : MWL_VECTOR)
return | NTECER is
-- pragma built_in SYN FEED THRU
variable uns: UNSIGNED (ARG’range);
begin
foriin ARG'range loop
case ARG(i) is
when '0’ | 'L’ => uns(i) :='0’;
when 1" | 'H’ => uns(i) ;= '1;
when others =>return -1;
end case;
end loop;
return CONV_I NTEGER(Uns);
end;

Note the use of the CONV_I NTECER function in Example 10-1.

FPGA Express performs almost all synthesis directly from the VHDL descriptions. However, several
functions are hard wired for efficiency. These functions can be identified by the following comment in
their declarations

-- pragma built_in

This statement marks functions as special, causing the body to be ignored. Modifying the body does
not change the synthesized logic unless you remove the bui | t _i n comment. If you want new func-
tionality, use the bui I t _i n functions; this is more efficient than removing the bui | t _i n and modify-
ing the body.
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Data Types
The std_| ogi c_ari t h package defines two data types, UNSI GNED and SI GNED:

type UNSIGNED is array (natural range <>) of std | ogic;
type SIGNED is array (natural range <>) of std_ | ogic;

These data types are similar to the predefined VHDL type BI T_VECTOR, butthe std | ogic_arith
package defines the interpretation of variables and signals of these types as numeric values. With the
i nstal | _vhdl conversion script, you can change these data types to arrays of other one-bit types.

UNSIGNED

The UNSI GNED data type represents an unsigned numeric value. FPGA Express interprets the number
as a binary representation, with the farthest left bit being most significant. For example, the decimal
number 8 can be represented as

UNSIGNED’("1000")

When you declare variables or signals of type UNSI GNED, a larger vector holds a larger number. A
four-bit variable holds values up to decimal 15; an eight-bit variable holds values up to 255, and so on.
By definition, negative numbers cannot be represented in an UNSI GNED variable. Zero is the smallest
value that can be represented.

Example 10-2 illustrates some UNSI GNED declarations. Note that the most significant bit is the farthest
left array bound, rather than the high or low range value.
Example 10-2: UNSIGNED Declarations
variable VAR: UNSIGNED (1 to 10);
-- 11-bit number
-- VAR(VAR’left) = VAR(1) is the most significant bit

signal SIG: UNSIGNED (5 downto 0);
-- 6-bit number
-- SIG(SIG’left) = SIG(5) is the most significant bit

SIGNED

The SI GNED data type represents a signed numeric value. FPGA Express interprets the number as a
2's complement binary representation, with the farthest left bit as the sign bit. For example, you can
represent decimal 5 and -5 as

SIGNED’("0101") -- represents +5
SIGNED’("1011") -- represents -5

When you declare SI GNED variables or signals, a larger vector holds a larger number. A four-bit vari-
able holds values from -8 to 7; an eight-bit variable holds values from —128 to 127. Note that a SI GNED
value cannot hold as large a value as an UNSI GNED value with the same bit width.
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Example 10-3 shows some S| GNED declarations. Note that the sign bit is the farthest left bit, rather
than the highest or lowest.

Example 10-3: SIGNED Declarations
variable S VAR SIGNED (1 to 10);
-- 11-bit nunber
--S_VAR(S_VAR'left) = S_VAR(1) is the sign bit

signal S_SIG: SIGNED (5 downto 0);
-- 6-bit number
-- S_SIG(S_SIG'left) = S_SIG(5) is the sign bit

Conversion Functions

The std_| ogi c_ari t h package provides three sets of functions to convert values between its
UNSI GNED and SI GNED types, and the predefined type | NTEGER. This package also provides the
std_| ogi c_vector.

Example 10-4 shows the declarations of these conversion functions. Bl T and Bl T_VECTOR types are
shown.

Example 10-4: Conversion Functions
subtype SMALL_INT is INTEGER range 0 to 1;

function CONV_INTEGER(ARG: INTEGER) return INTEGER;
function CONV_INTEGER(ARG: UNSIGNED) return INTEGER,;
function CONV_INTEGER(ARG: SIGNED) return INTEGER,;
function CONV_INTEGER(ARG: STD_ULOGIC) return SMALL_INT,;

function CONV_UNSIGNED(ARG: INTEGER,;
SIZE: INTEGER) return UNSIGNED;
function CONV_UNSIGNED(ARG: UNSIGNED;
SIZE: INTEGER) return UNSIGNED;
function CONV_UNSIGNED(ARG: SIGNED;
SIZE: INTEGER) return UNSIGNED;
function CONV_UNSIGNED(ARG: STD_ULOGIC;
SIZE: INTEGER) return UNSIGNED;

function CONV_SIGNED(ARG: INTEGER;
SIZE: INTEGER) return SIGNED;

function CONV_SIGNED(ARG: UNSIGNED;
SIZE: INTEGER) return SIGNED;

function CONV_SIGNED(ARG: SIGNED;
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SI ZE: | NTEGER) return Sl GNED;
function CONV_SI GNED( ARG. STD ULCG C;
SI ZE: | NTEGER) return Sl GNED;

functi on CONV_STD LOd C_VECTOR( ARG | NTEGER,;

SI ZE: | NTEGER) return STD LOGE C VECTOR;
functi on CONV_STD LOG C VECTOR( ARG UNSI GNED;

SI ZE: | NTEGER) return STD_LOG C_VECTOR;
functi on CONV_STD LOd C VECTOR( ARG S| GNED;

SI ZE: | NTEGER) return STD LOGE C VECTOR;
functi on CONV_STD LOGE C VECTOR(ARG STD_ULGCA C

SI ZE: | NTEGER) return STD LOGE C VECTOR;
Note that there are four versions of each conversion function.

The operator overloading mechanism of VHDL determines the correct version from the function call's
argument types.

The CONV_I NTEGER functions convert an argument of type | NTEGER, UNSI GNED, SI GNED, or

STD _ULCA Cto an | NTEGER return value. The CONV_UNSI GNED and CONV_SI GNED functions con-
vert an argument of type | NTEGER, UNSI GNED, SI GNED, or STD_ULOG Cto an UNSI GNED or SI GNED
return value whose bit width is SI ZE.

The CONV_I NTEGER functions have a limitation on the size of operands. VHDL defines | NTEGER val-
ues as between -2147483647 and 2147483647. This range corresponds to a 31-bit UNSI GNED value
or a 32-bit SI GNED value. You cannot convert an argument outside this range to an | NTEGER.

The CONV_UNSI GNED and CONV_SI GNED functions require two operands. The first operand is the
value converted. The second operand is an | NTEGER that specifies the expected size of the converted
result. For example, the following function call returns a 10-bit UNSI GNED value representing the value
insig.

ten_unsigned_bits := CONV_UNSI GNED(si g, 10);

If the value passed to CONV_UNSI GNED or CONV_SI GNED is smaller than the expected bit width (such
as representing the value 2 in a 24-bit number), the value is bit-extended appropriately. FPGA
Express places zeros in the more significant (left) bits for an UNSI GNED return value and uses sign
extension for a SI GNED return value.

You can use the conversion functions to extend a number’s bit width even if conversion is not required.
For example:

CONV_SIGNED(SIGNED’("110"), 8) % "11111110"

An UNS| GNED or SI GNEDreturn value is truncated when its bit width is too small to hold the ARGvalue.
For example:

CONV_SIGNED(UNSIGNED’("1101010"), 3) % "010"
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Arithmetic Functions

The std_| ogi c_ari t h package provides arithmetic functions for use with combinations of Synop-
sys’ UNSI GNED and SI GNED data types and the predefined types STD ULOGQ Cand | NTEGER. These
functions produce adders and subtracters.

There are two sets of arithmetic functions: binary functions with two arguments, such as A+B or A* B,
and unary functions with one argument, such as - A. The declarations for these functions are shown in
Examples 10-5 and 10-6.
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Example 10-5: Binary Arithmetic Functions

function "+"(L: UNSIGNED; R: UNSI GNED) return UNSI GNED;
function "+"(L: Sl GNED; R:  SI GNED) return Sl GNED,
function "+"(L: UNSIGNED; R: S| GNED) return Sl GNED;
function "+"(L: SI GNED; R UNSI GNED) return Sl GNED;
function "+"(L: UNSIGNED; R |INTEGER) return UNSI GNED;
function "+"(L: INTEGER, R UNSIGNED) return UNSI GNED;
function "+"(L: SI GNED; R INTEGER) return Sl GNED;
function "+"(L: INTEGER, RSl GNED) return Sl GNED,
function "+"(L: UNSIGNED; R. STD ULOG C) return UNSI GNED;
function "+"(L: STD ULOGA C; R UNSI GNED) return UNSI GNED;
function "+"(L: SI GNED; R STD ULOG C) return Sl GNED;
function "+"(L: STD ULOA C, R Sl GNED) return Sl GNED;
function "+"(L: UNSIGNED; R UNSIGNED) return STD LOd C_VECTOR;
function "+"(L: SIGNED;, R SIGNED) return STD_LOGE C_VECTOR
function "+"(L: UNSIGNED; R SIGNED) return STD LOG C VECTOR,
function "+"(L: SIGNED;, R: UNSIGNED) return STD LOG C VECTOR,
function "+"(L: UNSIGNED, R |NTEGER) return STD LOG C VECTOR,
function "+"(L: INTEGER, R UNSIGNED) return STD LOG C VECTOR,
function "+"(L: SIGNED; R |INTEGER) return STD LOG C VECTOR;
function "+"(L: INTEGER, R SIGNED) return STD _LOGd C_VECTOR;
function "+"(L: UNSIGNED; R STD ULOGE C) return

STD LCOE C_ ECTOR,
function "+"(L: STD ULOG C, R UNSIGNED) return STD LOG C VECTOR
function "+"(L: SIGNED, R. STD ULOG C) return STD LOGE C VECTOR;
function "+"(L: STD ULOGA C, R SIGNED) return STD LOd C_VECTOR;
function "-"(L: UNSIGNED; R UNSI GNED) return UNSI GNED;
function "-"(L: Sl GNED; R: Sl GNED) return Sl GNED;
function "-"(L: UNSIGNED; R Sl GNED) return Sl GNED,
function "-"(L: Sl GNED, R: UNSI GNED) return Sl GNED,
function "-"(L: UNSIGNED; R |INTEGER) return UNSI GNED;
function "-"(L: INTEGER, R UNSIGNED) return UNSI GNED;
function "-"(L: SI GNED, R INTEGER) return Sl GNED,
function "-"(L: INTEGER, R: Sl GNED) return Sl GNED;
function "-"(L: UNSIGNED, R STD ULOG C) return UNSI GNED;
function "-"(L: STD UOA C R UNSI GNED) return UNSI GNED;
function "-"(L: Sl GNED; R STD ULOG C) return Sl GNED;
function "-"(L: STD ULOA C, R Sl GNED) return Sl GNED;
function "-"(L: UNSIGNED; R UNSIGNED) return STD LOd C_VECTOR;
function "-"(L: SIGNED; R SIGNED) return STD_LOG C_VECTOR
function "-"(L: UNSIGNED; R. SIGNED) return STD LOG C_VECTOR
function "-"(L: SIGNED;, R UNSIGNED) return STD LOG C VECTOR,
function "-"(L: UNSIGNED; R: INTEGER) return STD LOG C VECTOR;
function "-"(L: INTEGER, R UNSIGNED) return STD LOG C VECTOR;
function "-"(L: SIGNED;, R |INTEGER) return STD LOG C VECTCR,
functi on "-"(L: INTEGER R SIGNED) return STD LOG C VECTOR;
function "-"(L: UNSIGNED;, R STD ULOG C) return

STD_ LOGI C_ VECTCR
function "-"(L: STD ULOG C, R UNSIGNED) return

STD LOE C_VECT OR;
function "-"(L: SIGNED, R STD ULOG C) return STD LOd C VECTOR;
function "-"(L: STD ULOGA C, R SIGNED) return STD LOd C_VECTOR;

function "*"(L: UNSIGNED; R UNSI GNED) return UNSI GNED;
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function "*"(L: SI GNED;

functi

function "*"(L:

functi
functi
functi
functi

These functions determine the width of their return values as follows:

on

on
on
on
on

"*"(L: S| GNED,

R S| GNED)

R UNSI GNED)
UNSI GNED; R S| GNED)

return Sl GNED;
return Sl GNED;
return Sl GNED;

Example 10-6: Example 9-6Unary Arithmetic Functions

"4+ (L: UNSI GNED)
"+ (L: Sl GNED)
"."(L: S| GNED)
"ABS" (L: S| GNED)

return UNSI GNED;
return Sl GNED,
return Sl GNED,
return Sl GNED;

1. When only one UNSI GNED or SI GNED argument is present, the width of the return value is the
same as that argument.

2. When both arguments are either UNSI GNED or SI GNED, the width of the return value is the larger of
the two argument widths. An exception is that when an UNSI GNED number is added to or sub-
tracted from a SI GNED number of the same size or smaller, the return value is a SI GNED number
one bit wider than the UNSI GNED argument. This size guarantees that the return value is large

enough to hold any (positive) value of the UNSI GNED argument.

The number of bits returned by + and - is illustrated in Table 10-2.

si gnal
si gnal
si gnal
si gnal

U4
us:
S4:
S8:

UNSI GNED (3 downto 0);
UNSI GNED (7 downto 0);
SIGNED (3 downto 0);
SIGNED (7 downto 0);

Table 10-2: Number of Bits Returned by + and -

+or - U4 us
u4 4 8
us8 8 8
S4 5 9
S8 8 9

In some circumstances, you might need to obtain a carry-out bit from the + or - operation. To do this,
extend the larger operand by one bit. The high bit of the return value is the carry-out bit, as illustrated
in Example 10-7.
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Example 10-7: Using the Carry-Out Bit
process
variable a, b, sum UNSIGNED (7 downto 0);
vari able tenp: UNSIGNED (8 downto 0);
vari able carry: BIT;

begin
tenp = CONV_UNSI GNED( a, 9) + b;
sum = tenp(7 downto 0);
carry := tenp(8);

end process;

Comparison Functions

The std_| ogi c_ari t h package provides functions to compare UNSI GNED and SI GNED data types
to each other and to the predefined type | NTEGER. FPGA Express compares the numeric values of
the arguments, returning a Boolean value. For example, the following expression evaluates to TRUE.

UNSIGNED’("001") > SIGNED’("111")

The std_| ogi c_ari t h comparison functions are similar to the built-in VHDL comparison functions.

The only difference is that the st d_| ogi ¢_ar i t h functions accommodate signed humbers and vary-
ing bit widths. The predefined VHDL comparison functions perform bit-wise comparisons and so do not
have the correct semantics for comparing numeric values (see “Relational Operators" in Chapter 5).

These functions produce comparators. The function declarations are listed in two groups, ordering
functions (<, <=, >, and >=) and equality functions (= and / =), in Examples 10-8 and 10-9.
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functi
functi
functi
functi
functi
functi
functi
functi

functi
functi
functi
functi
functi
functi
functi
functi

functi
functi
functi
functi
functi
functi
functi
functi

functi
functi
functi
functi
functi
functi
functi
functi

on
on
on
on

on "
on "

on
on

on "
on "
on "

on
on
on

on "
on "

on
on
on
on

on "
on "

on
on

on
on
on
on
on
on
on
on

Example 10-8: Ordering Functions

return
return
return
return
return
return
return
return

return
return
return
return
return
return
return
return

Bool ean;
Bool ean;
Bool ean;
Bool ean;
Bool ean;
Bool ean;
Bool ean;
Bool ean;

Bool ean
Bool ean
Bool ean
Bool ean
Bool ean
Bool ean
Bool ean
Bool ean

R UNSI GNED) return Bool ean;

return
return
return
return
return
return
return

Bool ean;
Bool ean;
Bool ean;
Bool ean;
Bool ean;
Bool ean;
Bool ean;

="" functions">">="(L: UNSIGNED;, R UNSI GNED) return Bool ean;

"<"(L: UNSIGNED; R UNSI GNED)
"<"(L: SI GNED; R:  SI GNED)
"<"(L: UNSIGNED; R: Sl GNED)
"<"(L: SIGNED; R UNSI GNED)
<"(L: UNSIGNED, R: | NTEGER)
<"(L: INTEGER, R UNSI G\NED)
"<"(L: Sl GNED; R: | NTEGER)
"<"(L: INTEGER, R: Sl GNED)
<="(L: UNSIGNED; R UNSI GNED)
<="(L: SIGNED, R SI GNED)
<="(L: UNSIGNED; R Sl GNED)
"<="(L: S| GNED; R UNSI GNED)
"<="(L: UNSICGNED; R | NTEGER)
"<="(L: INTEGER, R UNSI GNED)
<="(L: SIGNED, R | NTEGER)
<="(L: INTEGER, R Sl GNED)
"" functions">">"(L: UNSI GNED;
">"(L: Sl GNED; R: S| GNED)
">"(L: UNSIGNED; R: S| GNED)
">"(L: SI GNED; R: UNSI GNED)
>"(L: UNSIGNED, R | NTEGER)
>"(L: INTEGER, R UNSI GNED)
">"(L: Sl GNED, R: | NTEGER)
">"(L: INTEGER, R: Sl GNED)
'>="(L: SIGNED R SI GNED)
">="(L: UNSIGNED;, R Sl GNED)
">="(L: SlIGNED R UNSI GNED)
">="(L: UNSIGNED; R | NTEGER)
">="(L: INTEGER, R: UNSI GNED)
">="(L: SlIGNED R | NTEGER)
">="(L: INTECER, R S| GNED)

return
return
return
return
return
return
return

Bool ean;
Bool ean;
Bool ean
Bool ean
Bool ean
Bool ean
Bool ean
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Example 10-9: Equality Functions

function "="(L: UNSIGNED;, R: UNSI GNED) return Bool ean;
function "="(L: Sl GNED, R:  SI GNED) return Bool ean;
function "="(L: UNSIGNED; R: S| GNED) return Bool ean;
function "="(L: SI GNED; R UNSI GNED) return Bool ean;
function "="(L: UNSIGNED; R |INTEGER) return Bool ean;
function "="(L: INTEGER, R UNSIGNED) return Bool ean;
function "="(L: SI GNED; R INTEGER) return Bool ean;
function "="(L: INTEGER, R S| GNED) return Bool ean;
function "/="(L: UNSIGNED, R UNSIGNED) return Bool ean;
function "/="(L: Sl GNED, R SI GNED) return Bool ean;
function "/="(L: UNSIGNED, R SI GNED) return Bool ean;
function "/="(L: SIGNED, R UNSI GNED) return Bool ean;
function "/="(L: UNSIGNED; R |INTEGER) return Bool ean;
function "/="(L: INTECER, R UNSIGNED) return Bool ean;
function "/="(L: SI GNED, R I NTEGER) return Bool ean;
function "/="(L: INTEGER, R Sl GNED) return Bool ean;
Shift Functions

The std_| ogi c_ari t h package provides functions for shifting the bits in SI GNED and UNSI GNED
numbers. These functions produce shifters. Example 10-10 shows the shift function declarations.

Example 10-10: Shift Functions
function SHL(ARG UNSI GNED;
COUNT: UNSI GNED) return UNSI GNED;
function SHL(ARG Sl GNED;
COUNT: UNSI GNED) return Sl GNED;

functi on SHR(ARG UNSI GNED;

COUNT: UNSI GNED) return UNSI GNED;
functi on SHR(ARG Sl GNED;

COUNT: UNSI GNED) return Sl GNED;

The SHL function shifts the bits of its argument ARGto the /eft by COUNT bits. SHR shifts the bits of its
argument ARGto the right by COUNT bits.

The SHL functions work the same for both UNSI GNED and SI GNED values of ARG shifting in zero bits
as necessary. The SHR functions treat UNSI GNED and SI GNED values differently. If ARGis an

UNSI GNED number, vacated bits are filled with zeros; if ARGis a SI GNED number, the vacated bits are
copied from the sign bit of ARG,

Example 10-11 shows some shift function calls and their return values.
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Example 10-11: Shift Operations
variable Ul, U2: UNSIGNED (7 downto 0);
vari able S1, S2: S| GNED (7 downto 0);
variabl e COUNT: UNSIGNED (1 downto 0);

Ul :

= "01101011";
U2 := "11101011";
S1 := "01101011";
S2 := "11101011";

COUNT : = CONV_UNSI GNED( ARG => 3, SIZE => 2);

SHL(UL, COUNT) = "01011000"
SHL(S1, COUNT) = "01011000"
SHL(U2, COUNT) = "01011000"
SHL(S2, COUNT) = "01011000"

SHR(U1, COUNT) = "00001101"
SHR(S1, COUNT) = "00001101"
SHR( U2, COUNT) "00011101"
SHR('S2, COUNT) "11111101"

Multiplication Using Shifts

You can use shift operations for simple multiplication and division of UNSI GNED numbers, if you multi-
ply or divide by a power of two.

For example, to divide the following UNSI GNED variable U by 4:

variable U UNSIGNED (7 downto 0) := "11010101";
variabl e quarter_ U UNSI GNED (5 downto 0);

gquarter_U := SHR(U, "01");
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ENUM_ENCODING Attribute

Place the synthesis attribute ENUM _ENCODI NG on your primary logic type (see “Enumeration Encod-
ing" in Chapter 4). This attribute allows FPGA Express to interpret your logic correctly.

pragma built_in

Label your primary logic functions with the bui I t _i n pragma. This pragma allows FPGA Express to
interpret your logic functions easily. When you use a bui | t _i n pragma, FPGA Express parses but
ignores the body of the function. Instead, FPGA Express directly substitutes the appropriate logic for
the function. You need not use bui | t _i n pragmas; however using these pragmas result in run times
that are ten times faster.

Use bui | t _i n pragmas by placing a comment in the declaration part of a function. FPGA Express
interprets a comment as a directive if the first word of the comment is pr agmma.

Example 10-12 shows the use of bui | t _i n pragmas.

Example 10-12: Using a built_in pragma
function "XOR' (L, R STD LOd C VECTOR) return STD LOG C VECTOR i s
-- pragma built_in SYN XOR
begi n
if (L="1") xor (R="1") then
return '1’;
else
return '0’;
end if;
end "XOR";

Two-Argument Logic Functions

Synopsys provides six built-in functions to perform two-argument logic functions:

« SYN_AND

e SYN_OR

 SYN_NAND

* SYN_NOR

« SYN_XOR

* SYN_XNOR

You can use these functions on single-bit arguments or equal-length arrays of single bits.

Example 10-13 shows a function that generates the logical AND of two equal-size arrays.
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Example 10-13: Built-In AND for Arrays
function "AND' (L, R STD LOd C VECTOR) return STD LOG C VECTOR i s
-- pragma built_in SYN_AND
variable MY_L: STD_LOGIC_VECTOR (L’length-1 downto 0);
variable MY_R: STD_LOGIC_VECTOR (L’length-1 downto 0);
variable RESULT: STD_LOGIC_VECTOR (L’length-1 downto 0);

begin
assert L'length = R’length;
MY_L :=L;
MY_R = R;

for iin RESULT'range loop
if (MY_L(i) ='1") and (MY_R(i) ='1") then
RESULT(i) :="1";
else
RESULT(i) :='0’;
end if;
end loop;
return RESULT,
end "AND";

One-Argument Logic Functions

Synopsys provides two built-in functions to perform one-argument logic functions:

« SYN_NOT
« SYN_BUF

You can use these functions on single-bit arguments or equal-length arrays of single bits. Example 10-
14 shows a function that generates the logical NOT of an array.

Example 10-14: Built-In NOT for Arrays

function "NOT" (L: STD LOG C VECTOR) return STD LOd C VECTOR i s
-- pragma built_in SYN_NOT
variable MY_L: STD_LOGIC_VECTOR (L’length-1 downto 0);
variable RESULT: STD_LOGIC_VECTOR (L’length-1 downto 0);
begin
MY_L :=1L;
for i in result'range loop
if (MY_L(i) =’0’ or MY_L(i) ='L’) then
RESULT() :='1;
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elsif (MY_L(i)) =’1" or MY_L(i) =’H") then
RESULT(i) :="0’;
else
RESULT(i) :="'X’;
end if;
end loop;
return RESULT;
end "NOT";
end;

Type Conversion

The built-in function SYN_FEED THRU performs fast type conversion between unrelated types. The
synthesized logic from SYN_FEED_THRU wires the single input of a function to the return value. This
connection can save the CPU time required to process a complicated conversion function, as shown in
Example 10-15.

Example 10-15: Use of SYN_FEED_ THRU
type COLOR is (RED, GREEN, BLUE);
attribute ENUM_ENCODING : STRING;
attribute ENUM_ENCODING of COLOR : type is "01 10 11"

function COLOR_TO_BYV (L: COLOR) return BIT_VECTOR is
-- pragma built_in SYN_FEED THRU
begin
case L is
when RED => return "01";
when GREEN => return "10";
when BLUE =>return "11%;
end case;
end COLOR_TO_BYV;

translate off Directive

If there are constructs in your "types" package that are not supported for synthesis, or that produce
warning messages, you may need to use the FPGA Express directive
-- synopsys transl ate off.

You can make liberal use of the t r ansl at e_of f directive when you use bui | t _i n pragmas
because FPGA Express ignores the body of bui | t _i n functions. For examples of illustrating how to
usethetransl at e_of f directive, see the std | ogi c_ari t h. vhd package.
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std logic_misc Package

The st d_I ogi c_m sc package resides in the Synopsys libraries directory ($synopsys/ packages/
| EEE/ src/ std_Il ogi c_mi sc. vhd). This package declares the primary data types supported by the
Synopsys VSS Family.

Boolean reduction functions use one argument, an array of bits, and return a single bit. For example,
the and-reduction of " 101" is " 0", the logical AND of all three bits.

Several functions in the st d_| ogi ¢c_nmi sc package provide Boolean reduction operations for the pre-
defined type STD_LOG C_VECTOR. Example 10-16 shows the declarations of these functions.

functi
functi
functi
functi
functi
functi
functi
functi
functi
functi
functi
functi

on
on
on
on
on
on
on
on
on
on
on
on

Example 10-16: Boolean Reduction Functions

AND REDUCE (ARG
NAND_REDUCE ( ARG
OR REDUCE (ARG
NOR_REDUCE ( ARG
XOR_REDUCE (ARG
XNOR_REDUCE ( ARG
AND REDUCE (ARG
NAND_REDUCE ( ARG
OR REDUCE (ARG
NOR_REDUCE ( ARG
XOR_REDUCE (ARG
XNOR_REDUCE ( ARG

STD_LOG C_VECTOR)
STD_LOG C_VECTOR)
STD_LOG C_VECTOR)
STD_LOG C_VECTOR)
STD_LOG C_VECTOR)
STD_LOG C_VECTOR)
STD_ULOG C_VECTOR)
STD_ULOG C_VECTOR)
STD_ULOG C_VECTOR)
STD_ULOG C_VECTOR)
STD_ULOG C_VECTOR)
STD_ULOG C_VECTOR)

return
return
return
return
return
return
return
return
return
return
return
return

UX01;
UXo01;
UXo01;
UX01;
UXo01;
UX01;
UXo1;
UXo01;
Uxo1;
UXo1;
UXo1;
Uxo1;

These functions combine the bits of the STD_LOG C_VECTOR, as the name of the function indicates.
For example, XOR_REDUCE returns the XOR value of all bits in ARG

Example 10-17 shows some reduction function calls and their return values.

Example 10-17: Boolean Reduction Operations

AND_REDUCE("111") =1’
AND_REDUCE("011") =0’

OR_REDUCE("000") =0’

OR_REDUCE("001") =

111

XOR_REDUCE("100") =1’
XOR_REDUCE("101") =0’

NAND_REDUCE("111") =0’
NAND_REDUCE("011") =1’
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NOR_REDUCE("000") =1’
NOR_REDUCE("001") =0’

XNOR_REDUCE("100") =0’
XNOR_REDUCE("101") =1’
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Chapter 11
HDL Constructs

Many VHDL language constructs, although useful for simulation and other stages in the design pro-
cess, are not relevant to synthesis. Because these constructs cannot be synthesized, they are not sup-
ported by FPGA Express.

This appendix provides a list of all VHDL language constructs with the level of support for each, fol-
lowed by a list of VHDL reserved words.

This appendix describes

|- VHDL Construct Support |

|+ VHDL Reserved Words |

VHDL Construct Support

A construct can be fully supported, ignored, or unsupported. Ignored and unsupported constructs are
defined as follows:

 Ignored means that the construct is allowed in the VHDL source, but is ignored by FPGA Express.

» Unsupported means that the construct is not allowed in the VHDL source and that FPGA Express
flags the construct as an error. If errors are found in a VHDL description, the description is not trans-
lated (synthesized).

Constructs are listed in the following order:

|- Design units |
« Data types

Le_Declarations |
|+ Specifications |

| Operators |

|+_Operands and expressions |
|+ Sequential statements |

I' Concurrent statements I

» Predefined Tanguage environment
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Design Units

entity
The entity statement part is ignored.

Generics are supported, but only of type | NTEGER.
Default values for ports are ignored.

architecture
Multiple architectures are allowed.

Global signal interaction between architectures is unsupported.

configuration

Configuration declarations and block configurations are supported, but only to specify the top-level
architecture for a top-level entity.

Attribute specifications, use clauses, component configurations, and nested block configurations are
unsupported.

package
Packages are fully supported.

library
Libraries and separate compilation are supported.

subprogram
Default values for parameters are unsupported. Assigning to indexes and slices of unconstrained out
parameters is unsupported, unless the actual parameter is an identifier.

Subprogram recursion is unsupported if the recursion is not bounded by a static value.
Resolution functions are supported for wired-logic and three-state functions only.
Subprograms can only be declared in packages and in the declaration part of an architecture.

Data Types

enumeration
Enumeration is fully supported.

integer
Infinite-precision arithmetic is unsupported.

Integer types are automatically converted to bit vectors whose width is as small as possible to accom-
modate all possible values of the type’s range, either in unsigned binary for nonnegative ranges, or in
2's-complement form for ranges that include negative numbers.

physical
Physical type declarations are ignored. The use of physical types is ignored in delay specifications.
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floating

Floating-point type declarations are ignored. The use of floating-point types is unsupported except for
floating-point constants used with Synopsys-defined attributes (see Chapter 9).

array
Array ranges and indexes other than integers are unsupported.

Multidimensional arrays are unsupported, but arrays of arrays are supported.

record
Record data types are fully supported.

access
Access type declarations are ignored, and the use of access types is unsupported.

file
File type declarations are ignored, and the use of file types is unsupported.

incompl ete type declarations
Incomplete type declarations are unsupported.

Declarations

constant
Constant declarations are supported, except for deferred constant declarations.

signal
regi st er and bus declarations are unsupported.

Resolution functions are supported for wired and three-state functions only.
Declarations other than from a globally static type are unsupported.
Initial values are unsupported.

variable
Declarations other than from a globally static type are unsupported.

Initial values are unsupported.
file

File declarations are unsupported.
interface

buf fer and | i nkage are translated to out and i nout , respectively.
alias

Alias declarations are ignored.

component
Component declarations that list a name other than a valid entity name are unsupported.
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attribute
Attribute declarations are fully supported. However, the use of user-defined attributes is unsupported.

Specifications

attribute
ot hers and al | are unsupported in attribute specifications.

User-defined attributes can be specified, but the use of user-defined attributes is unsupported.

configuration
Configuration specifications are unsupported.

disconnection
Disconnection specifications are unsupported.

Attribute declarations are fully supported. However, the use of user-defined attributes is unsupported.

Names

simple
Simple names are fully supported.

selected
Selected (qualified) names outside of a use clause are unsupported.

Overriding the scopes of identifiers is unsupported.

operator symbols
Operator symbols are fully supported.

indexed

Indexed names are fully supported, with one exception. Indexing an unconstrained out parameter in a
procedure is unsupported.

dice
Slice names are fully supported, with one exception. Using a slice of an unconstrained out parameter
in a procedure is unsupported unless the actual parameter is an identifier.

attribute

Only the following predefined attributes are supported: base, | eft, ri ght, hi gh, | ow, r ange,
reverse_range, and | engt h.

event and st abl e attributes are supported only as described with the wai t and i f statements (see
Chapter 6).

User-defined attribute names are unsupported.

The use of attributes with selected names (name.name’attribute ) is unsupported.
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Operators

logical
Logical operators are fully supported.

relational
Relational operators are fully supported.

addition
Concatenation and arithmetic operators are both fully supported.

signing
Signing operators are fully supported.

multiplying
The * (multiply) operator is fully supported.

The / (division), nmod, and r emoperators are supported only when both operands are constant or
when the right operand is a constant power of 2.

miscellaneous
The ** operator is supported only when both operands are constant or when the left operand is 2.

The abs operator is fully supported.

operator overloading
Operator overloading is fully supported.

short-circuit operations
The short-circuit behavior of operators is not supported.

Operands and Expressions

based literals
Based literals are fully supported.

null literals
Null slices, null ranges, and null arrays are unsupported.

physical literals
Physical literals are ignored.

strings
Strings are fully supported.

aggregates
The use of types as aggregate choices is unsupported.

Record aggregates are unsupported.
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function calls

Function conversions on input ports are not supported, because type conversions on formal ports in a
connection specification are unsupported.

qualified expressions
Qualified expressions are fully supported.

type conversion
Type conversion is fully supported.

allocators
Allocators are unsupported.

static expressions
Static expressions are fully supported.

universal expressions
Floating-point expressions are unsupported, except in a Synopsys-recognized attribute definition.

Infinite-precision expressions are not supported.

Precision is limited to 32 bits; all intermediate results are converted to integer.

Sequential Statements

wait
The wai t statement is unsupported unless it is of one the following forms:

wait until cl ock = VALUE
wait until cl ock’ event and cl ock = VALUE
wait until not clock stable and clock = VALUE

where VALUE is 0, 1 or an enumeration literal whose encoding is 0 or 1. Awai t statement in this form
is interpreted to mean “wait until the falling (VALUE is 0) or rising (VALUE is 1) edge of the signal
named cl ock.”

wai t statements cannot be used in subprograms or in f or loops.

assertion
assertion statements are ignored.

signal
Guarded signal assignment is unsupported.

transport and aft er are ignored.
Multiple waveform elements in signal assignment statements are unsupported.

variable
vari abl e statements are fully supported.
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procedure call
Type conversion on formal parameters is unsupported.

Assignment to single bits of vectored ports is unsupported.
if
i f statements are fully supported.

case
case statements are fully supported.

loop
f or loops are supported, with two constraints: the loop index range must be globally static, and the
loop body must not contain a wai t statement.

whi | e loops are supported, but the loop body must contain at least one wai t statement.

| oop statements with no iteration scheme (infinite loops) are supported, but the loop body must con-
tain at least one wai t statement.

next
next statements are fully supported.

exit
exi t statements are fully supported.

return
r et ur n statements are fully supported.

null
nul | statements are fully supported.

Concurrent Statements

block
Guards on bl ock statements are unsupported.

Ports and generics in bl ock statements are unsupported.

process
Sensitivity lists in pr ocess statements are ignored.

concurrent procedure call
Concurrent procedure call statements are fully supported.

concurrent assertion
Concurrent assertion statements are ignored.

concurrent signal assignment
The guar ded and t r ansport keywords are ignored. Multiple waveforms are unsupported.
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component instantiation
Type conversion on the formal port of a connection specification is unsupported.

generate
gener at e statements are fully supported.

Predefined Language Environment

severity level type
severity_ | evel type is unsupported.

time type
ti me typeis unsupported.

now function
now function is unsupported.

TEXTIO package
The TEXTI O package is unsupported.

predefined attributes
Predefined attributes are unsupported, except for base, | eft, ri ght, hi gh, | ow, r ange,
reverse_range, and | engt h.

The event and st abl e attributes are supported only inthe i f and wai t statements, as described in
Chapter 6.
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VHDL Reserved Words

The following words are reserved for the VHDL language and cannot be used as identifiers:

abs if sel ect
access in severity
after i nout si gna
alias is subt ype
al
and | abel t hen
architecture library to
array i nkage transport
assert | oop type
attribute map units
begin nod unti |
bl ock use
body nand
buf f er new vari abl e
bus next

nor wai t
case not when
component nul | whil e
configuration with
const ant of

on xor
di sconnect open
downt o or

ot hers
el se out
el sif
end package
entity port
exit procedure

process
file
for range
function record

register
generate rem
generic report
guar ded return
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Index

expression 8-3, 8-5
register inference
expressions 8-2

Symbols

5-4

- 5-5,5-8

" 5-4

* 5-8, 5-10
+ 5-5, 5-8
/ 5-4,5-8

=54

A

abs (absolute value operator) 5-10
absolute value operator 5-10
abstraction 1-3

access (pointer) types 4-12

actual parameters (to subprograms) 3-18

adding operators 5-5
aggregate target 6-6
aggregates (array literals) 5-21
algorithms
processes 3-6
subprograms 3-17
and (logical operator) 5-3
architecture
concurrent statements 3-5
dataflow 3-2
declarations 3-5
hardware model 1-3
organization 3-5
overriding entity port names 3-15
signals 3-5
statement 3-13
structural 3-2
arithmetic operators 5-5
adding 5-5
multiplying 5-8
negation 5-8
array attributes 4-7
RANGE
example 6-16
using 4-7
array literals
as aggregates 5-21
as bit strings 5-16
array ordering 5-4
array types 4-5
array attributes 4-7

concatenating 5-5

constrained 4-6

defining

constrained 4-6
unconstrained 4-6

unconstrained 4-6
assignment

aggregate target 6-6

field target 6-5

indexed name target 6-3

signal 6-7

simple name target 6-2

slice target 6-4

variable 6-7
assignment statements 6-2
asynch_set reset 8-14
asynch_set reset,, see also
hdlin_ff_always_asynch_set_reset
asynchronous processes 8-4

example 8-31
asynchronous reset 8-11, 8-15

asynchronous sequential element inferencing 8-

1

Attributes 8-14

attributes
array 4-7
as operands 5-22
ENUM_ENCODING 4-3, 10-14

B
behavioral
constructs 1-3
binary arithmetic functions
example 10-8
binary bit string 5-16
bit string literals 5-16
BIT type 4-10
bit vectors
as bit strings 5-16
bit width (of operands) 5-12
BIT_VECTOR type 4-10, 10-2
block statement 7-6
blocks 3-6
Boolean reduction functions 10-17
BOOLEAN type 4-10
buffer (port mode) 3-12
built_in directive
logic functions 10-14
type conversion 10-16
using 10-14
built_in pragma
example of using 10-14
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C
carry-out bit
example of using 10-10
case statement 6-10
illegal usages 6-12
catenation operator 5-5
character literals 5-15
CHARACTER type 4-10
combinational processes 6-33, 7-3
compiler directives,, see also directives)
component declaration 7-14
component implication 6-25, 8-29
example 6-25
latches and registers 6-33
registers 8-1
three-state 8-33
component instantiation
statement 7-13
component instantiation statement 3-27
component instantiations 3-6
components
declarations 3-26
generics 3-26
in design hierarchy 3-25
instantiation 3-27
search order 3-27
port map 3-28
computable operands 5-12
concurrent procedure call 7-7
egivalent process 7-7
concurrent signal assignment 7-9
conditional signal assignment 7-10
selected signal assignment 7-11
concurrent statements 7-1
supported 11-7
conditional signal assignment 7-10
equivalent process 7-11
conditionally-assigned variable 8-9
constants
declarations 3-22
constrained array 4-6
CONV_INTEGER functions 10-5
CONV_SIGNED functions 10-5, 10-6
CONV_UNSIGNED functions 10-5
conversion functions 10-7
std_logic_arith package 10-5

D

data types
supported 11-2

dataflow
architecture 3-2

constructs 1-4

declarations 11-3
declaring constant

incorrect use of port name 3-15

declaring signal

incorrect use of port name example 3-15

description style

data types 2-2

description styles

asynchronous designs 2-2
design hierarchy 2-1
language constructs 2-3
register selection 2-2

design 3-3

files 3-4

Design Compiler

component instantiation 3-27
designs (VHDL entities) 3-25
restructuring 1-4

synthesis and optimization 1-4

design flow 1-4
design styles

design constraints 2-2

design units 11-2
designs

hierarchy 3-25

directives 9-1

E

built_in 10-3

using 10-14
component implication 6-25
map_to_entity 6-24, 7-8
resolution_method 3-24
return_port_name 6-25
translate_off 9-2, 10-16
translate_on 9-2

edge expression () 8-3
entity

architectures 3-13
example 3-2
as design in Design Compiler 3-25
design hierarchy 3-1
example 3-14
generic specifications 3-12
example 3-12
hardware model 1-3
implementation 3-1
interface 3-1
overriding port names 3-15
port specifications 3-12
specification
example 3-1
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syntax 3-11
ENUM_ENCODING attribute 4-3, 10-14
enumerated types

ordering 5-4
enumeration literals 4-2, 5-15
enumeration types 4-2
encoding 4-3
values 4-4
ENUM_ENCODING attribute 4-3
enumeration literals 4-2
equality functions
example 10-12
equality operators 5-4
examples
asynchronous process 8-32
case statement

enumerated type 6-10

combinational process 7-3
component implication 6-26
flip-flop inference
asynchronous reset 8-11
synchronous reset 8-15
for..generate 7-16
function call 6-23
if statement 6-9
inference
flip-flop 8-11
latch 8-7
latch inference 8-7
processes 8-32
sequential processes 7-4
simulation driver 9-2
subprograms
component implication 6-26
declarations 6-20
function call 6-23
synchronous process 8-32
three-state component 8-33

registered input 8-35
two-phase clocked design 8-10
wait statement

multiple waits 6-30
exit statement 6-18
exponentiation operator 5-10
expressions 5-1

supported 11-5

F

field target 6-5

file types 4-12

files 3-4

finite-state machine
examples

synchronous with asynchronous reset 8-
12
flip-flop inference 8-28
asynchronous reset 8-11
example 8-11
synchronous reset 8-15
flip-flops 8-1
floating point types 4-12
for..generate statement
example 7-16
syntax 7-15
for..loop statement 6-14
and exit statement 6-18
and next statement 6-16
formal parameters (to subprograms) 3-18
function call 5-22
functional description 1-5
functions 3-17
body
syntax 3-19
calling 6-23
declarations
example 3-18
syntax 3-17
description 6-20
implementations
mapped to component 6-26
mapped to gates 6-28
return statement 6-24

G
generate statements
for..generate 7-15
if..generate 7-15
generic map (component instantiation) 3-28
generics 3-12
in components 3-26

H
hardware description languages (HDLS)
advantages 1-2
design methodology 1-2
hdlin_ff_always_asynch_set_reset 8-28
HDLs (see hardware description languages) 1-1
hexadecimal bit string 5-16
high impedance state 8-33

I
identifiers 5-16
enumeration literals 5-15
if statement 6-8
creating registers 8-2
if..generate statement
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syntax 7-17
implying registers 8-1
in (port mode) 3-12
indexed name target 6-3
indexed names 5-17

computability 5-17

using 5-17
inout (port mode) 3-12
instantiation 3-25

search order 3-27
INTEGER type 4-10

and subtypes 4-11
integer types

defining 4-5

encoding 4-5

bit width 4-5

range 4-5

K
keywords 11-9

L

latch inference 8-28
automatic 8-8
example 8-7
local variables 8-9
restrictions 8-9

latches 8-1

literals
as operands 5-14
bit strings 5-16
character 5-15
enumeration 5-15
numeric 5-14
string 5-15

logic optimization 1-2

logical operators 5-3

loop statement 6-13

M

map_to_entity directive 6-24, 7-8
mod (multiplying operator) 5-8
multiplication using shifts 10-13
multiply-driven signals 7-5
multiplying operators 5-8

N
named notation 3-29
names 11-4
attributes 5-22
field names 5-20
indexed names 5-17
qualified 5-23

record names 5-20

slice names 5-18
nand (logical operator) 5-3
NATURAL subtype 4-10
next statement 6-16

in named loops 6-17
non-computable operands 5-13
nor (logical operator) 5-3
not (logical operator) 5-3
null range 5-19
null slice 5-19
null statement 6-34
numeric literals 5-14

O
octal bit string 5-16
operands 5-1
aggregates 5-21
attributes 5-22
bit width 5-12
computable 5-12
field 5-20
function call 5-22
identifiers 5-16
indexed names 5-17
literal 5-14
character 5-15
enumeration 5-15
numeric 5-14
string 5-15
non-computable 5-13
qualified expressions 5-23
record 5-20
slice names 5-18
supported 11-5
type conversions 5-24
operators 5-1
absolute value 5-10
adding 5-5
arithmetic
adding 5-5
multiplying 5-8
negation 5-8
array
catenation 5-5
relational 5-4
catenation 5-5
defined 5-2
equality 5-4
exponentiation 5-10
logical 5-3
multiplying 5-8
restrictions on use 5-8
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ordering 5-4
and array types 5-4
and enumerated types 5-4
overloading 3-21
syntax 3-21
precedence 5-2
predefined 5-2
relational 5-4
sign 5-8
supported 11-5
unary 5-8
or (logical operator) 5-3
ordering functions
example 10-11
ordering operators 5-4
others (in aggregates) 5-22
others (in case statement) 6-10
out (port mode) 3-12
overloading
enumeration literals 4-3, 5-15
operators 3-21
resolving by qualification 5-23
subprograms 3-20

P
packages 3-8
bodies 3-9
syntax 3-10
declarations 3-9
example 3-10
syntax 3-9
description 3-8
names 3-9
organization 3-8
structure 3-9
Synopsys-supplied 10-1
using 3-8
parameters
mode 3-18
profile 3-20
performance constraints 2-2
physical types 4-12
port map (component instantiation) 3-28
port modes 3-12
ports
as signals 3-22
positional notation 3-29
POSITIVE subtype 4-10
pragmas,, see also directives)
predefined attributes
supported 11-4
predefined language environment 11-8
predefined VHDL attributes

array 4-7
procedure calls 3-6
procedures 3-17

body

syntax 3-19
calling 6-21
declarations
examples 3-18
syntax 3-17
process statement 7-2
processes 3-6

as algorithms 3-6

asynchronous 8-4

combinational 6-33

example 7-3

declarations 3-6

description 3-6

hardware model 1-3

organization 3-6

sensitivity lists 7-2

sequential 6-33

example 7-4

sequential statements in 3-6

synchronous 8-4

wait statement 6-29

Q

qualified expressions 5-23

R
record operands 5-20
record types 4-8
register inference 8-1
efficient usages 8-29
example 8-32
flip-flop 8-11
if statement 8-2
if vs. wait 8-3
latches 8-7
restrictions 8-5
signal edge 8-2
templates 8-4
wait statement 8-2
wait vs. if 8-3
relational operators 5-4
rem (multiplying operator) 5-8
reserved words 11-9
resolution functions 3-22
creating 3-23
resolution_method three_state (directive) 3-24
resolution_method wired_and (directive) 3-24
resolution_method wired_or (directive) 3-24
resolved signals 3-23
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return statement 6-24
return_port_name directive 6-25

S
selected signal assignment 7-11
equivalent process 7-12
sensitivity lists 7-2
sequential processes 6-33, 7-4
sequential statements 6-1
supported 11-6
shift functions
example 10-12
shift operations
example 10-13
signal assignments 3-6
signals
assignments 6-2, 6-7
can be ports 3-22
concurrent signal assignment 7-9
conditional signal assignment 7-10
declarations 3-22
drivers 7-5
edge detection 8-2
hardware model 1-3
in packages 3-9
registering 8-30
resolved 3-23
selected signal assignment 7-11
three-state 7-5
SIGNED data type 10-4
SIGNED type 10-2
defined 10-4
simple name target 6-3
simulation 1-5, 1-6
driver example 9-2
place in the design process 1-5
test vectors 1-5
slice names 5-18
limitations 5-19
slice target 6-4
STANDARD package 4-10
std_logic_1164 Package 10-1
std_logic_1164 package 10-1
std_logic_arith Package 10-1, 10-2
std_logic_arith package 10-1
10-8, 10-11, 10-12
_REDUCE functions 10-17
arithmetic functions 10-7
Boolean reduction functions 10-17
built_in functions 10-3
comparison functions 10-10
CONV_INTEGER functions 10-5

CONV_SIGNED functions 10-5, 10-6

CONV_UNSIGNED functions 10-5
conversion functions 10-7
data types 10-4
modifying the package 10-3
ordering functions 10-10
shift functions 10-12
SYNOPSYS data types 4-12
using the package 10-2
std_logic_misc Package 10-17
std_logic_misc package 10-1, 10-17
string literals 5-15
bit 5-16
STRING type 4-10
structural
architecture 3-2
components in 3-27
constructs 1-4
example 3-29
structural description 1-5
subprograms 3-7
actual parameters 3-18
bodies 3-19
examples 3-20
calling 6-20
examples 3-18
declarations 3-17
examples 3-18
parameters 3-18
syntax 3-19
defined 6-19
defining 6-19
formal parameters 3-18
mapping to components 6-25
example 6-25
overloading 3-20
parameters
declarations 3-18
modes 3-18
profile 3-20
procedure vs. function 6-20
procedures and functions 3-17
subtype
defining 4-12
subtypes
declarations 3-21
SYN_FEED_THRU
example of using 10-16
synch_set reset 8-15
synch_set reset,, see also
hdlin_ff_always_sync_set_reset
synchronous processes 8-4
example 8-32
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synchronous reset 8-15
SYNOPSYS data types
std_logic_arith package 4-12
Synopsys packages 10-1
std_logic_misc package 10-17
synthetic comments,, see also directives)

T
test vectors

simulation 1-5
TEXTIO package 4-9
three-state

registered input 8-35
three-state inference 8-33
three-state signals 7-5
translate_off directive 9-2, 10-16
translate_on directive 9-2
two-phase design 8-10
type conversions 5-24
types

converting 5-24

declarations 3-21

U

unary arithmetic functions
example 10-9

unary operators 5-8

unconstrained array 4-6

UNSIGNED data type 10-4

UNSIGNED type 10-2
defined 10-4

unsupported types 4-12

use statement 3-8

V
variable assignments 6-2
variables
assignments 6-7
conditionally-assigned 8-9
declarations 3-25
verification, of description implementation 1-6
VHDL
abstraction 1-3
access (pointer) types 4-12
aggregates 5-21
architecture 1-3
architectures 3-5, 7-1
array types 4-5
assignment statements 6-2
BIT type 4-11
BIT_VECTOR type 4-12
block statement 7-6
BOOLEAN type 4-11

case statement 6-10
CHARACTER type 4-11
component implication 6-25
component instantiation 7-13
components 1-3, 3-25
declarations 3-26
instantiation 3-27
concurrent procedure call 7-7
concurrent statements 7-1
supported 11-7
constants 3-22
constructs 3-3
data types
supported 11-2
declarations 11-3
defining designs 3-11
description style 2-1
design 3-3
files 3-4
design hierarchy 2-1, 3-25
design units 11-2
directives 9-1
entity 1-3, 3-1
architecture 3-1
specification 3-1
enumeration types 4-2
exit statement 6-18
expressions 5-1
supported 11-5
file types 4-12
floating point types 4-12
for..loop statement 6-14
functions 3-17
generate statement 7-15
generics 3-12
hardware model 1-2
identifiers 5-16
if statement 6-8
INTEGER type 4-11
integer type 4-5
keywords 11-9
literals 5-14
modeling hardware 1-2
names 11-4
NATURAL subtype 4-11
next statement 6-16
null statement 6-34
operands
supported 11-5
operators 5-1
precedence 5-2
predefined 5-2
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supported 11-5 enumeration encoding 4-3
overloading operators
operators 3-21 supported 11-5
subprograms 3-20 resolution_method directive 3-24
packages 3-8 sensitivity lists 7-2
physical types 4-12 source directives 9-1
port modes 3-12 wait statement
POSITIVE subtype 4-11 limitations 6-32
predefined attributes usages 6-29
supported 11-4
predefined data types 4-9 w
predefined language environment 11-8 wait statement 6-29
predefined operators 5-2 creating registers 8-2
procedures 3-17 example
process statement 7-2 multiple waits 6-30
processes 1-3, 3-6
qualified expressions 5-23 X
record types 4-8 xor (logical operator) 5-3

register inference 2-2
reserved words 11-9
resolution functions 3-22
return statement 6-24
sensitivity lists 7-2
sequential statements
supported 11-6
signal assignment 6-7
signals 1-3, 3-22
STANDARD package 4-10
STRING type 4-12
subprograms 3-7, 6-19
subtype 4-12
subtypes 3-21, 4-1
synthesis policy
constructs 2-3
description style 2-1
TEXTIO package 4-9
three-state components 8-33
type conversion 5-24
types 3-21, 4-1
unsupported types 4-12
use packages 3-8
variable assignment 6-7
variables 3-25
wait statement 6-29
VHDL Compiler
attributes
supported 11-4
Synopsys 11-4
component implication 6-25
design hierarchy 2-1
directives 9-1
resolution_method 3-24
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