
Digital Simulation White Paper

Comparison of VHDL, Verilog
and SystemVerilog

Stephen Bailey
Technical Marketing Engineer

Model Technology

w w w. m o d e l . c o m

Introduction

As the number of enhancements to various
Hardware Description Languages (HDLs) has
increased over the past year, so too has the com-
plexity of determining which language is best for
a particular design. Many designers and organi-
zations are contemplating whether they should
switch from one HDL to another.

This paper compares the technical characteristics
of three, general-purpose HDLs:

• VHDL (IEEE-Std 1076): A general-pur-
pose digital design language supported
by multiple verification and synthesis
(implementation) tools.

• Verilog (IEEE-Std 1364): A general-pur-
pose digital design language supported by
multiple verification and synthesis tools.

• SystemVerilog: An enhanced version of
Verilog. As SystemVerilog is currently
being defined by Accellera, there is not
yet an IEEE standard.

General Characteristics of the Languages

Each HDL has its own style and heredity. The
following descriptions provide an overall “feel”
for each language. A table at the end of the
paper provides a more detailed, feature-by-fea-
ture comparison.

VHDL

VHDL is a strongly and richly typed language.
Derived from the Ada programming language, its
language requirements make it more verbose
than Verilog. The additional verbosity is intend-
ed to make designs self-documenting. Also, the
strong typing requires additional coding to

explicitly convert from one data type to another
(integer to bit-vector, for example).

The creators of VHDL emphasized semantics
that were unambiguous and designs that were
easily portable from one tool to the next. Hence,
race conditions, as an artifact of the language
and tool implementation, are not a concern for
VHDL users.

Several related standards have been developed to
increase the utility of the language. Any VHDL
design today depends on at least IEEE-Std 1164
(std_logic type), and many also depend on stan-
dard Numeric and Math packages as well. The
development of related standards is due to
another goal of VHDL’s authors: namely, to pro-
duce a general language and allow development
of reusable packages to cover functionality not
built into the language.

VHDL does not define any simulation control
or monitoring capabilities within the language.
These capabilities are tool dependent. Due to
this lack of language-defined simulation control
commands and also because of VHDL’s user-
defined type capabilities, the VHDL community
usually relies on interactive GUI environments
for debugging design problems.

Verilog

Verilog is a weakly and limited typed language.
Its heritage can be traced to the C programming
language and an older HDL called Hilo.

All data types in Verilog are predefined in the
language. Verilog recognizes that all data types
have a bit-level representation. The supported
data representations (excluding strings) can be
mixed freely in Verilog.

Comparison of VHDL, Verilog, and SystemVerilog 1

Simulation semantics in Verilog are more
ambiguous than in VHDL. This ambiguity gives
designers more flexibility in applying optimiza-
tions, but it can also (and often does) result in
race conditions if careful coding guidelines are
not followed. It is possible to have a design that
generates different results on different vendors’
tools or even on different releases of the same
vendor’s tool.

Unlike the creators of VHDL, Verilog’s authors
thought that they provided designers everything
they would need in the language. The more limit-
ed scope of the language combined with the lack
of packaging capabilities makes it difficult, if
not impossible, to develop reusable functionality
not already included in the language.

Verilog defines a set of basic simulation control
capabilities (system tasks) within the language.
As a result of these predefined system tasks and
a lack of complex data types, Verilog users often
run batch or command-line simulations and
debug design problems by viewing waveforms
from a simulation results database.

SystemVerilog

Though the parent of SystemVerilog is clearly
Verilog, the language also benefits from a propri-
etary Verilog extension known as Superlog and
tenants of C and C++ programming languages.

SystemVerilog extends Verilog by adding a rich,
user-defined type system. It also adds strong-typ-
ing capabilities, specifically in the area of user-
defined types. However, the strength of the type
checking in VHDL still exceeds that in
SystemVerilog. And, to retain backward compati-
bility, SystemVerilog retains weak-typing for the
built-in Verilog types.

Since SystemVerilog is a more general-purpose
language than Verilog, it provides capabilities for
defining and packaging reusable functionality
not already included in the language.

SystemVerilog also adds capabilities targeted at
testbench development, assertion-based verifica-
tion, and interface abstraction and packaging.

Pros and Cons of Strong Typing

The benefit of strong typing is finding bugs in a
design as early in the verification process as pos-
sible. Many problems that strong typing uncover
are identified during analysis/compilation of the
source code. And with run-time checks enabled,
more problems may be found during simulation.

The downside of strong typing is performance
cost. Compilation tends to be slower as tools
must perform checks on the source code.
Simulation, when run-time checks are enabled,
is also slower due to the checking overhead.
Furthermore, designer productivity can be lower
initially as the designer must write type conver-
sion functions and insert type casts or explicitly
declared conversion functions when writing code.

The $1,000,000 question is this: do the benefits
of strong typing outweigh the costs?

There isn’t one right answer to the question. In
general, the VHDL language designers wanted a
safe language that would catch as many errors as
possible early in the process. The Verilog language
designers wanted a language that designers could -
use to write models quickly. The designers of
SystemVerilog are attempting to provide the best
of both worlds by offering strong typing in areas
of enhancement while not significantly impacting
code writing and modeling productivity.

2 Comparison of VHDL, Verilog, and SystemVerilog

Language Feature Comparison

The following table presents a feature-by-feature comparison of the three HDLs. Note that the
purple font color differentiates Verilog 2001 features from Verilog 1995 features.

Comparison of VHDL, Verilog, and SystemVerilog 3

VHDL Verilog (2001) SystemVerilog
Strong typing Yes No

• Bit
• bit-vector
• wire
• reg)
• unsigned
• signed
• integer
• real
• String in certain contexts only

Partial
Not strongly typed in areas back-
ward compatible with Verilog

Yes
Enhanced type system is strongly
typed (but not as strong as VHDL)

User-defined types Yes No Yes

Dynamic memory allocation
(pointer types)

Yes No Partial
Class objects can be dynamically
created/destroyed, but via handles
(“safe pointers”)

Physical types Yes No No

Named events No Yes Yes

Enumerated types
(FSM modeling)

Yes No Yes

Records/structs Yes No Yes

Variant/unions No No Yes

Associative/sparse arrays Partial
(But can be modeled using
access types)

No Yes

Class/inheritance No No Yes
(single inheritance)

Data packing No No Yes

Bit (vector) / integer
equivalence

Partial
Not built-in but standard
package supports

Yes Yes

User defined signal/net
resolution

Yes No No

Subprograms (procedural) Yes
Function & procedure
always automatic

Yes
Static and automatic functions
and tasks

Yes
Same as Verilog plus void
functions (procedures)

Subprograms (concurrent)
aka tasks

Yes
Concurrent procedure calls

Yes
Static tasks

Yes
Static tasks

Methods No No Yes
(goes hand-in-hand with classes)

Separate packaging Yes
Packages

Yes
Include files

Yes
Include files

continues on pg 4

4 Comparison of VHDL, Verilog, and SystemVerilog

continues on pg 5

continued from pg 3

VHDL Verilog (2001) SystemVerilog
Other hierarchy Yes

Separate entity / architecture
(Interface / implementation)

No Yes
Programs, Clocking domains,
Interfaces

All-read sensitivity No Yes
@(*)

Yes
Same as Verilog.
Plus: always_comb

Reactive region processes Yes
Postponed processes

No Yes
Programs, Clocking domains,
Final blocks

Dynamic process
creation/deletion

No Yes
Fork/join. Block/task disable.

Yes
Same as Verilog.

Conditional statements Yes
• If-then-else/elsif (priority)
• Case (mux)
• Selected assign (mux)
• Conditional assign (priority)
• No “don’t care” matching capability

Yes
• if-else (priority)
• case (mux)
• casex (mux)
• ?: (conditional used in

concurrent assignments)

Yes
Same as Verilog.
Adds priority and unique keywords
to infer priority encoding/mux
implementation

Iteration Yes
• Loop
• while-loop
• for-loop
• exit
• next
Can name the loop to exit or
continue with next

Yes
• repeat
• for
• while

Yes
Same as Verilog, Plus:
• do-while
• break
• continue
Only closest enclosing loop can
be break or continue

Operators & expressions Yes
All expected:
• arithmetic
• logical
• bit-wise
• shift
• concatenation
Overloadable (polymorphism).
No unary reduction.
No logical scalar/vector.

Yes
All expected:
• arithmetic
• logical
• bit-wise
• shift
• concatenation
• unary reduction
• logical scalar/vector
• case (in)equality.
• conditional (?:)
No rotate left/right

Yes
Same as Verilog.
Plus:
• wild (in)equality
• increment
• decrement
• assignment (+=, -=, |=, etc.)
No rotate left/right

Gate level modeling Yes
VITAL.
Very good FPGA library support.

Yes
Builtin primitives.
UDPs.
Better availability of ASIC library
support

Yes
Same as Verilog.
Except, library support yet to be
qualified as vendors won’t assume
Verilog sign-off = SystemVerilog
sign-off

Interface abstraction Partial
Component abstracts interface
from specific module.
Two layer binding allows flexibility
in generic/port mapping.

No Yes
Interfaces are a separate
construct in language.
Supports multiple abstraction
level and eases interface reuse.
Can reduce coding.

continued from pg 4

Comparison of VHDL, Verilog, and SystemVerilog 5

VHDL Verilog (2001) SystemVerilog
Configuration & Binding Yes

Control of instance or component
binding to entity.
Incremental (re)binding of
generics and ports.

Partial
Control of module to instance
binding.

Partial
Same as Verilog.

Conditional & iterative
generation

Yes
• If (conditional)
• For (iterative)

Yes
• If
• if-else (mutually exclusive)
• case
• for

Yes
Same as Verilog.

Attributes Yes
Attributes are typed.
Attribute values can be specified.
Attribute values can be referenced.
Anything labeled with a name can
be attributed.

Groups allow attributes to relate
two or more named entities in the
design.

Partial
Not-typed.
Can be placed virtually
anywhere.
What is attributed is determined
by lexical proximity.
Attribute values cannot be
referenced.

Partial
Same as Verilog.

Verification targeted
capabilities

Partial
• Access types
• Recursive subprograms
• Extensive File I/O
• Postponed processes
• Standard package for random

number generation

Limited
• File I/O
• Random number generation
• Recursive subprograms
• Fork/join

Yes
Same as Verilog.
Plus:
• Random and constrained

random value generation
• Programs
• Clocking domains
• Associative arrays
• Semaphores
• Mailboxes
• Classes

Assertions Partial
• Combinatorial (Boolean)

assertions
• User-defined severity and

message control

No Yes
• Combinatorial and sequential

(concurrent) assertions.
• Sequence (temporal) expres-

sion.
• Sequence-local variables.
• User-defined severity and

message control.
• API extensions for assertions

and coverage information for
assertions

Foreign interfaces Limited
• Standard ‘Foreign attribute
• VhPI defined, but not yet

standardized

Yes
Standard C API (tf, acc, vpi)

Yes
Same as Verilog.
Plus:
• Extensions to API for assertions

and coverage
• Direct C language interface

Corporate Headquarters
Model Technology
8005 S.W. Boeckman Road
Wilsonville, Oregon 97070 USA
Phone: 503-685-0824

Corporate Headquarters
Mentor Graphics Corporation
8005 S.W. Boeckman Road
Wilsonville, Oregon 97070 USA
Phone: 503-685-7000

Copyright © 2003 Mentor Graphics Corporation. This document contains information that is proprietary to Mentor Graphics Corporation and may be duplicated in whole or in part by the orig-
inal recipient for internal business purposed only, provided that this entire notice appears in all copies. In accepting this document, the recipient agrees to make every reasonable effort to prevent the
unauthorized use of this information. Mentor Graphics is a registered trademark of Mentor Graphics Corporation. All other trademarks are the property of their respective owners.

For more information, call us or visit: www.model.com

Summary

With all of the recent publicity surrounding lan-
guages and standards, many people are wonder-
ing where to go next. The answer to this question
will vary greatly by designer and organization. In
addition to the language feature comparison
above, here are some final points to consider:

• SystemVerilog is an emerging standard that
is still evolving. With a compelling set of
features, SystemVerilog is the likely migra-
tion path for current Verilog users.
However, widespread tool support won't be
available until the specification stabilizes.

• For VHDL users, many of the
SystemVerilog and Verilog 2001 enhance-
ments are already available in the VHDL
language. There is also a new VHDL
enhancement effort underway that will add
testbench and expanded assertions capabil-
ities to the language (the two areas where
SystemVerilog will provide value over
VHDL 2002). Considering the cost in
changing processes and tools and the
investment required in training, moving
away from VHDL would have to be very
carefully considered.

