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1. Scope

This document serves to provide a complete description for the SVI Verification Study in-
volving the Rino IC—Data I/O Board encapsulation.

2. Referenced Documents

2.1. Vendor Documents

Developers Guide: The RIC—RINO Chipset, Mercury Computers
RACEway Interlink — Data and Physical Layers, VITA, Feb. 1995, Rev. 1.4.

CMOS SyncFIFO (IDT722xx7B) — Specifications, Integrated Device Technology,
Inc., Aug. 1993.

Programmable Skew Clock Buffer (CY7B991) — Specifications, Cypress Semicon-
ductor Corporation, Feb. 1995.

2.2. ATL Documents

Standard Virtual Interface Specification, Version 0.5, LM — ATL, Jun. 1995.
DATA 1/O Board — Benchmark II Diagrams.

3. Verification Objective

The objective of this verification study is to create and demonstrate a VHDL model of the
Standard Virtual Interface (SVI) as specified by the SVI Specification and to implement this
model using the existing SVI VHDL templates. The design and implementation of the SVI
model in VHDL for particular encapsulation is to serve as a method of quantifying the mer-
it of the SVI concept, the quality of the SVI development process, and to provide an under-
standing of where some of the difficulties and concerns in developing an SVI encapsulation
exist. Furthermore, the VHDL model is meant to provide an entity from which the SVI
overhead and performance can be measured.



For this verification study, the RASSP Benchmark II — Data I/O Board (as shown in Figure
1.)wasused. An SVIinterface was provided between the Data I/O board its network inter-
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Figure 1.: Data I/O Board before the SVI Encapsulation

face, the Mercury Rino—IC. The SVIinterface was created by effectively dividing the Data
I/O board at its transmit and receive FIFOs as shown in Figure 2. The design of the SVI
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Figure 2.: Data 1/0 Board and Rino Chipset Encapsulated

encapsulation is discussed in the next section.




For practical purposes, the SVI encapsulations of the Data I/O Board and the Rino chipset
will serve as components in the Model Year Architecture (MYA) reuse library. The VHDL
models will be available as plug and play elements that can be connected with other SVI
encapsulated elements. The availability of these models will provide the ability for further
performance studies that will be conducted in order to fully develop the SVI concept for
the MYA task as part of the RASSP Program.

4. Data I/0O Board — Rino IC Encapsulation Design

Both the master and slave entities in each of the SVI wrappers shown in Figure 2. can be
described in the two parts, an SVI controller (implemented as a state machine) and a FIFO
(as shown in Figure 3). The SVI controller and the FIFO are used to maintain a consisten-
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Figure 3.: SVI FIFO and State Machine Entities

cy of the data flow between the attached SVI and the encapsulated element (this is further
described in the SVI Specification).



Since the implementation goal of this study was to separate and encapsulate the Data I/O
board (the processing element) and the Rino chipset (the network element), it was clear
that the division would be at transmit and receive FIFOs on the Data I/O board. In this
way the interface from the Rino chipset to the Data I/O board would be a “straight for-
ward” FIFO interface. Based on the notion that each SVI wrapper minimally called for
a FIFO to provide a temporary storage for slave data, a FIFO was incorporated into each
wrapper. In an effort to reduce complexity, the transmit and receive FIFOs of the Data
I/O board were merged into the FIFOs in the SVI wrappers and removed from the Data
I/O board (as show in Figure 2.). In order to successfully implement the merging of the
FIFOs, the FIFO status flags and control signals that connected to the Data I/O board and
the Rino chipset had to be maintained, and the following section further details this topic.

4.1. Data I/O Board FIFOs

Figure 4 shows the Data I/O board and Rino chipset connections to the transmit and re-
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Figure 4.: Data I/O Board FIFO Configuration before SVI

ceive FIFOs before the SVI encapsulations were added to the system. These connections
were maintained by implementing the SVI wrappers as shown in Figure 5.and Figure 6.
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Figure 5.: Data 1/0 Board Wrapper

4.2. State Machine Controller Design

The state machine controllers implemented in each SVI entity provide control their respec-
tive FIFO in the interface. A master controller interprets signals from either the Data I/O
board or the Rino chipset and translates them into FIFO flags and SVI signals. A slave
controller interprets SVI signals and translates them into FIFO flags and Data I/O board
or the Rino chipset signals.

4.2.1. Transmit FIFO Control

In the SVI architecture, the transmit FIFO is made up of a 256 word and a 4Kword FIFO.
The state machine controller for the Rino’s master only initiates an SVI transfer if its FIFO
is half full (or its FIFOs half full flag becomes asserted). Once the controller initiates a
transfer, it waits for the SV ready to become asserted, and then it will stream data out of
its FIFO by asserting the FIFO’s read enable line. This will continue until the FIFO be-
comes empty or Data I/O board’s SVI deasserts the ready signal. Essentially, the Rino’s
master controller uses the SV1 ready in to control its FIFOs read enable signal. An end of
transaction can only occur when the FIFO becomes empty. The almost empty flag from the
FIFO is used to signal the controller to assert the last word signal.



SVI Wrapper
clock_out — """
= Ik
svi_data_out State 9 = SVI g
——— H hf:n paf.n tpaf_n| Mercury
xfer_req_out Machine = .
] pae._ 1 Master efin tfef n Rino
data_valid_out Master = FIEO )
last_word_out Controller q_data Id_n tid n| Chipset
ready_in re (256 x 32) |.rs.n tfrst_n
abort_&_error e.n tfwen_n
datd fifi
| da i g
sys_reset_out
rxvalid_n
SVI Interface gl
g: data
: SVI
clolck_ln . > Slave rs:n rstrf_n
S, 2ELE 7 State welk FIFO oe.n rfoe n|
xfer_req_in Machine oaf o fre_n
data_valid_in
= Slave d:dat (2K x 32) e n rfwe_n
last_word_in Controller B
ready_out pafin rfpaf_n
abort_& error ef.n rfef_n

Figure 6.: Rino Chipset Wrapper

The Data I/O board’s slave’s controller will assert an SV1 ready in response to a transfer re-
quest only if its FIFO has less then 3968 words filled (3968 words is default number of words
that it takes to trigger the programmable almost full flag on the FIFO, see the IDT 72245b
documentation referenced). Once a transfer is initiated, the slave’s controller will pass the
data from the SVI data lines to its FIFO until its FIFO becomes almost full (or its almost
fullflag is asserted) or the transaction is ended by the master. The slave controller uses the
SVIdata valid signal to control its FIFO’s write enable signal (i.e., as long as the data is valid,
the controller will keep the write enable asserted).

A more detailed description of the state machine controller for these FIFOs can be ob-
tained by examining the VHDL code for the Data I/O board Wrapper. The code shows
exactly how the above description is implemented, along with a description of the reset and
load flags.



4.2.2. Receive FIFO Control

In the SVI architecture, the receive FIFO is made up of two 2K word FIFOs. The state ma-
chine controller for the Data I/O board’s master only initiates an SVI transfer after its
FIFO has filled 512 words of its space (or its FIFOs almost empty flag is deasserted) or the
last set of radar dwell data (that is less than 512 words) is resident in its FIFO. Once a trans-
fer is initiated, the master’s controller will stream data from its FIFO by asserting the
FIFO’s read enable line. The controller will continue to send data out the SVI data lines
until its FIFO becomes empty or the Rino’s SVI deasserts its SV1 ready. An end of a trans-
action can only occur when Data I/O board’s master FIFO becomes empty. The almost
empty flag from the FIFO is used to notify the controller to assert its last word signal.

The Rino’s slave’s controller will assert an SV1 ready in response to a transfer request only
ifits FIFO is not almost full. Once a transfer is initiated, the slave’s controller will pass data
from the SVI data lines to its FIFO until it becomes almost full (or its almost full flag is as-
serted) or the transaction is ended by the master. The slave controller for the Rino will
assert its FIFO’s write enable signal as long as the SVI data valid signal from the Data I/O
board’s SVI remains asserted.

A more detailed description of the state machine controller for these FIFOs can be ob-
tained by examining the RACE_RINO VHDL code. The code shows exactly how the
above description is implemented, along with a description of the reset and load flags.

4.3. VHDL Implementation Notes

This section details the use of VHDL Generics in the Data I/O board and the Rino chipset
encapsulations. Below, a reason for why generics are needed and how they are used in
these encapsulations is provided.

The VHDL implementation of both the Data I/O board and Rino chipset encapsulations
have been simulated in a testbench that forces data to flow between the encapsulations
across an SVI. In this case, the operating clock frequencies are determined by the require-
ments of the Data I/O board and the Rino chipset. Therefore, it can be anticipated that
in a configuration (or testbench) in which these encapsulations are not connected to each
other (but to other SVI encapsulated components), the operating clock frequency of the
SVImay change. If the operating clock frequency change, it will become important to ap-
propriately adjust the value loaded as the programmable almost empty and programmable
almost full in the FIFOs (see the IDT722x5b specifications for more details on FIFO status
flags and the VHDL code to see how to implement this change). The VHDL implementa-
tions on these models facilitate the flexibility of adjusting the programmable load values
for the FIFOs because the values for the almost full and empty flags have been implement-
ed as generics. This allows the user to enter in a value for the particular load value during
runtime (or in script that calls the simulation tool). If no values are provided during run-
time, the VHDL models will default to the case for which the Data I/O board and the Rino
chipset are connected together.



5. SVI Encapsulation Performance Results

In this verification study, it was proven that an existing radar data board could be retro—
fitted with an SVI and still perform as intended. However, the tradeoff for plugn’play flexi-
bility is an increase in hardware and overall latency.

5.1. Hardware Overhead

For this pair of encapsulations, the hardware is altered by replacing four 4K by 18 bit FIFOs
by two 256 by 18 bit FIFOs, four 2K by 18 bit FIFOs, two 4K by 18 bit FIFOs, and a control-
ler FPGA (that implements all four state machines). The net increase in the amount FIFO
storage is the two 256 word FIFOs and an FPGA. However, because of the re —partitioning
of FIFOs, the amount of board space required by these components will be about twice that
of the four FIFOs in the non—encapsulated case.

5.2. Latency Overhead

The increase in latency for the dataio_loop tb.hdl testbench is listed below:
Time for the first data element to make through the loop:
Original Data 1/O Board: 490,600 ns
SVI Encapsulated: 493,950 ns
Difference: 3350 ns or .68% increased latency.

Time for one dwell of data to flow through the transmit FIFO (or SVI equivalent of)
Original Data I/O Board: 470,777 ns
SVI Encapsulated: 472,527 ns
Difference: 1750 ns or .37% increased latency.

Time for one dwell of data to flow through the receive FIFO (or SVI equivalent of):
Original Data I/O Board: 429,450 ns
SVI Encapsulated: 432,488 ns
Difference: 3038 ns or .71% increased latency.

From these encapsulations, it can be see that the increase in latency due to SVIis very insig-
nificant compared to the time that data spends in other parts of the Data I/O board system.
The location of the SVIbetween the Data I/O board and the Rino is not a bottle —neck point
within the system. So, that even with the insignificant 4 cycles per SVI transaction that is
added to Data I/O pipeline, there are other parts of the Data I/O board that slow down the
data flow rate. In other words, the even though a delay is added to the system by the SVI,
it is insignificant because the parts of the Data I/O board that receive data from the SVI
wrapper are not ready to accept because operate at a fraction of the data rate than that of
the wrapper (however, a 4 cycle latency will be added for the first word).

5.3. Performance Versus Message Length

In the above sections it has been shown how a system retro—fitted with an SVI is effected
in terms of hardware and latency. This section provides an insight at how the latency over-
head of can vary depending on the number words in each SVI transfer.



Figure 7 shows a graphs that describes the percentage of bandwidth used for SVI overhead
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Figure 7.: Performance of SVI as Message Length Varies

relative to data transferred. It shows that as the number of words per message (or transac-
tion) increases, the percentage of the bandwidth used for overhead message decreases rel-
ative to the amount of bandwidth allotted to data transfer. This is because as the number
of words per message increases, the number of transactions that have to be performed for
a given word size decreases, and therefore so does amount of SVI overhead because there
is a fixed 4 cycles per transaction latency.

Figure 7. shows that for a case where 4096 words are to be transferred across an SVI, as
the message word increases the percentage of bandwidth used for overhead decreases.
This figure shows four graphs to show the relative resolution at different message sizes.
It can be seen how the message length can vary the performance of the SVI because the
graphs show the percentage of overhead bandwidth varying from 400% to less than .1%
of the bandwidth allotted for data transfer.
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6. Summary

In this SVI verification study, a Benchmark II — Data I/O board was retro—fitted with an
SVI. Models for these encapsulations were implemented in VHDL and verified. The net
result is that SVI can be implemented with little effect to latency in a data sensor—type sys-
tem with little or no latency overhead and with minimal hardware overhead.

It was concluded that an SVIwraps well around components that provide FIFO—like data
flow. In other words, a scenario in which streams of data are burst on to a fabric interface
whose sole purpose is to transport data is well suited for SVI. This concept became appar-
ent when attempting to encapsulate the Rino chipset. Even though the Rino supports a
FIFO—like interface, it performs many link lists control operations that do not lend them-
selves to strict data flow. These other operations are real—time data control that make an
SVIimplementation cumbersome. To reduce the complexity in the Data I/O — Rino case,
the transmit and receive FIFOs were partitioned and the real —time controls were handled
within the respective encapsulations.

7. Recommendations

During the course of this verification study, many evaluations of SVI candidates (i.e., proc-
essor/board/product/etc.) were performed. Also, since the SVI specification is a living doc-
ument it was under constant evaluation. The result of these evaluationsled to the Data I/O
board as the candidate for this verification study. As part of this study, a great deal of effort
was exerted into determining how and where to split the Data I/O board for the SVI. From
the above tasks of this study, two main concepts were brought to light and are presented in
this section as recommendations for future SVI encapsulations.

7.1. SVI Well Suited for Data Streaming

From the summary in the previous section, it can be implied that the Data I/O board was
not originally intended to be retro—fitted with an SVI. Many network interface signals
were woven into custom FPGAs that connected to real —time status signals between proc-
essing elements and data flow elements. However after developing an implementation for
the Data I/O board, a more thorough understanding of SVI was gained.

SVIiswell suited for fabric interfaces and processing elements that support streaming data.
A fabric interface that performs network and data control may not necessarily be a robust
candidate for an SVI encapsulation. As seen in the case with the Rino chipset, the FIFOs
had to be partitioned in order to maintain data synchronicity within the Data I/O board.

After having gained experience with fabric interfaces that required a FIFO port before an
SVI could be implemented, it is recommended that in future encapsulations candidates
that strictly support data flow be chosen. This recommendation is being made in order that
the conclusion about data streaming elements be verified, as well to suggest a method for
providing another #ype of encapsulation that would provide for an even better and more
thorough understanding of SVI and its system effects. An SVI candidate as the one sug-
gested should try to measure the effects of SVIunder situations of bus contention, interrupt
handling, read and write scenarios, etc.
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7.2. Need for a Stop Read Command

After evaluating the SVI specification, it has become apparent that there is a need for an
addition of another SVIcommand. This command would serve as a compliment to the SVI
External Read Request. The proposed command will be referenced as the External Stop
Read Request.

The external stop read request would provide a slave the ability to stop a read transfer that
is in progress due to the External Read Request command. It can be assumed that if a read
request is issued then the slave in the issuing SV1 is controlling the interface. Without the
external stop read request, the controlling slave has no method in which it can stop a read
transaction that is in progress. Itis true that the slave can deassert its ready signal, but even
at that the SVI is active while no transfers are occurring. Without the external stop read
request, only a master can completely end a transfer, however this will never occur in many
cases because the master is not in control of the interface.

With the external stop read request, the controlling slave can notify its master that the read
transaction is to be stopped. The master will send an SVI message across the SVI notifying
its slave to notify the master that is sourcing data to the controlling data to assert its last
word signal and end the transaction.

12
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For this verification study, the RASSP Benchmark II — Data I/O Board (as shown in Figure
1.)wasused. An SVIinterface was provided between the Data I/O board its network inter-
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face, the Mercury Rino—IC. The SVIinterface was created by effectively dividing the Data
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For practical purposes, the SVI encapsulations of the Data I/O Board and the Rino chipset
will serve as components in the Model Year Architecture (MYA) reuse library. The VHDL
models will be available as plug and play elements that can be connected with other SVI
encapsulated elements. The availability of these models will provide the ability for further
performance studies that will be conducted in order to fully develop the SVI concept for
the MYA task as part of the RASSP Program.

4. Data I/0O Board — Rino IC Encapsulation Design

Both the master and slave entities in each of the SVI wrappers shown in Figure 2. can be
described in the two parts, an SVI controller (implemented as a state machine) and a FIFO
(as shown in Figure 3). The SVI controller and the FIFO are used to maintain a consisten-
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cy of the data flow between the attached SVI and the encapsulated element (this is further
described in the SVI Specification).



Since the implementation goal of this study was to separate and encapsulate the Data I/O
board (the processing element) and the Rino chipset (the network element), it was clear
that the division would be at transmit and receive FIFOs on the Data I/O board. In this
way the interface from the Rino chipset to the Data I/O board would be a “straight for-
ward” FIFO interface. Based on the notion that each SVI wrapper minimally called for
a FIFO to provide a temporary storage for slave data, a FIFO was incorporated into each
wrapper. In an effort to reduce complexity, the transmit and receive FIFOs of the Data
I/O board were merged into the FIFOs in the SVI wrappers and removed from the Data
I/O board (as show in Figure 2.). In order to successfully implement the merging of the
FIFOs, the FIFO status flags and control signals that connected to the Data I/O board and
the Rino chipset had to be maintained, and the following section further details this topic.

4.1. Data I/O Board FIFOs

Figure 4 shows the Data I/O board and Rino chipset connections to the transmit and re-
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Figure 4.: Data I/O Board FIFO Configuration before SVI

ceive FIFOs before the SVI encapsulations were added to the system. These connections
were maintained by implementing the SVI wrappers as shown in Figure 5.and Figure 6.
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Figure 5.: Data 1/0 Board Wrapper

4.2. State Machine Controller Design

The state machine controllers implemented in each SVI entity provide control their respec-
tive FIFO in the interface. A master controller interprets signals from either the Data I/O
board or the Rino chipset and translates them into FIFO flags and SVI signals. A slave
controller interprets SVI signals and translates them into FIFO flags and Data I/O board
or the Rino chipset signals.

4.2.1. Transmit FIFO Control

In the SVI architecture, the transmit FIFO is made up of a 256 word and a 4Kword FIFO.
The state machine controller for the Rino’s master only initiates an SVI transfer if its FIFO
is half full (or its FIFOs half full flag becomes asserted). Once the controller initiates a
transfer, it waits for the SV ready to become asserted, and then it will stream data out of
its FIFO by asserting the FIFO’s read enable line. This will continue until the FIFO be-
comes empty or Data I/O board’s SVI deasserts the ready signal. Essentially, the Rino’s
master controller uses the SV1 ready in to control its FIFOs read enable signal. An end of
transaction can only occur when the FIFO becomes empty. The almost empty flag from the
FIFO is used to signal the controller to assert the last word signal.
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Figure 6.: Rino Chipset Wrapper

The Data I/O board’s slave’s controller will assert an SV1 ready in response to a transfer re-
quest only if its FIFO has less then 3968 words filled (3968 words is default number of words
that it takes to trigger the programmable almost full flag on the FIFO, see the IDT 72245b
documentation referenced). Once a transfer is initiated, the slave’s controller will pass the
data from the SVI data lines to its FIFO until its FIFO becomes almost full (or its almost
fullflag is asserted) or the transaction is ended by the master. The slave controller uses the
SVIdata valid signal to control its FIFO’s write enable signal (i.e., as long as the data is valid,
the controller will keep the write enable asserted).

A more detailed description of the state machine controller for these FIFOs can be ob-
tained by examining the VHDL code for the Data I/O board Wrapper. The code shows
exactly how the above description is implemented, along with a description of the reset and
load flags.



4.2.2. Receive FIFO Control

In the SVI architecture, the receive FIFO is made up of two 2K word FIFOs. The state ma-
chine controller for the Data I/O board’s master only initiates an SVI transfer after its
FIFO has filled 512 words of its space (or its FIFOs almost empty flag is deasserted) or the
last set of radar dwell data (that is less than 512 words) is resident in its FIFO. Once a trans-
fer is initiated, the master’s controller will stream data from its FIFO by asserting the
FIFO’s read enable line. The controller will continue to send data out the SVI data lines
until its FIFO becomes empty or the Rino’s SVI deasserts its SV1 ready. An end of a trans-
action can only occur when Data I/O board’s master FIFO becomes empty. The almost
empty flag from the FIFO is used to notify the controller to assert its last word signal.

The Rino’s slave’s controller will assert an SV1 ready in response to a transfer request only
ifits FIFO is not almost full. Once a transfer is initiated, the slave’s controller will pass data
from the SVI data lines to its FIFO until it becomes almost full (or its almost full flag is as-
serted) or the transaction is ended by the master. The slave controller for the Rino will
assert its FIFO’s write enable signal as long as the SVI data valid signal from the Data I/O
board’s SVI remains asserted.

A more detailed description of the state machine controller for these FIFOs can be ob-
tained by examining the RACE_RINO VHDL code. The code shows exactly how the
above description is implemented, along with a description of the reset and load flags.

4.3. VHDL Implementation Notes

This section details the use of VHDL Generics in the Data I/O board and the Rino chipset
encapsulations. Below, a reason for why generics are needed and how they are used in
these encapsulations is provided.

The VHDL implementation of both the Data I/O board and Rino chipset encapsulations
have been simulated in a testbench that forces data to flow between the encapsulations
across an SVI. In this case, the operating clock frequencies are determined by the require-
ments of the Data I/O board and the Rino chipset. Therefore, it can be anticipated that
in a configuration (or testbench) in which these encapsulations are not connected to each
other (but to other SVI encapsulated components), the operating clock frequency of the
SVImay change. If the operating clock frequency change, it will become important to ap-
propriately adjust the value loaded as the programmable almost empty and programmable
almost full in the FIFOs (see the IDT722x5b specifications for more details on FIFO status
flags and the VHDL code to see how to implement this change). The VHDL implementa-
tions on these models facilitate the flexibility of adjusting the programmable load values
for the FIFOs because the values for the almost full and empty flags have been implement-
ed as generics. This allows the user to enter in a value for the particular load value during
runtime (or in script that calls the simulation tool). If no values are provided during run-
time, the VHDL models will default to the case for which the Data I/O board and the Rino
chipset are connected together.



5. SVI Encapsulation Performance Results

In this verification study, it was proven that an existing radar data board could be retro—
fitted with an SVI and still perform as intended. However, the tradeoff for plugn’play flexi-
bility is an increase in hardware and overall latency.

5.1. Hardware Overhead

For this pair of encapsulations, the hardware is altered by replacing four 4K by 18 bit FIFOs
by two 256 by 18 bit FIFOs, four 2K by 18 bit FIFOs, two 4K by 18 bit FIFOs, and a control-
ler FPGA (that implements all four state machines). The net increase in the amount FIFO
storage is the two 256 word FIFOs and an FPGA. However, because of the re —partitioning
of FIFOs, the amount of board space required by these components will be about twice that
of the four FIFOs in the non—encapsulated case.

5.2. Latency Overhead

The increase in latency for the dataio_loop tb.hdl testbench is listed below:
Time for the first data element to make through the loop:
Original Data 1/O Board: 490,600 ns
SVI Encapsulated: 493,950 ns
Difference: 3350 ns or .68% increased latency.

Time for one dwell of data to flow through the transmit FIFO (or SVI equivalent of)
Original Data I/O Board: 470,777 ns
SVI Encapsulated: 472,527 ns
Difference: 1750 ns or .37% increased latency.

Time for one dwell of data to flow through the receive FIFO (or SVI equivalent of):
Original Data I/O Board: 429,450 ns
SVI Encapsulated: 432,488 ns
Difference: 3038 ns or .71% increased latency.

From these encapsulations, it can be see that the increase in latency due to SVIis very insig-
nificant compared to the time that data spends in other parts of the Data I/O board system.
The location of the SVIbetween the Data I/O board and the Rino is not a bottle —neck point
within the system. So, that even with the insignificant 4 cycles per SVI transaction that is
added to Data I/O pipeline, there are other parts of the Data I/O board that slow down the
data flow rate. In other words, the even though a delay is added to the system by the SVI,
it is insignificant because the parts of the Data I/O board that receive data from the SVI
wrapper are not ready to accept because operate at a fraction of the data rate than that of
the wrapper (however, a 4 cycle latency will be added for the first word).

5.3. Performance Versus Message Length

In the above sections it has been shown how a system retro—fitted with an SVI is effected
in terms of hardware and latency. This section provides an insight at how the latency over-
head of can vary depending on the number words in each SVI transfer.



Figure 7 shows a graphs that describes the percentage of bandwidth used for SVI overhead

Graphs show the percentage of bandwidth given to SVI
overhead relative to the bandwidth used for data transfer.
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Figure 7.: Performance of SVI as Message Length Varies

relative to data transferred. It shows that as the number of words per message (or transac-
tion) increases, the percentage of the bandwidth used for overhead message decreases rel-
ative to the amount of bandwidth allotted to data transfer. This is because as the number
of words per message increases, the number of transactions that have to be performed for
a given word size decreases, and therefore so does amount of SVI overhead because there
is a fixed 4 cycles per transaction latency.

Figure 7. shows that for a case where 4096 words are to be transferred across an SVI, as
the message word increases the percentage of bandwidth used for overhead decreases.
This figure shows four graphs to show the relative resolution at different message sizes.
It can be seen how the message length can vary the performance of the SVI because the
graphs show the percentage of overhead bandwidth varying from 400% to less than .1%
of the bandwidth allotted for data transfer.
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6. Summary

In this SVI verification study, a Benchmark II — Data I/O board was retro—fitted with an
SVI. Models for these encapsulations were implemented in VHDL and verified. The net
result is that SVI can be implemented with little effect to latency in a data sensor—type sys-
tem with little or no latency overhead and with minimal hardware overhead.

It was concluded that an SVIwraps well around components that provide FIFO—like data
flow. In other words, a scenario in which streams of data are burst on to a fabric interface
whose sole purpose is to transport data is well suited for SVI. This concept became appar-
ent when attempting to encapsulate the Rino chipset. Even though the Rino supports a
FIFO—like interface, it performs many link lists control operations that do not lend them-
selves to strict data flow. These other operations are real—time data control that make an
SVIimplementation cumbersome. To reduce the complexity in the Data I/O — Rino case,
the transmit and receive FIFOs were partitioned and the real —time controls were handled
within the respective encapsulations.

7. Recommendations

During the course of this verification study, many evaluations of SVI candidates (i.e., proc-
essor/board/product/etc.) were performed. Also, since the SVI specification is a living doc-
ument it was under constant evaluation. The result of these evaluationsled to the Data I/O
board as the candidate for this verification study. As part of this study, a great deal of effort
was exerted into determining how and where to split the Data I/O board for the SVI. From
the above tasks of this study, two main concepts were brought to light and are presented in
this section as recommendations for future SVI encapsulations.

7.1. SVI Well Suited for Data Streaming

From the summary in the previous section, it can be implied that the Data I/O board was
not originally intended to be retro—fitted with an SVI. Many network interface signals
were woven into custom FPGAs that connected to real —time status signals between proc-
essing elements and data flow elements. However after developing an implementation for
the Data I/O board, a more thorough understanding of SVI was gained.

SVIiswell suited for fabric interfaces and processing elements that support streaming data.
A fabric interface that performs network and data control may not necessarily be a robust
candidate for an SVI encapsulation. As seen in the case with the Rino chipset, the FIFOs
had to be partitioned in order to maintain data synchronicity within the Data I/O board.

After having gained experience with fabric interfaces that required a FIFO port before an
SVI could be implemented, it is recommended that in future encapsulations candidates
that strictly support data flow be chosen. This recommendation is being made in order that
the conclusion about data streaming elements be verified, as well to suggest a method for
providing another #ype of encapsulation that would provide for an even better and more
thorough understanding of SVI and its system effects. An SVI candidate as the one sug-
gested should try to measure the effects of SVIunder situations of bus contention, interrupt
handling, read and write scenarios, etc.
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7.2. Need for a Stop Read Command

After evaluating the SVI specification, it has become apparent that there is a need for an
addition of another SVIcommand. This command would serve as a compliment to the SVI
External Read Request. The proposed command will be referenced as the External Stop
Read Request.

The external stop read request would provide a slave the ability to stop a read transfer that
is in progress due to the External Read Request command. It can be assumed that if a read
request is issued then the slave in the issuing SV1 is controlling the interface. Without the
external stop read request, the controlling slave has no method in which it can stop a read
transaction that is in progress. Itis true that the slave can deassert its ready signal, but even
at that the SVI is active while no transfers are occurring. Without the external stop read
request, only a master can completely end a transfer, however this will never occur in many
cases because the master is not in control of the interface.

With the external stop read request, the controlling slave can notify its master that the read
transaction is to be stopped. The master will send an SVI message across the SVI notifying
its slave to notify the master that is sourcing data to the controlling data to assert its last
word signal and end the transaction.
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