4

LOCKHEED MARTIN

Advanced Technology Laboratories
1 Federal Street — A&E 2W
Camden, NJ 08102

(609) 338—4250

Application Notes — Hardware Synthesis Study of
WSSPT SVI Interface Encapsulations

Date: July 24, 1995

Author: Greg Buchanan

Contact: Janet E. Wedgwood (janet.e.wedgwood@Imco.com)
1. Purpose

The purpose of the this initial SVI synthesis study was twofold: first, to gain experience in writing
synthesizable VHDL code for SVI encapsulations, and second, to gain a better understanding of
the hardware overhead introduced by a typical interconnect fabric encapsulation. The lessons
learned from the experience of creating optimized synthesizable VHDL code have been
documented as coding guidelines in Standard Virtual Interface Specification, Version 0.5. The results
pertaining to the hardware overhead introduced by SVI encapsulation are the subject of this
memo.

2. Interface Description

The hardware synthesis study was based on the design for the WSSPT (Wafer Scale) MCM
Interface FPGA. This FPGA is used in the WSSPT system to interface the processing element
nodes to the common interconnect fabric. The processing elements (up to 16 on a node) are tied
together with a proprietary bus known as IOBUS, and the interconnect fabric, known as PCI, is
similar in protocol to the PCI standard. The functional block diagram of the MCM interface
FPGA is shown in Figure 1. The MCM Interface was realized in an AT&T ORCA 2C15 FPGA,
and utilized approximately 340 of 400 available Programmable Function Units (PFU’s).

The SVI implementation of the the WSSPT MCM Interface logic, which amounts to the
encapsulation of the PE and interconnect fabric elements, was undertaken as part of a separate
verification study in SVI encapsulation. This encapsulation was done in such a way as to
demonstrate SVI utilization in conjunction with a COTS interface controller, since in practice a
COTS controller will often be used to interface to the standard interconnect fabric — in this case,
PCI. A functional block diagram of this implementation is shown in Figure 2. The PCI FIFO
function shown in Figure 1 is now included in COTS_PCI. (Note that in the case of the original
WSSPT MCM Interface design, a COTS PCI controller is not actually used. For the SVI
encapsulation study, the control logic was partitioned out of the PCI interface logic [labelled
COTS_PClI in Fig. 2] and treated as a COTS controller for demonstration purposes.)

The logic of the MCM Interface was partitioned for synthesis as shown in the block SVI_BLOCK.
The block MCM_ARBIT, which contains the arbiter function for the IOBUS, was left out of the
synthesis target in order to constrain the scope of the synthesis experiments to SVI encapsulations
of “pure” interface logic. The COTS_PCI block was left out since it was being treated as a COTS
part. In order to make equal comparisons of the MCM Interface FPGA with and without SVI
encapsulation however, estimates were made for the required FPGA resources required for both
of these blocks plus a separate IOBUS FIFO.

PCI

1 |
PCL_ PCIL
SLAVE MASTER
I |
Y)
FIFO
] I
[|
MCM I0BUS_ IOBUS_
ARBIT | | MASTER SLAVE
t) MCM_IF
IOBUS

FIG.1 — WSSPT MCM INTERFACE FPGA

PCI
'SVIBLOCK ~~ —L—— "
! i | coTs_PCI | :
v | svipar SVIPCL |
| MASTER SLAVE :
B a—
'] SVI '
] y '
! ¥ - | :
MCM_ . | sviioBus, SVI_IOBUS_|
ARBIT > SLAVE MASTER | +
: L) :
SVI_MCM_IF
I0BUS

FIG. 2 — SVI MCM INTERFACE FPGA

3. Results

All synthesis runs were performed under the following tool versions and libraries: Synopsys v3.3a,
NeoCad v7.0, AT&T ORCA Library v3.1. Total PFU count for the combined blocks
SVI_IOBUS_SLAVE, SVI_IOBUS_MASTER, SVI_PCI_SLAVE, and SVI_PCI_MASTER was
388. This represented a utilization of 97% of available PFU’s, and this design was fully placed and
routed into an ORCA 2C15 FPGA. Greatest packing density was achieved with the standard
ORCA cell library (ie. designware and lookup tables libraries not used), with the Pack Logic
Blocks option in NeoCad. No performance data was obtained.

In order to estimate the total equivalent gates for a direct comparison to the original MCM
Interface FPGA, the results from the synthesis runs were modified to reflect the integration of the
COTS_PCI and FIFO functions into the interface logic, and the addition of MCM_ARBIT. The

following procedure was used to estimate the equivalent gate count:

1) The original individual interface logic blocks (two masters, two slaves) were
synthesized independently
2) The “optimization ratio” was calculated between the synthesis of the original interface
blocks and the synthesis of the combined blocks (calculated to be 75%), and all interface logic
was scaled down by this amount
3) The WSSPT MCM Interface FIFO (16x73) and arbiter were synthesized and gate counts
obtained
4) Total equivalent gates were calculated as follows, with scaling factors applied to interface logic
blocks to reflect the integration of COTS_PCI functions (scaling factors are estimates provided by
logic designer). Refer to Figure 3.

LOGIC GATE COUNT
SVI 10_MASTER same as WSSPT
SVI_10_SLAVE remove (1) 64—bit reg., scale by 0.8
I0_MASTER same as SVI_SLAVE
SVI_PCI_MASTER add (1) 64—bit reg., scale by 1.25
SVI PCI_SLAVE same as WSSPT
PCI_MASTER same as SVI_PCI_SLAVE
FIFO’s (2x64x4) scale WSSPT FIFO by 0.44
MCM_ARBIT same as WSSPT MCM_ARBIT

Total equivalent cells for the SVI version of the MCM Interface FPGA was estimated to be 635
PFU’s. This design would not fit into one FPGA (the ORCA 2C26 contains 675 PFU’s), but could
be realized in two ORCA 2C15 FPGA's.

PCI
| svipcr — S
COTS_PCI [PCI_MASTER| ave
MASTER
b 5
SVI
¥
:)
MCM
ARBIT | SVLIOBUS LI FIFO |of 10BUS_ SVI_IOBUS_
SLAVE MASTER MASTER
t }
SVI_MCM_IF
IOBUS

FIG. 3 — LOGIC BLOCKS FOR EQUIVALENT GATE ESTIMATION
4. Conclusion

The amount of hardware overhead introduced by the SVI approach will certainly be dependent
upon the specifics of a particular application. From the example of the WSSPT PE encapsulation
however, it can generally be said that an SVI PE encapsulation will probably add one additional
FPGA worth of logic to a typical MCM or board processor application.

