A Synthesizable VHDL Coding of a Genetic Algorithm

Technical Report UNL-CSE-97-009
University of Nebraska-Lincoln

November 19, 1997

Stephen D. Scott, Sharad Seth, and Ashok Samal

Abstract

This paper presents the HGA, a genetic algorithm written in VHDL and intended for a hardware
implementation. Due to pipelining, parallelization, and no function call overhead, a hardware GA yields
a significant speedup over a software GA, which is especially useful when the GA is used for real-time
applications, e.g. disk scheduling and image registration. Since a general-purpose GA requires that the
fitness function be easily changed, the hardware implementation must exploit the reprogrammability of
certain types of field-programmable gate arrays (FPGAs), which are programmed via a bit pattern stored
in a static RAM and are thus easily reconfigured.

After presenting some background on VHDL, this paper takes the reader through the HGA’s code.
We then describe some applications of the HGA that are feasible given the state-of-the-art in FPGA
technology and summarize some possible extensions of the design. Finally, we review some other work in

hardware-based GAs.

Contents

1 Introduction 1
2 A VHDL Primer 1
2.1 Entities, Architectures and Processes e 1
2.2 Finite State Machines L e 2
2.3 Data Types o o e e e 2
2.4 Miscellany oL L e e e 3

3 The Design 3
3.1 The User-Controlled (Run-Time) Parameters 3
3.2 The VHDL Compile-Time Parameters 4
3.3 The Architecture e e 4
3.4 Inter-Module Communication e 5
3.5 Component Modules e 6
3.5.1 Pseudorandom Number Generator (RNG) 6

3.5.2 Shared Memory e e e e 6

3.5.3 Memory Interface and Control Module (MIC) 7

3.5.4 Population Sequencer (PS) o 8

3.5.5 Selection Module (SM) 8

3.5.6 Crossover/Mutation Module (CMM) 9

3.5.7 Fitness Module (FM) 9

3.6 Combining the Modules 10

4 Example Applications 11
4.1 A Mathematical Function o 11
4.2 Logic Partitioning e e e e e 12
4.3 Hypergraph Partitioningo 13
4.4 Test Vector Generation e 13
4.5 Traveling Salesman and Related Problems 14
4.6 Other NP-Complete Problems 15

5 Extensions of the Design 16
6 Summary and Related Work 17

1 Introduction

This paper presents the HGA, a genetic algorithm written in VHDL! and intended for a hardware im-
plementation. Due to pipelining, parallelization, and no function call overhead, a hardware GA yields
a significant speedup over a software GA, which is especially useful when the GA is used for real-time
applications, e.g. disk scheduling [51] and image registration [52]. Since a general-purpose GA requires
that the fitness function be easily changed, the hardware implementation must exploit the reprogramma-
bility of certain types of field-programmable gate arrays (FPGAs) [13], e.g. those from Xilinx [57]. Xilinx’s
FPGAs are programmed via a bit pattern stored in a static RAM and are thus easily reconfigured. While
FPGAs are not as fast as typical application-specific integrated circuits (ASICs), they still hold a great
speed advantage over functions executing in software. In fact, speedups of 1-2 orders of magnitude have
been observed when frequently used software routines were implemented with FPGAs [8, 9, 12, 15, 19, 54].
Characteristically, these systems identify simple operations that are bottlenecks in software and map them
to hardware. This is the approach used in this paper, except that the entire GA is intended for a hardware
implementation.

The remainder of this paper is organized as follows. Section 2 gives a brief primer on VHDL. Section 3
describes the HGA design. Then in Section 4 we describe some applications of the HGA which are feasible
given current FPGA technology. Possible design improvements and extensions are summarized in Section 5.
Finally, in Section 6 we summarize and review other hardware-based GAs.

Also available are simulation results, a theoretical analysis of this design, and a description of a proof-
of-concept prototype. They are beyond the scope of this paper and are instead given in an associated
technical report [44]. As they become available, updates to the code in this paper will be made available
at ftp://ftp.cse.unl.edu/pub/HGA.

Finally, it is important to distinguish hardware-based GAs from evolvable hardware. The former (e.g.
the design presented in this paper) is an implementation of a genetic algorithm in hardware. The latter
involves using GAs and other evolution-based strategies to generate hardware designs that implement
specific functions. In this case, each population member represents a hardware design, and the goal is to
find an optimal design with respect to an objective function, e.g. how well the design performs a specific
task. There are many examples of evolvable hardware in the literature [1, 17, 26, 43].

2 A VHDL Primer

In this section we briefly review some of thef VHDL fundamentals employed in this paper. Much more
detail is available at the VIUF and VHDLUK WWW sites [2, 3], which include lists of several VHDL
books. The material in this section should be sufficient to allow the reader to comprehend the code of the
design.

2.1 Entities, Architectures and Processes

Each module in the HGA consists of an ENTITY and an ARCHITECTURE. The entity portion of the module
defines the PORT, which gives the data type, size and direction of all the inputs and outputs. For example,
in the file fitness.hdl, ain is an input (due to the keyword IN), is of type gsim_state_vector (see
below) and is n bits wide?, with the (n-1)th bit the most significant and the Oth bit the least significant
(due to the keyword DOWNTO).

The architecture portion of a module defines its structure (specifying the interconnections between
lower-level modules) or functionality (specifying what a module outputs in response to its inputs). In
most of the VHDL files in this design, the architecture is specified behaviorally, and each architecture is

'VHDL stands for VHSIC (Very High Speed Integrated Circuit) Hardware Description Language.
n and other quantities are defined in Section 3.2.

composed of one or more PROCESSes. Typically the only process in each file is called main, but sometimes
other processes exist, e.g. fitness.hdl also contains a process called adder which adds two values. Each
process has a list of signals (signals are defined later) that it is sensitive to. When the value of any signal
in the list changes, that process is activated. For example in fitness.hdl, if addvall or addval2 changes,
then process adder is activated and adds its inputs. If clk or init changes, then process main is activated.

2.2 TFinite State Machines

Within the main process of each HGA module, a finite state machine with asynchronous reset is defined.
Revisiting the example of fitness.hdl, the process main is activated by a change in clk (the system clock)
and init (an asynchronous reset signal). The statement IF init=’0’ is true if the state machine has been
reset, so in this part of the code the module shuts itself down. If instead initis 1, then regular state machine
execution should proceed. The line ELSIF (clk’EVENT AND clk=’1’ AND clk’LAST_VALUE=’0’) THENis
true only if init is 1, the clock has just changed (c1k’EVENT), and the change was a low-to-high transition,
i.e. the state machine only responds to positive clock edges, thus the machine’s registers are all positive
edge-triggered. If this ELSIF passes, we enter a CASE statement, in which we determine what state the
machine is in and take the actions specified in that state. The names of the states are specified in the
TYPE states IS . . . statement and a signal of type states is defined to hold the current state.

2.3 Data Types

Designs in VHDL manipulate SIGNALs and VARIABLEs. Signals are used to store states of state machines,
communicate between modules, and communicate between different processes within the same module.
Hence they are defined globally for an entire architecture or specified in a port. Variables can be defined
locally for a single process. Signals can be thought of as sending information to other modules or processes,
and variables can be thought of as storing information in a register. Another difference between signals
and variables is that signals can have delays associated with them (e.g. propagation delay of a wire), to
better resemble reality, whereas variables can not. Hence it is possible to examine the waveform of a signal
but not of a variable. Assignment to a signal uses the <= operator and assignment to a variable uses the
:= operator.

The data types that variables and signals can assume include integer, bit, bit_vector, and user-
defined data types. Type bit is a simple bit and can take on the values 0 and 1, so a signal of type bit
is like a wire and a variable of type bit is like a flip-flop. Type bit_vector is an array of bits with a
user-specified width, so a signal of type bit_vector is like a bus and a variable of type bit_vector is
like a register. In this design, we use the types qsim_state and qsim_state_vector, which are specific
to the simulators and compilers of Mentor Graphics [33]. These types are nearly identical to bit and
bit_vector, so a direct substitution should work to map the code of this paper to code compatible with
other VHDL compilers.

The functions to_qsim_state and to_integer appear frequently in the code. The function to_integer(q)
converts q, a qsim_state_vector, to an integer>. The function to_qsim_state(i, s) converts integer i
to a qsim_state_vector that is s bits wide. These functions are used when adding qsim_state_vectors,
using a qsim_state_vector as an index into an array, and to resize a qsim_state_vector. If the types
gsim_state and qsim_state_vector are changed (e.g. to bit and bit_vector) for compatibility reasons,
equivalent functions for to_qsim_state and to_integer must be written unless the equivalents already
exist.

#Since these functions assume that q is in 2’s complement form, a 0 bit is prepended to q before passing it to to_integer.
This is done by using the & operator, which performs concatenation.

2.4 Miscellany

The LIBRARY and USE commands at the top of each VHDL file tells the VHDL compiler which libraries
are used in that file. This design uses the mgc_portable library, which defines the types qsim_state and
gsim_state_vector as well as the functions to_integer and to_qsim_state. Our code also uses the
libs.sizing library that is described in the file 1ibs/sizing.hdl. In that file are several constants that
parameterize the HGA design (Section 3.2).

Finally, note that all the VHDL code except that which is in memory.hdl is synthesizable. That is, it
uses a subset of VHDL that can not only be simulated, but can be mapped to actual hardware by using
AutoLogic 11 from Mentor Graphics [34, 35]. Other synthesizers exist and can be used to synthesize the
HGA code if the Mentor-specific code is changed.

3 The Design

The functional model of the HGA is as follows. A software front end running on a PC or workstation
interfaces with the user and writes the GA parameters (Section 3.1) into a memory that is shared with
the back end, consisting of the HGA hardware. Additionally, the user specifies the fitness function in some
programming or other specification language (e.g. C or VHDL). Then software translates the specification
into a hardware image and programs the FPGAs that implement the fitness function. Many such software-
to-hardware translators exist [27, 35, 54]. Then the front end signals the back end. When the HGA back
end detects the signal, it runs the GA based on the parameters in the shared memory. When done, the
back end signals the front end. The front end then reads the final population from the shared memory.
The population could then be written to a file for the user to view or have other computations performed
on it. Currently the only GA termination condition that the user can specify is the number of generations
to run. If other termination conditions are desired (e.g. amount of population diversity, minimum average
fitness), the user must tell the HGA to run for a fixed number of generations and then check the resultant
population to see if it satisfies the termination criteria. If not, then that population can be retained in the
HGA’s memory for another run. This process repeats until the termination criteria are satisfied.

Note that the front end could in fact be any interface between the HGA and a (possibly autonomous)
system that occasionally requires the use of a GA. This system would select its own HGA parameters and
initial population, give them to the front end for writing to the shared memory, and invoke the HGA. The
system could even program the FPGAs containing the fitness function.

3.1 The User-Controlled (Run-Time) Parameters

The run-time parameters specified by the HGA’s user are as follows. Their addresses in the shared memory
are specified in 1ibs/sizing.hdl (Section 3.2).

1. The number of members in the population. This is stored as psize in sequencer.hdl and as psize
in fitness.hdl.

2. The initial seed for the pseudorandom number generator. This is stored as rn in rng.hdl, but is
later overwritten with new random bit strings.

3. The mutation probability. This is stored as mutprob in xovermut.hdl.
4. The crossover probability. This is stored as xoverprob in xovermut.hdl.

5. The sum of the fitnesses of the members of the initial population. This is stored as sumin fitness.hdl,
but is later overwritten with new sums as the population changes.

6. The number of generations in the HGA run. This is stored as numgens in fitness.hdl.

The initial population is stored in memory below the above parameters.

In directory makepop is C source code that will take GA parameters on the command line and create a
file that includes these parameters plus a randomly generated population. The format of this file is directly
readable by memory.hdl (Section 3.5.2) and thus can be immediately used as input when simulating the
VHDL code of this paper.

Other GA parameters such as the length of the population members? and their encoding scheme are
indirectly specified when the user defines the fitness function.

3.2 The VHDL Compile-Time Parameters

Designing the HGA using VHDL allowed the design to be specified behaviorally rather than structurally.
It also allowed for general (parameter-independent) designs to be created, facilitating scaling. The specific
designs implemented from the general designs depend upon parameters provided at VHDL compile time.
When the parameters are specified, the design can be simulated or implemented with a VHDL synthesizer
such as AutoLogic Il from Mentor Graphics [34, 35]. The parameters are set in 1ibs/sizing.hdl and
used in the other VHDL files. They are as follows.

1. The width in bits of the crossover and mutation probabilities and the random numbers sent from
rng.hdl to xovermut.hdl is denoted p.

2. The maximum width in bits of the population members is denoted n.
3. The maximum width in bits of the fitness values is denoted f.

4. The precision used in scaling down the sum of fitnesses for selection in selection.hdl is denoted r.
See Section 3.5.5 for more information.

5. The size of the cellular automaton in rng.hdl is denoted casize. See Section 3.5.1 for more infor-
mation.

6. The maximum size of the population is denoted m.
7. The maximum number of generations is denoted maxnumgens.

8. The number of parallel selection modules is denoted nsel. Note: when changing nsel, the actual
number of selection modules in top.hdl must also be changed.

The other constants defined in 1ibs/sizing.hdl depend entirely on the above parameters, e.g. logn is
the base-2 logarithm of n. Thus these constants are not discussed here.

The last portion of 1ibs/sizing.hdl gives the locations in memory of the user-specified parameters
described in Section 3.1.

3.3 The Architecture

The HGA (Figure 1) was based on Goldberg’s simple genetic algorithm (SGA) [20]. The HGA’s modules
were designed to correlate well with the SGA’s operations, be simple and easily scalable, and have interfaces
that facilitate parallelization. They were also designed to operate concurrently, yielding a coarse-grained
pipeline. The basic functionality of the HGA design is as follows®.

*The maximum member size is specified in Section 3.2, but the actual length as interpreted by the fitness function could
be less.
5Note that Figure 1 shows only the data path; control lines are omitted.

sum of fitnesses new members/fitnesses

to selection module to write and their addresses 3 3
; Fitness (FM) ; memory i I
: st ! Shared
requests | memory !
| |
crossed : ! !
members ! !
random numbers Memory interface TTTRTT

Crossover/mut. (CMM) Y parameters

and control (MIC)

and data
selected member’s memberand 1=t oo :
members address fitness ! !
random ‘ ! Front :
numbers |) 3] poend
Rand. no. gen. (RNG) : Selection (SM) : Population sequencer (PS) } |
| member and Lo

T fitness

Figure 1: The data path of the HGA architecture.

1. After loading the parameters into the shared memory, the front end signals the memory interface
and control module (MIC, meminterface.hdl). The MIC acts as the main control unit of the HGA
during start-up and shut-down and is the HGA’s sole interface to the outside world. After start-up
and before shut-down, control is distributed; all modules operate autonomously and asynchronously.

2. The MIC notifies the fitness module (FM, fitness.hdl), crossover/mutation module (CMM, xovermut .hdl),
the pseudorandom number generator (RNG, rng.hdl) and the population sequencer (PS, sequencer.hdl)
that the HGA is to begin execution. Each of these modules requests its required user-specified pa-
rameters (Section 3.1) from the MIC, which fetches them from the shared memory.

3. The PS starts the pipeline by requesting population members from the MIC and passing them along
to the selection module (SM, selection.hdl).

4. The task of the SM is to receive new members from the PS and judge them until a pair of sufficiently
fit members is found. At that time it passes the pair to the CMM, resets itself, and restarts the
selection process.

5. When the CMM receives a selected pair of members from the SM, it decides whether to perform
crossover and mutation based on random values sent from the RNG. When done, the new members
are sent to the FM for evaluation.

6. The M evaluates the two new members from the CMM and writes the new members and their
fitnesses to memory via the MIC. The I'M also maintains information about the current state of the
HGA that is used by the SM to select new members and by the 'M to determine when the HGA is
finished.

7. The above steps continue until the FM determines that the current HGA run is finished. It then
notifies the MIC of completion which in turn shuts down the HGA modules and signals the front
end.

3.4 Inter-Module Communication

The modules in Figure 1 communicate via a simple asynchronous handshaking protocol similar to asyn-
chronous bus protocols used in computer architectures [24]. When transferring data from the initiating

module I to the participating module P, I signals P by raising a request signal to 1 and awaits an ac-
knowledgment. When P agrees to participate in the transfer, it raises an acknowledgment signal. When
I receives the acknowledgment, it sends to P the data to be transferred and lowers its request, signaling
P that the information was sent. When P receives the data, it no longer needs to interact with I, so P
lowers its acknowledgment. This signals I that the information was received. Now the transfer is complete
and I and P are free to continue processing. Examples of this kind of transfer occur between the SM and
CMM, between the CMM and FM, and between the FM and MIC.

When the HGA first starts up, all the modules except the SM issue requests to the MIC for the values
of some of the user-specified parameters of Section 3.1. The communication protocol used is similar to that
stated above. In this case, P is the MIC. After the MIC raises the acknowledgment, I sends the address of
the parameter to read from memory. After the MIC reads the parameter from memory and sends it to I,
the MIC lowers its acknowledgment. This same protocol is used when the PS reads population members
from memory via the MIC.

3.5 Component Modules

In this section we describe in more detail the functionality of each module from Figure 1.

3.5.1 Pseudorandom Number Generator (RNG)

The output of the pseudorandom number generator (RNG, rng.hdl) is used by two HGA modules. The
RNG supplies pseudorandom bit strings (randsell and randsel2) to the selection module (SM, Sec-
tion 3.5.5) for scaling down the sum of fitnesses. This scaled sum is used when selecting pairs of members
from the population. The RNG also supplies pseudorandom bit strings to the crossover/mutation module
(CMM, Section 3.5.6) for determining whether to perform crossover and mutation (doxover and domut)
and what the crossover and mutation points are (xoverpt and mutpt).

After loading its seed into rn, the RNG uses a linear cellular automaton (CA) to generate a sequence
of pseudorandom bit strings. The CA used in the RNG consists of 16 alternating cells which change their
states according to rules 90 and 150 as described by Wolfram [56]:

Rule 90: s,f = 5;-1 P Sit1
Rule 150: SZ»+ =5-1D 5 DSit1-
Here s; is the current state of site (cell) 7 in the linear array, s¥ is the next state for s;, and @ is the exclusive
OR operator. Serra et al. [45] showed that a 16-cell CA whose cells are updated by the rule sequence 150-
150-90-150 - - - 90-150 produces a maximum-length cycle, i.e. it cycles through all 2'6 possible bit patterns
except the all 0s pattern. It has also been shown that such a rule sequence has more randomness than a
linear feedback shift register® (LFSR) of corresponding length [28]. This scheme is implemented in state
active in rng.hdl.

3.5.2 Shared Memory

The shared memory is actually external to the HGA system, but is presented here for completeness. The
memory’s specifications are known by the memory interface and control module (MIC, Section 3.5.3). It is
shared by the back end and front end, acting as their primary communication medium. Before the HGA
run, the front end writes the GA parameters of Section 3.1 into the memory and signals the MIC. When
the HGA run is finished, the memory holds the final population which is then read by the front end.
Since an off-the-shelf physical memory would likely be employed in a hardware GA system, the file
memory.hdl is intended for simulation purposes only. It reads its initial contents from a text file”. It is
designed to behave like a real, but simple, memory. The memory only operates when the chip select (cs)

SLFSRs are commonly used as pseudorandom number generators in hardware.
"This file can be created by makepop. See Section 3.1.

and memory access (memacc) lines are low. When both these signals are low, if output enable (oe) is low,
the memory outputs to dataout the value stored at address. If the read-write (rw) signal is low, then the
memory stores into storage at address the value given in datain.

For tracking the progress of the simulation, memory.hdl maintains a variable called pulsecount that
counts the total number of clock cycles in the run. It periodically writes this value to a file so the user can
observe the rate of simulation. After the HGA shuts down, the memory writes its final contents (including
the final population) to a text file, followed by the final value of pulsecount.

3.5.3 Memory Interface and Control Module (MIC)

The memory interface and control module (MIC, meminterface.hdl) is the only module in the HGA
system which has knowledge of the HGA’s environment. It provides a transparent interface to the memory
for the rest of the system. When the MIC senses that go went low (state starti) and then high (state
start2), it takes control of the shared memory® by setting memacc to 0, initializes the other modules by
setting init to 1, and begins to field requests from the other modules by transitioning to state idle.

The IF-ELSIF structure of state idle imposes priorities over the signals the MIC responds to. First it
checks if fitdone is 1, indicating that the GA run has completed. If this is true, then it shuts down the
other modules by setting init to 0, tells the user which population in memory is the final one by passing
NOT toggle to toggleout?, relinquishes control of the memory by setting memacc to 1, and tells the front
end that the HGA is finished by setting done to 1.

If instead fitdone is 0, then the MIC serves any outstanding requests from the other modules for
user-specified parameters (Section 3.1). It does this by checking the signals reqrng through reqfit(0) in
the order that they appear in meminterface.hdl. If any of these signals is high, then the MIC reads the
appropriate parameter from memory by converting the address it receives!® to an address understood by
the memory. After reading the parameter from memory using a procedure described below, it (in state
read2) sends the value out via valout and informs the module that the parameter was sent by setting all
the acknowledgment signals to 0.

The final cases covered by the IF-ELSIF structure of state idle are the ones most frequently encountered
during normal HGA operation. If the signal reqfit(1) is 1 then the MIC knows that the fitness module
(FM, Section 3.5.7) has a new population member to write to memory. The memory holds two populations,
the current one and the new one (the new population will be the current one in the next generation). The
FM writes to the new one and the population sequencer (PS, Section 3.5.4) reads from the current one.
In state £it1, the MIC checks toggle, which the FM uses to inform the MIC which population is the
new one. The MIC uses toggle to determine which base address (popObase or popibase) to add to the
address sent from the FM (addrfit) to create the address sent to memory (address). It then takes the
value (valfitin) from the FM and writes it to memory.

If reqfit (1) is 0, then the MIC checks reqseq(1) to determine if the PS wants to read a new member
from memory. If so, then in state seql the MIC checks toggle and builds address as above, using the
opposite population as used by the FM. Then it reads the member from memory and passes it along to
the PS via valout.

To read from memory, first the MIC transmits address to the memory, then enters state read1. During
the state transition time (a single clock cycle), it is expected that the address has reached the input pins
of the memory chip. So in readl the MIC lowers oe, telling the memory it wants to read the data stored
at the given address. After another clock cycle, the MIC enters read2, at which time it is expected that
the data has arrived at datain. So the MIC forwards the data via valout, raises oe, and lowers the
acknowledgments, indicating that it has forwarded the data.

8 At this point the MIC assumes that the front end has surrendered control of the memory.
?See Section 3.5.7.
"Which is as specified in 1ibs/sizing.hdl.

To write to memory, first the MIC transmits address and dataout to the memory, then enters state
writel. During the state transition time (a single clock cycle), it is expected that the address and data
have reached the input pins of the memory chip. So in writel the MIC lowers rw, telling the memory it
wants to write the given data to the location given by the address. After another clock cycle, the MIC
enters write2, at which time it is expected that the data has been written. So it raises rw, but keeps
address and dataout unchanged so as to avoid corrupting memory. After one more clock cycle (the
transition to write3), the MIC assumes the write was successful and informs the FM*!.

3.5.4 Population Sequencer (PS)

The job of the population sequencer (PS, sequencer.hdl) is to cycle through the current population and
pass the members on to the SM(s). After loading the population size into psize, the PS enters state
getmemberl, where it sends the index membaddr of a population member to the MIC via addr. Then it
awaits reception of the member (arriving via value) in state getmember2. It then passes this member to
the SM(s) via output. If the member sent to the SM(s) is the same as the previous one sent, dup is set to
tell the SM(s) to accept it. The index membaddr is then incremented modulo the population size psize so
the next population member will be requested from the MIC. This process continues until the GA run is
complete and the MIC shuts down all the modules (i.e. init goes low).

3.5.5 Selection Module (SM)

The HGA’s selection method is similar to the implementation of roulette wheel selection used in Goldberg’s
SGA [20]. The SGA’s selection procedure is as follows.

1. Using a random real number r € [0, 1], scale down the sum of the fitnesses of the current population
to get Sseate = 7 - Sfit-

2. Starting at the first population member, examine the members in the order they appear in the
population.

3. Each time a new member is examined, accumulate its sum in a running sum of fitnesses Sr. If at that
time Sg > Sscqle, then the member under examination is selected. Otherwise the next population
member is examined (Step 2).

Each time a new population member is to be selected, the above process is executed.

The selection module (SM, selection.hdl) implements the roulette wheel selection process used by
the SGA, but it selects a pair of population members simultaneously rather than a single member at a
time. First, from the FM it receives sum, the sum of the fitnesses of the current population. It then
scales down this sum by two random values randl and rand2 provided by the RNG. The actual scaling
is performed in the process scalefit which multiplies an r-bit random bit string by the sum of fitnesses
and then right shifts the result by r bits (Section 3.2). This is done to simplify the division operation in
the hardware. Thus larger values of r yield more precision in scaling down sum. Since a multiplier that
operates in a single clock cycle consumes a significant amount of hardware, only one is instantiated in the
SM. So in state init1 the variables serialize and multdone are used to coordinate the two accesses to
process scalefit. The two scaled sums are stored in scalea and scaleb. After storing the scaled sums,
the SM resets the fitness accumulators accuma and accumb, the members a and b and the flags donea and
doneb. Now selection may begin.

The state getcandidates is where selection is performed. First the flags donea and doneb are checked.
If either of these is 1, then the corresponding member (e.g. a if donea = 1) is not changed because the

"The FM is the only one informed here because it is the only module that writes data.

done flag indicates that it has already been selected. So any member with a done flag = 0 is replaced by
input when a new member arrives'?. After storing a new input into a and/or b, serialize is set to 1
to indicate that the running sums of fitnesses accuma and accumb require updating, since new members
were stored. Then the SM checks if accuma > scalea. If so, then a has been selected and the SM sets
donea to 1. doneb is set to 1 under similar conditions. When both donea and doneb are 1, the SM moves
to state awaitackxoverl and transmits a and b to the CMM via the handshaking protocol described in
Section 3.4. Then the SM returns to state init1 to select another member. Finally, note that the reset
signal comes from the FM to indicate that the current generation has ended and the FM has switched the
population it writes to (Sections 3.5.3 and 3.5.7). Thus the PS now reads from a different population. This
means that sum is no longer the sum of the fitnesses of the current population. So a reset places the SM
into state idle where it stores the new sof into sum and restarts selection.

The HGA is designed to allow for multiple SMs to operate in parallel, which is useful when the SM is
the bottleneck of the pipeline [44]. The PS sends the same members to all SMs, but this does not pose a
problem for selection since each SM uses an independent pair of random bit strings to scale down the sum
of fitnesses. Thus each selection process is independent of the others. All the parallel SMs feed into a single
CMM. To add parallel SMs, nsel in libs/sizing.hdl must be changed, and alterations are necessary in
top.hdl (Section 3.6).

3.5.6 Crossover/Mutation Module (CMM)

After loading values into mutprob and xoverprob, the crossover/mutation module (CMM, xovermut.hdl)
remains in state findreqgsel while polling the SM(s). When SM ¢ has selected members, it sends a request.
When the index currsel = i, the CMM will detect SM ¢’s request and accept the pair of members via the
handshaking protocol of Section 3.4, storing them in al and b1. Then if the random string doxover (from
the RNG, Section 3.5.1) is smaller than the crossover probability xoverprob, crossover is performed while
copying al into a2 and b1 into b2, where the crossover point is indicated by xoverpt. Then a2 is copied
into a3 and b2 into b3, where the bit of a2 indexed by mutpt is mutated if domut < mutprob. Then the
CMM acknowledges the SM so it may start a new selection process. Finally, the CMM transmits the new
members a3 and b3 to the FM via the handshaking protocol of Section 3.4 and resumes polling the SMs.

Note that the HGA only has one opportunity per pair of members to perform mutation, but in Gold-
berg’s SGA, the possibility of mutation is explored for every bit of every member. Thus the SGA’s mutation
probability is effectively higher than the one used in the HGA. This can be adjusted for by increasing the
mutation probability given to the HGA or by a few simple alterations to xovermut .hdl to make the HGA’s
mutation operator the same as the SGA’s.

3.5.7 Fitness Module (FM)

When the fitness module (M, fitness.hdl) starts up, it loads toggleinit into tog, which tells the
FM which of the two populations contains the initial one specified by the user. Then the FM stores
the population size in psize, stores the sum of fitnesses of the initial population in sum(0) or sum(1),
depending on the value of tog, and stores the number of generations in numgens.

After initializing, the FM enters state newgen to start a new generation'3. It first checks if the entire
HGA run is over (if numgens = 0). If not, it resets psizetmp (the number of population members remaining
to fill the current generation) and sof (NOT tog) (the sum of fitnesses accumulator for the new generation).
It also toggles tog and sends its value to the MIC via toggle, which tells the MIC which population the

2 A new member’s arrival is indicated by a change in input or if dup is 1 (Section 3.5.4).

'3The flag cleanxover is used to insert a delay before the FM starts a new generation. This is necessary because of a small
technicality: if the CMM was processing members from the old population when the FM switched populations (due to the
new generation), then the FM should ignore the CMM’s output. The use of ackxover and cleanxover in states newgen and
waitforxovreq achieves this goal.

FM writes to and which the PS reads from. Finally, it sends a 0 to the SM via reset, which tells the SM
that the sum of fitnesses of the population the SM reads from has been updated. Then the FM moves to
waitforxovreq, where it awaits a new pair of members from the CMM.

In waitforxovreq, the FM first checks if psizetmp = 0, indicating the end of the current generation.
Otherwise the FM awaits a request from the CMM and then receives a and b via ain and bin using the
handshaking protocol of Section 3.4. For evaluating a and b, the FM can use its default fitness function
of f(z) = 2z, distributed over states waitforxovreq2 and sumfitb. Alternatively, an optional external
fitness evaluator (FE) can be attached to the FM. If it is attached, then offchipfit will be 1, causing
the FM to send a and b, one at a time, to the FE via offchipfitmemb and receive each member’s fitness
via offchipfitres. These actions occur in states offchipfita and offchipfitb. After each member
is evaluated (in either the FM or FE), the FM accumulates the sum of their fitnesses in sum(NOT tog)
by using the process adder, which implements a single adder in the FM. After the current generation
completes, sum(NOT tog) will be sent to the SM.

In the current design, the FM expects the FE to evaluate each member in a single clock cycle. But
this restriction can be removed by implementing a slightly more complex communication protocol between
the FM and FE. Use of an external FE allows all the other HGA modules (including the FM, which
would now only perform bookkeeping) to be implemented in a non-reprogrammable technology such as
fabricated chips, to reap a space and time savings over FPGAs. Only the FE need be implemented on
reprogrammable FPGAs. Additionally, since the implementation of the FE is independent of the FM’s
implementation, the FE could be implemented in software if the fitness function is much too complex for
an FPGA implementation. All that is required is that the software-based FE adhere to the communication
protocol expected by the FM.

After evaluating the new members and accumulating their fitnesses, the I'M uses the handshaking
protocol of Section 3.4 to send the members and their fitnesses to the MIC for writing to memory.

While not in the current design, it is possible to allow for multiple FMs to operate in parallel, much
like the parallel SMs of Section 3.5.5. This is useful when the F'M is the bottleneck of the pipeline [44]. If
parallel FMs were to be added to this design, the duty of writing new members to memory and maintaining
records of the HGA’s state (e.g. maintaining numgens and psizetmp) would best be shifted from the FM
to a new module called the memory writer (MW). This is because maintaining these values in a distributed
fashion would be difficult. The CMM would connect to all the FMs, and each M would connect to the
MW.

To add parallel FMs, an MW should be created, the FM should be modified, and a parameter nfit in
libs/sizing.hdl should be added. Also, alterations would be necessary in top.hdl.

3.6 Combining the Modules

The file top.hdl specifies the connections between all the modules and the HGA’s interface to its environ-
ment. The entity top defines the HGA’s interface and the COMPONENT definitions describe the interfaces
of each HGA module. Below the COMPONENT definitions are the definitions of signals that interconnect the
modules. Each signal is explained by comments in the code. The next portion of top.hdl defines which
VHDL source file corresponds with each component. This is where multiple SMs are instantiated, if de-
sired. Finally, the components are interconnected by specifying which signals connect to each component.
Naturally, the size and type of each signal must match the size and type of the port it connects to. Also,
multiply-driven signals are disallowed unless some arbitration logic is utilized, so in top.hd1, exactly one
port connected to each signal is an OUT port, which can be seen in the COMPONENT definitions.

Note that the instantiation of the mem component (for memory) implies that as written, top.hdl is
intended for simulation only. In fact, the file top.hdl might not be used at all in an actual implementation
since groups of components will likely be mapped to different FPGAs.

10

4 Example Applications
This section gives a high-level description of several problems that the HGA is applicable to given the
current state-of-the-art in FPGA technology.

4.1 A Mathematical Function
Our first example application comes from Michalewicz [36]. The problem is to optimize the function

(1)

f(z1,22) = 21.5+ ¢ sin(4mwzy) 4+ z2sin(207zy)

where —3.0 < 27 < 12.1 and 4.1 < 23 < 5.8. A plot of f(z1,z2) is in Figure 2. The spiky nature of the plot
indicates that it should be difficult to optimize, given the myriad local minima. To obtain four decimal
places of precision for each variable, Michalewicz used 18 bits for z; and 15 for z,. His binary strings were

manipulated directly and converted to real values only during fitness evaluation.

»‘N‘
i

O
T
>
20 ARG
10 ")'A‘oﬂ’l‘v‘“{‘r‘:““"f/\‘?‘g‘§§‘ﬂ|"
‘N»‘Ww o

<

f(x1,x2)

Figure 2: Plot of Equation 1, the function f(z1,z3).

A hardware implementation of this fitness function is straightforward if the CORDIC algorithm [53]
is used to evaluate the sines. To evaluate Equation 1 in hardware, we require a single multiplier!*, two
adder/subtracters, six registers, two shifters, and a lookup table in the form of a 16 x 18 ROM. All these

components easily fit on a Xilinx XC4013 FPGA [57].
In the evaluation process, first z; is multiplied by 47 in the multiplier, and then z5 is multiplied by

207 in the multiplier in the next cycle. Then both sine calculations run concurrently via CORDIC. But
since CORDIC only works on arguments between 0 and 27, before running CORDIC we must subtract
from each argument to sine an amount 2i7, where i = |z/(27)| for z € {47z1,207z2}. These amounts are

"Since multipliers occupy significant FPGA space and can reduce the maximum possible clock rate, a dedicated multiplier
chip, such as the AMD Am29323 multiplier [5], could be used instead. This would increase the maximum possible clock rate

and save area on the FPGAs.

11

27|21 and 27|10z2], each of which is computable with two more uses of the multiplier'®. So after four
cycles, one of the two concurrent CORDIC systems is given an argument of 4wz, — 27|22 |. After another
three cycles, the other CORDIC system receives an argument of 207z, — 27| 1025]. Fourteen steps of each
CORDIC are required to attain 4 decimal places of precision in the result, which is the precision used in
Michalewicz’s implementation. Fourteen steps are required because approximately one bit of accuracy is
attained in each step, and 2714 < 107* < 2713, After the first CORDIC finishes, multiply z; by sin(47z)
and add the result to 21.5. One cycle after this, the second CORDIC will finish. So multiply zo by
sin(207z3) and add this result to z; sin(47z1) 4+ 21.5. By overlapping as many operations as possible while
sharing the multiplier and adder, the total time to evaluate the member is 23 cycles. Now repeat for the
other member, yielding a cumulative delay of 46 cycles. But note that operations performed in evaluating
the first member can partially overlap operations evaluating the second. So in fact, both members can be
evaluated in 43 cycles.

In related work [44], we give simulation results on this problem and contrast the results to those from
a software implementation of Goldberg’s SGA.

4.2 Logic Partitioning

Sitkoff et al. [46] have proposed a scheme to apply GAs to the problem of partitioning logic designs across
two FPGAs. A design is comprised of ¢ components and a particular partitioning (population member)
is represented by a c-bit string P, where the ith bit is 1 if and only if component 7 lies in FPGA 1.
Accompanying this bit string is a set of c-bit strings /V;, one per inter-component net in the design, where
the #th bit of N; is 1 if and only if component ¢ is connected to N;. So net j lies in FPGA 1 of partition
P if one of the bits in P A N; is 1, where A is the bitwise AND operator. Likewise, net j lies in FPGA 2
of partition P if one of the bits in P A N, is 1, where P is the bitwise not of P. Thus, a net j crosses a
chip boundary if and only if some bit from P A N; is 1 and some bit from P A N; is 1. This can easily be
determined with combinational logic. A partition’s fitness is then the total number of boundary crossings.
This fitness function can easily be evaluated in hardware, just like in Sitkoff et al.’s work. The nets N;
used to evaluate each P are the same for each P, so they can be permanently stored in the FM. Since the
number of potential nets is exponential in ¢, the nets N; might need to be stored in some memory attached
to the F'M.

This approach can be generalized to an arbitrary (but bounded) number of FPGAs I as follows
(Figure 3). First store P in c registers, each with [log, F'] bits. Each register represents which of the F
FPGAs its corresponding component lies in. Then for each net N;, a counter initializes itself to 0 and
cycles through all integer values v € [0, F']. For each value v, compare it to P, (the index of the FPGA
holding component ¢) for all 7. If they are equal, then component ¢ lies in FPGA v in partition P. Now
logically AND this result with the 7th bit of N;. If this result is 1, then N; lies at least in part on FPGA
v. The results for all 7 are logically ORed yielding a single bit indicating if N; lies in FPGA v. This result
is fed into an accumulator which counts the number of FPGAs that N; lies in. After looping through all
values of v € [0, /], the accumulator is checked. If it holds a value > 1, then N; crosses a chip boundary.
Repeat this process for all N;. The fitness of P is as defined before.

This scheme will work if F’ is a constant known a priori. In addition to some control logic, its hardware
requirements are as follows. To store P, we need c registers, each of size [log, F']. One ([log, F'])-bit
counter is required to cycle through the values v. The counter output will be fed into ¢ ([logy F'])-bit
comparators, each comparator taking its other input from one of the registers storing part of P. Each

YFor arbitrary = > 0, 2im can be found with a binary search, repeatedly subtracting 2’7 from & for j ranging from
[log,(z/7)| down to 1. After each subtraction, if the result > 0, put j in a set S and continue. If the result < 0, then add 2’ =
back to z and continue. When finished, 2:7 = ”Z]es 27, If initially # < 0, then perform a similar process, but repeatedly

add 2'7 to x and test if the result is < 0. When finished, = Z]es 27 yields a quantity between —27 and 0. Now add 27 to
this quantity.

12

P (each rlong—| bitswide)%

P P, Pea Pe [log, F | - bit counter

i accumul ator

| \ OR of all but LSB
(|_Iog2 F | bits) §) indicates accumulator >1

Figure 3: Circuit to evaluate a general F-way partition.

comparator’s output is fed into one of ¢ 2-input AND gates along with one value from the c-bit register
storing N;. The outputs of these AND gates feed into one c-input OR gate, whose output enters a
([logy F'])-bit accumulator. After cycling through all the vs, all bits except the lowest order one of the
accumulator are fed into a ([log, '] — 1)-input OR gate to determine if the accumulator’s value is > 1.
This output activates a final accumulator (not shown in Figure 3) that counts the number of inter-chip
nets in P. The width of this accumulator is at most [log, n], where n is the number of nets in the design.
Note that [log, n] < ¢ since n < 2°. Finally, a table of the N;s (not shown in Figure 3) is needed either
in a bank of registers or in an off-chip memory. In this scheme, the time to evaluate two members is
approximately 2 - n - [logy F'].

There is a potential difficulty of generating invalid partitions if bitwise crossover and mutation are used
when F < 2M°% 1 This is because a value could appear in P; that is > F, defining an invalid partition.
This can be remedied by requiring that the initial population be valid, crossover respects the boundaries
between bit groups, and that mutation only maps a bit group into a valid bit group.

Finally, note that given the net specification of a circuit, the set of vectors /V; and the fitness evaluation
hardware can be automatically generated by software. So the user’s work can be limited to specifying the
components and nets of the circuit.

4.3 Hypergraph Partitioning

A GA approach to the hypergraph partitioning problem by Chan and Mazumder [16] uses a fitness function
similar to that described in Section 4.2. After counting the number of nets that span the partition, this
value is divided by the product of the sizes of the two partitions. This is known as the ratio cut cost
and only involves a little extra work (the multiplication and division operations) beyond what is done in
Section 4.2. Thus the HGA is applicable to this problem. Also, as in Section 4.2, the fitness function can
be generalized to F-way partitioning where F’ is arbitrary but known a priori.

4.4 Test Vector Generation

When fabricating VLSI chips, occasionally the process introduces faults into the chip, causing incorrect
functionality. Thus it is desirable to detect the faulty chips before packaging and shipping them to cus-

13

tomers. Since the chip testers typically only have access to the inputs and outputs of the chip (not the
internal structure), the only way to detect faults is by applying a test vector to the inputs and then contrast
the output with the expected output (i.e. the output that would be produced by a fault-free circuit). If
they differ, then the chip is faulty and is rejected. If they do not differ, then the other test vectors are
applied. If the chip passes all the tests, the chip is accepted. The goal is to generate the smallest set of
test vectors that still detects most (or all) possible faults in the chip.

In this section we focus on the single stuck-at fault model. In this model any faulty circuit has only a
single fault, and the fault is of the following form: some wire in the circuit is permanently stuck at 0 (e.g.
the wire is short-circuited to ground) or 1 (e.g. the wire is short-circuited to power). See Abramovici et
al. [4] for more information on this and other fault models.

O’Dare and Arslan [38] have described a GA to generate test vectors for stuck-at fault detection in
combinational circuits (i.e. circuits with no memory). In their scheme, each population member is a single
test vector. The member’s fitness is evaluated on the basis of how many new faults it covers. The GA
maintains a global table which defines the current set of vectors. A vector is added to the table if it covers
a fault not already covered by another vector in the table. Using a software-based fault simulator, each
vector is evaluated by first applying it to a fault-free version of the circuit under test (CUT). Then each
node within the CUT is in turn forced to a logic 1 and a logic 0 to simulate the stuck-at faults. If the
circuit’s output differs from the fault-free output, then the vector detects the given fault. Each vector gets
a fixed number of points for each fault it covers that is not already covered by the test set, and it receives
a smaller number of points for each fault it covers that is already covered.

We now propose how to map O’Dare and Arslan’s fitness function to hardware for the HGA. Each
logic gate in the CUT is mapped to a pair of gates that allow simulation of stuck-at faults. Figure 4 gives
an example of this for an AND gate. To simulate the output ¢ as stuck at 0, both z and y are set to
0. To simulate ¢ stuck at 1, z is set to 0 and y is set to 1. To simulate fault-free behavior, z is set to 1
and y is set to 0. OR and NOT gates and the original inputs can be modified in a similar fashion. For
a circuit with n gates and m inputs, the new circuit has at most 2n 4+ 2m gates and at most 2n + 2m
extra inputs that are controlled by the fitness module. This hardware-based fault simulation component
of our proposed hardware implementation of O’Dare and Arslan’s fitness function is similar to hardware
accelerators designed for fault simulation [29, 58] and logic simulation [14, 39, 47].

Then fitness evaluation simply requires a look-up table of previously selected vectors and the faults that
they cover, a counter to cycle through all 2(m+n) possible stuck-at faults, an accumulator for the members’
scores, and some simple control logic. The time to evaluate a member is approximately the number of
faults plus one, so the time to evaluate two members is about 4(m + n) + 2. Finally, the mapping process
from the original circuit to the fitness evaluation hardware can be automated as in Section 4.2, relieving
the user of that responsibility.

e = D

Figure 4: An example of mapping a logic gate to a stuck-at fault simulation gate.

4.5 Traveling Salesman and Related Problems

Here we consider GA approaches to the traveling salesman problem (TSP), which poses special difficulties.
Using a straightforward encoding consisting of a permutation of cities encounters problems if conventional

14

crossover and mutation operators are used. This is because regular (or uniform) crossover, if it changes
anything, will create two invalid tours, i.e. some cities will appear more than once and some will not
appear at all. Thus much work in applying GAs to the TSP (e.g. [20, 22]) involve the use of special
crossover operators that preserve the validity of tours. This method can be used in the HGA but requires
modification of the CMM. In lieu of this, conventional crossover operators can be used in conjunction with
a special encoding of the population members. One such encoding is called a random keys encoding [11, 37].
In this encoding, each tour is represented by a tuple of random numbers, one number for each city, with
each number from [0,1]. After selecting a pair of tours, simple or uniform crossover can be applied,
yielding two new tuples. To evaluate these tuples, sort the numbers and visit the cities in ascending order
of the sort. For example, in a five-city problem the tuple (0.52,0.93,0.26,0.07,0.78) represents the tour
4—3 —1—5— 2. This tour can then be evaluated. Note that every tuple maps to a valid tour, so any
crossover scheme is applicable.

When employing this scheme, all that is required of the HGA’s 'M is, upon receiving a population
member, to sort the tuple and accumulate the distances between the cities of the tour. Sorting of the
numbers can be done with a sorting circuit based on the Odd-Even Merge algorithm [10]'6. For sorting n
numbers (i.e. for n-city tours), the depth of the sorting network is [log, n] ([logyn] + 1)/ 2. Each level of
the network has n registers and n/2 comparators'”. Also, a single set of n registers and n/2 comparators
can simulate the sorting network using some finite state logic and [logy n] ([logy n] + 1)/ 2 steps. Thus
the hardware requirements of the FM include some finite state logic, a linear number of registers and
comparators, and a lookup table that provides the inter-city distances (with O(n?) entries). In this case,
the time to evaluate two members is approximately [log, n] ([logy n] + 1).

Finally, we note that the scheme just presented can be adapted for application to other problems with
similar constraints as the TSP. These include scheduling problems, vehicle routing, and resource allocation
(a generalization of the 0-1 knapsack problem and the set partitioning problem) [11, 37]. The HGA can
be applied to these problems as well with a slight increase in complexity.

4.6 Other NP-Complete Problems

In this section we explore the exploitation of polynomial-time reductions between instances of NP-complete
problems. Developing a GA to solve any NP-complete problem (e.g. SAT, the boolean satisfiability prob-
lem) yields automatic solutions to all other NP-complete problems via the reductions. All that is required
is to (in software) map the instance of any NP-complete problem to SAT, apply the SAT (hardware-based)
GA to solve it, and then (in software) map the SAT solution to a solution of the original problem. Of
course, the GA must find an optimal solution (i.e. a satisfying assignment for a SAT instance) for this to
work. A fit member in the SAT GA may map to a worthless non-solution in another problem unless the
SAT member is optimal.

The idea of exploiting the reductions between NP-complete problems was studied extensively by DeJong
and Spears [18], who also provided a SAT GA and empirical results on the hamiltonian circuit (HC)
problem. Their SAT GA evaluates a population member by quantifying how “close” the bit string is to
satisfying the given boolean function f. They do this by assigning a numeric value to each expression in
f and combining them. Specifically, given boolean expressions ey, ..., ey, the fitness value of e;, denoted
val(e;), is given as follows for the operators AND (A), OR (V) and NOT (€;):

val(e; A -+ A eg) = avg(val(er), ..., val(es)),

val(eg V- -V es) = max(val(ey), ..., val(e)),

6 Also see an excellent description by Leighton [30].
" The size of each register and comparator depends on the desired precision of the numbers in the tuples, but should be at
least log, n bits.

15

and
val(€) =1 — val(e;),

where avg(zy,...,2¢) returns the mean of the values z1,...,z¢. An example of these evaluation functions
appears in Table 1. Notice in the table that an assignment has a fitness of 1.0 if and only if it satisfies
f. This is true in general if f satisfies some simple conditions'®. While improvements to these evaluation
functions were suggested, empirically those described above performed well in the work of DeJong and
Spears and are simple enough for a hardware implementation.

Table 1: Evaluating assignments for z; and 23 in the SAT GA when attempting to satisfy f(z1,22) =
fl A (561 V mg).

r1 x2 | val(f(zy,22)) = avg(l — 21, max(zy, 22))
0 0 avg(l — 0, max(0,0)) = 0.5
0 1 avg(l — 0, max(0,1)) = 1.0
1 0 avg(l — 1, max(1,0)) = 0.5
1 1 avg(l — 1, max(1,1)) = 0.5

A hardware GA implementation for the SAT GA could work as follows. Take the given boolean formula
f and map it to a circuit consisting of AND, OR and NOT gates where each AND and OR gate has only
two inputs. Then replace each inverter in the circuit with a module that subtracts its input from the
constant 1, replace each OR gate with a module that outputs the maximum of its two inputs, and replace
each AND gate with a module that adds its two inputs and right shifts the result by one bit. The result
is a circuit that outputs the fitness of the input binary string. The number of gates in the new circuit is
more than in the old circuit by only a linear factor of the precision (number of bits) used to represent the
fitnesses. Thus an HGA implementation of the SAT GA is feasible.

5 Extensions of the Design

There are many possible ways to extend the design of Section 3, many of which require only simple
modifications to the VHDL code. First, other genetic algorithm operators could be implemented, including
uniform crossover [48], multi-point crossover, and inversion [20]. Permutation-preserving crossover and
mutation operators [20, 22] could be implemented for constrained problems such as the TSP. Additionally,
the CMM could be parameterized to respect the boundaries of bit groups, i.e. only permit crossover at
certain locations. This would be useful in preventing invalid strings in the generalized FPGA partitioning
(Section 4.2) and hypergraph partitioning (Section 4.3) problems. Also, other selection methods [21] could
be implemented. When implemented, these methods would be made available to the user via the software
front end. The user would select the desired selection and crossover methods as HGA parameters. Also
recall from Section 3 that if other GA termination conditions are desired besides running for a fixed number
of generations (e.g. amount of population diversity, minimum average fitness), the front end can tell the
HGA to run for a fixed number of generations and then check the resultant population to see if it satisfies
the termination criteria. If not, then that population is retained in the HGA’s memory for another run.
This process repeats until the termination criteria are satisfied.

Another extension of this design involves allowing parallelization of the fitness modules. This is useful
when the pipeline’s bottleneck lies in the FM rather than the SM [44]. As mentioned in Section 3.5.7,

8 These conditions are not listed here, but any boolean formula can be made to satisfy them with only a linear increase in
its size.

16

a new module called the memory writer (MW) would be very useful for arbitrating memory writes and
performing bookkeeping functions, e.g. maintaining the values numgens and psizetmp.

To extend the parallelization of the system, the SM-CMM-FM pipeline could be parallelized by repli-
cating the highlighted portion (dotted box) of Figure 1. As with the parallel FM configuration mentioned
above, an MW would be useful in this scheme. Other improvements include merging the PS with the
MIC and changing the handshaking protocol of Section 3.4 to take fewer clock cycles. These reductions of
communication delay should improve performance.

If the population members are extremely large (e.g. hundreds or thousands of bits), then it is unrealistic
to send entire members between modules in parallel. Instead the modules could process data in stream
form, where processing begins when the first few bits arrive in the module and output begins while input
and processing still occur. That is, the result of processing the first portion of input is sent to the next
module before the rest of the input arrives. So the members travel in a “cut-through” fashion through each
module rather than the “store-and-forward” fashion of Section 3. In the stream model, the SM operates
on members’ addresses and fitnesses rather than on the members themselves and their fitnesses. Once a
pair of members is selected, the SM tells the CMM the addresses of the selected members. The CMM
then fetches these members from memory and begins sending them to the F'M, performing crossover and
mutation while it transmits. If fitness function evaluation can begin before receiving the entire member,
then as it evaluates the member, the I'M begins to write it into memory before evaluation or input is
complete. If this is not possible, then multiple passes over the members is necessary for evaluation, so
on-chip buffers are required.

6 Summary and Related Work

This paper described the HGA, a general-purpose VHDL-based genetic algorithm intended for a hardware
implementation. The design is parameterized, facilitating scaling. It is possible to implement the HGA
on reprogrammable FPGAs, exploiting the speed of hardware while retaining the flexibility of a software
implementation. The result is a general-purpose GA engine which is useful in many applications where
software-based GA implementations are too slow, e.g. when real-time constraints apply.

Recently there has been more work on hardware-based GAs. Other VHDL GA implementations include
Alander et al. [6] and Graham and Nelson [22]. Salami and Cain applied the design of this paper to
the problems of finding optimal gains for a proportional integral differential (PID) controller [41] and
optimization of electricity generation in response to demand [42]. Additionally, Tommiska and Vuori [49]
implemented a GA with Altera HDL (AHDL) for implementation on Altera FLEX 10K FPGAs [7].

A subset of the GA operations have been mapped to hardware by Liu [31], who designed and simulated
a hardware implementation of the crossover and mutation operators. In similar work, Red’ko et al. [40]
developed a GA which implemented crossover and mutation in hardware. Hesser et al. [25] implemented in
hardware crossover, mutation, and a simple neighborhood-based selection routine. Himaldinen et al. [23]
designed the genetic algorithm parallel accelerator (GAPA), which is a tree structure of processors for
executing a GA. The GAPA is a parallel GA with specialized hardware support to accelerate certain
operations. Sitkoff et al. [46] designed a hardware GA for partitioning logic designs across Xilinx FPGAs.
After running the GA in software, the bottleneck was determined to be in evaluation of the fitness function.
Thus parallel fitness evaluation modules were implemented on FPGAs and the remainder of the GA ran
in software. Megson and Bland [32] present a design for a hardware-based GA that implements all the GA
operations except fitness evaluation in a pipeline of seven systolic arrays.

Problem-specific (non-FPGA) implementations include a suite of proprietary GAs in a text compres-
sion chip from DCP Research Corporation [55]. Other examples include Turton et al.’s applications to
image processing [50], image registration [52], disk scheduling [51], and Chan et al.’s application to hyper-
graph partitioning [16]. These GAs were designed for implementation on VLSI chips and thus are neither
reconfigurable nor general-purpose. They are also expensive to produce in small quantities. However, the

17

intended applications are popular, so a VLSI implementation seems justifiable since the systems can be
produced in bulk.

References

[1] Darwin on a chip. The Fconomist, page 85, February 1993.

[2] VHDL International Users Forum (VIUF), 1997. http://www.vhdl.org/viuf.

[3] VHDL UK. A communication network for VHDL users, 1997. http://www.vhdluk.org/.

[4] M. Abramovici, M. A. Breuer, and A. D. Friedman. Digital Systems Testing and Testable Design.
AT&T Bell Laboratories and W. H. Freeman and Company, New York, New York, 1990.

[5] Advanced Micro Devices. Bipolar Microprocessor and Logic Interface (Am29000 Family) Data Book,
1985. http://www.amd.com/.

[6] J. T. Alander, M. Nordman, and H. Setild. Register-level hardware design and simulation of a genetic
algorithm using VHDL. In P. Osmera, editor, Proceedings of the 1st International Mendel Conference
on Genetic Algorithms, Optimization, Fuzzy Logic and Neural Networks, pages 10-14, 1995.

[7] Altera Corporation, San Jose, California. Flex 10k Embedded Programmable Logic Family, 1996.
http://www.altera.com/.

[8] J. M. Arnold, D. A. Buell, and E. G. Davis. Splash 2. In Proceedings of the jth Annual ACM
Symposium on Parallel Algorithms and Architectures, pages 316-324, June 1992.

[9] P. M. Athanas and H. F. Silverman. Processor reconfiguration through instruction-set metamorphosis.
IFEE Computer, 26(3):11-18, March 1993.

[10] K. Batcher. Sorting networks and their applications. In Proceedings of the AFIPS Spring Joint
Computing Conference, volume 32, pages 307-314, 1968.

[11] J. Bean. Genetics and random keys for sequencing and optimization. ORSA Journal on Computing,
6:154-160, 1994.

[12] P. Bertin, D. Roncin, and J. Vuillemin. Programmable active memories: A performance assessment.
In G. Borriello and C. Ebeling, editors, Research on Integrated Systems: Proceedings of the 1993
Symposium, pages 88-102, 1993.

[13] S. D. Brown, R. J. Francis, J. Rose, and Z. G. Vranesic. Field-Programmable Gate Arrays. Kluwer
Academic Publishers, Boston, Massachusetts, 1992.

[14] C. Burns. An architecture for a Verilog hardware accelerator. In Proceedings of the IEEFE International
Verilog HDL Conference, pages 2—11, February 1996.
http://www.crl.com/www/users/cb/cburns/.

[15] S. Casselman. Virtual computing and the virtual computer. In R. Werner and R. S. Sipple, editors,
Proceedings of the IEEE Workshop on FPGAs for Custom Computing Machines, pages 43-48. IEEE
Computer Society Press, April 1993. http://www.vcc.com/.

[16] H. Chan and P. Mazumder. A systolic architecture for high speed hypergraph partitioning using a
genetic algorithm. In X. Yao, editor, Progress in Fvolutionary Computation, pages 109-126, Berlin,
1995. Springer-Verlag. Lecture Notes in Computer Science number 956.

18

[17] H. de Garis. An artificial brain. New Generation Computing, 12:215-221, 1994.

[18] K. A. De Jong and W. M. Spears. Using genetic algorithms to solve NP-complete problems. In J. D.
Schaffer, editor, Proceedings of the Third International Conference on Genetic Algorithms, pages 124—
132. Morgan Kaufmann Publishers, Incorporated, June 1989.

[19] M. Gokhale, W. Holmes, A. Kosper, S. Lucas, R. Minnich, D. Sweely, and D. Lopresti. Building and
using a highly parallel programmable logic array. IEEE Computer, 24(1):81-89, January 1991.

[20] D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley
Publishing Company, Incorporated, Reading, Massachusetts, 1989.

[21] D. E. Goldberg and K. Deb. A comparative analysis of selection schemes used in genetic algorithms.
In G. Rawlings, editor, Foundations of Genetic Algorithms, pages 69-93, 1991.

[22] P. Graham and B. Nelson. A hardware genetic algorithm for the traveling salesman problem on Splash
2. In 5th International Workshop on Field-Programmable Logic and its Applications, pages 352-361,
August 1995. http://splish.ee.byu.edu/.

[23] T. Hamaldinen, H. Klapuri, J. Saarinen, P. Ojala, and K. Kaski. Accelerating genetic algorithm
computation in tree shaped parallel computer. Journal of Systems Architecture, 42(1):19-36, August
1996.

[24] J. P. Hayes. Computer Architecture and Organization. McGraw-Hill Book Company, New York, second
edition, 1989.

[25] J. Hesser, J. Ludvig, and R. Manner. Real-time optimization by hardware supported genetic algo-
rithms. In P. Osmera, editor, Proceedings of the 2nd International Mendel Conference on Genetic
Algorithms, Optimization, Fuzzy Logic and Neural Networks, pages 52-59, 1996.

[26] T. Higuchi, H. Iba, and B. Manderick. Evolvable hardware. In H. Kitano and J. A. Hendler, editors,
Massively Parallel Artificial Intelligence, pages 398-421. MIT Press, 1994.

[27] H. Hogl, A. Kugel, J. Ludvig, R. Manner, K.-H. Noffz, and R. Zoz. Enable++: A second generation
FPGA processor. In Proceedings of the IEEF Symposium on FPGAs for Custom Computing Machines,
pages 45-53, April 1995. http://www-mp.informatik.uni-mannheim.de/.

[28] P. D. Hortensius, H. C. Card, and R. D. McLeod. Parallel random number generation for VLSI using
cellular automata. IFEF Transactions on Computers, 38:1466-1473, October 1989.

[29] S. Kang, Y. Hur, and S. A. Szygenda. A hardware accelerator for fault simulation utilizing a recon-
figurable array architecture. VLSI Design, 4(2):119-133, 1996.
http://www.ece.utexas.edu/ece/people/profs/Szygenda.html.

[30] F. T. Leighton. [Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes.
Morgan Kaufmann Publishers, Incorporated, San Mateo, California, 1992.

[31] J. Liu. A general purpose hardware implementation of genetic algorithms. Master’s thesis, University
of North Carolina at Charlotte, 1993.

[32] G. M. Megson and 1. M. Bland. A generic systolic array for genetic algorithms. Technical report,
University of Reading, May 1996.
http://www.cs.rdg.ac.uk/cs/research/Publications/reports.html.

19

[33] Mentor Graphics Corporation, Wilsonville, Oregon. Mentor Graphics VHDL Reference Manual, 1994.
http://www.mentorg.com/.

[34] Mentor Graphics Corporation, Wilsonville, Oregon. VHDL Style Guide for AutoLogic II, 1995.
http://www.mentorg.com/.

[35] Mentor Graphics Corporation, Wilsonville, Oregon. Synthesizing with AutoLogic I1, 1996.
http://www.mentorg.com/.

[36] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs. Springer-Verlag, Berlin,
second edition, 1994.

[37] B. Norman and J. Bean. Random keys genetic algorithm for job shop scheduling. Engineering Design
and Automation, to appear. http://www-personal.engin.umich.edu/" jbean/.

[38] M. J. O’Dare and T. Arslan. Hierarchical test pattern generation using a genetic algorithm with a
dynamic global reference table. In Proceedings of the First IEE/IEEE International Conference on
Genetic Algorithms in Engineering Systems: Innovations and Applications, pages 517-523, September
1995. http://vlsi2.elsy.cf.ac.uk/group/.

[39] Precedence, Incorporated, Campbell, California. Product Brief, 1996. http://www.precedence.com/.
[40] V. G. Red’ko, M. 1. Dyabin, V. M. Elagin, N. G. Karpinskii, A. I. Polovyanyuk, V. A. Serechenko,

and O. V. Urgant. On microelectronic implementation of an evolutionary optimizer. Russian Mi-
croelectronics, 24(3):182-185, 1995. Translated from Mikroelektronika, vol. 24, no. 3, pp. 207-210,
1995.

[41] M. Salami and G. Cain. An adaptive PID controller based on a genetic algorithm processor. In
Proceedings of the First IEE/IEEE International Conference on Genetic Algorithms in Engineering
Systems: Innovations and Applications, pages 88-93, September 1995.

[42] M. Salami and G. Cain. Multiple genetic algorithm processor for the economic power dispatch problem.
In Proceedings of the First IEE/IEEFE International Conference on Genetic Algorithms in Engineering
Systems: Innovations and Applications, pages 188-193, September 1995.

[43] E. Sanchez and M. Tomassini, editors. Towards FEvolvable Hardware: The Fvolutionary Engineering
Approach. Springer-Verlag, Berlin, 1996. Lecture Notes in Computer Science number 1062.

[44] S. D. Scott, S. Seth, and A. Samal. A hardware engine for genetic algorithms. Technical Report
UNL-CSE-97-001, University of Nebraska-Lincoln, July 1997.
ftp://ftp.cse.unl.edu/pub/TechReps/UNL-CSE-97-001.ps.gz.

[45] M. Serra, T. Slater, J. C. Muzio, and D. M. Miller. The analysis of one-dimensional linear cellular
automata and their aliasing properties. IFEFE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 9(7):767-778, July 1990.

[46] N. Sitkoff, M. Wazlowski, A. Smith, and H. Silverman. Implementing a genetic algorithm on a parallel
custom computing machine. In IFEFE Symposium on FPGAs for Custom Computing Machines, pages
180-187, April 1995. http://www.lems.brown.edu/arm/.

[47] Synopsys, Incorporated, Mountain View, California. ARKOS Datasheet, 1997.
http://www.synopsys.com/.

[48] G. Syswerda. Uniform crossover in genetic algorithms. In Proceedings of the Third International
Conference on Genetic Algorithms and their Applications, pages 2-9, 1989.

20

[49]

[51]

[53]

[54]

[55]

[56]
[57]

[58]

M. Tommiska and J. Vuori. Implementation of genetic algorithms with programmable logic devices.
In J. T. Alander, editor, Proceedings of the Second Nordic Workshop on Genetic Algorithms and their
Applications (2NWGA), pages 71-78, August 1996.
http://www.uwasa.fi/cs/publications/2NWGA .html.

B. C. H. Turton and T. Arslan. An architecture for enhancing image processing via parallel genetic
algorithms & data compression. In Proceedings of the First IEE/IEEE International Conference on
Genetic Algorithms in Engineering Systems: Innovations and Applications, pages 337-342, September
1995. http://vlsi2.elsy.cf.ac.uk/group/.

B. C. H. Turton and T. Arslan. A parallel genetic VLSI architecture for combinatorial real-time
applications—disc scheduling. In Proceedings of the First IEE/IEEE International Conference on
Genetic Algorithms in Engineering Systems: Innovations and Applications, pages 493-499, September
1995. http://vlsi2.elsy.cf.ac.uk/group/.

B. C. H. Turton, T. Arslan, and D. H. Horrocks. A hardware architecture for a parallel genetic
algorithm for image registration. In Proceedings of the IFE Colloguium on Genetic Algorithms in Image
Processing and Vision, pages 11/1-11/6, October 1994. http://vlsi2.elsy.cf.ac.uk/group/.

J. E. Volder. The CORDIC trigonometric computing technique. IRFE Transactions on Electronic
Computers, EC-8:330-334, September 1959.

M. Wazlowski, A. Smith, R. Citro, and H. F. Silverman. Armstrong IIl: A loosely-coupled parallel
processor with reconfigurable computing capabilities. Technical report, Brown University, 1996.
http://www.lems.brown.edu/arm/.

L. Wirbel. Compression chip is first to use genetic algorithms. Flectronic Engineering Times, page 17,
December 1992.

S. Wolfram. Universality and complexity in cellular automata. Physica, 10D:1-35, 1984.

Xilinx, Incorporated, San Jose, California. The Programmable Logic Data Book, 1996.
http://www.xilinx.com/.

Zycad Corporation, Fremont, California. Paradigm XP Product News, 1996. http://www.zycad.com/.

21

