
A Fast On-Chip Profiler Memory  
Roman Lysecky, Susan Cotterell, Frank Vahid* 

Department of Computer Science and Engineering 
University of California, Riverside 

{rlysecky, susanc, vahid}@cs.ucr.edu, http://www.cs.ucr.edu/~vahid 
*Also with the Center for Embedded Computer Systems at UC Irvine 

 
ABSTRACT 
Profiling an application executing on a microprocessor is part of 
the solution to numerous software and hardware optimization and 
design automation problems. Most current profiling techniques 
suffer from runtime overhead, inaccuracy, or slowness, and the 
traditional non-intrusive method of using a logic analyzer doesn’t 
work for today’s system-on-a-chip having embedded cores. We 
introduce a novel on-chip memory architecture that overcomes 
these limitations. The architecture, which we call ProMem, is 
based on a pipelined binary tree structure. It achieves single-cycle 
throughput, so it can keep up with today’s fastest pipelined 
processors. It can also be laid out efficiently and scales very well, 
becoming more efficient the larger it gets. The memory can be 
used in a wide-variety of common profiling situations, such as 
instruction profiling, value profiling, and network traffic profiling, 
which in turn can be used to guide numerous design automation 
tasks.  

Categories and Subject Descriptors 
B.3.0 [Memory Structures]: General. 

General Terms 
Performance, Design. 

Keywords 
Profiling, system-on-a-chip, platform tuning, adaptive 
architectures, low power, embedded CAD, binary tree, memory 
design, embedded systems. 

1. INTRODUCTION 
Profiling an application executing on a microprocessor is a 
technique needed to solve a wide variety of optimization problems. 
In the domain of computing, profiling generally means to 
determine the relative frequency of code regions of interest as a 
program executes, ranging from fine-grained items like individual 
statements or basic blocks, to coarser-grained items such as loops 
or subroutines. The term has also been used to refer to determining 
the relative frequencies of values that a variable takes on during 
program execution. 

Profiling appears as part of the solution for a tremendous 
variety of program and hardware optimization and design 
automation problems. For example, profiling has long been used to 
find the most frequently executed subroutines of an application, so 

that a programmer might focus on optimizing those subroutines 
[10]. Profiling has been used in compilers to map frequently 
executed code and data to non-interfering cache regions [15] to 
improve performance. The approach in [8] proposes using 
profiling to generate alternate subroutine versions for common 
cases, with the program then using run-time profiling to pick the 
best version. Likewise, the approach in [14] uses profiling 
information to synthesize hardware optimized to the most common 
situations. Dynamic binary translation methods profile in order to 
store the translation results of frequent code regions, for improved 
performance as well as power [13], while dynamic optimization 
methods search for the hottest blocks for runtime recompilation 
[3]. The approaches in [4][9] use profiling to detect frequent loops 
to map to a special address region that an architecture would then 
map to a small low-power loop cache, while the approach in [12] 
compresses those regions to reduce memory traffic and hence 
power. The approach in [6] profiles values of variables or 
subroutine parameters to detect pseudo-constants that can aid a 
compiler in optimizing for performance, or even for reduced 
energy [7]. 

Most previous profiling approaches, being intended for 
desktop computing systems, introduce runtime overhead. In 
particular, either they insert additional code into the application 
binary, or they interrupt the processor at particular intervals to 
sample the processor’s registers. However, for embedded systems, 
runtime overhead is often not acceptable, since very tight real-time 
constraints must be met. Thus, embedded system designers in the 
past relied on logic analyzers to non-intrusively profile an 
executing application – though even this was cumbersome and 
hence not a common feature in design automation techniques. 

The trend of increasing chip transistor capacity has led to 
systems-on-a-chip (SOCs). While providing tremendous 
advantages in terms of cost, size, performance and power, SOCs 
have the drawback of low accessibility to the internal components. 
Thus, logic analyzer probes cannot be connected to arbitrary buses 
inside the SOC to achieve profiling. Although SOCs typically 
come with means for accessing internal registers through external 
pins (e.g., using the JTAG standard [11]), such access is 
accomplished by stopping normal application execution and then 
serially scanning the register contents in or out. This access 
approach incurs large runtime overhead, being intended for test 
and debug purposes rather than profiling. 

Fortunately, the same transistor capacity trend that has led to 
SOCs has enabled hardware-based approaches to profiling. While 
on-chip profiling hardware in the past has been limited to high-
volume high-performance microprocessors, such hardware can 
today be added to embedded system prototyping platforms.  
Platforms [16][18] are predesigned SOCs targeted to particular 
application domains, like set-top boxes, network switches, digital 
cameras, etc. While some platforms are oriented towards 
implementation in actual products, others are intended specifically 
for prototyping. These prototype-oriented platforms are 
intentionally designed larger than necessary, to accommodate the 
widest possible range of applications. Thus, adding a relatively 

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. 
DAC 2002, June 10-14, 2002, New Orleans, Louisiana, USA. 
Copyright 2002 ACM 1-58113-461-4/02/0006…$5.00. 



small amount of hardware would likely not be an issue, especially 
since such platforms are specifically designed for use during the 
design stage, when profiling would be most needed. 

Designing the additional hardware that profiles the executing 
application non-invasively yet accurately is non-trivial, since 
updating profile counts fast enough is hard. Existing fast memory 
designs, even advanced content-addressable memories, have 
several limitations (which we will describe). Thus, prior profiling 
hardware typically only counted easy to detect events (like a cache 
miss) or could be configured to detect only one particular pattern 
on a bus (like a specific address). 

 We therefore have developed a memory architecture 
specifically intended for profiling. The profiler memory can be 
used to keep counts of hundreds or thousands of bus patterns 
simultaneously, in contrast to previous profiler hardware. Yet, the 
memory has a simple interface to the bus it is monitoring, is very 
size efficient, and can be composed from a collection of standard 
register files or memories surrounded by a small amount of 
additional logic. By using a novel pipelined binary tree 
architecture, our profiler memory achieves single-cycle 
throughput, meaning complete accuracy even when monitoring 
very fast sequences of patterns, such as the address bus of modern 
processors that fetch one instruction per cycle. The binary tree is 
implemented with a separate module for each tree level, and thus 
scales well, becoming even more efficient the larger it gets. 

In this paper, we define the on-chip profiling problem and 
discuss related work. We introduce our profiler memory 
architecture, and describe its use. We show how the memory’s 
modular structure results in timing and area efficient layouts for 
any size memory. We provide data on the memory’s size and 
performance, and illustrate its use on several benchmarks. 

2. PROBLEM DEFINITION 
Code profiling requires that we count the frequency of target 
addresses appearing on a microprocessor’s address bus, during 
some given period. We assume that the set of target addresses has 
been given to us. They could correspond to statements, blocks, 
loops, subroutines, variables, arrays, or any combination thereof. 
Our approach is independent of how these addresses are selected, 
what they represent, or how they will be used.  

We assume the address bus being monitored contains the 
actual addresses of interest, meaning we are monitoring the bus 
before any translation to cache addresses (if a cache exists). We 
also assume that virtual memory is not being used (the common 
case in embedded systems), so that the physical addresses on the 
address bus need not be translated further to virtual addresses. We 
assume target addresses could appear every clock cycle. We 
assume the profiling circuit operates at the same (or lower) clock 
frequency than the bus being monitored. Specifically, we do not 
assume that the profiling circuit has the luxury of running at a 
higher clock frequency.  

We state the problem generally as follows.  We must monitor a 
given bus B, having a width w, for a period of M clock cycles. 
During each cycle t, a pattern pt appears on B, thus forming an 
input pattern set P={p1, p2, ... pM}. A pattern is simply a 
combination of w 0s and 1s on the bus. We are given a target 
pattern set TP={tp1, tp2, ... tpn}; each target pattern is a 
combination of w 0s and 1s. Our goal is to maintain a set of target 
pattern counts C={ctp1, ctp2, ... ctpn}, such that ctpi equals the 
numbers of times pattern tpi was seen on B during the period M. 
Specifically: 

This more general problem formulation can also represent 
problems other than code profiling. For example, the bus B might 
consist of both an address bus and data bus, so that we might 
perform value profiling of a set of variables. The bus could 
correspond to an internal bus of a router chip, for which we might 
want to profile the traffic to determine the most common 
destinations, to optimize their routing table lookup speed [20].  

We assume our method of monitoring and counting must be 
non-intrusive. In other words, we cannot introduce extra clock 
cycles or change the patterns occurring over bus B. Non-
intrusiveness is important in embedded systems, since hard real-
time constraints often must be met, and precise timing of 
input/output operations is often imperative. Increasing runtime by 
even the smallest amount can lead to constraint violations, 
radically different system behavior, and/or system failure.  

3. PROFILING APPROACHES 
We can view the general solution to the profiling problem as 
involving three parts: detecting patterns, checking if detected 
patterns match a target pattern, and updating the target pattern 
counts when a match is found. We categorize solution approaches 
into two categories: software-based and hardware-based. 

3.1 Software-Based Profiling 
Software-based profiling approaches use the instruction-execution 
resources of the processor itself to solve the profiling problem.  

A common software-based approach involves "instrumenting" 
the application by adding code to count frequencies of the desired 
code regions [10]. For example, if we wish to count the frequency 
of execution of a subroutine, we can add code to the beginning of 
the subroutine that increments a counter variable declared for that 
subroutine. This approach is straightforward and flexible, yet 
incurs significant runtime overhead, especially if the granularity of 
the code regions being profiled is fine. There are additional 
problems with this approach in an embedded system. For example, 
the additional code increases code size, which may not be 
allowable if the non-instrumented program already used all the 
program memory (a common situation). The additional code may 
also cause register spills, thus further modifying program behavior. 
Furthermore, instrumenting requires a special compiler or a post-
compilation binary instrumentation tool. 

To reduce runtime overhead, other profiling approaches use 
sampling techniques [1][8]. Such methods interrupt the 
microprocessor at certain intervals, and then read the program 
counter and other internal registers. These methods tradeoff 
accuracy for reduced overhead. However, in embedded systems, 
even the reduced overhead may not be acceptable. Furthermore, 
while the overhead may be reduced, the disruption of runtime 
behavior during the interrupt itself can be very significant in a 
real-time system. A related method assumes the existence of a 
multi-tasking operating system. These methods add an additional 
task to perform profiling, in place of an interrupt [22]. However, 
the disadvantages are the same as the interrupt approach.  

 Others use a simulation-based approach to profiling [5]. The 
application is run on an instruction-set simulator, with the 
simulator keeping track of profile information. While accurate, this 
approach is extremely slow, especially when simulating a system-
on-a-chip. Simulating an application for several hours may cover 
only a few seconds of real time, so this may not exercise realistic 
code execution. Furthermore, setting up such simulations can be 
difficult if not impossible for embedded systems, due to the 
complex external environments that must also be modeled.   

∑
= 






 =

=
M

t

it
i otherwise

tppif
ctp

1         ,0
          ,1



3.2 Hardware-Based Profiling 
Due to the above limitations, embedded system designers have 
often resorted to using a logic analyzer, where the analyzer’s 
probes are placed directly on the bus to be monitored. The logic 
analyzer can store a pattern trace, which can be later processed to 
derive profile information. To avoid the problem of enormous 
traces filling up available trace memory, certain patterns can be 
programmed into the analyzer, which the analyzer uses to trigger 
trace storage for a given period. To perform profiling as we 
defined earlier, one could simply input the target patterns as 
triggering patterns. However, a drawback of logic analyzers is 
their high cost and their ineffectiveness in the era of SOCs. 

Some microprocessors include on-chip hardware to assist 
software developers to profile an executing program [19][21]. 
Such hardware consists primarily of event counters. Monitored 
events typically include cache misses, pipeline stalls, branch mis-
predictions, and so on. Some counters may be configured to detect 
a particular bus address, but there are typically only a few of these 
since having many of them would be costly in terms of size. Thus, 
the programmer must dynamically reconfigure those counters 
during program execution to obtain a more complete profile. Not 
only can this lead to inaccuracy, but also reconfiguring those 
counters requires additional software instructions, thus bringing us 
back to some of the problems with software-based profiling.  

Recently, a programmable coprocessor for profiling has been 
proposed, primarily intended to detect performance-related events 
in high-performance processors [23]. The memory we propose 
could be used in conjunction with such a coprocessor to be able to 
detect large pattern sets on a bus. 

A hardware technology that might seem to solve the problem 
of detecting patterns in large pattern sets is content-addressable 
memories (CAM). CAMs provide fast searches for a key in a large 
data set. Given the data, a CAM returns the address at which the 
key (data) resides in a memory. There are several CAM 
implementation types. One type uses a fully associative memory, 
which simultaneously compares every location with the key. Fully 
associative memories do not scale well to larger memories – they 
become very large and difficult to place and route due to all the 
comparison logic, and their access time increases due to the high 
capacitive load involved in sending the key to all memory 
addresses simultaneously. Thus, newer versions of CAMs use a 
regular static or dynamic RAM coupled with a smart controller. 
The controller implements an efficient lookup data structure in the 
memory, such as a binary tree, or a Patricia Trie [20]. Lookups of 
binary trees are of the order of log of the number of data items, 
while lookups for a Patricia Trie are linear with respect to the 
number of characters (or bits) in the key.   

CAMs thus do not satisfy our goals for a profiler memory. 
While CAMs built using fully associative memories may have 
single-cycle access time, they do not scale well to larger target 
pattern sets. On the other hand, CAMs built from regular RAM 
require multiple cycles for lookup, which does not support the 
situation where target patterns appear on the bus on every cycle. 

Likewise, hash tables do not satisfy the goal either, since they 
require multiple cycles to compute the hashing function, and may 
require additional cycles in case of a collision. Finally, approaches 
that queue the input patterns only help if such input does not 
appear on every cycle. 

4. A SELF-PROFILER MEMORY 
ARCHITECTURE 
The key to building an efficient self-profiler memory is to 
recognize that we do not need single cycle lookup, or even single-
cycle write, but rather just single-cycle update throughput. In other 
words, the memory must be able to accept a new pattern every 
cycle. The memory need not actually update the count field of a 
matching target pattern until many cycles later.  

4.1 Pipelined Binary Tree  
To achieve a throughput of one new pattern every cycle, we 
implement our ProMem memory structure using a pipelined binary 
tree structure to find the location of the given input pattern. Figure 
1(a) shows an inorder binary tree for a target pattern set TP={a, b, 
c, d, e, f, g, h, i, j, k}. We will implement the tree by using a 
separate module for each tree level, with each module 
implementing a pipeline stage. Figure 1(b) illustrates the target 
patterns that would appear in a memory (target pattern memory, or 
TPM) in each module, assuming a four stage ProMem design. We 
place the target patterns in memory such that the following 
property holds:  

A node’s children have the same high-order address bits 
as the parent’s address, with the low order address bit of 
each child indicating left (1) or right (0) child.  

This relationship can be observed, for example, in the bolded bits 
of Figure 1(b): f has address 01 in TPM2, and has left child g and 
right child e with addresses 011 and 010 in TPM3.  

Before presenting the architecture of each module, we will 
describe conceptually the manner in which each module searches 
for matches. Figure 1(c) illustrates the search for a single input 
pattern e in the tree of Figure 1(b). We compare e with the root 
node h. Since e < h, the address A1 passed to stage 1 is 0. At stage 
1, we compare e with TPM1[0], or d. Since e > d, the address A2 
passed to stage 2 is 01. At stage 2, we compare e with TPM2[01], 
or f. Since e < f, the address A3 passed to stage 3 is 010. Finally, at 
stage 3, we compare e with TPM3[010], or e. Since equal, we 
found a match, and we then increment a count value associated 

Figure 1: Conceptual view of ProMem: (a) sorted binary tree for target pattern set, (b) storing each level (stage) in target pattern 
memories (TPM) with corresponding memory addresses A shown, and (c) example showing how address is formed searching for pattern 

e in each stage.   

(a) (b)

TP = {a,b,c,d,e,f,g.h.i,j,k} 
h 

j d 

b 

a c e g 

f i k 

h 

j d 

b 

a c e g 

f i k 

- - - - 

1 0

00011011

000001010011100101110111 

St
ag

e 
0 

St
ag

e 
1 

St
ag

e 
2 

St
ag

e 
3 

A1: 
TPM1: 

A2: 
TPM2: 

TPM0: e
ps As

1 
cen 

TPs[As] cmp 

clk 

e   0 1 

e  01 1 

e   010 1 

- 
h e < h

d e > d

f e < f 

e e = e

(c) 



with TPM3[010]. Those count values are actually stored in a 
separate memory in a stage’s module, as we will see later. 

The above example illustrated how one item would be 
searched for in the tree. Figure 2 extends the example by 
continuing to feed input patterns to the root node on each clock 
cycle, illustrating the pipelined and hence single-cycle throughput 
of ProMem. We wish to search for input patterns e, d, and w, 
which appear in that order on a bus during consecutive clock 
cycles. We see the same sequence as the above example for e as it 
progresses through the pipeline, though in this figure we can also 
see how the enable signal cen is updated. On the second clock 
cycle, we see d enter the pipeline at Stage 0, from where it is 
passed to Stage 1 as the right child. In Stage 1, a match is found. 
Notice that this match disables the continued search during 
subsequent cycles in Stages 2 and 3, by setting cen to 0. w 
progresses through the tree following left children, failing when it 
hits a node with no target pattern stored.  

4.2 Memory Architecture 
Figure 3(a) shows the design of a single module within ProMem. 
Each level's module consists of registers to latch the input pattern, 
address, and enable signal (collectively referred to as the Pipeline 
Register), a memory containing the target patterns (TPM), a 

memory containing target patterns’ corresponding counts (CM), a 
comparator, an incrementer, and some required logic.  

From the pipeline register, the input pattern will be compared 
against the contents of the TPMs at address As_i. The comparator 
used in the comparison has two outputs: a greater than comparison 
and an equal to comparison. If the current stage is enabled by the 
cen_i signal and the input pattern is equal to the target pattern, the 
cen_o signal will be set to 0, indicating the pattern was found and 
no further searching is required. In addition, the write port of the 
CM will be enabled to increment the associated count value. 
However, because this requires a read and write of the same 
memory location, we will need to use a memory that has an 
independent read port and an independent write port. Such a 
memory will be slightly larger than a single port memory but not 
as large as a true dual port memory. Alternatively, if the input 
pattern does not match the current target pattern, the result from 
the greater than comparison will be concatenated with the input 
address, As_i, to create the address for the next stage, As+1_o, and 
cen_o will be set to 1, indicating we have not found the target 
pattern and need to continue searching.  

To address the issue of locations within our binary search that 
do not contain valid addresses, we implement a simple scheme that 
extends the width of the TPM by one bit. When a valid target 
pattern is written to the TPM, it is concatenated with single bit 
with the value of 1. Then, to compare the target pattern to the input 
pattern, we also concatenate the input pattern with a 1 bit before it 
reaches the comparator. If the two values when compared are 
equal, we have found the target pattern. Otherwise, to determine if 
the current target pattern is valid, we check the most significant bit 
of the current target pattern. If the bit is 0, this indicates that we do 
not have a valid target pattern, in which case we stop searching the 
binary tree as no valid patterns will be found within that sub-tree. 

Although the above design can be used for each stage of our 
binary search tree structure, using this design for the first stage 
would not be efficient. With only a single entry within both the 
TPM and CM, implementing the TPM and CM as actual memories 
would be inefficient. Instead, the TPM and CM of the first stage 
are implemented using two registers. In addition, the input to the 
first stage will only consist of the enable signal, cen_i, and the 
target pattern. All other computation and logic will be 
implemented in the same manner as the remaining stages.  

To construct the entire ProMem structure, we simply connect a 
module to the module for the next stage, as shown in Figure 3(b). 
Thus, to achieve a ProMem design that can handle a target pattern 
set with 1023 entries, we will need to create a binary search tree 
structure with 10 stages. However, using the modular design for 
each level, extending the number of target patterns is as simple as 
adding another level to the design. 

Figure 2: Example search for input patterns P = {e, d, w}, showing pipelined behavior of ProMem.   

Figure 3: ProMem Module Design: (a) design of a module for 
stage s (> 0), (b) structure of ProMem using modules (each stage is 

actually twice the size of the previous stage). 

Stage 0

Stage 1

Stage 2

Stage 3

e   - 1 
h e < h 

d   - 1 
h d < h 

w   - 1 
h w > h

   - 0 
  

   - 0 
  

   - 0 
  

clk

            

 0 
  

e 0 1 
d e > d 

d   0 1 
d d = d 

w  1 1 
j w > j 

  0 
  

  0 
  

 0 
  

  0 
  

e 01 1 
f e < f 

  0 
  

w   11 1 
k w > k

  0 
  

 0 
  

  0 
  

 0 
  

e 010 1 
e e = e

  0 
  

w  111 1 
- fail 

ps As cen
TPs[As]  cmp 

key:

(a)  (b)

TPMs 
(2s×w) 

Compare +1 

>  ps 

    CMs 
   (2s×c) 

> As 

> =

> cen 

 wr 

 rd 1
 addr  addr 

 rd

cen_o ps_o As+1_o 

ModuleController 

    ps_i As_i cen_i 

dout dout 

Pipeline regs 

ProMem stage s

p 

a1

cen
 

Stage 0 

Pipeline regs

 

Stage 1 

Pipeline regs 

 a2a1

 

Stage 2 

Pipeline regs 

a3a2a1

 

Stage 3 

Pipeline regs 

a4a3a2a1

...
p cen 

Bus B being monitored

ProMem



5. ADDITIONAL CONSIDERATIONS 
We thus far have introduced the main feature of ProMem, namely 
its pipelined structure enabling single-cycle throughput when 
monitoring a bus. We now discuss how to write the target patterns 
into ProMem, how to read out the counts after the monitoring 
period is complete, extensions to support ranges, and layout 
considerations. 

We initially considered memory mapping every internal 
register. The memory driver software could then store the target 
patterns, and read the counts, in any manner desired. This option 
has the undesirable requirement that all the modules be connected 
to a single bus, whether a processor’s peripheral bus, or an internal 
bus connected through a bridge to that peripheral bus. In either 
case, running a bus to all modules is costly in terms of area. 
Furthermore, each module would then require additional logic to 
interface to that bus to detect and process write and read requests.  

A second option was to connect all registers in a scan chain. 
Connecting the registers in sorted order would require excessive 
wires between stages. Connecting in breadth first order eliminates 
that problem. Another potential issue is the compatibility of this 
scan chain with that used for testing, and the potential complexity 
of the driver software requiring access to JTAG ports. We leave 
this potentially viable option for future work. 

We currently implement a scheme that makes use of the 
existing pipeline structure, by adding a few additional control lines 
and an up-counting register ptr added to each module. ptr is one 
bit wider than the module’s input address. We initialize ptr to zero 
upon memory reset. We add a write enable signal wen_i to each 
module, and a 1-bit register wen as part of the module’s pipeline 
register. If a module at stage s detects wen=1, it writes the input 
pattern p to TPM[ptr] and increments ptr, but only if the high-
order bit of ptr was 0. If the high-order bit was 1, this means all the 
words in TPM have already been written. In this case, the module 
instead passes the pattern p and the wen signals to the next stage. 
Such functionality results in the entire ProMem target pattern 
contents being written in breadth first order (right to left for each 
level). Thus, the driver software must provide the target patterns in 
breadth-first order – a straightforward task. We assume the target 
patterns can be written to the bus being monitored. Otherwise, a 
second input for a target pattern would be required on Stage 0 
only. 

In addition to the wen_i signal, we also add the val_i signal to 
the pipeline register. This signal will be used to indicate that the 
target pattern being written is valid. To do so, the val_i input and 
the target pattern will be concatenated together and written to the 

TPM. It is important to note that the driver software must initialize 
all locations when loading a new target pattern set to ensure all 
entries within the TPM contain the correct valid bit. 

Reads of the counts are done similarly. However, we must first 
reset all the ptr counters to 0 – we include an additional input 
signal rstptr_i and 1-bit register rstptr to each module, which 
asserts the clear signal on ptr and also gets passed on to the next 
stage. We must therefore hold this signal high and then low for a 
certain number of cycles (two times the number of stages) to clear 
all the ptr counters. We also add a read enable signal ren_i and a 
1-bit register ren. Reading then results in a breadth first outputting 
of the target memory contents onto the pattern output of the last 
stage. Thus, the driver software must reorder this output into 
sorted order – again, a straightforward task.  

ProMem can be extended to support ranges. For example, we 
may want to count how many times patterns appear with a value 
between 1 and 10, 11 and 20, 21 and 30, etc. Such functionality 
could be useful to count, for example, the number of accesses to a 
large array, or the number of instructions executed within a 
subroutine or loop. We simply use two TPMs to store the target 
pattern ranges. The first TPM will contain the lower bounds of the 
ranges, and the second TPM will contain the upper bounds of the 
ranges. As before, the target ranges will be stored in sorted order 
within the binary tree structure (the ranges must be non-
overlapping). When searching to detect if an input pattern is part 
of the target range, we will use two comparators to simultaneously 
compare the input pattern with both the lower and upper bound of 
the target range. If an input pattern is not within the target range, 
the output from greater than comparison with the lower bound will 
determine the low order address bit for the next stage.  

Finally, another important concern in the design of ProMem is 
the ability to create an efficient layout. We would like to create a 
layout that is as tight as possible. In addition, we must ensure that 
the number of wires and length of wires connecting each module is 
at a minimum. Assuming each module has a rectangular layout, we 
can tightly place each module of the ProMem in a spiral fashion, 
with the output put of each stage abutted with the input of the nest 
stage. However, in addition, we must ensure that the module 
corresponding to level 0 is placed on the boundary of the entire 
structure. Furthermore, the register files or memories within each 
module can come from a standard register file or memory 
implementation, which already have efficient layouts.  

6. RESULTS 
We implemented ProMem using VHDL. We designed ProMem as 
a combination of stages that are connected together in a top-level 
entity. Because stage 0 of our ProMem has a different structure 
then the remaining stages, it was implemented as its own entity. 
The remaining stages, however, use a single entity that contains a 
generic STAGE, which specifies the stage of the instantiated entity. 
Furthermore, all stages contain a generic WIDTH, which specifies 
the WIDTH of the target patterns and the associated count values. 
Using this implementation approach, adding another stage to the 
design is as simple as instantiating another stage and connecting 
the outputs of the previous stage to the inputs of the new stage. We 
tested our VHDL code at structural RTL level as well as the gate-
level description generated from synthesis. 

Table 1 shows the area results from synthesizing an 8-stage 
ProMem using 32-bit target patterns. The ProMem was 
synthesized with Synopsys Design Compiler [17] using the UMC 
0.18 technology and memory libraries provided by Artisan 
Components [1]. The table provides a breakdown of the area and 
timing for each stage, displaying the size of the TPM and CM 

Table 1: ProMem Area and Timing Results (8 stages, 32-bit 
target patterns). 

Stage 
TPMs + 

CMs 
(Gates) 

Pipeline 
Register 
(Gates) 

Module 
Controller 

(Gates) 

Module 
Controller 
(% total) 

Total 
(Gates) 

Access 
Time 
(ns) 

0 774 268 640 38% 1682 4 

1 1618 274 713 27% 2606 4 

2 3156 284 753 18% 4193 4 

3 6468 298 812 11% 7577 4 

4 12925 307 823 6% 14054 4 

5 25870 313 934 3% 27117 4 

6 53254 322 995 2% 54572 4 

7 115477 327 1287 1% 117090 4 

Total 219541 2393 6957 3% 228891 4 
 



memories, the ModuleController, and pipeline register as well as 
the maximum clock frequency at which the ProMem can operate. 
We see that the size of each stage within the design is roughly 
twice that of the previous stage, as expected since the sizes of both 
the TPM and CM memories are doubled.  

Another important aspect of our ProMem design is the access 
time for reading and writing to/from the memories in each stage. 
Table 1 presents the access time for each stage of our 8-stage 
ProMem design. For all stages, an access time of 4 ns was 
achieved. More importantly, as each stage within the ProMem 
grew in size, the access time did not increase, in contrast to a 
CAM design. The timing results were obtained with Design 
Compiler using the synthesized design along with the timing 
information in the UMC technology library. 

In addition to the total size of our design, we would like to see 
how much overhead the supporting logic with our ProMem adds to 
the overall design. Thus, Table 1 also presents the percentage of 
the total design corresponding to the ModuleController. We see 
that the overhead per stage decreases for deeper stages. We also 
see that for a ProMem with 255 entries, the ModuleController only 
consists of 3% percent of the total design size. 

Table 2 compares our ProMem design to a fully-associative 
CAM for various numbers of entries. For a small number of 
entries, the overhead of the ModuleController within the ProMem 
structure results in a larger size than a design using a CAM. 
However, for as little as 15 entries, our ProMem design results in 
smaller overall size than the CAM approach. Furthermore, for a 
design with 255 entries our ProMem design is 26% smaller than 
the alternative design. Furthermore, as mentioned earlier, fully-
associative CAMs will have slower access time as the size grows 
since each pattern must be sent to every entry.  

7. CONCLUSIONS 
Profiling is a key to numerous design automation problems that 
optimize a program and/or architecture. A prototype-oriented SOC 
platform that includes on-chip profiling hardware, along with a 
software interface to that hardware, can enable profiling in real-
time embedded environments. We introduced a new memory 
architecture, based on a binary tree, that can monitor a bus for 
patterns on every clock cycle. The memory has a simple interface 
to the monitored bus, and scales very well as it gets bigger.  

8. ACKNOWNLEDGEMENTS 
This work was supported in part by the National Science 
Foundation (CCR-9876006) and the UC MICRO program. 

9. REFERENCES 
[1] Anderson, J., et al. Continuous Profiling: Where Have All the Cycles 

Gone? 16th ACM Symp. of Operating Systems Design, 1997. 

[2] Artisan Components, Inc. UMC .18 Technology Library, 
http://www.artisan.com, 2001. 

[3] Bala, V., E. Duesterwald, and S. Banerjia. Dynamo: A Transparent 
Dynamic Optimization System. ACM SIGPLAN Conference on 
Programming Language Design and Implementation (PLDI), June 
2000. 

[4] Bellas, N., et al. Energy and Performance Improvements in 
Microprocessor Design Using a Loop Cache. ICCD, pp. 378-383, 
1999. 

[5] Burger, D. and T. M. Austin. The SimpleScalar tool set, version 2.0. 
Tech. Rep. CS-1342, University of Wisconsin-Madison, June 1997. 

[6] Calder, B., P. Feller and A. Eustace. Value Profiling. MICRO, pp. 
259-269, 1997. 

[7] Chung, E.Y., L. Benini and G. De Micheli. Automatic Source Code 
Specialization for Energy Reduction. ISLPED, 2001. 

[8] Dean, J., et al. ProfileMe: Hardware Support for Instruction-Level 
Profiling on Out-of-Order Processors. MICRO, 1997. 

[9] Gordon-Ross, A., S. Cotterell and F. Vahid. Exploiting Fixed 
Programs in Embedded Systems: A Loop Cache Example. IEEE 
Computer Architecture Letters, Jan. 2002. 

[10] Graham, S.L., P.B. Kessler and M.K. McKusick. gprof: a Call Graph 
Execution Profiler. SIGPLAN Symp. on Compiler Construction, pp. 
120-126, 1982. 

[11] IEEE, IEEE 1149.1 Standard Test Access Port and Boundary-Scan 
Architecture, http://standards.ieee.org, 2001. 

[12] Ishihara, T., H. Yasuura. A Power Reduction Technique with Object 
Code Merging for Application Specific Embedded Processors. DATE, 
March 2000. 

[13] Klaiber, A. The Technology Behind Crusoe Processors. Transmeta 
Corporation, http://www.transmeta.com, 2000. 

[14] Lakshminarayana, G., et al. Common-Case Computation: A High-
Level Technique for Power and Performance Optimization. DAC, pp. 
1-5, 1999.   

[15] Pettis, K. and R.C. Hansen. Profile Guided Code Positioning. ACM 
SIGPLAN Conference on Programming Language Design and 
Implementation (PLDI), June 1990. 

[16] Semiconductor Industry Association. International Technology 
Roadmap for Semiconductors: 1999 edition. Austin, TX: International 
SEMATECH, 1999. 

[17] Synopsys, Inc. Design Compiler, http://www.synopsys.com, 2001. 

[18] Vahid, F., T. Givargis. Platform Tuning for Embedded Systems 
Design. IEEE Computer, Vol 34, No. 3, pp. 112-114, March 2001. 

[19] Vtune Environment, Intel Corp., http://developer.intel.com/vtune. 

[20] Waldvogel, M., et al. Scalable High Speed IP Routing Lookups, 
SIGCOMM 97, 1997. 

[21] Zagha, M., B. Larson, S. Turner, and M. Itzkowitz. Performance 
Analysis Using the MIPS R10000 Performance Counters. 
Supercomputing, Nov. 1996, 

[22] Zhang, X., et al. System Support for automatic Profiling and 
Optimization. Proceedings of the 16th Symp. on Operating Systems 
Principles, 1997. 

[23] Zilles, C.B. and G.S. Sohi. A Programmable Co-processor for 
Profiling. International Symp. on High-Performance Computer 
Architectures, 2001.

 

Table 2: Comparison of ProMem with fully-associative CAM. 

Entries ProMem 
(Gates) 

CAM 
(Gates) % Reduction 

1 1682 1006 -67% 
3 4288 4081 -5% 
7 8481 8319 -2% 
15 16058 16627 3% 
31 30113 33276 9% 
63 57230 68066 16% 

127 111802 145100 23% 
255 228891 309831 26% 

 


