
PicoJava Processor Core

60 0740-7475/00/$10.00 © 2000 IEEE IEEE Design & Test of Computers

Major technologic and economic factors are

driving a revolution in computer and communi-

cation system design. Networking applications

like network processors, routers on chips and

home gateways, portable products like wireless

telephones and internet appliances, multimedia

products like set-top boxes, and embedded con-

trollers in automobiles, printers, and hard disk

drives have generated a strong demand for hard-

ware-software systems. Simultaneously, deep

submicron technologies enable placement of

complex systems on single chips. Giga-scale sys-

tems with millions of gates necessitate efficient

design reuse to shorten the design productivity

gap using predesigned intellectual property (IP)

cores. This is leading to the emergence of IP

core-based hardware-software system-on-chips

(SoC) as a new paradigm in electronic system

design.

Three types of IP cores exist, providing dif-

ferent optimization levels and flexibility of

reuse.1 A hard core, consisting of hard layouts,

is the most optimized, but offers little flexibility

in terms of changing the hardware features of

the core itself. Most general-purpose processor

and digital signal processing (DSP) processor

cores available and used today, like the cores

from ARM, LSI Logic, Motorola, and IBM, are

hard cores. On the other hand, a soft core is a

functional description of an IP, and the soft IP

specification can be both simulated and syn-

thesized. A soft IP allows flexibility in retarget-

ing the IP specification to better fit the core

user’s needs. For example, a soft processor core

allows the core user to reconfigure the features

of the processor, such as its instruction set,

caches, communication mechanisms, and

interrupt mechanisms to make the processor

core more suitable for a particular SoC appli-

cation. However, as opposed to a hard core

user, a soft core user (the SoC integrator) must

synthesize, optimize, validate, and develop tests

for the soft core before integrating it in the SoC

being designed.

Firm cores try to balance the optimization

and fast reuse potential of hard cores and the

flexibility and reconfigurability of soft cores.

Firm cores are typically delivered after certain

Using a Soft Core in a
SoC Design: Experiences
with picoJava

Through our experience in synthesis, validation,

test, and intregration of the picoJava processor

core in a system-on-chip (SoC) design we point

out the challenges faced and issues to address in

efficient reuse of a soft core.

Sujit Dey

Debashis Panigrahi

Li Chen
University of California, San Diego

Clark N. Taylor

Krishna Sekar
University of California, San Diego

Pablo Sanchez
University of Cantabria

stages of the design process. For example, the

firm core provider delivers a gate-level imple-

mentation mapped to a particular technology

library, after going through the process of syn-

thesis, but without performing physical design.

Here we present our experience with using

the picoJava processor core, a commercial soft

core from Sun Microsystems released under a

community licensing program.4 Starting from

the register transfer level (RTL) and the instruc-

tion set architecture description of the picoJava

processor core, we went through the steps that

a user needs to take in a soft-core-based SoC

design. Through our experiences in synthesis,

validation, test, and integration of the picoJava

core, we point out some of the challenges

faced and issues to address in the efficient

hand-off and use of a soft core.

The picoJava Core
PicoJava, a microprocessor core developed

by Sun Microsystems, directly executes Java

bytecode instructions.2 The picoJava processor

is a stack-based 32-bit microprocessor with 300

instructions and 6 pipeline stages. The core pro-

vides the flexibility of configuring the instruc-

tion and data cache sizes as well as the option

of including or excluding the floating-point unit

(FPU). The core consists of seven major func-

tional units, shown in Figure 1:

� Integer unit (IU): decodes the Java Virtual

Machine instructions, which consist of an

opcode (1 or 2 bytes) followed by zero or

more operands. The major blocks of this unit

are a 32-bit arithmetic logic unit (ALU) and

shifter, multiply/divide unit, micro-code

ROM, programmer-visible registers, and 64-

entry stack cache (32-bit-wide array with

read and write ports).

� FPU: executes the supported floating-point

operations. The core user can include or

exclude it from the picoJava processor core

by appropriate configuration.

� Instruction cache unit and data cache unit:

responsible for caching instructions and

data, respectively. The instruction cache is

a direct-mapped cache with line size of 16

bytes, whereas the data cache is a two-way

set-associative cache with 16-byte cache

lines. Both caches are configurable among

0-Kbyte, 1-Kbyte, 2-Kbyte, 4-Kbyte, 8-Kbyte,

and 16-Kbyte types.

� Stack manager unit: stores and provides the

61July–September 2000

Memory and I/O interface

Bus interface unit

Processor interface

Instruction cache
RAM/tag

Microcode
ROM

Powerdown,
clock and
scan unit

Instruction
cache unit

Data
cache unit

Data cache
RAM/tag

ROM

Stack
manager
unit

Integer
unit

Stack
cache

Floating-point
unit and control

Meagcells

PCSU SMU

Figure 1. Block diagram of the picoJava processor core.

necessary data operands to the IU. It also

handles the overflow and underflow condi-

tions of the stack cache.

� Powerdown, clock, and scan unit: integrates

clock generation, low-power management

and design-for-test structure control. The

processor core also supports various pow-

erdown modes.

� Bus interface unit: implements the picoJava

interface to the external components like

external memory and I/O devices.

Sun’s picoJava distribution package con-

tains several support manuals that describe the

picoJava core architecture, the instructions sup-

ported in the core, and the verification strate-

gy.3 The verification support includes an

instruction-accurate simulator (22,454 lines of

C code), Verilog simulation environment (6,968

lines of Verilog code), runtime library (34,642

lines of Java assembly code), and a set of func-

tional tests (11,348 lines of Java code). The

functional tests are small Java programs that

cover most of the synthesizable model. For

example, the block coverage of these tests is

93%, the path coverage is 91%, and the expres-

sion coverage is 85%. The distribution package

also includes a mechanism for verifying the syn-

thesizable description of the core with the

instruction-accurate simulator (IAS). This

mechanism concurrently executes the IAS and

the synthesizable description of the core and

compares results at the end of simulating every

instruction.

The picoJava processor core is distributed as

synthesizable RTL description (46,376 lines of

Verilog code) that includes 7 technology-depen-

dent megacells. The distribution also provides

Synopsys synthesis scripts (1,755 lines) and asso-

ciated design constraints (1,619 lines).

Mapping a soft core to silicon
As explained earlier, a soft core provides its

user the flexibility of configuring the compo-

nents to better fit user’s needs and retargeting

to the chosen library. In return, the core user

has to perform the complex tasks of synthesis,

optimization, layout, testing, and validation of

the soft core. Before signing off the soft core

(RTL specification), a soft core provider per-

forms the above tasks using a design-tools flow

targeted to a particular technology library

(usually a generic library) to verify the design

and provide performance/power characteri-

zations. In this process, the provider can sup-

port some of the above tasks performed using

the particular tools. For example, the picoJava

core distribution provides command script

and constraint files for synthesis using

Synopsys Design Compiler.4 However, it’s not

possible for the core provider to support the

above tasks for all possible design flows and

target technology libraries. As a result, core

users with different tools and target libraries

face problems in mapping the soft core to the

physical level.

Additionally, a soft core may include some

macroblocks or megacells, typically designed

at the physical level. While the soft core

provider supplies behavioral or functional mod-

els for the megacells used in the core (for sim-

ulating the core at high levels), the core user

has to implement the technology-dependent

megacells—a potentially challenging task.

A soft core user faces challenges due to

changes in both the design tools flow and the

target technology library. If a design tool is used

for which the soft core distribution provides no

support, the core user must generate the nec-

essary command files as well as set up the envi-

ronment for that tool in the soft core context.

Changes in the target technology library present

more severe challenges, as they affect the entire

process of mapping the core to silicon. A new

technology library may necessitate change in

the script files and the design itself, and also a

large number of iterations in design flow to

meet the required performance.

Issues in synthesizing picoJava
Though synthesis is primarily performed by

the core user, the synthesis process depends on

the core provider and the technology provider

(silicon foundry). The inter-relation among

these parties, as shown in Figure 2 (next page),

poses some implementation problems.

During the use of a soft core, the core user

must synthesize the core description provided

by the core provider down to gate level using

the technology library provided by the tech-

PicoJava Processor Core

62 IEEE Design & Test of Computers

nology provider. As core users, we faced the fol-

lowing challenges:

1. Handling tool-dependent constructs in the

core description. The synthesis tool we used

(Exemplar-Mentor Graphics’ Leonardo)

could not use the synthesis scripts provided

in the distribution for a particular synthesis

tool (Design Compiler). Thus we had to

adapt the synthesis scripts and some tool-

dependent hardware description language

(HDL) constructs to synthesize the picoJava.

2. Handling unsupported megacells. The core

description from the core provider contains

references to several memory blocks

(megacells). The core user should generate

the megacells and change the constraints

accordingly.

3. Handling technology-dependent constraints.

The synthesis scripts contain timing-related

constraints, which are functions of technol-

ogy library parameters and design. It’s very

difficult for the core user to specify the con-

straints without any information about the

design. Incorrect specification of these con-

straints can lead to incorrect synthesis and

may require many iterations of the synthesis

step.

From our experience, we can conclude that

the handoff of a soft-core from a core provider

to the core user is a complex process, involving

overlaps of what the core provider supplies and

the core user needs to do. For example, core

users need to analyze the provided HDL code

and adapt the synthesizable code and the syn-

thesis scripts to their own synthesis tools and

technology libraries, as explained before. The

inner rectangle in Figure 2 shows the overlap

between the core provider space and the core

user space; the associated problems are shown

by dotted lines. Hence, synthesizing a soft core

is not an automatic synthesis process of a black-

box module. In reality, the core user needs to

modify the synthesizable code as well as syn-

thesis scripts depending on the technology

library (Figure 3). Additionally, the core user

may need to go through multiple iterations of

modifying RTL code, the timing constraints,

and the scripts before finally obtaining a cor-

rect implementation.

Supporting megacells
Supporting megacells is one of the main

challenges in mapping a soft core to a new

technology. Because a megacell is technology

dependent, the end user must be able to gen-

erate the necessary megacells in-house. This

requires the user to have the tools and the

63July–September 2000

Synthesis tool

Synthesis scripts Synthesis/simulation librarySythesizable code

Implementation Core user

Tool-dependent
constructions

Technology-dependent
constraints

Technology providerCore provider

Unsupported megacells

Figure 2. Soft core handoff and implementation: Dependency among core provider,

technology provider, and core user.

expertise necessary to generate the megacell.

In our implementation of the picoJava soft

core, we found this problematic—the stack

cache is defined as a five-port memory, while

the memory generator we used only supports

single or dual port memories. Therefore, we

had to modify the soft core specification to let

us implement the

stack cache with our

megacell replace-

ment (in this case, a

register bank).

Once the user has

completed the tech-

nology-specific design

of a megacell, func-

tional models of the

megacell must also be

generated for use at

higher levels of the

design. For example,

in the case of the

memory megacells re-

quired, once the tran-

sistor-level design is

completed, two func-

tional models must be

created: a behavioral

description of the

memory using an HDL

for use during RTL and

gate level simulations,

and a fault simulation

model.

In addition to gen-

erating the megacells,

the user must ensure

c o m p a t i b i l i t y

between the soft core

specification and the

generated megacells.

This may require

some modification of

the soft core (such as

modifying the timing

of reads and writes to

memories in relation

to the address bus

transitions). The user

is also responsible for

other tasks such as design-for-testability and test

of the megacells.

Synthesis results
As a result of the synthesis process, the syn-

thesized picoJava-II core contains 167 I/O ports

and 6,801 flip-flops. Figure 4 shows the areas of

PicoJava Processor Core

64 IEEE Design & Test of Computers

Synthesis tool

Modified scripts

Synthesis/simulation

Modified code

Synthesizable code Synthesizable scripts

Implementation Core user

Technology providerCore provider

Figure 3. The actual implementation process for a soft core

Memory and I/O interface

Bus interface unit 335)

Processor interface

Instruction cache
RAM/tag

ICRAM (135037)
ITAG (13731)

Microcode
ROM

Powerdown,
clock and
scan unit

Instruction
cache unit
(32165)

Data
cache unit

(8884)

Data cache
RAM/tag
DRAM (89260)
DTAG (42374)

ROM

Stack
manager
unit

Integer
unit

(83637)

Stack
cache

Floating-point
unit and control

(23865)

Meagcells

PCSU (102) SMU
(3061)

Figure 4. Block diagram of the synthesized picoJava-II processor core showing area of

each unit (in terms of 2-input NAND equivalent gates).

each picoJava component in terms of the num-

ber of equivalent 2-input NAND gates. A mem-

ory generator obtained the areas for the data

cache and the instruction cache. The total area

is 127,887 equivalent NAND gates for the logic

components and 313,989 equivalent NAND

gates for the embedded memory components.

Validation of the RTL and gate-level
implementations

Before the picoJava core can be integrated

in an SoC design, the user must verify the core

at the RT and gate levels. We describe our expe-

rience in validating the RTL model, as well as a

methodology we have developed for validating

the post-synthesis gate-level model.

Before synthesizing the picoJava core, the

user must verify the core at the RT level, with

the changes or configurations core users might

make to satisfy their needs. Additionally, veri-

fying the generated megacells (memory com-

ponents) and associated interfaces (timing and

protocol) with the picoJava core requires RTL

simulation of the core with the newly generat-

ed megacells. The verification environment of

picoJava provides a methodology for validat-

ing the RTL model, possibly modified by the

core user, with the instruction-accurate model

by concurrently running both simulation and

checking the architectural state after every

instruction.

We simulated the RTL implementation with

ModelSim,5 an HDL simulation tool from

Mentor Graphics. Since the picoJava distribu-

tion did not have support for the ModelSim

environment, we had to rewrite some pro-

gramming language interface-related func-

tions, along with some compilation and

execution scripts. In addition, since different

simulation tools handle events in different

orders, the simulation behavior resulting from

ModelSim did not match the specification.

Therefore, we had to modify the test-bench

environment of the picoJava core.

Verifying the correctness of the gate-level

implementation of the picoJava processor core

requires comparing the simulation results of

the gate-level implementation with that of the

RTL model using the picoJava validation test

suite (a set of functional test programs).3 In

addition to being validated in the HDL simula-

tion environment, the gate-level implementa-

65July–September 2000

Synthesizer

Memory
generator

Transform

Capturing input
stimuli to the
processor in

RTL simulation

Gate-level model

Functional model
for HDL simulation

HDL test bench for
gate-level model

Functional
model for test

Lost

Test vectors

Gate-level
simulation

HDL
simulation

environment

Fault
simulation

environment

R
T

L
co

de
H

D
L

te
st

 b
en

ch

Synthesizable

Test program

Monitors

Unsynthesizable

Unsynthesizable

Memory
description

Memory
initialization

Register
initializations

Figure 5. From RTL simulation to gate-level simulation: challenges and solutions.

tion had to be validated in the fault-simulation

environment (used for developing manufac-

turing tests).

To ensure the success of the gate level sim-

ulations, it’s crucial to convey all information

used in the RTL simulation environment to the

gate-level simulation environment (Figure 5).

The information used by the RTL simulation

environment includes the RTL code and the

test bench. The test bench provides a means of

executing an assembly program using the

processor. In addition, it uses a large number

of monitors for probing the processor’s internal

nodes, used for self-checking and debugging.

The test bench is used for simulation only and

cannot be synthesized.

Moreover, some sections of the RTL code

are not meant to be synthesized. These include

functional descriptions for the embedded

memory blocks, and initialization for the mem-

ories and registers. Even though test benches

and unsynthesized sections of the RTL code are

not synthesized, they may contain information

necessary to execute the test programs cor-

rectly. Therefore, for correct validation of the

gate-level implementation of the core, the core

user must ensure that all information, including

the information in the unsynthesized code, is

provided to the gate-level simulator.

We conveyed the unsynthesized information

from the RTL simulation environment to the

gate level simulation environment as follows:

1. Memory descriptions and initializations.

Using a memory generator, we generated

two functional models for each memory

module. The two functional models can be

used in the HDL simulation environment

and the fault simulation environment,

respectively. Compared to the original func-

tional model, the new functional models

are closer to their gate-level implementa-

tion, as they contain timing information.

The initialization for the memory can be

incorporated into these functional models

in the form of initialization files.

2. Register initialization. For the registers, both

gate-level simulators (HDL and fault) pro-

vide methods for their initialization.

3. HDL test bench. First, for the gate-level sim-

ulation in the HDL simulation environ-

ment, the HDL test bench for the RTL

model can be transformed to a test bench

for the gate-level model. Specifically, all

monitors referencing to signals in the RTL

model must be redirected to their coun-

terparts in the gate-level model. Note that

if the synthesizer uses a cross-boundary

optimization, some RTL signals may no

longer appear in the gate-level model. One

possible solution is to preserve the design

hierarchy during synthesis, which may

lead to a suboptimal synthesis solution.

Another solution is to remove the monitors

referring to nonexisting signals, which

could make debugging more difficult.

Second, in the fault simulation environ-

ment, the monitoring information is lost,

since the fault simulation environment

does not provide any features equivalent

to HDL monitors. Besides the monitors, the

HDL test bench also contains information

regarding the execution of a test program.

We passed this information to the fault sim-

ulation environment in the form of test vec-

tors by capturing the input stimuli to the

processor during the RTL simulation.

After conveying all the RTL simulation infor-

mation to the gate-level simulation environ-

ment, we validate the gate-level model by

simulating test programs in the picoJava test

suite. Because the test suite includes a large

number of test programs, we developed an iter-

ative method for simulating all test programs.

First, a test program is chosen from the test

suite. We then compare the gate-level simula-

tion behavior with the RTL simulation behav-

ior. If the simulation results are consistent, we

conclude that the gate-level description

behaves correctly under the selected test pro-

gram. The validation process is then repeated

for other test programs from the test suite. If a

discrepancy occurs between the gate-level and

the RTL simulation behaviors, the synthesis

process has to be revisited.

The core user’s first synthesis attempt does not

always succeed. To pinpoint the source of the

error, we used a top-down approach, as illustrat-

PicoJava Processor Core

66 IEEE Design & Test of Computers

ed in Figure 6. Given that the original RTL model

is working properly, we start from the RTL model

and gradually replace its submodules by their

gate-level implementations. We then perform

HDL simulation on the entire processor. If the

gate-level implementation of a submodule

behaves incorrectly in this context, we may con-

clude that the error occurs within this sub-

module. We then repeat this process on the

submodule until we finally isolate the error

source.

To use this top-down approach, the core

user needs to preserve the design hierarchy dur-

ing synthesis. Once the hierarchical imple-

mentation has been verified, the core user can

then move on to a flat implementation of the

core, which may be more optimized due to

cross-boundary optimization. The flat imple-

mentation will have to be verified again, since

not all synthesis problems surface during the

verification of the hierarchical implementation.

To summarize, according to our experience

in validating the picoJava processor core, we

faced three main challenges. First, the soft core

distribution provides no clean boundary

between the synthesizable and the unsynthesiz-

able parts of the RTL simulation environment. It

became the core user’s responsibility to identify

the unsynthesizable parts and transfer them to

the gate-level simulation environment. Second,

the core provider supplied no mechanism for

transforming the RTL test bench to a test bench

usable by the gate-level simulation environment.

Third, the signals used as monitors in the RTL test

bench may be absent from the gate-level imple-

mentation, making it difficult to debug the imple-

mentation. The core user’s validation effort can

be drastically reduced if the core provider

addresses the above challenges and provides

mechanisms to aid in developing a correct and

efficient gate-level simulation environment.

Testability of the picoJava
processor core

An integral aspect of core-based SoC design

is to ensure that each core is testable, since

after the integration of the SoC, the entire SoC

has to be tested for manufacturing defects.6

Since a soft core is synthesized and imple-

mented by the core user (system integrator),

the testability of the soft core typically falls to

the core user. In the case of picoJava, the core

provider has included placeholders for design-

for-test (DFT) structures in the RTL description,

such as full-scan for the logic components and

built-in self test (BIST) for the embedded mem-

ories. However, the core user must insert the

actual DFT structures. In this section, we evalu-

ate the testability of the logic components in

picoJava using full scan and logic BIST (LBIST).

By converting all (6,801) flipflops in the

picoJava core into scan flip-flops, full-scan

results in an area overhead of 11.13% (with

respect to the area of the logic components).

This is an underestimation, as the area estima-

tion does not include the routing overhead of

scan chains. With 12,736 test vectors, the final

fault coverage is 95.54%.

For a larger and more complex micro-

processor, the tester time for full scan can

become prohibitively high. Moreover, to apply

at-speed testing with full scan requires high-

speed external testers, which can become pro-

hibitively expensive for today’s high-speed ICs.

In recent years, self-testing methods have

gained more popularity, enabling at-speed test-

ing without high-speed testers. Among these

methods, BIST7 applies tests on-chip using

67July–September 2000

RTL

RTL

RTL

RTL RTL
RTL

RTL

RTL
RTL

gate

RTL

RTL

RTL

RTL RTL
RTL

RTL

RTL

RTL

RTL

RTL RTL
RTL

gate

Figure 6. A top-down approach for debugging.

embedded hardware test pattern generators

and test response analyzers. To make picoJava

self-testable, as well as to evaluate the effective-

ness of current LBIST techniques for commer-

cial processor cores, we applied a commercial

LBIST tool on the picoJava processor core.

LBIST employs a STUMPS (self-test using MISR

and parallel SRSG) -based BIST architecture,8 as

shown in Figure 7. Instead of relying on an exter-

nal tester for applying tests to the scan chains,

LBIST generates test vectors on-chip using a lin-

ear feedback shift register (LFSR). The outputs of

the LFSR are connected to the scan chains

through a phase shifter designed to reduce the

linear correlation among scan chains. The out-

puts of the scan chains are compressed on-chip

using a multiple input shift register (MISR). Test

points may be inserted to improve fault coverage.

As LBIST relies on the application of random

test patterns, the design-under-test often has to

undergo extensive design changes to become

random-pattern testable.9 For picoJava, we had

to make several design changes prior to appli-

cation of LBIST. First, the embedded memories

were bypassed with scan flip-flops in the test

mode,9 lest these become sources of undefined

values (X-generators), leading to the corruption

of MISR signatures. In addition, a number of

combinational loops, which did not exist in the

functional mode, were formed when random

test patterns were applied in the BIST mode.

The signals in a combinational loop may toggle

when the loop is activated, causing the gener-

ation of undefined values. The combinational

loops can be broken with the help of control

points. The breaking of the combinational

loops, as well as insertion of the memory

bypass circuits, had to be performed manually.

To study the effect of different parameters on

the BIST results, we applied LBIST with different

configurations on the picoJava processor core.

Table 1 compares the results of different LBIST

configurations with full scan. The values of area

overhead and fault coverage reported are with

respect to the logic part of the processor core.

In the first LBIST experiment (LBIST-1), we

used an LFSR of size 24. LBIST chose a primitive

polynomial to configure the LFSR. The number

of random test patterns used was 32,767. The

fault coverage was unacceptably low (58.81%),

with an area overhead higher than that of full

scan. The increase in the area overhead was

caused by the insertion of the BIST circuitry, as

well as the design modifications required for

making picoJava BIST-ready.

To improve the testability of the design, in

the second LBIST experiment (LBIST-2) we aug-

mented the BIST circuitry in LBIST-1 by a large

number of test points (100 control points and

100 observe points). This lead to a significant

boost in the final fault coverage (an additional

23.72% compared to LBIST-1). The insertion of

the test points lead to a slight increase in area.

We also investigated the effect of other BIST

parameters on the resulting fault coverage,

PicoJava Processor Core

68 IEEE Design & Test of Computers

LFSR

MISR

Phase shifter (XOR gates)

Core
design

Full
scan

Boundary
scan Test

point
decoder

Figure 7. LBIST

Table 1. PicoJava test results: full scan and different LBIST configurations.

LFSR MISR No. of Test Points Area No. of Test Fault

Size Size Control Observe Overhead Patterns Coverage

Full Scan — — — — 11.13% 12,736 95.54%

LBIST-1 24 41 0 0 13.06% 32,767 58.81%

LBIST-2 24 41 100 100 13.29% 32,767 82.53%

LBIST-3 32 41 100 100 13.30% 32,767 82.93%

LBIST-4 24 41 100 100 13.30% 1,000,000 84.11%

including the LFSR size and the number of ran-

dom patterns used in test. In LBIST-3, we

increased the LFSR size to 32-bit. In BIST-4, the

number of random patterns used increased to

1,000,000. Neither change leads to a significant

improvement in the final fault coverage.

These results show that LBIST by itself does

not provide adequate fault coverage. However,

with the aid of test points, LBIST can provide

high fault coverage. Compared with the impact

of test points, the size of the LFSR and the num-

ber of patterns used has much less impact on

the fault coverage.

A Configurable Image
Compression SoC

In this section we describe our experience in

designing an SoC using the picoJava processor

core.

SoC Architecture
The SoC architecture we developed, includ-

ing the picoJava processor core, implements

reconfigurable image compression for wireless

multimedia communication. By using recon-

figurable image compression, we can adapt the

image compression algorithm and parameters

being used to current channel conditions and

quality-of-service requirements. This allows us

to implement the best image compression algo-

rithm and parameters for current wireless con-

ditions rather than a worst-case scenario.

Our SoC architecture for reconfigurable

image compression appears in Figure 8. The

architecture includes the picoJava processor

core, two hardware accelerators, an on-chip

memory, and an internal system bus. The hard-

ware accelerators are designed to implement the

most compute-intensive portions of image com-

pression algorithms, while the picoJava proces-

sor implements the more control-intensive,

parameterizable portions of the algorithms. The

on-chip memory is 128 Kbytes of SRAM, while PI-

Bus,10 a soft core, is used as the system bus.

Integrating the picoJava Core in the SoC
Using a core in an SoC requires that the core

be able to interface with the rest of the compo-

nents on the chip. For our design, we chose to

have a central system bus, which fits well with

the picoJava bus interface model. However,

using picoJava still has many effects on the

design of the rest of the system.

The insertion of the picoJava core into our

SoC affected our choice of communication

architectures. First, the communication archi-

tecture must support transactions required by

the picoJava core, which includes memory

69July–September 2000

Timers

Outside
master

interface

Outside
slave

interface

picoJava core
Hardware

accelerator
1

Hardware
accelerator

2

PI-BUS

On-chip memory
(128 kByte)

Bus
control unit

Figure 8. PicoJava SoC architecture.

reads and writes of different widths and burst

lengths. Second, timing and control signals for

all transactions coming from the picoJava core

must match the specification of the communi-

cation architecture. In our implementation, we

chose PI-Bus because it supports the same

types of transactions required by the picoJava

soft core. However, we had to implement an

interface between picoJava and the bus to cor-

rectly match the PI-Bus specification.

In addition to implementing an interface

between the picoJava core and the system bus,

we also had to modify the other units in the SoC

when inserting the picoJava core. Because

picoJava assigns different memory address

spaces for different purposes, each unit must

be modified to make sure it resides in the prop-

er memory space of picoJava. For example, the

bus control unit and the hardware accelerators

must be modified to ensure that the memory

units of the hardware accelerators are in the

uncached memory space of picoJava.

Sometimes additional components also

have to be added to obtain full functionality of

the picoJava processor. For example, in our

design we had to implement hardware timers

to allow for multitasking and other operating

systems tasks that otherwise would not operate

correctly on the picoJava processor core.

Hence, integration of the picoJava core in

an SoC design requires modification of the

entire design and not just the picoJava core.

These modifications include modifying the bus

interface unit between picoJava and the system

bus, modifying the bus control unit and other

hardware components to communicate with

picoJava properly, and adding the other com-

ponents necessary to use all the capabilities of

picoJava.

The SoC design is validated using the RTL

simulation environment of the picoJava core.

However, we are currently developing a co-sim-

ulation environment to enable fast and efficient

system-level validation. �

OUR EXPERIENCE relates to use of the picoJava

processor core in developing an image com-

pression SoC, but the design, test, and integra-

tion experiences are representative of the use

of any soft core in any application-specific SoC.

The design steps and challenges involve core

synthesis and optimization to target the desired

technology library, developing methodologies

to validate the core implementation with the

functional specification, making the core

testable, and integrating the core in the appli-

cation-specific SoC. �

Acknowledgments
We would like to thank Sun Microsystems for

open licensing of the picoJava core, and the

sponsors of the SRC Cu-Design Contest for access

to the 0.18um Cu technology. We would like to

thank Ying Chen for his help with the picoJava

synthesis process, Dong-Gi Lee for his help in

generating the memory components, and Yi

Zhao and Xiaoliang Bai for helping with the phys-

ical design process.

This work is funded by Marco/Darpa

Gigascale Silicon Research Center (GSRC), UC

Micro, NEC USA and SRC.

References
1. R.K. Gupta and Y. Zorian, “Introducing Core-

based System Design,” IEEE Design & Test of

Computers, Oct.-Dec. 1997, pp. 15-25.

2. “PicoJava Microprocessor Core,” Sun Microsystems,

http://www.sun.com/microelectronics/picoJava/.

3. PicoJava-II Verification Guide, Sun Microsystems,

March 1999.

4. “Synopsys Design Compiler Family,” http://www.

synopsys.com/products/logic/design_compiler.html.

5. ModelSim EE/PLUS Reference Manual, Version

5.2, Model Technology, Portland, Ore., 1999.

6. Y. Zorian, E.J. Marinissen, and S. Dey, “Testing

Embedded-Core-Based System Chips,” Comput-

er, June 1999, pp. 52-60.

7. V.D. Agrawal et al., “Built-in Self-Test for Digital

Integrated Circuits,” AT&T Technical J., Mar.

1994, pp. 30.

8. P. H. Bardell ,W.J. McKenney, J.Savir, Built-in test

for VLSI: Pseudorandom Techniques, John Wiley

and Sons, New York, 1987.

9. G. Hetherington et al, “Logic BIST for Large Indus-

trial Designs: Real Issues and Case Studies,”

Proc. of the Int. Test Conf. 1999 IEEE, Sept.

1999, pp. 358-367.

10. “PI-Bus Toolkit,” http://www.sussex.ac.uk/engg/

research/vlsi-Jan97/projects/pibus/.

PicoJava Processor Core

70 IEEE Design & Test of Computers

Sujit Dey is an associate
professor in the Electrical and
Computer Engineering De-
partment at the University of
California, San Diego. The
goal of his research group at

UCSD is enabling the use of nanometer tech-
nologies and software configurability to develop
embedded solutions for mobile multimedia sys-
tems. He was a senior researcher at NEC C&C
Research Laboratories in Princeton, NJ, before
joining UCSD. Dey received his PhD degree in
computer science from Duke University. He is a
co-inventor of 10 items US patents. He received
Best Paper awards at the Design Automation
Conferences in 1994, 1999, and 2000, and the
11th VLSI Design Conference in 1998. He is affil-
iated with the DARPA/MARCO Gigascale Sys-
tems Research Center and the Center for Wireless
Communications at UCSD.

Pablo Sanchez received
his BS in 1987 and PhD in
1991 in electronics from the
University of Cantabria, Spain,
and is currently titular profes-
sor with the Electronics Tech-

nology Department there. During 1999, he worked
in the ESDAT Group of the University of California
at San Diego on projects related to IP Core inte-
gration on embedded systems. His research inter-
ests include system verification, core integration,
and hardware/software co-design.

Debashis Panigrahi is a
PhD student at the University
of California, San Diego in
electrical and computer
engineering. He received his
BTech Degree from the Indi-

an Institute of Technology, Kharagpur, in com-
puter science and engineering in July 1998. His
main research interests include hardware/soft-
ware co-design and co-simulation, low-power
design, and mobile networks.

Li Chen is pursuing a PhD
in electrical and computer
engineering at the University
of California at San Diego.
Chen recieved her BS and
MS degrees in electrical and

computer engineering from Carnegie Mellon Uni-
versity in 1996 and 1998, respectively. Her
research interests include the self-testing and
the self-diagnosis of microprocessor cores.

Clark N. Taylor is current-
ly a second-year PhD stu-
dent and SRC Graduate
Fellow at the University of
California, San Diego in elec-
trical and computer engi-

neering. He received his MS in Electrical
Engineering in August 1999, and his BS in Elec-
trical and Computer Engineering in 1995, from
Brigham Young University. His main research
interests include test, low-power design, embed-
ded systems design, and mobile multimedia
algorithms and implementations.

Krishna Sekar is currently
a PhD student at the Univer-
sity of California at San Diego
in the Electrical and Comput-
er Engineering Department.
He received his BTech

degree from the Indian Institute of Technology,
Kharagpur, in computer science and engineer-
ing in July 1999. His main research interests
include low-power VLSI testing, built-in self-test,
and formal verification.

Address comments and questions to Sujit
Dey, Department of Electrical and Computer
Engineering, 9500 Gilman Drive, Mail Code
0407, University of California, San Diego, La
Jolla, CA 92093-0407; dey@ece.ucsd.edu.

71July–September 2000

