
Dynamic Platform Management for Configurable Platform-Based
System-on-Chips

Krishna Sekar Kanishka Lahiri Sujit Dey

Dept. of Electrical and Computer Engineering,
UC San Diego, La Jolla, CA

Abstract— General-purpose System-on-Chip platforms con-
sisting of configurable components are emerging as an attrac-
tive alternative to traditional, customized solutions (e.g., ASICs,
custom SoCs), owing to their flexibility, time-to-market ad-
vantage, and low engineering costs. However, the adoption
of such platforms in many high-volume markets (e.g, wireless
handhelds) is limited by concerns about their performance and
energy-efficiency. This paper addresses the problem of enabling
the use of configurable platforms in domains where custom ap-
proaches have traditionally been used. We introduceDynamic
Platform Management, a methodology for customizing a config-
urable general-purpose platform at run-time, to help bridge
the performance and energy efficiency gap with custom ap-
proaches. The proposed technique uses a software layer that de-
tects time-varying processing requirements imposed by a set of
applications, and dynamically optimizes architectural parame-
ters and platform components. Dynamic platform management
enables superior application performance, more efficient uti-
lization of platform resources, and improved energy efficiency,
as compared to a statically optimized platform, without requir-
ing any modifications to the underlying hardware.

We illustrate dynamic platform management by applying it
to the design of a dual-access UMTS/WLAN security processing
system, implemented on a general-purpose configurable plat-
form. Experiments demonstrate that, compared to a statically
optimized design (on the same platform), the proposed tech-
niques enable upto 33% improvements in security processing
throughput, while achieving 59% savings in energy consump-
tion (on average).

I. I NTRODUCTION

General-purpose configurable platforms refer to System-on-
Chips featuring general-purpose components and/or architectural
parameters that can be customized towards the requirements of a
specific application (or applications). Examples of components that
might be included in such a platform are configurable processors,
parameterized caches, reconfigurable memory hierarchies, flexi-
ble bus architectures, programmable logic, and parameterized co-
processors. Figure 1 illustrates how such platforms potentially com-
bine the best benefits of general-purpose and custom design styles.
While customized, application-specific hardware (e.g., ASICs, cus-
tom SoCs) are suited to providing high performance, low power,
and small size, they are usually associated with heavy engineering
costs, slow time-to-market, and an inability to provision for post-
deployment upgrades (hence reduced time-in-market). At the other
extreme, solutions based entirely on general-purpose processors
provide high degree of flexibility, enabling upgrades, and shorter
development cycles, but often fall short of performance and power
requirements. Domain-specific platforms attempt to bridge this gap,

This work was supported by the National Science Foundation, grant 99-12414

featuring architectures that are optimized for certain application
areas (e.g., network [1], security [2], multimedia processors [3]).
However, the costs of developing new platform architectures for
each domain remains substantial.

General-purpose configurable platforms are significantly more
flexible than their domain-specific counterparts, permitting target-
ing of the same hardware to multiple applications. However, Fig-
ure 1 shows that a significant difference can exist between the per-
formance and power characteristics of such platforms and more
specialized solutions, when used in a naive manner. Techniques
for application-specific customization of general-purpose platforms
(such as the approach described in this paper) are therefore essential
to help bridge this gap.

Improving performance, power, size

Im
pr

ov
in

g
tim

e-
to

-m
ar

ke
t,

en
gi

ne
er

in
g

co
st

,t
im

e-
in

m
ar

ke
t

General-
Purpose

Processors

ASIC,
Custom

SoC

Domain
Specific

Platforms

Customized
Platforms

Platform
Customization

Techniques

General
Purpose

Configurable
Platforms

Fig. 1. Importance of platform customization for configurable platform-based System-
on-Chip design

One of the areas in which such platforms are expected to play
an important role is the function rich, high data rate, wireless hand-
set market. In this application domain, severe limitations on de-
vice cost, size and power consumption, together with the need for
high performance (due to more demanding wireless applications),
software upgradability (due to evolving standards, emerging appli-
cations), and short product cycles make configurable platforms an
attractive approach. Recently, several general-purpose configurable
platforms have become available [4], [5], [6]. However, these plat-
forms are typically configured statically (at design time), and more-
over, often require changes to, or optimization of, the underlying
platform hardware (e.g.,the number of processor functional units).
Recognizing the need for greater (run-time) configurability, prod-
ucts featuring components and parameters that can be configured or
programmed on-the-fly have started to appear [7], [8].

The need for dynamic configurability in SoC platforms stems
from the increasing number of domains in which embedded sys-
tems need to execute multiple (possibly concurrent) applications
(e.g., wireless handhelds). Since different applications can have
widely different characteristics, significant temporal variation may
occur in the manner in which underlying platform resources (e.g,
CPU, memory) are used, depending on which application is execut-
ing, or the concurrent mix of applications. In addition, individual

641

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICCAD’03, November 11-13, 2003, San Jose, California, USA.
Copyright 2003 ACM 1-58113-762-1/03/0011 ...$5.00.

applications, and their operating environments, can impose a wide
range of processing requirements, due to variations in performance
criteria, available battery capacity, and properties of the data be-
ing processed. If platform-based SoCs are to achieve semi-custom
performance and power goals, it is imperative for the system to rec-
ognize, and adapt the underlying architecture to such changing re-
quirements. While the development of dynamically configurable
platforms is an important and active area of research, the focus
of our work is complementary, addressing techniques for the run-
time management and customization of platform components and
parameters.

A. Paper Overview and Contributions

This paper introduces the concept ofdynamic platform man-
agement, a methodology for run-time customization of a general-
purpose configurable platform, with the aim of providing applica-
tions running on the platform, with performance and/or energy con-
sumption characteristics that are associated with more customized
system implementations. Our techniques aim at enabling the use of
a general-purpose platform across numerous application domains,
without incurring the cost and effort of re-designing, or introduc-
ing new platform hardware. Dynamic platform management is im-
plemented as a layer of customized software that understands and
exploits knowledge of the applications and their characteristics, in
order to optimally manage and configure platform resources (Fig-
ure 2). In this approach, targeting a platform to a new application
domain involves customizing the platform management algorithms,
hence, avoiding the large development costs associated with hard-
ware design/customization. Also, adding new applications to a de-
ployed platform involves only upgrading the platform management
layer, along with application software.

In this paper, we present a methodology for dynamic manage-
ment of a general-purpose platform that supports run-time config-
uration of a flexible memory architecture, fine-grained frequency
setting, and supply voltage scaling. The methodology enables op-
timized usage of available CPU and on-chip memory resources. It
consists of two parts. In the first part, we develop detailed (off-line)
characterizations of how platform resource usage (e.g., CPU cycles,
memory accesses) varies with the characteristics of the set of exe-
cuting tasks. The second part consists of dynamic platform man-
agement algorithms that customize the platform for time-varying
application requirements. We demonstrate how our techniques can
achieve significant gains in performance and energy efficiency by
applying it to the design of a dual-access UMTS/WLAN wireless

Embedded
processor

Dynamically Configurable Platform

Prog. Voltage
Regulator

Flexible
on-chip
SRAM

Prog. PLL

Re-
configurable

Cache

Parameterized
co-processor

PLD

Performance
Objectives,
Data
Properties

Application 1 Application 2 Application 3

Power
Constraints

Processing
Requirements

Processing
Requirements

Processing
Requirements

Optimized Platform Configuration

Performance
Objectives,
Data
Properties

Performance
Objectives,
Data
Properties

Dynamic Platform Management

Fig. 2. Dynamic platform management: run-time customization of a general-purpose,
configurable platform

security processing system. Experiments demonstrate that, com-
pared to a conventionally optimized design (on the same general-
purpose platform), the proposed techniques enable upto 33% im-
provements in security processing throughput, while achieving 59%
energy savings (on average).

In the next section, we describe the configurable platform archi-
tecture that we consider in this paper. In Section III, we illustrate,
using the UMTS/WLAN security processing system as an example,
the execution of the system based on dynamic platform manage-
ment, and the advantages it provides. In Section IV, we present
details of the methodology, considering the key steps, and algo-
rithms employed. Finally, in Section V we present experimental
results that evaluate the performance and energy-efficiency of the
developed security processing system, and compare it to a conven-
tionally optimized design.

B. Related Work

Increasing interest in configurable platforms has led to the devel-
opment of technologies for configurable platform architectures, as
well as platform customization techniques. The latter include tech-
niques that modify or make additions to the underlying platform
hardware to better suit application-specific characteristics. These
“hardware centric” customization approaches can result in the cre-
ation of new instructions and functional units [4], co-processors [5],
customized memory subsystems [9],etc. In our approach, the plat-
form hardware is pre-designed, but is customized at run-time using
software. The approach taken by [10] is similar to ours in that they
also consider pre-designed, general-purpose platforms, and provide
a methodology for optimizing (or “tuning”) architectural parame-
ters. However, they focus on statically optimizing the platform for
a particular application, and do not consider dynamic configurabil-
ity.

Recognizing the advantages of dynamic customization, numer-
ous technologies have emerged, or are emerging, for platforms fea-
turing components that can be dynamically configured. These in-
clude configurable processors [7], caches [11], [12], [13], adaptive
on-chip communication architectures [14], [15], and specialized
hardware for logic-level (FPGAs) or micro-architectural reconfig-
urability [16], [17], [18]. In our work, we assume the availability
of an underlying platform consisting of readily-available, general-
purpose components, that can be configured dynamically, and focus
on techniques for run-time management, and simultaneous config-
uration of these components.

It bears mentioning that policies for configuring individual ar-
chitectural parameters and components, such as frequency, voltage,
cache/memory organization have been proposed [9], [19]. In this
paper we consider the simultaneous configuration and optimization
of multiple platform resources. Policies for managing the power
states of components along with frequency/voltage scaling have
been proposed for saving energy [20]. However, our platform man-
agement technique focuses on optimally configuring both the mem-
ory architecture and frequency/voltage setting to improve the per-
formance as well as the energy efficiency of the system.

II. CONFIGURABLE PLATFORM ARCHITECTURE

The configurable platform architecture that we consider features
fine-grained, run-time settable voltage and frequency, an embed-
ded processor (the StrongARM1 core [7]), and a flexible memory
architecture, containing a small, fast, on-chip data memory (Fig-
ure 3). Dedicated on-chip memories are often used in embedded

642

Platform
Frequency

Instruction
Cache
(1 KB)

Data
Memory
(1.5 KB
SRAM)

External
Memory

Configurable Platform Architecture

Platform
Voltage

On-Chip
Memory

Configuration

Base
Pointer
Registers

0.83 - 1.5V

59 - 206 Mhz

StrongARM1
CPU usage
0-100%

Memory Usage:
0-1.5KB

Fig. 3. A general purpose, configurable platform architecture, featuring dynamically
configurable on-chip memory, platform voltage and frequency

systems in place of data caches, to reduce power consumption, ex-
ploit application characteristics, and obtain more predictable exe-
cution [21]. The platform architecture supports dynamic partition-
ing of data items used by the various tasks between the fast on-
chip data memory (SRAM) and slower external memory. This pro-
vides the flexibility of selecting at run-time, the optimum set of data
items (e.g., the most frequently accessed) for storage in the on-chip
memory. The space of platform configurations is defined by two
dimensions. The first dimension consists of different(f ;v) pairs,
which define clock frequencies and their associated supply volt-
age values. The second dimension consists of the different ways
in which the set of data items (accessed by the tasks) can be par-
titioned between on-chip and external memory. For a set of data
itemsD= fD1;D2; :::;Dng, a configuration of the on-chip memory
is defined by a setDon� D, such that the total size of items inDon
does not exceed the capacity of the on-chip memory. A candidate
platform configuration is defined byh f ;v;Doni. A configuration is
successful in meeting performance requirements, if the associated
CPU utilization is no more than 100%.

III. D EMONSTRATINGPLATFORM MANAGEMENT FOR

SECURITY PROCESSING

In this section, we illustrate the operation and advantages of
our dynamic platform management technique using a dual-access
(UMTS/WLAN) security processing system as an example. We
first describe the security processing tasks, and their mapping to
the platform architecture. Next we highlight the space of available
platform configurations. We then illustrate the problems associated
with configuring the platform statically, and finally, illustrate how
dynamic platform management chooses optimized platform config-
urations at run-time, and thereby achieves desired security process-
ing throughput, and improvements in energy-efficiency.

A. Example: UMTS/WLAN Security Processing

The system implements Layer 2 security protocols of two wire-
less standards: the UMTS standard for third generation cellular net-
works [22], and the IEEE 802.11b standard for wireless LANs [23].
Our design is motivated by the projected emergence of converged
handsets, capable of simultaneous communication over multiple
wireless interfaces [24]. The need to support upgrades (due to the
evolving nature of security protocols), while achieving high secu-

rity processing throughput and energy-efficiency, makes a general-
purpose configurable platform a suitable implementation choice.

The dual-access security processing system executes two tasks.
The UMTS task is responsible for ciphering and integrity of UMTS
frames [22]. Each UMTS frame may be ciphered and integrity
checked, or only ciphered, depending on the frame type. All frames
are ciphered using thef8 algorithm. In addition, signalling frames
are also integrity checked using a 32-bit Message Authentication
Code, computed using thef9 algorithm. Bothf8 and f9 are are
based on theKASUMIblock cipher [22]. The WLAN task (defined
in [23]) is responsible for encrypting Layer 2 frames (if encryp-
tion is enabled) using the Wired Equivalent Privacy (WEP) proto-
col, which is based on a 64 bit symmetric key stream cipher, and
computing a Frame Check Sequence (a 32 bit CRC) for data in-
tegrity. While processing a UMTS (or WLAN) frame, the UMTS
(or WLAN) task accesses a set of data items (e.g.,CRC tables, sub-
stitution tables, the program stack, frame dataetc).

The security processing tasks (UMTS/WLAN) are mapped to the
configurable platform described in the previous section. The tasks
execute on the StrongARM core, and the various data items are par-
titioned between the on-chip and external memory (since all the
items cannot be accommodated in the on-chip memory). The tasks
individually exhibit significant dynamic variation in their CPU re-
quirements, and memory access patterns, due to variable data rates,
frame types and frame size distributions.

B. Platform Configuration Space

Figure 4 depicts three workload scenarios, labeledCase 1, Case
2 andCase 3. In all the cases, both the UMTS and WLAN tasks are
active, and are processing respective frames. In this example, the
frame characteristics are held constant (as indicated in Figure 4),
while the data rate associated with each task varies as shown. Be-
low each case, we illustrate a pair of tables, one for each of the
two tasks. The UMTS table forCase 1depicts a space of possible
platform configurationsh f ;V;DUMTSi, with the CPU% consumed
by the UMTS task under the given workload. For example, row 1
of Table UMTS-Case1 indicates that if the platform is operated at
206 Mhz, 1.5 V, and if the Stack, Key Schedule, and S7 data items
are stored in the on-chip memory, then while processing 5114 bit
frames (of type signalling) at 1.8 Mbps, the UMTS task consumes
57.8% of the CPU. A similar table is presented for WLAN-Case1,
and for the other cases.

At any given time, a candidate platform configuration is defined
by a pair of rows, one from each table, such that the following two
conditions are met: (i) the frequency and voltage in the two se-
lected rows are identical, (ii) the total size of the data items stored
in the on-chip memory is less than its capacity. A platform con-
figuration that satisfies these conditions, and achieves no more than
100% CPU, will satisfy performance (data rate) requirements.

C. Security Processing: Static Configuration

We first consider the execution of the platform for each of the
three cases depicted in Figure 4, when it is statically configured.
The particular static configuration that we choose is one that is opti-
mized for a large space of requirements (details in Section V). Fig-
ure 4 illustrates the sequence of platform configurations, showing
how, in this case, the pair of “selected rows” remain fixed over time
(indicated by4). The static configuration is defined byh f ;V;Doni,
where f = 206;V = 1:5;Don= fStackUMT S;KSUMT S;S7UMT S;S�
TableW LAN;StackWLANg. Inspection of the CPU% figures for this
architecture indicates the following problem. While forCase 1, the

643

5114 bit frames,
Frame Type = signalling,

1.8 Mbps

2304 byte frames,
Frame Type = encrypted,

6 Mbps

UMTS

WLAN

Case 1 Case 2 Case 3

5114 bit frames,
Frame Type = signalling,

384 Kbps

2304 byte frames,
Frame Type = encrypted,

14 Mbps

5114 bit frames,
Frame Type = signalling,

200 Kbps

2304 byte frames,
Frame Type = encrypted,

11 Mbps

UMTS-Case1
F

(Mhz)

206

206

133

206

118

118

V

1.5

1.5

1.1

1.5

1.05

1.05

CPU
%

119.7

71.1

136.6

57.8

97.9

140.3

On-Chip
Memory
(DUMTS)

S7

Stack,
KS

S7

Stack,
KS,S7

Stack
KS

S7

WLAN-Case1
F

(Mhz)

206

206

133

206

118

118

V

1.5

1.5

1.1

1.5

1.05

1.05

CPU
%

35.2

35.2

45.2

42.1

48.3

48.3

On-Chip
Memory
(DWLAN)

Sel.

UMTS-Case2
F

(Mhz)

206

206

133

206

118

118

V

1.5

1.5

1.1

1.5

1.05

1.05

CPU
%

25.5

15.2

29.1

12.3

20.9

29.9

On-Chip
Memory
(DUMTS)

S7

Stack,
KS

S7

Stack, KS,
S7

Stack
KS

S7

WLAN-Case2
F

(Mhz)

206

206

133

206

118

118

V

1.5

1.5

1.1

1.5

1.05

1.05

CPU
%

82.1

82.1

105.4

98.3

112.7

112.7

On-Chip
Memory
(DWLAN)

S-Table,
CRC-Table

S-Table,
CRC-Table

S-Table,
CRC-Table

S-Table,
Stack

S-Table,
CRC-Table

S-Table,
CRC-Table

Sel.

...

UMTS-Case3
F

(Mhz)

206

206

133

206

118

118

V

1.5

1.5

1.1

1.5

1.05

1.05

CPU
%

13.3

7.9

15.2

6.4

10.9

15.6

On-Chip
Memory
(DUMTS)

S7

Stack,
KS

S7

Stack, KS,
S7

Stack
KS

S7

WLAN-Case3
F

(Mhz)

206

206

133

206

118

118

V

1.5

1.5

1.1

1.5

1.05

1.05

CPU
%

64.5

64.5

82.8

77.2

88.5

88.5

On-Chip
Memory
(DWLAN)

S-Table,
CRC-Table

S-Table,
CRC-Table

S-Table,
CRC-Table

S-Table,
Stack

S-Table,
CRC-Table

S-Table,
CRC-Table

Sel.Sel. Sel. Sel.

...

S-Table,
CRC-Table

S-Table,
CRC-Table

S-Table,
CRC-Table

S-Table,
Stack

S-Table,
CRC-Table

S-Table,
CRC-Table

...

Static Configuration Candidate Configurations Optimized Configurations

Fig. 4. Dynamic selection of optimized platform configurations for UMTS/WLAN security processing

total CPU% is 57:76+42:11= 99:87%, inCase 2, the rows corre-
sponding to the static architecture (4) have CPU% values that add
up to 110.58%, indicating that the static architecture is not capable
of satisfying the processing requirements imposed byCase 2.

D. Security Processing: Dynamic Platform Management

We next illustrate the execution of the security processing tasks
with our dynamic platform management technique, for the three
cases considered in the previous example. The platform manage-
ment technique considers (i) time-varying requirements imposed
by the individual tasks (by examining workload parameters, such
as frame sizes, types, and data rate requirements), and (ii) pre-
determined characteristics of each task, to choose an optimized con-
figuration of the platform. For example, underCase 1, the plat-
form management technique chooses a platform configuration that
is identical to the static configuration used in the previous example.
However, as the requirements imposed by the application change,
the selected platform configuration may change, as illustrated next.

When the requirements change fromCase 1to Case 2, the plat-
form management techniques consider the space of possible plat-
form configurations available to further optimize the system for
Case 2(defined in Tables UMTS-Case2 and WLAN-Case2). Recall
that a pair of rows from these uniquely defines a platform config-
uration. Clearly the pair of rows labeled with4 define a platform
configuration that cannot meet the requirements imposed byCase 2
(total CPU exceeds 100%). A possible configuration is the one de-
fined by the pair of rows labeled with a?. This configuration differs
from the previous one in terms of the set of data items stored in the
on-chip memory: the itemsS7UMTSandStackWLAN are replaced by
CRC�TableWLAN. Under the new configuration, the CPU% con-
sumed by the two tasks are 15.17% and 82.12%, resulting in a total
of 97.29%, which is less than 100%. Hence, this is determined to
be a platform configuration that satisfiesCase 2.

However, the platform management technique does more than
just select an alternate set of data items to be stored in memory.
It does this in a manner so as to minimize wasted CPU cycles,

and hence increase CPU availability. To illustrate this, consider
Case 3, where in the static case, (denoted by4), the total CPU%
is 6:42+ 77:20= 83:62%. Even though this configuration meets
performance requirements comfortably, the platform management
technique considers the space of possible configurations that might
result in more efficient use of the CPU. For example, to process
the workload ofCase 3, the configuration defined by the pair of
rows labeled with † results in 77.82% CPU utilization, whereas the
configuration defined by the pair of rows labeled with ‡ result in
72.42% CPU utilization. The platform management technique se-
lects ‡ over †, since ‡ achieves 13% savings in CPU cycles, while
† achieves only 7% savings. Reducing CPU utilization can enable
(i) accommodation of other processing tasks (if they exist), or (ii)
in our case, reductions in power consumption via frequency and
voltage scaling. In the example, the platform management tech-
nique selects a configuration defined by the pair of rows labeled
with ?. Exploiting the resultant CPU slack enables operating the
platform at a lower frequency (118 Mhz) and voltage (1.05 V), lead-
ing to energy savings. Note that, if the memory configuration de-
fined in † had been used, then the platform would have had to be
operated at 133 Mhz and 1.1 V, which would have led to higher
power consumption. On the other hand, if the platform was oper-
ated at 118 Mhz (the optimum speed for ‡), it would have led to a
total CPU utilization of 104.1%, resulting in failure to meet perfor-
mance requirements. This illustrates that the platform management
technique configures the platform in a holistic manner, with simul-
taneous concern for memory usage, CPU utilization, and operating
frequency/voltage.

From this example, we draw a few important conclusions:
� Tasks can exhibit significant dynamic variation in their work-

load characteristics, resulting in a wide range of processing
requirements imposed on a platform. While we considered
data rate as a variable parameter, the platform resource usage
profiles could vary significantly due to several other factors
(e.g,, the exact set of tasks currently active, and frame proper-
ties, such as frame types, sizes,etc).

� Dynamically configuring the platform while exploiting (i) an

644

accurate characterization of application tasks, and (ii) a de-
tailed knowledge of the platform architecture can help im-
prove platform resource utilization (CPU, memory), resulting
in performance improvements, and large energy savings.

� Platform management techniques should be based on tightly
coupled algorithms for dynamically optimizing different com-
ponents and parameters for maximizing performance and
energy-efficiency. The example illustrated how usage pro-
files of different platform components are interdependent, and
demonstrated how intelligent use of an on-chip memory helps
free up CPU cycles (by reducing the number of slow external
memory accesses), enabling larger CPU headroom, or poten-
tial power savings.

IV. DYNAMIC PLATFORM MANAGEMENT METHODOLOGY

In this section, we describe the details of the dynamic platform
management methodology. We first define terminology, and then go
on to describe (i) the off-line task characterization step, and (ii) the
dynamic platform management algorithms that optimize the plat-
form configuration at run-time, so as to meet performance require-
ments, while minimizing energy consumption.

A. The Model

We consider tasks with periodic arrivals, having soft real-time
requirements. At a given time, let the set of currently executing
tasks be denoted byT = fT1;T2; :::;TNg, whereN�MAX, the total
number of tasks in the system. Associated with each taskTi , where
1� i � MAX, is a set of data items,Di = fdi;1; : : : ;di;mig. A data
item refers to a logical data structure, or data block, that can be
addressed contiguously by the task. For example, the CRC table
used for computing the 32 bit checksum in the WLAN task is a data
item. Each data item,di; j , has an associated maximum sizesi; j .
Each instance of a taskTi , has a time-intervalPi , within which it
has to finish executing. LetNi = fni;1;ni;2; :::;ni;mig denote a set
consisting of the number of accessesTi makes to each data item in
Di in time-intervalPi (i.e., there is a one-one mapping betweenDi
andNi). Let Ci denote the number of processing cycles (excluding
data memory access cycles) required by each instance of the taskTi
in the time-intervalPi. GivenDon, the set of data items in on-chip
memory, the execution timeETi for each instance of a taskTi is
estimated using the following:

ETi = (Ci +nCon�chip+(N�n)(d
Text

1= f
e))�

1
f

(1)

whereCi is the number of processing cycles,Con�chip is the num-
ber of cycles to access on-chip data memory,Text is the time to
access external memory,N = ∑Ni is the total number of data ac-
cesses,n= ∑di; j2Don

ni; j is the number of data accesses to on-chip
data memory, andf is the operating frequency. The non-linear ef-
fects due to external memory are accounted for by thed Text

1= f e term.
The values ofCon�chip andText depend on the platform.

In order to dynamically determine the optimized platform con-
figuration, the platform management algorithms are provided with
certain characteristics of the tasks which execute on the platform.
This task specific information is obtained by characterizing each
task off-line, using a procedure we describe next.

B. Off-line Task Characterization

The steps performed in this off-line phase are illustrated by the
first box in Figure 5. For each task,Ti ;1� i � MAX, which poten-
tially executes on the platform, all the data addressed by the task

At each task instance arrival, given {T1, …, TN} ⊆ Task_Set are active

• On-Chip Memory Configuration
Select a subset of the data items, Don ⊆ Di , to be placed in
on-chip memory that

 maximizes while , where

Pi is the time interval of task Ti and size is on-chip memory size

• Frequency and Voltage selection
 - Select the lowest frequency, f ∈{ f1 < f2 < ….. < fmax} such that

 where is the execution time of task Ti

at frequency f and Don placed in on-chip memory
 - Select the corresponding voltage level

∑ ≤
∈Dd onji

sizes ji

,

,











∑
∈Dd onji P

n
i

ji

,

,

U
N

i 1=

∀tasks Ti ∈ Task_Set = { T1, T2, …, TMax}, determine
• Di = {di,1, …, di, }, the set of data items of Ti

• Si = {si,1, …, si, }, the set of maximum sizes of the data items
• parameterized formulae for estimating
 Ni = {ni,1, …, ni, }, the set of number of accesses to each
 data item per task instance
• parameterized formula for estimating Ci , the number of
 processing cycles per task instance

mi

mi

mi

O
ff

-l
in

e
T

as
k

C
ha

ra
ct

er
iz

at
io

n
D

yn
am

ic
 P

la
tf

or
m

 M
an

ag
em

en
t

()
1

1

, ≤∑
=

N

i i

Dfi

P
on

ET ()
onDfiET ,

Fig. 5. Dynamic platform management methodology

is first divided into a set of logical data items,Di . Each data item
di; j 2 Di should be contiguously addressable by the task. Next,
the maximum sizes of these data items (si; j values) are determined
through a combination of analysis and simulation. Each data item
di; j is then characterized by the number of times,ni; j , it is accessed
by an instance of its associated taskTi . In general, the value ofni; j
varies, depending on dynamically variable parameters of the task,
and properties of the data being processed. For example, in a secu-
rity processing system, the parameters may include the encryption
key lengths, frame lengths and frame types. Hence, the result of
this step is a set of formulae/models for estimating the number of
accesses to each data item at run-time. In addition, similar models
for estimating the number of processing cycles,Ci , for each task
instance are developed. Note that, we base our estimation models
on parameters whose values can be obtained at task arrival. In cer-
tain cases, the tasks characteristics may depend on the actual data
values, in which case, accurate off-line estimation may prove diffi-
cult. While considering such tasks is beyond the scope of this paper,
we believe that our methodology can be extended to incorporate
predictive strategies for estimating task characteristics at run-time
(e.g.,[25]).

Table I shows the results of performing this characterization step
for the security processing tasks:UMTS ciphering and integrity,
andWLANencryption and checksum. The data items accessed by
the UMTS task are its Stack (Stack), the Key Schedule (KS), the
S7 andS9 lookup tables, and theUMTS frame. TheWLANdata
items include its Stack (Stack), the State Table (S� Table), the
CRC Table (CRC�Table), and theWLAN frame. The number of
accesses per data item and the processing cycles requirement for
UMTSdepend on both the frame size (l) and the type of frame (for
user frames, only the first parenthesized term is used, while for sig-
nalling frames, both the terms are used). The corresponding esti-
mation formulae forWLANdepend only on the frame size.

Once these characterization tables are generated, they are incor-

645

TABLE I

CHARACTERIZATION OF THE SECURITY PROCESSING TASKS

Task

UMTS

WLAN

Data
Items
(di,j)

Stack
KS
S7
S9

Frame

Stack
S-Table

CRC-Table
Frame

Max
Size
 (si,j)

120
128
256
1024
1340

96
256
1024
4654

Estimated
Number

of Accesses (ni,j)

(19.5l/8+520.5)+(18.5l/8+726.5)
(64l-1/64+256)+(64l+1/64+320)
(48l-1/64+96)+(48l+1/64+144)
(48l-1/64+96)+(48l+1/64+144)

(2l/8+35)+(l/8+40)

272
10l+1322

2l+40
4l+54

Proc.
Cycles
(Ci)

(146.15 l/8
+3176.71)+
(131.95 l/8
+4796.72)

36l+5807

porated into the dynamic platform management algorithms (Fig-
ure 5), which use them to optimize the platform configuration at
run-time. Note that, in order to incorporate a new task into the plat-
form, or to target the platform to a new set of application tasks,
the platform management implementation remains the same. Only
this off-line characterization step needs to be performed to generate
the required tables, and provided to the platform management algo-
rithms. In the next subsection, we describe how these characteriza-
tion tables are used to select optimized platform configurations at
run-time.

C. Dynamic Platform Management Algorithms

At the arrival of each task instance, the dynamic platform man-
agement techniques choose an optimized configuration by (i) de-
ciding on the on-chip memory configuration, and (ii) calculating
a “memory-aware” frequency and voltage setting (Figure 5). We
next describe how the memory, and frequency/voltage decisions are
taken. A pre-emptive EDF scheduler [26] is assumed for scheduling
the arriving tasks.

C.1 On-Chip Memory Configuration

The task of configuring the on-chip memory consists of dynam-
ically selecting the optimal set of data items,Don, to be placed in
on-chip memory given a set of executing tasks. Given two different
on-chip memory configurations,Don1 andDon2, the one which re-
duces the CPU stall cycles as it waits for external memory is better,
since it results in more efficient CPU utilization. It can be shown
thatDon1 is preferable toDon2, if :

N

∑
i=1

ETi;Don1

Pi
<

N

∑
i=1

ETi;Don2

Pi
(2)

where N is the number of currently executing tasks. Using Equa-
tion 1 and solving the above inequality, we get:

∑
di; j2Don1

ni; j

Pi
< ∑

di; j2Don2

ni; j

Pi
(3)

Equation 3 holds, provided on-chip memory access time is less than
external memory access time (which is true). Hence, that on-chip
memory configuration, which maximizes the rate of on-chip mem-
ory accesses, is optimal. This is subject to the constraint that the
set of selected data items fit within the limited on-chip memory,
i.e., ∑di; j2Don

si; j should not exceed the size of the on-chip mem-
ory (Figure 5). The problem of optimizing the on-chip memory

can be formulated in terms of theKnapsackproblem (which isNP-
complete [27]). Hence, we use a greedy strategy to dynamically

choose the setDon by using ni; j=Pi
si; j

, the ratio of the rate of memory
accesses to the size of the data item, as the cost function.

Since optimizing the on-chip memory configuration frees up
CPU cycles, this enables the possibility of operating the CPU at
a lower frequency and voltage setting.

C.2 Frequency and Voltage Setting

After optimizing the on-chip memory configuration, the dynamic
platform management layer selects the frequency and voltage at
which to operate the platform (Figure 5). Accurate off-line char-
acterizations of the tasks, and knowledge of the currently selected
memory configuration, enables the platform management layer to
aggressive scale the operating frequency and voltage. We use
the schedulability test for EDF [26] to determine the lowest fre-
quency f (among a set of discrete frequencies of the platform,
f1 < f2 < ::: < fmax) at which the set of active tasks can still meet
their performance requirements. The frequency is determined from
the following:

N

∑
i=1

(ETi) f ;Don

Pi
= 1; (4)

where(ETi) f ;Don is the execution time of the currently active in-
stance of taskTi , under frequencyf and with the set of data items
Don in on-chip memory (from Equation 1), andPi is the execution
time-interval ofTi . The voltage level is selected corresponding to
the selected frequency setting.

C.3 Platform Management Overhead

The overhead associated with a platform configuration decision
involves (i) the time taken to re-program the platform frequency and
voltage, and (ii) the time taken to reconfigure the on-chip memory.
For our platform, the time for (i) was assumed to be the time taken to
change the frequency of the StrongARM processor (approximately
150 µs [20]). The worst-case time for (ii) was estimated to be
approximately 200µs, which occurs when the entire contents of the
on-chip memory are re-organized.

Platform management decisions are potentially taken at the ar-
rival of each task instance or frame. If the times between succes-
sive frame arrivals are large, (> 10ms), then platform configuration
decisions can be made at each frame arrival with insignificant over-
head. However, if the task time-periods are small (say hundreds of
µs) then the overhead of platform configuration may out-weigh its
benefits. In such cases, platform configuration decisions need to
be taken at coarser time-scales. An example policy in such cases
is one where the platform management decisions are taken at the
arrival of the first frame following expiration of a fixed time inter-
val. Since workload characteristics of future frames are unknown,
frame sizes and types from the previous interval are used to estimate
future frame characteristics. In our experiments, we used a 10ms
interval.

V. EXPERIMENTAL RESULTS

In this section, we present experimental results that evaluate the
effectiveness of applying the proposed platform management tech-
niques to the dual-access security processing system described in
Section III.

646

A. Experimental Methodology

Optimized C implementations of the UMTS and WLAN security
algorithms were compiled using the ARM C compilerarmcc [28]
(with maximum optimization) and were targeted to the Stron-
gARM1 [7] based platform described in Section II. The experi-
ments consider two variants of the example system. The first vari-
ant consists of a statically optimized configuration of the platform,
where the platform is operated at 206 Mhz and 1.5V, with the on-
chip memory configured as shown in row 1 of the tables in Figure 4.
The second variant incorporates the dynamic platform management
techniques described in Section IV, where the on-chip memory,
frequency and voltage are determined at run-time. The overhead
of frequency and voltage setting was assumed constant at 150µs,
while that of repartitioning data items was determined dynamically,
based on the size of data, and memory access times. Accesses to in-
ternal memory are single cycle, and external memory access time is
50ns. Performance under a provided workload was measured using
cycle-accurate instruction-level simulation of the platform architec-
ture in Figure 3 (usingARMulator[28]). Power was measured using
a cycle-accurate, software energy profiling tool,JouleTrack[29].

B. Impact of Dynamic Platform Management on Performance

This experiment evaluates improvements in security processing
throughput made possible by the proposed techniques. For this ex-
periment, we considered the “space” of possible data rates of the
UMTS and WLAN security processing tasks. We keep other char-
acteristics, such as frame sizes and types constant. For each archi-
tecture, we measured the maximum pairwise achievable data rates
(those achieved when the platform is maximally utilized). Figure 6
presents these results for the considered data rate space. The region
on the left of each 100% CPU contour indicates data rate pairs that
the corresponding architecture can satisfy.

0

2

4

6

8

10

12

14

16

18

20

0 1 2 3 4 5
UMTS Max Data Rate (Mbps)

W
LA

N
 M

ax
 D

at
a

R
at

e
(M

bp
s)

100% CPU contour: Dynamic Platform
Management

100% CPU contour: Statically Configured
Platform

 Only Dynamic Platform Management
 can satisfy data rate requirements

 Dynamic Platform Management
 achieves better CPU% than statically
 configured platform

 Both architectures identical

Fig. 6. Dynamic platform management: (i) space of maximum achievable data rates;
(ii) space of CPU efficiency advantage

From the figure, we observe that dynamic platform management
enables the security processing system to satisfy a larger space of
data rate combinations, compared to the statically configured sys-
tem, facilitating large improvements in performance. For exam-
ple, (in the absence of WLAN) while the static configuration can
achieve 3.1 Mbps UMTS throughput, the dynamic case can sus-
tain a maximum data rate of 4.1 Mbps, a 33% improvement. Sim-
ilarly, upto 21% improvements can be achieved for WLAN data
rates. We exhaustively examined all possible static configurations

of the platform, and found this configuration to be the one that meets
the largest space of data rate requirements. By outperforming this
static configuration, the dynamic platform management technique
demonstrates that it can achieve significant performance gains over
any static configuration.

C. Impact of Dynamic Platform Management on CPU Load

In practice, situations may often arise where data rate require-
ments are far lower than the maximum achievable values. We next
demonstrate that even in cases where performance requirements can
be met by the static configuration, it is still advantageous to use
the dynamic platform management techniques. Figure 6 indicates
portions of the data rate space, where both architectures can meet
performance requirements (area to the left of the 100% contour for
the static configuration). However, for a large fraction of this space
(shaded grey), dynamic platform management results in fewer cy-
cles being expended, hence improving CPU availability.

-20

0

20

40

60

80

100

1 2 3 4 5

Increasing Security Processing Load

C
P

U
 C

yc
le

s
F

re
e

(%
)

Dynamic Platform Management Static Configuration

UMTS: 53 Kbps
WLAN: 2 Mbps

UMTS: 146 Kbps
WLAN: 5.5 Mbps

UMTS: 292 Kbps
WLAN: 11 Mbps

UMTS: 337 Kbps
WLAN: 12.7 Mbps

UMTS: 384 Kbps
WLAN: 14.5 Mbps

No free CPU cycles under
Static Configuration

No free CPU cycles under
Dynamic Platform
Management

Fig. 7. CPU fraction left-over from security processing, under (i) dynamic platform
management, and (ii) static configuration, for increasing security processing load

To quantify this advantage, we performed an experiment where
a set of discrete data rate pairs were considered. For each pair, we
measured the fraction of CPU cycles left over from security pro-
cessing, under the static configuration and with dynamic platform
management. The results of these experiments, along with the data
rate pairs used (in increasing order of imposed load), are presented
in Figure 7. The figure shows that for all cases, the dynamic archi-
tecture makes more CPU cycles available than the static architec-
ture. The effect is more significant at higher CPU loads. For exam-
ple, in the caseh337Kbps;12:7Mbpsi, while the static case “just”
meets the requirements (CPU availability is 0%), in the dynamic
case, the same requirements are met, with 12.14% of the CPU left
over. The increased availability of the CPU (free cycles) can be ex-
ploited to process other tasks, or reduce frequency/supply voltage,
and hence reduce power consumption.

The caseh384Kbps;14:5Mbpsi is of special interest. The results
of Figure 7 show that the static architecture needs 14% more of the
CPU than is available, hence cannot meet the requirements imposed
by the data rates. However, for this case, dynamic platform manage-
ment chooses an optimized platform configuration, which enables
satisfying the imposed requirements.

In summary, Figures 6 and 7 demonstrate that the proposed dy-
namic platform management techniques (i) increase the space of
maximum achievable performance of a configurable platform, (ii)
result in more efficient use of the CPU, and (iii) enable satisfying
requirements than cannot be met by the statically optimized design.

647

D. Impact of Dynamic Platform Management on Energy

In our final experiment, we evaluated the power savings made
possible with the proposed dynamic platform management tech-
niques. For this experiment, we considered a dynamically varying
workload consisting of varying tasks, data rate requirements, ran-
domly varying frame size and types (Figure 8(a)). We compared
the total energy consumed by the static configuration with that con-
sumed with dynamic platform management while processing this
workload. Figure 8(b) illustrates how two of the platform param-
eters (frequency and on-chip memory) vary with time in the dy-
namic case, and Figure 8(c) plots a time profile of the total energy
consumption. From Figure 8(c), we observe that the dynamically
configured architecture achieves 59% energy savings compared to
the static case. In both cases, all performance requirements were
met.

0

500

1000

1500

2000

2500

0.00 20.00 40.00 60.00 80.00 100.00

F
ra

m
e

S
iz

e
(b

yt
es

) WLAN

UMTS

13 Mbps 11 Mbps 14 Mbps

384 Kbps 2 Mbps 5 Mbps
(a)

(b)

0

50

100

150

200

0.00 20.00 40.00 60.00 80.00 100.00

F
re

q
(M

hz
)

StackUMTS

S-TableWLAN

CRC-TableWLAN

StackWLAN

StackUMTS

KSUMTS

S-TableWLAN

CRC-TableWLAN

StackUMTS

KSUMTS

S7UMTS

S9UMTS

StackUMTS

KSUMTS

S7UMTS
S-TableWLAN

StackWLAN O
n-

C
hi

p
M

em
or

y

(c)

0
5

10
15
20
25
30
35
40

0.00 20.00 40.00 60.00 80.00 100.00

Time (ms)

E
ne

rg
y

(m
J)

Static Configuration
DVS
Dynamic Platform Management

Fig. 8. Energy savings using dynamic platform management: (a) varying
UMTS/WLAN workload; (b) platform configuration sequence; and (iii) cumula-
tive energy profile

It should be noted that the savings in energy consumption are
due, in large part, to careful exploitation of the interdependence
between on-chip memory configuration, CPU slack, and voltage
scaling. To evaluate the benefit of our integrated approach, we
measured the energy savings via traditional dynamic voltage scal-
ing (DVS) [19], while keeping the on-chip memory configura-
tion constant. From the cumulative energy plot corresponding to
DVS in Figure 8(c) we observe that dynamic platform manage-
ment achieves 39% energy savings over DVS. These results demon-
strate that the described platform management approach can be used
to enhance system energy-efficiency over and above conventional
techniques.

VI. CONCLUSIONS

This paper proposed dynamic platform management techniques
for run-time customization of general-purpose configurable plat-
forms. We demonstrated the benefit of the proposed techniques on
a dual-access security processing system. In future work, we will
develop an efficient implementation of the platform management
techniques incorporating additional configurable components, and
use it to re-target a general-purpose platform to different applica-
tions, comparing their performance with corresponding custom im-
plementations.

VII. A CKNOWLEDGEMENTS

We would like to thank our colleague Abhishek Agarwal for his
valuable contribution and comments on this paper.

REFERENCES

[1] “Intel IXA Network Processors.” http://www.intel.com/design/network/products/npfamily.
[2] N. R. Potlapally, S. Ravi, and A. Raghunathan, “System design methodologies for a wireless

security processing platform,” inProc. Design Automation Conf., pp. 777–782, June 2002.
[3] “Trimedia Technologies.” http://www.trimedia.com.
[4] “Xtensa Architecture and Performance.” http://www.tensilica.com/Xtensawhite paper.pdf.
[5] V. Kathail, S. Aditya, R. Schreiber, B. R. Rau, D. C. Cronquist, and M. Sivaraman, “PICO:

Automatically Designing Custom Computers,”IEEE Computer, vol. 35, pp. 39–47, Sept. 2002.
[6] “Excalibur System on Programmable Chip Data Sheets.” http://www.altera.com/literature/

ds/dsarm.pdf.
[7] “Intel SA-1110 Processor.” http://www.intel.com/design/pca/applicationsprocessors/

1110brf.htm.
[8] A. Malik, B. Moyer, and D. Cermak, “The MCORE M340 unified cache architecture,” inProc.

Intl. Conf. on Computer Design, pp. 577–580, Sept. 2000.
[9] P. R. Panda, F. Catthoor, N. D. Dutt, K. Danckaert, E. Brockmeyer, C. Kulkarni, A. Vander-

cappelle, and P. G. Kjeldsberg, “Data and Memory Optimization Techniques for Embedded
Systems,”ACM Trans. Design Automation Electronic Systems, vol. 6, pp. 149–206, Apr. 2001.

[10] T. D. Givargis and F. Vahid, “Platune: A Tuning Framework for System-on-a-Chip Platform,”
IEEE Trans. Computer-Aided Design, vol. 21, Nov. 2002.

[11] R. Balasubramonian, D. H. Albonesi, A. Buyuktosunoglu, and S. Dwarkadas, “Memory Hierar-
chy Reconfiguration for Energy and Performance in General-Purpose Processor Architectures,”
in International Symposium on Microarchitecture, pp. 245–257, 2000.

[12] A. V. Veidenbaum, W. Tang, R. Gupta, A. Nicolau, and X. Ji, “Adapting Cache Line Size to
Application Behavior,” inProc. Int. Conf. on Supercomputing, June 1999.

[13] C. Zhang, F. Vahid, and W. Najjar, “A Highly-Configurable Cache Architecture for Embedded
Systems,” inProc. Int. Symp. Computer Architecture, June 2003.

[14] “The Avalon Bus Specification.” http://www.altera.com/literature/manual/mnlavalonbus.pdf.
[15] K. Lahiri, A. Raghunathan, G. Lakshminarayana, and S. Dey, “Communication Architecture

Tuners: A Methodology for the Design of High Performance Communication Architectures for
System-on-Chips,” inProc. Design Automation Conf., pp. 513–518, June 2000.

[16] “Quicksilver Technologies.” http://www.qstech.com.
[17] S. C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, and R. Taylor, “PipeRench: A

Reconfigurable Architecture and Compiler,”IEEE Computer, vol. 33, Apr. 2000.
[18] “PACT XPP Technologies.” http://www.pactcorp.com.
[19] T. Pering and R. Broderson, “Dynamic Voltage Scaling and the Design of a Low-Power Micro-

processor System,” inProc. Int. Symp. Computer Architecture, June 1998.
[20] T. Simunic, L. Benini, A. Acquaviva, P. Glynn, and G. D. Micheli, “Dynamic Voltage Scaling

and Power Management for Portable Systems,” inProc. Design Automation Conf., June 2001.
[21] R. Banakar, S. Steinke, B. Lee, M. Balakrishnan, and P. Marwedel, “Scratchpad Memory: A

Design Alternative for Cache On-Chip Memory in Embedded Systems ,” inProc. International
Symposium on Hardware/Software Codesign, pp. 73–78, May 2003.

[22] “Specifications of the 3GPP Confidentiality and Integrity Algorithms (Documents 1 and 2).”
http://www.3gpp.org/TB/Other/algorithms.htm.

[23] “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications.”
IEEE Computer Society LAN/MAN Standards Committee, IEEE Std 802.11-1999 Edition.

[24] K. Balachandran, “Convergence of 3G and WLAN.” IEEE Intl. Conf. on Communications,
May 2002, http://www.icc2002.com/notes.html.

[25] K. Choi, K. Dantu, W.-C. Cheng, and M. Pedram, “Frame-Based Dynamic Voltage and Fre-
quency Scaling for an MPEG Decoder,” inProc. Int. Conf. Computer-Aided Design, pp. 732–
737, Nov. 2002.

[26] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogramming in a hard real-time
environment,”Journal of the ACM, vol. 20, no. 1, 1973.

[27] M. R. Garey and D. S. Johnson,Computers and Intractability: A Guide to the Theory of NP-
Completeness. Freeman, 1979.

[28] “ARM Developer Suite (ADS) version 1.2.” http://www.arm.com/devtools/ADS.
[29] A. Sinha and A. P. Chandrakasan, “JouleTrack - A Web Based Tool for Software Energy Pro-

filing,” in Proc. Design Automation Conf., pp. 220–225, June 2001.

648

	Main Page
	ICCAD03
	Front Matter
	Table of Contents
	Author Index

