
Design for Veri�cation at the Register Transfer Level

Indradeep Ghosh
Fujitsu Labs. of America, Inc.

Sunnyvale, CA 94085
USA

Krishna Sekar
Departmen t of ECE

Univ. of California, San Diego
La Jolla, CA 92093

Vamsi Boppana
Zenasis Tech. Inc.

Campbell, CA 95008
USA

Abstract

In this paper we introduce a novel concept that can be
used for augmenting simulation based veri�cation at the
Register Transfer Level (RTL). In this technique the
designer of an RTL circuit introduces some well un-
derstood extra behavior (through some extra circuitry)
into the circuit under veri�cation. This can be termed
as design for veri�cation. During RTL simulation this
extra behavior is utilized in conjunction with the origi-
nal behavior to exercise the design more thoroughly thus
making it easier to detect errors in the original design.
Once the circuit is throughly veri�ed for functionality
the extra behavioral constructs can be removed to pro-
duce the original veri�ed design. Extensive experiments
on a number of industrial circuits demonstrate that the
method is promising.

1. Introduction
As VLSI circuits become larger, smaller and more com-
plex the problem of design veri�cation is becoming in-
creasingly intractable. There are two types of design
veri�cation methods currently used - simulation based
and formal veri�cation. Currently, the most prevalent
and widely used one is simulation based veri�cation
though formal veri�cation in certain areas is gaining
acceptance. The main problem of formal v eri�cation is
its inability to tackle large designs within a reasonable
amount of time and computing resources. Though a
lot of research is going on in this �eld, experts agree
that simulation based veri�cation will remain a major
veri�cation method in the future.

In simulation based veri�cation the design to be ver-
i�ed is simulated at various levels of abstraction (RTL,
gate or circuit) with a suite of test vectors and the
output responses or some intermediate responses are
compared for correctness with that of a golden model
or an executable speci�cation (refer to Figure 1). The
test vectors used are usually hand generated to target
functionality or just random vectors. The main prob-
lem in this method is to obtain a test suite that will
exercise the design completely. In particular the test
suite should be able to expose design errors (bugs) in
corner cases or di�cult to reach states. This is still a
very di�cult problem and the fact remains that it is
impossible to guarantee that all errors have been dis-
covered in this kind or scenario even for intermediate
size circuits. However, with the absence of a viable al-
ternative, simulation based veri�cation is still the pri-
mary veri�cation method used in the industry.

 RTL
Testbench

 Specification or
Golden RTL Model

Compare
Corresponsding
Output Responses
for n cycles

m

m

l

l

If "1" in
any cycle
for any output
circuit may
be incorrect

 RTL
Circuit Under
 Verification

Figure 1: Typical simulation based veri�cation for a
l-input m-output RTL circuit

In this paper, we present a technique that can be
used to augment simulation based veri�cation. In
this method the designer of an RTL circuit embeds
a small amount of well understood extra function-
ality or behavior into the circuit under veri�cation.
This extra behavior is inserted into both the golden
model/executable speci�cation of the circuit and the
also circuit under veri�cation. Note that we assume the
existence of such a model without which this technique
will not succeed. During simulation based veri�cation
this extra behavior is used along with the existing be-
havior of the circuit to exercise the design more thor-
oughly. In contrast to traditional formal veri�cation
techniques where behavior is reduced by abstraction
this method works by slight augmentation of existing
behavior. Due to the extra behavior, state space ex-
ploration becomes easier and di�cult to reach states
and corner cases become more easily accessible. W e
present three di�erent types of extra behavioral mod-
i�cations that the designer may use. However, other
e�cient structures may also be used. Extensive exper-
imental results demonstrate that this technique leads
to cutting down the simulation time by more that 50%
on an average for a wide range of errors in a num-
ber of large industrial RTL circuits. It also helps in
exposing more design errors than those detected by
simulating on the original behavior alone. W e should
emphasize here that some examples used in this paper
have thousands of latches and hundred thousand gates
which are beyond the scope of current formal veri�ca-
tion techniques. There is no problem of scalability for
this method for even larger designs. Also unlike tradi-
tional formal veri�cation techniques that work on BDD
representation of the logic implementation of the cir-
cuit this method can work at the RTL before synthesis
is done. Thus it can save a lot of time and e�ort used to
generate the logic level design before bugs can be found.
The extra circuitry used can simply be removed once
the functional veri�cation is complete. More conve-

Proceedings of the 15th International Conference on VLSI Design (VLSID�02)
0-7695-1441-3/02 $17.00 © 2002 IEEE

niently they can be encased in \synthesis o�" pragma
directives that synthesis tools allow so that they will
never be synthesized.

2. Previous W ork
Though we could not �nd an exact parallel to the con-
cept that we are proposing here there has been some
ideas put forward in similar lines. The need for design
for veri�cation techniques to augment current veri�-
cation methods has been extensively discussed in [1].
From the testability domain the IEEE 1149.1 test bus
has been used for testing as well as debug and can be
termed as a kind of design for veri�cation [2]. There
has been a lot of research on e�ective formulation and
placement of assertions and checkers during simulation
[3]-[7]. In fact some veri�cation companies already
have products in the market that utilize these ideas
[4]. This can also be thought of as a type of design
for veri�cation that increases the observability of the
system. A technique for automatic placement of as-
sertions has been discussed in context of a particular
design environment [6]. In [5] the authors propose an
abstraction technique that separates the control-
ow
of a circuit from the data
ow and does validation on
this abstracted machine where new state transitions are
added. The test vectors generated are tested for valid-
ity on the original design. This method requires lot
of designer intervention to separate control
ow from
data
ow and this is not a trivial task. Also the exam-
ples provided in the paper are small unlike our work.
Finally, there has been a lot of research and well estab-
lished industrial standards in the design for testability
(DFT) domain [8]. Though, these techniques deal with
manufacturing level stuck-at faults they provide some
helpful insights into the design for veri�cation problem.

3. Design for V eri�cation
This section describes the concept behind our veri�ca-
tion technique. This technique does not supplant ex-
isting veri�cation methods. It supplements them. The
existence of a correct golden model or executable spec-
i�cation is assumed so that the simulation results can
be veri�ed and errors can be caught.

Suppose we need to check the correctness of a com-
plex, di�cult to verify circuit of uncertain function-
ality. A circuit of known functionality is embedded
within this complex circuitry as shown in Figure 2.
During veri�cation using simulation, the functionality
of the known embedded circuit is used along with that
of the circuit under veri�cation to aid in design error
detection. W e will demonstrate that many design er-
rors, which would otherwise be very di�cult to �nd,
can easily and quickly be detected by using the extra
behavior of the embedded circuit.

+ Uncertain
Functionality

 Known
Functionality

Semi − Certain
 Functionality

Figure 2: Adding a known ckt. in an uncertain ckt.

Consider Figure 3 which represents the state transi-
tion graphs (STG) of the original circuit and the em-
bedded circuit. They have only one input i. The state

001

000

010
011

100
i = 0

i = 1

i = 0
i = 1

i = 0,1

i = 0,1

i = 0,1

(a) STG of the original circuit

000

001

010
011

100

i = 0,1

i = 0,1

i = 0,1

i = 0,1
i = 0,1

(b) STG of embedded circuit

Figure 3: STGs of the circuits

transition table of the �nal embedded system is shown
in Figure 4. An extra mode signal, M, is added to
control which transitions occur. When M=0 then the
original circuit transitions are taken and when M=1
then the embedded circuit transitions are executed. As
can be seen from the table, some of the transitions are
common for both the original and the em bedded cir-
cuit. For example, state 000 => state 010 when i=0
irrespective of the mode signal. Hence by just verifying
the embedded circuit transitions we can verify many of
the original circuit transitions as well. Speci�cally for
the example shown, 6 out of the 10 original transitions
can be veri�ed using this method.

Moreover the state transitions allowed by the extra
circuit can result in easier reachability of hard to reach
states in the original circuit. If corner case bugs exist
which only gets activated in these states then they can
be exposed with less di�culty. It is interesting to note
that unreachable states may be used as steps to reach
the hard to reach states while using the extra behavior.
Thus the method might detect an error but may not
be able to provide a valid counter example. This is
discussed in detail in Section 5.

The scope of this veri�cation technique lies mostly
in RTL to RTL comparison or while comparing an
RTL implementation with that of a cycle accurate ex-
ecutable speci�cation. The two circuits that are being
compared needs to have the same state encoding or
similar state encoding so that the extra circuitry that

Proceedings of the 15th International Conference on VLSI Design (VLSID�02)
0-7695-1441-3/02 $17.00 © 2002 IEEE

Present
State

000

001

011

010

100

(i,M) = 00

Next State

(i,M) = 01 (i,M) = 10 (i,M) = 11

010 010 001 010

100 000 100 000

100 100 100 100

000 001 001 001

011 011 011 011

Figure 4: State transition table of embedded system

is introduced does not behave di�erently in the two
circuits. In case of RTL to logic-level comparison of a
particular design the scheme may be used only if the
state encoding of the circuit remains the same for both
the levels and if the
ip-
op correspondences between
the gate level and RTL circuit is known and also if
it is possible to embed the extra circuitry at the gate
level. The extra embedded circuit may also be synthe-
sized if the gate-level circuit is derived from an RTL
description. However, we believe that in that case it
would be best to use boolean equivalence checking after
manual mapping of the state elements have been done.
This scheme is more suitable for RTL to RTL compar-
ison or a RTL to speci�cation comparison if there exist
a cycle accurate executable speci�cation that can be
simulated. This method can lead to early detection of
bugs even before a full synthesis is done of the design.
Also since it is simulation based technique it can scale
well to any size designs.

For any given circuit, the problem then is to �nd
the appropriate circuit to embed in it. This circuit
should have as many transitions as possible which co-
incide with the original circuit but with the constraint
that it should be easily veri�able. This is a non-trivial
problem and we provide some solutions in the next sec-
tion

4. Some example embedded circuits

In this section some examples of em bedded circuits that
we have used in our experiments are provided. This is
by no means a complete set of possible circuits that
can be used. In fact more e�cient circuits may be
devised that exercise the design better and is better
able to seamlessly integrate into the original design.
The goal over here for the new embedded circuit is to
share as much as possible of the original behavior and
not to perturb the original design too much. In that
way there will be less chances of errors being introduced
while the extra circuit is being added. Also a large
part of the design can be veri�ed while simulating the
behavior of the extra circuit which should be correct
by construction. It should be possible to verify this
extra circuit just by visual inspection for correctness
as it should be simple and small.

After the functional veri�cation is complete these
extra circuitry may be removed from the RTL descrip-
tion before synthesis. Alternatively these modi�cations
may be encased in a \synthesis o�" pargma directive
that all RTL synthesis tools allow. Then they will never

LFSR Logic

m

Reg

n

Reg

m+n
m n

Module1 Module2

M

Figure 5: RTL embedding of an LFSR

be synthesized.
Note that some of these behavioral modi�cations

can be done by modifying the test bench to directly
load state elements with predetermined values in the
middle of the simulation. This is de�nitely an alterna-
tive method of implemen ting this technique. However,
this will usually result in complicated and much larger
test benches. The simulation will also become slower
due to the complex behavior of the test bench. W e
believe that slight modi�cation of the original RTL is
much easier. Also note that in case of designs with
tri-state buses, bus contention prevention logic has to
inserted to accommodate the extra behavior. This is
very similar to what is done for scan design in the testa-
bility domain.

4.1 A linear feedback shift register

The �rst approach taken was to embed a Linear Feed-
back Shift Register in the original circuit. The LFSR is
con�gured with a primitive polynomial. A mode sig-
nal, M, is added to the circuit to take either LFSR
transitions (M=1) or original transitions (M=0). A
multiplexer at the input of each state element or reg-
ister is used to choose between the original circuit val-
ues and the LFSR values depending upon whether the
mode signal M is 0 or 1 respectively. During simula-
tion M is suitably set or reset. Hence the circuit either
makes original transitions or LFSR transitions. Since
at the RTL, the state elements/registers can be dis-
tributed across di�erent modules, the inputs/outputs
of the modules have to be con�gured appropriately so
that all the
ip-
ops of the circuit can be chained to-
gether to implement a LFSR. This is illustrated by Fig-
ure 5.

Due to the embedded LFSR, the state transition
graph now becomes much more dense and the diam-
eter of the graph (longest distance between any two
nodes) is also likely to decrease. Hence any given state
is much more likely to be reached during random vector
simulation.

4.2 Extra read/write ports for memory elemen ts

Another approach taken was to introduce external
read/write ports for all memory banks and regis-

Proceedings of the 15th International Conference on VLSI Design (VLSID�02)
0-7695-1441-3/02 $17.00 © 2002 IEEE

 Register File
 or
 Memory Bank

Primary InputsOriginal inputs

Primary Outputs

Mode Signal
 M

R/W

0 1

0

1

Outputs

Primary Inputs

Original Inputs

Data & Address

Figure 6: RTL implementation of extra memory ports

Table 1: Circuit size statistics for the example circuits

Circuit RTL Logic level Modi�cation
HDL Design #Gates #FFs Scheme
Lines Type

HRCC 837 hier 16205 70 LFSR
EXE 8075 hier 12327 939 LFSR
MCM16 28828 hier 105430 6570 Mem Ports
ALM 3504 hier 8265 1490 Counter Loads

ter �les so that all memory locations are control-
lable/observable from the outside. Again a mode sig-
nal and a set of multiplexers are used to activate these
external read/write ports. This is shown in Figure 6.
This extra circuitry allows the designer to view the
intermediate results inside a memory during sim ula-
tion. Also it allows the con�guration of the memory
as needed from outside for executing a critical corner
case. The extra circuitry required for the modi�cation
is quite simple as it should be.

4.3 Parallel loading of counters

Counters are very bad for veri�cation as they are very
di�cult to control. To set the most signi�cant bit of a
counter a sequence of length 2n is required where n is
the bit-width of the counter. To alleviate this problem
each counter can be modi�ed with a parallel load from
the primary inputs. Easy controllability of a counter
can lead to better veri�cation of all downstream logic
that the counter feeds. The implementationwas similar
as before with a set of multiplexers and a mode signal.

5. Problem of false negativ e and counter
examples
Though the above technique is quite promising in de-
tecting errors through simulation, there are some po-
tential disadvantages and some workarounds are nec-
essary to alleviate the problems. These are discussed
next.

As stated earlier the extra behavior of the circuit
embedded in the original circuit will usually increase
the reachable state space in the design. One potential
problem is an error being detected in an unreachable
state. This may or may not result in a false negative
(if the error is again detected in a reachable state then
the error is not a false negative). Hence once an error
is
agged it needs to be checked whether it is valid
or not. In order to do this, the state in which the
error is
agged has to be checked for validity. First the
state elements (
ip-
ops/latches) which feed the logic

cone where the error resides need to be determined.
This can be done by back-tracing from the erroneous
output(s). The state residing in the other elements is
a don't care and is to be ignored for this error. Once
these state elements are found the ones inside them
which correspond to control-state registers need to be
further separated. The bit patterns residing in these
registers need to be checked as valid state encodings
in the RTL circuit. This is a simple check which will
immedia tely determine an invalid state if a bit-pattern
is an invalid encoding. All memory banks and register
�les are to be ignored as it is possible to take them to
any state using a appropriate number of loads.

If all the above tests pass the registers inside a
pipeline are to be checked for consistency as many
states inside a pipeline are invalid states. A back-
ward trace using the original behavior from the values
present in the registers of the pipeline will catch any in-
consistency quickly. Finally the most di�cult problem
is to verify the validity of di�erent data path register
bit-patterns with respect to the di�erent control states
and the interaction of control states in di�erent state
machines. To alleviate this problem some checkers may
be inserted into the RTL circuit that checks for invalid
control state combinations in di�erent FSMs. If any-
one of these checkers is asserted in the state where the
error is detected then the state is invalid. Finally the
embedded circuit may be constrained by adding extra
circuitry to avoid known invalid states.

Using the above set of rules we believe that it will
be possible to �lter out errors detected in invalid states
in the circuit.

Another problem is the generation of a valid counter
example or input sequence that will detect the error in
the original circuit. As stated earlier the extra behavior
may reach hard to reach states where an error is de-
tected by stepping through unreachable states. Hence
the simulated sequence will usually not be useful to
redetect the errors using the original behavior. Thus
this technique will be useful in detecting errors if they
exist. Once they are found, diagnosis and debugging
might require extra inspection and e�ort.

6. Experimen tal results
In this section, we present the experiments done to
validate our technique and the results obtained. W e
have done extensive simulation runs on four industrial
RTL circuits written in VHDL or Verilog. The �rst
one, HRCC is a cache coherence controller. EXE is
a memory controller. MCM16 is a multi-chip module
with lot of embedded memories. ALM is a part of
an ATM switch and has a number of counters in the
design.

The characteristics of the circuits are shown in Ta-
ble 1. The circuits are synthesized from HDL descrip-
tions using the Synopsys Design Compiler to gate-level
netlists. The synthesized results are for information
purposes only as they provide a notion of the complex-
ity of the circuits. All the experiments are done at the
RTL using an RTL HDL simulator. The last column in
Table 1 shows the modi�cation scheme used on the cir-
cuits for the design for veri�cation experiments which
we elaborate next.

Proceedings of the 15th International Conference on VLSI Design (VLSID�02)
0-7695-1441-3/02 $17.00 © 2002 IEEE

Table 2: Simulation results for Circuit HRCC

Error Error # Simulation Vectors
Type no. Original Modi�ed
Type i 1 11 15

2 - -
3 - 24
4 - 30
5 2 2

Type ii 1 - 831
2 - 32
3 6 204
4 - 277
5 - 32

Type iii 1 - -
2 - -
3 - 274
4 - -
5 - -

Type iv 1 17 10
2 8 15
3 13 86
4 13 471
5 12 10

Type v 1 - 495
2 - 666
3 - -
4 - 123
5 - 309

Average a - 6803 2556

aconsidering all errors and using the total number of vectors
simulated for an undetected error to be 10000

Table 3: Simulation results for Circuit EXE

Error Error # Simulation Vectors
Type no. Original Modi�ed
Type i 1 - 652

2 - 954
3 - 321
4 26 -
5 - 98

Type ii 1 32 54
2 17 782
3 - 654
4 - -
5 - 541

Type iii 1 - -
2 45 40
3 - 87
4 101 109
5 - 56

Type iv 1 - -
2 56 786
3 7 19
4 350 64
5 - 698

Type v 1 - 56
2 78 54
3 - -
4 12 65
5 - 876

Average - 6028 2276

The experimental methodology is as follows. The
original circuit is modi�ed by embedding some extra
circuitry in it as described in the previous sections. A
Mode signal is used to switch between the original be-
havior and the modi�ed behavior. A random input
vector set (Vector Set1) is generated for the original
circuit. The input vector set for the modi�ed circuit is
the same as this random vector set with theMode signal
randomly activated (Vector Set2). Thus during simu-
lation using Vector Set2 we are simulating the original
behavior and the modi�ed behavior randomly and in
an interleaved fashion. These two circuits are now sim-
ulated with these input vectors respectively and their
output responses captured.

Now an identical error is introduced in both the
original circuit and the modi�ed circuit. These erro-
neous circuits are also simulated with the vector sets
Vector Set1 and Vector Set2 respectively and the out-
put responses captured. These output responses are
then compared with the corresponding good circuit re-
sponses to check whether the error introduced has been
detected. i.e. whether the output responses di�er for
the good and erroneous circuit in any clock cycle. The
number of simulation cycles required to catch the error
in either case is noted.

In the RTL circuits the following types of errors were
introduced :
i) missing cases in case statements.
ii) missing clause in a conditional expression.
iii) missing assign statements.
iv) erroneous output values inside case statements.
v) incorrect state transitions inside an FSM

All experiments were done using a random pattern
sequence of 1000 vectors. For the �rst two examples

an LFSR was embedded into the circuit comprising of
most of the state elements in the circuit. For the third
example the memories and register �les w ere randomly
loaded from the primary inputs and observed at the
primary outputs. For the last example parallel loads
were introduced into the four counters present in the
circuit. The results are shown in the Tables 2-5.

In Column 1 of the Tables the type of error intro-
duced is shown and this corresponds to the errors dis-
cussed in the previous paragraph. Column 2 just pro-
vides a counter for each kind of error. In Column 3 the
number of simulation vectors required to detect the er-
ror in the original circuit is shown. A \-" means the
error has not been detected in the 1000 random vector
simulation run. In Column 4 the corresponding num-
ber is presented for the circuit modi�ed by the design
for veri�cation hardware. At the end of the table the
average number of vectors required to catch an error
in either case is shown assuming a penalty of 10000
vectors for each undetected error. Though this com-
parison is not very scienti�c it gives a notion of the
overall improvement in simulation run times.

From the tables we can make the following obser-
vations. Out of the 100 errors in the di�erent circuits
22 are undetected by both schemes. The number of
undetected errors becomes larger for the more com-
plex circuits as is to be expected in a random testing
scenario. Only 4 errors are detected in the original cir-
cuits that remain undetected in the modi�ed circuits
whereas as many as 34 errors are detected in the modi-
�ed circuits but are undetected in the original circuits.
Though a direct comparison is impossible because of
so many undetected errors, by looking at the averages
we can say with some degree of con�dence that the

Proceedings of the 15th International Conference on VLSI Design (VLSID�02)
0-7695-1441-3/02 $17.00 © 2002 IEEE

Table 4: Simulation results for CircuitMCM16

Error Error # Simulation Vectors
Type no. Original Modi�ed
Type i 1 - -

2 - 675
3 - -
4 - 567
5 98 76

Type ii 1 - -
2 675 -
3 - 832
4 - -
5 - 560

Type iii 1 431 234
2 - 753
3 - -
4 - 239
5 87 320

Type iv 1 - -
2 765 89
3 - -
4 - 673
5 - -

Type v 1 - 340
2 - -
3 - -
4 453 679
5 352 981

Average 7298 4680

Table 5: Simulation results for Circuit ALM

Error Error # Simulation Vectors
Type no. Original Modi�ed
Type i 1 - 453

2 32 14
3 563 474
4 - -
5 19 80

Type ii 1 67 153
2 5 42
3 - 76
4 - -
5 95 72

Type iii 1 452 32
2 315 924
3 - 79
4 430 -
5 65 -

Type iv 1 - 18
2 211 605
3 - 790
4 - 310
5 453 232

Type v 1 28 85
2 92 156
3 - 872
4 67 13
5 604 884

Average 3739 1854

simulation time can be shortened by more than 50%
by using the design for veri�cation modi�cations. The
probability of an error being detected is also increased
signi�cantly by using this technique. Note that this re-
duction is achieved by random vectors only which are
usually quite bad for detecting errors in sequential cir-
cuits. More savings may be obtained by directed tests
that use the design for veri�cation hardware to control
and observe the internals of the circuit better.

In the experimental setup we never encountered the
problem of false negatives as we introduced the errors
ourselves and if the simulation outputs did not match
an error was guaranteed to be present. Also we did not
need to do any diagnosis or debugging as we knew the
location of the error. At the present time it is therefore
di�cult to commen t on the problem of counter example
generation and the amount of e�ort required after an
error has been detected.

7. Conclusions
In this paper we have proposed a novel design for veri-
�cation technique that can be used to augment simula-
tion based veri�cation for RTL circuits. In this method
the designer of an RTL circuit embeds some extra cir-
cuitry into the original circuit and uses this during sim-
ulation based veri�cation to access corner cases and
hard to reach states in the design. Once the functional
veri�cation is complete this extra circuitry may be re-
moved from the design. Some examples of embedded
circuits that may be used were provided. Experimental
results demonstrate the e�cacy of the technique where
even through random simulation we were able to detect
randomly introduced design errors in less than half the
time on the modi�ed circuits compared to the non-
modi�ed circuits. Some disadvantages of the method
like generation of false negatives were also discussed

and a possible workaround proposed. As part of future
work various other embedded circuits are currently un-
der investigation which might lead to even smaller ver-
i�cation times with less perturbation on the original
circuit.

References
[1] D.L. Dill and S. Tasiran, \EmbeddedTutorial: Formal veri-

�cationmeets simulation," Int. Conf. Computer-Aided De-
sign, pp. 221, Nov. 1999.
http://sprout.stanford.edu/talks.html

[2] A. Cron, \IEEE 1149.1 use in design for veri�cation and
testability at Texas Instruments,"White paper: Texas In-
struments, Nov. 1990. http://www.edta.com/scribe/
reference/appnotes/md003e9f.htm

[3] M. Pandey, R. Raimi, R.E. Bryant, and M.S. Abadir, \
Formal veri�cation of content addressable memories using
symbolic trajectory evaluation," in Proc. Design Automa-
tion Conf., pp. 167-172, June 1997.

[4] 0-In Design Automation. Inc., \White-box veri�cation for
complex designs," White Paper, Mar. 2000.
http://www.0in.com

[5] D. Moundanos, J.A. Abraham, and Y.V. Hoskote, \ Ab-
straction techniques for validation coverage analysis and
test generation," IEEE Trans. on Computer, Vol. 47-1, pp.
2-14, Jan. 1998.

[6] L.C. Wang, M.S. Abadir, and N. Krishnamurthy, \Au-
tomatic generation of assertions for formal veri�cation of
PowerPC microprocessor arrays using symbolic trajectory
evaluation," in Proc. Design Automation Conf., pp. 534-
537, June 1998.

[7] S. Switzer and D. Landoll, \Using embedded checkers
to solve veri�cation challenges," in Proc. DesignCon IP
World Forum, Feb. 2000.

[8] M. Abramovici, M.A. Breuer, and A.D. Friedman, Digital
Systems Testing and Testable Design, IEEE Press, New
York, 1990.

Proceedings of the 15th International Conference on VLSI Design (VLSID�02)
0-7695-1441-3/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

