
VHDL & Verilog Compared & Contrasted - Plus Modeled Example Written in
VHDL, Verilog and C.

Douglas J. Smith
VeriBest Incorporated

One Madison Industrial Estate, Huntsville, AL 35894-0001, USA
e-mail: djsmith@ingr.com

Abstract

This tutorial is in two parts. The first part takes an unbiased view of
VHDL and Verilog by comparing their similarities and contrasting
their diffrences. The second part contains a worked example of a
model that computes the Greatest Common Divisor (GCD) of two
numbers. The GCD is modeled at the algorithmic level in VHDL,
Verilog and for comparison purposes, C. It is then shown modeled
at the RTL in VHDL and Verilog.

1. Introduction

There are now two industry standard hardware description languages,
VHDL and Verilog. The complexity of ASIC and FPGA designs has
meant an increase in the number of specialist design consultants
with specific tools and with their own libraries of macro and mega
cells written in either VHDL or Verilog. As a result, it is important
that designers know both VHDL and Verilog and that EDA tools
vendors provide tools that provide an environment allowing both
languages to be used in unison. For example, a designer might have
a model of a PCI bus interface written in VHDL, but wants to use it
in a design with macros written in Verilog.

2. Background

VHDL (Very high speed intgrated circuit Hardware Description
Language) became IEEE standard 1076 in 1987. It was updated in
1993 and is known today as “IEEE standard 1076 1993”. The Verilog
hardware description language has been used far longer than VHDL
and has been used extensively since it was lauched by Gateway in
1983. Cadence bought Gateway in 1989 and opened Verilog to the
public domain in 1990. It became IEEE standard 1364 in December
1995.

There are two aspects to modeling hardware that any hardware
description language facilitates; true abstract behavior and hardware
structure. This means modeled hardware behavior is not prejudiced
by structural or design aspects of hardware intent and that hardware
structure is capable of being modeled irrespective of the design's
behavior.

3. VHDL/Verilog compared & contrasted

This section compares and contrasts individual aspects of the two
languages; they are listed in alphabetical order.

Capability
Hardware structure can be modeled equally effectively in both VHDL

and Verilog. When modeling abstract hardware, the capability of
VHDL can sometimes only be achieved in Verilog when using the
PLI. The choice of which to use is not therefore based solely on
technical capability but on:

• personal preferences

• EDA tool availability

• commercial, business and marketing issues

The modeling constructs of VHDL and Verilog cover a slightly
different spectrum across the levels of behavioral abstraction; see
Figure 1.

Behavioral
level of
abstraction

HDL modeling capability

VHDLSystem

Algorithm

RTL

Logic

Gate

Verilog

VITAL

Figure 1. HDL modeling capability

Compilation
VHDL. Multiple design-units (entity/architecture pairs), that reside
in the same system file, may be separately compiled if so desired.
However, it is good design practice to keep each design unit in it’s
own system file in which case separate compilation should not be
an issue.

Verilog. The Verilog language is still rooted in it's native interpretative
mode. Compilation is a means of speeding up simulation, but has
not changed the original nature of the language. As a result care
must be taken with both the compilation order of code written in a
single file and the compilation order of multiple files. Simulation
results can change by simply changing the order of compilation.

Data types
VHDL. A multitude of language or user defined data types can be
used. This may mean dedicated conversion functions are needed to
convert objects from one type to another. The choice of which data
types to use should be considered wisely, especially enumerated
(abstract) data types. This will make models easier to write, clearer
to read and avoid unnecessary conversion functions that can clutter
the code. VHDL may be preferred because it allows a multitude of
language or user defined data types to be used.

Verilog. Compared to VHDL, Verilog data types are very simple,
easy to use and very much geared towards modeling hardware
structure as opposed to abstract hardware modeling. Unlike VHDL,

33rd Design Automation Conference 
Permission to make digital/hard copy of all or part of this work for personal or class-room use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage, the copyright notice, the title of the publication and its date appear, and notice is given that copying is
by permission of ACM, Inc. To copy otherwise, or to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
DAC 96 - 06/96 Las Vegas, NV, USA 1996 ACM, Inc. 0-89791-833-9/96/0006.. $3.50

all data types used in a Verilog model are defined by the Verilog
language and not by the user. There are net data types, for example
wire, and a register data type called reg. A model with a signal whose
type is one of the net data types has a corresponding electrical wire
in the implied modeled circuit. Objects, that is signals, of type reg
hold their value over simulation delta cycles and should not be
confused with the modeling of a hardware register. Verilog may be
preferred because of it’s simplicity.

Design reusability
VHDL. Procedures and functions may be placed in a package so
that they are available to any design-unit that wishes to use them.

Verilog. There is no concept of packages in Verilog. Functions and
procedures used within a model must be defined in the module. To
make functions and procedures generally accessible from different
module statements the functions and procedures must be placed in
a separate system file and included using ‘include compiler directive.

Easiest to Learn
Starting with zero knowledge of either language, Verilog is probably
the easiest to grasp and understand. This assumes the Verilog
compiler directive language for simulation and the PLI language is
not included. If these languages are included they can be looked
upon as two additional languages that need to be learned.

VHDL may seem less intuitive at first for two primary reasons. First,
it is very strongly typed; a feature that makes it robust and powerful
for the advanced user after a longer learning phase. Second, there
are many ways to model the same circuit, specially those with large
hierarchical structures.

Forward and back annotation
A spin-off from Verilog is the Standard Delay Format (SDF). This
is a general purpose format used to define the timing delays in a
circuit. The format provides a bidirectional link between, chip layout
tools, and either synthesis or simulation tools, in order to provide
more accurate timing representations. The SDF format is now an
industry standard in it’s own right.

High level constructs
VHDL. There are more constructs and features for high-level
modeling in VHDL than there are in Verilog. Abstract data types
can be used along with the following statements:

• package statements for model reuse,

• configuration statements for configuring design structure,

• generate statements for replicating structure,

• generic statements for generic models that can be
 individually characterized, for example, bit width.

All these language statements are useful in synthesizable models.

Verilog. Except for being able to parameterize models by overloading
parameter constants, there is no equivalent to the high-level VHDL
modeling statements in Verilog.

Language Extensions

The use of language extensions will make a model non-
standard and most likely not portable across other design tools.
However, sometimes they are necessary in order to achieve
the desired results.
VHDL. Has an attribute called 'foreign that allows architectures and
subprograms to be modeled in another language.

Verilog. The Programming Language Interface (PLI) is an interface
mechanism between Verilog models and Verilog software tools. For

example, a designer, or more likely, a Verilog tool vendor, can specify
user defined tasks or functions in the C programming language, and
then call them from the Verilog source description. Use of such tasks
or functions make a Verilog model nonstandard and so may not be
usable by other Verilog tools. Their use is not recommended.

Libraries
VHDL. A library is a store for compiled entities, architectures,
packages and configurations. Useful for managing multiple design
projects.

Verilog. There is no concept of a library in Verilog. This is due to it's
origins as an interpretive language.

Low Level Constructs
VHDL. Simple two input logical operators are built into the language,
they are: NOT, AND, OR, NAND, NOR, XOR and XNOR. Any
timing must be separately specified using the after clause. Separate
constructs defined under the VITAL language must be used to define
the cell primitives of ASIC and FPGA libraries.

Verilog. The Verilog language was originally developed with gate
level modeling in mind, and so has very good constructs for modeling
at this level and for modeling the cell primitives of ASIC and FPGA
libraries. Examples include User Defined Primitives (UDP), truth
tables and the specify block for specifying timing delays across a
module.

Managing large designs
VHDL. Configuration, generate, generic and package statements all
help manage large design structures.

Verilog. There are no statements in Verilog that help manage large
designs.

Operators
The majority of operators are the same between the two languages.
Verilog does have very useful unary reduction operators that are not
in VHDL. A loop statement can be used in VHDL to perform the
same operation as a Verilog unary reduction operator. VHDL has
the mod operator that is not found in Verilog.

Parameterizable models
VHDL. A specific bit width model can be instantiated from a generic
n-bit model using the generic statement. The generic model will not
synthesize until it is instantiated and the value of the generic given.

Verilog. A specific width model can be instantiated from a generic
n-bit model using overloaded parameter values. The generic model
must have a default parameter value defined. This means two things.
In the absence of an overloaded value being specified, it will still
synthesize, but will use the specified default parameter value. Also,
it does not need to be instantiated with an overloaded parameter
value specified, before it will synthesize.

Procedures and tasks
VHDL allows concurrent procedure calls; Verilog does not allow
concurrent task calls.

Readability
This is more a matter of coding style and experience than language
feature. VHDL is a concise and verbose language; its roots are based
on Ada. Verilog is more like C because it’s constructs are based
approximately 50% on C and 50% on Ada. For this reason an existing
C programmer may prefer Verilog over VHDL. Although an existing
programmer of both C and Ada may find the mix of constructs
somewhat confusing at first. Whatever HDL is used, when writing
or reading an HDL model to be synthesized it is important to think

about hardware intent.

Structural replication
VHDL. The generate statement replicates a number of instances of
the same design-unit or some sub part of a design, and connects it
appropriately.

Verilog. There is no equivalent to the generate statement in Verilog.

Test harnesses
Designers typically spend about 50% of their time writing
synthesizable models and the other 50% writing a test harness to
verify the synthesizable models. Test harnesses are not restricted to
the synthesizable subset and so are free to use the full potential of
the language. VHDL has generic and configuration statements that
are useful in test harnesses, that are not found in Verilog.

Verboseness
VHDL. Because VHDL is a very strongly typed language models
must be coded precisely with defined and matching data types. This
may be considered an advantage or disadvantage. However, it does
mean models are often more verbose, and the code often longer,
than it’s Verilog equivalent.

Verilog. Signals representing objects of different bits widths may be
assigned to each other. The signal representing the smaller number
of bits is automatically padded out to that of the larger number of
bits, and is independent of whether it is the assigned signal or not.
Unused bits will be automatically optimized away during the
synthesis process. This has the advantage of not needing to model
quite so explicitly as in VHDL, but does mean unintended modeling
errors will not be identified by an analyzer.

4. Greatest Common Divisor

Models of a greatest common divisor circuit is posed as problem
and solution exercise. A model written in C is included in addition
to VHDL and Verilog for comparison purposes.

4.1 Problem

The problem consists of three parts:

1. Design three algorithmic level models of an algorithm that finds
the Greatest Common Divisor (GCD) of two numbers in the
software programming language, C, and the two hardware
description languages, VHDL and Verilog. Use common test data
files to test the algorithm where practically possible. Neither the
VHDL nor Verilog models need contain timing. All three models
should automatically indicate a pass or fail condition.

2. Model the GCD algorithm at the RTL level for synthesis in both
VHDL and Verilog. The model must be generic so that it can be
instantiated with different bit widths. A Load signal should indicate
when input data is valid, and a signal called Done, should be
provided to signify when valid output data is available. The
generic model should be verified with 8-bit bus signals.

3. Write VHDL and Verilog test harnesses for the two models that:
1) use the same test data files used by the algorithmic level models,
and 2), instantiates both the RTL and synthesized gate level models
so that they are simulated and tested at the same time.

4.2 Solution

The solution is broken into three parts corresponding to those of the
problem.

1. Designing algorithmic level models in C, VHDL and Verilog

The algorithm used to find the greatest common divisor between

two numbers is shown in Figure 2.

It works by continually subtracting the smaller of the two numbers,
A or B, from the largest until such point the smallest number becomes
equal to zero. It does this by continually subtracting B from A while
A is greater than B, and then swapping A and B around when A
becomes less than B so that the new value of B can once again be
continually subtracted from A. This process continues until B
becomes zero.

Start GCD

A = 0
or

B = 0

swap
A B
B A

End

NO

A <= B A = A - B
YES

NO

YES

B = 0

NO

A = 0

YES

Figure 2 GCD Algorithm

C model

The C model first declares integer values for the two inputs A and B,
the computed output of the algorithm Y, and the reference output
Y_Ref. Integer Y_Ref is the expected GCD result and used to compare
with the computed result from the algorithm. The integer Swap is
also declared and used in the algorithm to swap the two inputs A and
B. A final integer, Passed, is used to indicate a pass (1) or fail (0)
condition.

A file pointer (file_pointer) is defined in order to access the test data
file “ gcd_test_data.txt”. It is opened for read mode only. Integer
Passed is initially set to 1 and only set to 0 if the algorithm fails.

Reading test data file. The test data file contains three numbers on
each line corresponding to values of A, B and Y_Ref respectively. A
while loop is used to: 1) read each line of the test data file, 2) assign
the three values to A, B and Y_Ref respectively, 3) use A and B to
compute the GCD output Y, and 4) compare Y with Y_Ref. This while
loop continues while there is test data in the test data file.

Algorithm implementation. The initial if statement is an extra check
that both A and B are not zero. The algorithm is then modeled using
two while statements. The first, outer-most, while statement checks
to see if B has reached zero; if it has the GCD has been found. The
second, inner-most, while statement checks to see if A is greater
than or equal to B; if it is, it continually subtracts A from B and puts
the result back in A. When A|Ucomes less than B the inner most
while loop completes, A and B are swapped using Swap, and the
outer most while statement rechecks B to see if it has reached zero.

Testing the result. The algorithm is tested using an if statement which
tests to see if the computed result Y is the same as the expected
result Y_Ref. If they are different an error message is printed to the
screen and Passed assigned the value 0. Finally, when all tests have

completed and Passed is still equal to 1 a passed message is printed
to the screen.

VHDL Model

The VHDL model follows exactly the same principle as defined for
the C model above. When reading the integer values from the test
date file they must be read and assigned to a variable; they cannot
be read and assigned to a signal. As this is an algorithmic level model
defined in a single entity it contains no input or ouputs, nor does it
contain any internal signals or associated timing. All computations
use variables; variables are read from the test data file, the algorithm
computes the result and variables are written to a results file.

Verilog Model

The Verilog model also follows the same principle as defined above
for the C model. A major difference in this model is that Verilog
cannot read decimal integer values from a system file. Data read
from a system file must be: 1) read using one of the two language
define system tasks, $readmemh or $readmemb and 2) stored in
a memory, which has specific width and depth. This limits any read
data to being in either hexadecimal or binary format. In this case a
separate test data file is used “gcd_test_data_hex.txt” which has
the test data specified in hexadecimal format.

 file: gcd_test_data.txt file: gcd_test_data_hex.txt

21 49 7 15 31 7 // Decimal 21 49 7
25 30 5 19 1E 5 // Decimal 25 30 5
19 27 1 13 1B 1 // Decimal 19 27 1
40 40 40 28 28 28 // Decimal 40 40 40
250 190 10 FA 6E A // Decimal 250 190 10
5 250 5 5 FA 5 // Decimal 5 250 5

C - algorithmic level
#include <stdio.h>

main ()
{
int A, B, Swap, Y, Y_Ref, Passed;
FILE *file_pointer;
file_pointer =
fopen("gcd_test_data.txt", "r");
Passed = 1;
while (!feof(file_pointer))

{
/*------------------------------------*/
/* Read test data from file */
/*------------------------------------*/
fscanf (file_pointer, "%d %d
%d\n", &A, &B, &Y_Ref);

/*----------------------------------*/
/* Model GCD algorithm */
/*----------------------------------*/
if (A != 0 && B != 0)

{
while (B != 0)

{
while (A >= B)

{
A = A - B;

}
Swap = A;
A = B;
B = Swap;

}
}

else
{
A = 0;

}

Y = A;

/*------------------------------*/
/* Test GCD algorithm */
/*------------------------------*/
if (Y != Y_Ref)

{
printf ("Error. A=%d B=%d
 Y=%d Y_Ref=%d\n",
 A,B,Y,Y_Ref);
Passed = 0;

}
}

if (Passed = 1)
printf ("GCD algorithm test passed ok\n");

}

VHDL - algorithmic level
library STD;
use STD.TEXTIO.all;
entity GCD_ALG is
end entity GCD_ALG;

architecture ALGORITHM of GCD_ALG is

-- Declare test data file and results file

file TestDataFile: text open

read_mode is "gcd_test_data.txt";
file ResultsFile: text open write_mode is

 "gcd_alg_test_results.txt";
begin

GCD: process
variable A,B,Swap,Y,Y_Ref: integer range 0 to 65535;
variable TestData: line;
variable BufLine: line;
variable Passed: bit := '0';

begin
while not endfile(TestDataFile) loop

-- Read test data from file

readline(TestDataFile, TestData);
read(TestData, A);
read(TestData, B);
read(TestData, Y);
read(TestData, Y_Ref);

-- Model GCD algorithm

if (A /= 0 and B /= 0) then

while (B /= 0) loop
while (A >= B) loop

A := A - B;
end loop;
Swap:= A;

 A := B;
 B := Swap;
end loop;

else
A := 0;

end if;
Y := A;

-- Test GCD algorithm

if (Y /= Y_Ref) then -- has failed

 Passed := '0';
write(Bufline, string’("GCD Error: A="));
write(Bufline, A);
write(Bufline, string’(" B="));
write(Bufline, B);
write(Bufline, string’(" Y="));
write(Bufline, Y);
write(Bufline, string’(" Y_Ref="));

write(Bufline, Y_Ref);
writeline(ResultsFile, Bufline);

end if;
end loop;

if (Passed = '1') then -- has passed
write(Bufline, string'

("GCD algorithm test has passed"));
writeline(ResultsFile, Bufline);

end if;
 end process;

end architecture ALGORITHM;

Verilog - algorithmic level
module GCD_ALG;

parameter Width = 8;
reg [Width-1:0] A,B,Y,Y_Ref;
reg [Width-1:0] A_reg,B_reg,Swap;

parameter GCD_tests = 6;
integerN,M;

 reg Passed,
FailTime;

integerSimResults;

// Declare memory array for test data
// ---
reg [Width-1:1] AB_Y_Ref_Arr[1:GCD_tests*3];

//----------------------------------
// Model GCD algorithm
//-----------------------------------
always @(A or B)

begin: GCD
A_reg = A;

B_reg = B;
if (A_reg != 0 && B_reg != 0)

while (B_reg != 0)
begin

while (A_reg >= B_reg)
A_reg = A_reg - B_reg;

Swap = A_reg;
 A_reg = B_reg;

B_reg = Swap;
end

else
A_reg = 0;

Y = A_reg;
end

//------------------------------
// Test GCD algorithm
//------------------------------
initial

begin
// Load contents of
// "gcd_test_data.txt” into array.
$readmemh("gcd_test_data_hex.txt", AB_Y_Ref_Arr);

// Open simulation results file
SimResults = $fopen("gcd.simres");

Passed = 1; // Set to 0 if fails
for (N=1; N<=GCD_tests; N=N+1)

begin
A=AB_Y_Ref_Arr[(N*3)+1];

B=AB_Y_Ref_Arr[(N*3)+2];
Y_Ref=AB_Y_Ref_Arr[(N*3)+3];
#TestPeriod
if (Y != Y_Ref) // has failed

begin
Passed = 0;
$fdisplay (SimResults,
 "GCD Error: A=%d
B=%d Y=%d. Y should be %d",
A,B,Y,Y_Ref);

end
end

if (Passed == 1) // has passed
$fdisplay (SimResults,

"GCD algorithm test has passed");
$fclose (SimResults);
$finish;

end
endmodule

2. Designing RTL level hardware models in VHDL and Verilog

The models have additional inputs and outputs over and above that
of the algorithmic models. They are inputs Clock, Reset_N and Load,
and the output Done. When Load is at logic 1 it signifies input data
is available on inputs A and B, and are loaded into separate registers
whose output signals are called A_hold and B_hold. The extra output
signal, Done, switches to a logic 1 to signify the greatest common
divisor has been computed. It takes a number of clock cycles to
compute the GCD and is dependent upon the values of A and B.

The models are broken down into three process (VHDL)/always
(Verilog) statements.

First process/always statement LOAD_SWAP. Infers two registers
which operate as follows:

1) When Reset_N is at a logic 0, A_hold and B_hold are set to
zero.

2) When not 1) and Load is at logic 1, data on A and B is loaded
into A_hold and B_hold.

3) When not 1) or 2) and A_hold is less than B_hold, values on
A_hold and B_hold are swapped, that is, A_hold and B_hold
are loaded into B_hold and A_hold respectively.

4) When not 1), 2) or 3), A_hold is reloaded, that is, it keeps the
same value. The value of A_hold - B_hold, from the second
process/always statement, is loaded into B_hold.

Second process/always statement SUBTRACT. Tests to see if A_hold
is greater than or equal to B_hold. If it is, the subtraction, A_hold -
B_hold, occurs and the result assigned to A_New ready to be loaded
into B_hold on the next rising edge of the clock signal. If A_hold is
less than B_hold, then subtraction cannot occur and A_New is
assigned the value B_hold so that a swap occurs after the next rising
edge of the clock signal.

Third process/always statement WRITE_OUTPUT. Checks to see if
the value of B_hold has reached zero. If it has, signal Done is set to
logic 1 and the value of A_hold is passed to the output Y through an
inferred multiplexer function.

It is a requirement of the problem to synthesize the generic model
with 8-bit bus signals. This is easily achieved in Verilog model by
setting the default parameter value Width to 8. This means it does
not need to be separately instantiated before it can be synthesized
and have the correct bit width. This is not the case in VHDL, which
uses a generic. The value of the generic is only specified when the
model is instantiated. Although the VHDL model will be instantiated
in the test harness, the test harness is not synthesized. Therefore, in
order to synthesize an 8-bit GCD circuit a separate synthesizable
model must be used to instantiate the RTL level model which
specifies the generic, Width, to be 8. The simulation test harness
does not need to use this extra model as it too, will specify the generic,
Width, to be 8.

VHDL - RTL
library IEEE;
use IEEE.STD_Logic_1164.all, IEEE.Numeric_STD.all;

entity GCD is
generic (Width: natural);
port (Clock,Reset,Load: in std_logic;

A,B: in unsigned(Width-1 downto 0);
Done: out std_logic;
Y: out unsigned(Width-1 downto 0));

end entity GCD;

architecture RTL of GCD is
signal A_New,A_Hold,B_Hold: unsigned(Width-1 downto 0);
signal A_lessthan_B: std_logic;

begin

--
-- Load 2 input registers and ensure B_Hold < A_Hold
--
LOAD_SWAP: process (Clock)
begin

if rising_edge(Clock) then
if (Reset = '0') then

A_Hold <= (others => '0');
B_Hold <= (others => '0');

elsif (Load = '1') then
A_Hold <= A;
B_Hold <= B;

elsif (A_lessthan_B = '1') then
A_Hold <= B_Hold;
B_Hold <= A_New;

else
A_Hold <= A_New;

end if;
end if;

end process LOAD_SWAP;

-- Subtract B_Hold from A_Hold if A_Hold >= B_Hold

SUBTRACT: process (A_Hold, B_Hold)
begin

if (A_Hold >= B_Hold) then
A_lessthan_B <= '0';
A_New <= A_Hold - B_Hold;

else
A_lessthan_B <= '1';
A_New <= A_Hold;

end if;
end process SUBTRACT;

--
-- Greatest common divisor found if B_Hold = 0
--
WRITE_OUTPUT: process (A_Hold,B_Hold)
begin

if (B_Hold = (others => '0')) then
Done <= '1';
Y <= A_Hold;

else
Done <= '0';
Y <= (others => '0');

end if;
end process WRITE_OUTPUT;

end architecture RTL;

Verilog - RTL
module GCD (Clock,Reset,Load,A,B,Done,Y);

parameter Width = 8;
input Clock,Reset,Load;
input [Width-1:0] A,B;
output Done;
output [Width-1:0] Y;

reg A_lessthan_B,Done;
reg [Width-1:0] A_New,A_Hold,B_Hold,Y;

//--
// Load 2 input registers and ensure B_Hold < A_Hold
//--
always @(posedge Clock)

begin: LOAD_SWAP
if (Reset)

begin
A_Hold = 0;
B_Hold = 0;

end
else if (Load)

begin
A_Hold = A;
B_Hold = B;

end
else if (A_lessthan_B)

begin
A_Hold = B_Hold;
B_Hold = A_New;

end
else

A_Hold = A_New;
end

//--
// Subtract B_Hold from A_Hold if A_Hold >= B_Hold
//--
always @(A_Hold or B_Hold)

begin: SUBTRACT
if (A_Hold >= B_Hold)

begin
A_lessthan_B = 0;
A_New = A_Hold - B_Hold;

end
else

begin
A_lessthan_B = 1;
A_New = A_Hold;

end
end

//---
// Greatest common divisor found if B_Hold = 0
//---
always @(A_Hold or B_Hold)

begin: WRITE_OUTPUT
if (B_Hold == 0)

begin
Done = 1;
Y = A_Hold;

end
else

begin
Done = 0;
Y = 0;

end
end

endmodule

5. Conclusions

The reasons for the importance of being able to model hardware in
both VHDL and Verilog has been discussed. VHDL and Verilog has
been extensively compared and contrasted in a neutral manner. A
tutorial has been posed as a problem and solution to demonstrate
some language differences and indicated that hardware modeled in
one language can also be modeled in the other. Room did not allow
test harness models to be included in this tutorial paper, but is shown
in the book “HDL Chip Design” [1]. The choice of HDL is shown
not to be based on technical capability, but on: personal preferences,
EDA tool availability and commercial, business and marketing issues.

REFERENCES:
[1] HDL Chip Design, A Practical Guide for Designing, Synthesizing and

Simulating ASICs and FPGAs using VHDL & Verilog by Douglas J Smith,
published by Doone Publications.

