Institut Supérieur The Freedom CPU Project
d’'Informatique de http://f-cpu.seul.org/
Modélisation et de
leurs Applications

Complexe des Cézeaux
Campus de Clermont-Ferrand
BP 125 - 63173 AUBIERE CEDEX

3" year project report

Making an Instruction Set Simulator for
F-CPU

Pierre Tardy
Frangois Vieville
ISIMA teacher: WODEY Pierre
School-year 2003-2004

Institut Supérieur The Freedom CPU Project
d’'Informatique de http://f-cpu.seul.org/
Modélisation et de
leurs Applications

Complexe des Cézeaux
Campus de Clermont-Ferrand
BP 125 - 63173 AUBIERE CEDEX

3" year project report

Making an Instruction Set Simulator for
F-CPU

Pierre Tardy
Frangois Vieville
ISIMA teacher: WODEY Pierre
School-year 2003-2004

Copyright (c) 2003-2004 Pierre TARDY, Frangois VIEVILLE

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled "GNU

Free Documentation License".

Résumé

Le projet F-CPU a pour but de développer un microprocesseur RISC, SIMD, super-
pipeline 64 bits libre. Les simulateurs de jeu d’instructions jouent un réle central dans
la cosimulation, qui a permis une nette amélioration en terme de vitesse, de cofit et de
qualité de développement. Nous avons donc souhaité réaliser un simulateur de jeu d’ins-
tructions pour le microprocesseur F-CPU, pour permettre & la communauté de mettre
en oeuvre cette méthodologie, en vue de I'intégration du F-CPU dans un systéme.
L’étude détaille ’amélioration d’un simulateur « untimed fonctional » existant, en un mo-
déle transactionnel, lui-méme facilement évolutif vers un modéle « bus cycle accurate »,
ainsi que 'utilisation de ce simulateur dans un modéle SystemC. Ensuite est décrite une
utilisation de modeéle dans le cadre de ’évaluation de performance d’un logiciel simple.
Mots clés : F-CPU, simulateur de jeu d’instruction, cosimulation, SystemC.

Abstract

The F-CPU project aims at designing a Free, SIMD, superpipelined 64 bit RISC mi-
croprocessor. Instruction Set Simulators are the central part of cosimulation, which has
greatly improved the design speed, cost, and quality. Thus, we’ve tried to design an in-
struction set simulator for the F-CPU microprocessor, to have its developer community
use the cosimulation methodology for the system level integration of the chip.

This study reports the improvement of an existing untimed-functional simulator into
a transactional level model. This model being itself easily improvable to a bus-cycle-
accurate model of the F-CPU. We have then integrated this simulator into a SystemC
model, and used it to profile and evaluate the performances of a simple piece of software.
Keywords: F-CPU, instruction set simulator, cosimulation, SystemC.

ii

Thanks

We want to thanks all the persons who gave us help in this project. Michael Riepe for his experimented

advices, Yann Guidon for his excellent presentation at ISIMA, and all the guys of the mailing list who
feed the prefetcher troll.

A great thanks, of course, for our ISIMA teacher, Pierre Wodey, who help us keeping a critical point
af view on our weird ideas.

iii

Contents

Copyright and distribution license L L o i
Résumé et abstract ii
Thanks L o e iii
Contents iv
List of Figures vi
List of Tables vii
Introduction 1
I Context 2
1 Description of the F-CPU project, Project Basis. 2

2 FCO Architecture e e 5

3 SystemC 5
3.1 A new language for modelisation oL 6

3.2 Levels of abstraction 6

3.3 SystemC evolution L L 6

IT Instruction Set Simulators (ISS), several approaches. 8
1 ISS definition L oL 8

2 Whyusing an ISS 7 8

3 Different ISS types o . o 9
3.1 Simulation levels 9

3.2 ISS quality metrics 9

3.3 ISS tasks 9

3.4 Compilation vs. Interpretation 10

IIT Study of what exists 13
1 The C implementation of fc0 by Yann Guidon 0oL, 13

2 Fctools e 14
2.1 Fctools global architectureo 14

2.2 EIMNILC + v v v v v e 14

2.3 Memory structure oL L e e 14

2.4 Register structure L 14

2.5 Why choosing this emulator as a basis for our project? 15

3 Other emulators L e 15

v

IV Realization
1 TLB, L0 Cache and systemC e
2 L0 Cache specification

2.1 LO-I Cache e
2.2 LO-D Cache e
3 Integrating fctools’s emu into a SystemC simulator
3.1 Global architecture e
3.2 Limits of our implementation o o 0oL
V Results: It works! Optimization issues
1 The benchmark programs e
2 Software level optimizations for fcpu’s caches.
2.1 LO-T Cache. e
2.2 LO-D Cache. e
2.3 Further analysis. o L
Conclusion
References

16
16
16
16
19
20
20
21

22
22
23
23
23
23

25

26

List of Figures

.1 the FCO Architecture 4
[.2 SIMD in FCO e 5
II.1 Static Compiled Simulation L 10
I1.2 Decoding Structure L e e e e 12
I1.3 Main Loop of an Interpretative ISS 12
IT1.1 listing of the /new directory. Everything’s not sonew.. 13
IT1.2 the register data structure Lo 15
IV.1 the icache structure 18
IV.2 Example of code which uses copy of pointers L. 19
IV.3 the fcpu systemC model oL 21
V.1 The profile of the matmul program 23
V.2 Profile of the naive program version , and a “nop-optimised” version. 10 % of gain with 1

well placed nop. L e e e e 24

vi

List of Tables

II.1 Example of Translation Table 11
IV.1 Expected Register State after execution 0L, 20
IV.2 Resulting Register State L 20
IV.3 Resulting State of the Load-Store Unit 20

vii

Introduction

Nowadays, the hardware companies are building more and more complex architectures. The needs for
different abstraction levels for designing is becoming obvious to keep a good sight on the System on Chip
projects. Instruction Set Simulator is one of the tools needed to build System on Chip where a CPU Core
is present. It allows software development on not yet available chips.

The F-CPU project is an ambitious project that consists in developing a modern, fully functional,
general-purpose CPU core, with the rules of free software. Participating to such a project is very inter-
esting for us, if you consider that the entire project is available, there is lot of things to learn here. The
feeling to do a useful work for F-CPU project is also very motivating.

Our ISIMA third-year project was to make and improve an Instruction Set Simulator for F-CPU. We
will describe in the report what is the F-CPU project, what we mean by ISS, what has been realized, and
finally give clues about where our work is useful.

Chapter I

Context

1 Description of the F-CPU project, Project Basis

This section is mainly taken from the F-CPU manual. [1]

The F-CPU architecture defines a SIMD, super pipelined, 64-bit RISC microprocessor. As of today,
it is the only CPU of this kind, which can be completely parameterized: it is not bound to 64-bit
implementations and it is intended to scale up easily. Furthermore, it is the only processor of this class
that is available with all the (VHDL) source code and manuals distributed with the GNU license (GPL
and GFDL). It is meant to be a totally unencumbered design targeted at the widest range of technologies
as possible.

The F-CPU project is also formed by many people, discussing on mailing lists about the organizational
and technical sides of the design. The mailing lists are public places where the processor is transparently
designed with contradictory discussions. Everybody can come and influence the specifications if the
modification respects the design and the project’s goals.

The F-CPU group is one of the many projects that try to follow the example shown by the GNU /Linux
project, which proved that non-commercial products could surpass expensive and proprietary products.
The F-CPU group tries to apply this "recipe" to the Hardware and Computer Design world, starting with
the "holy grail" of any computer architect: the microprocessor.

This utopist project was only a dream at the beginning but after two group splits and many efforts,
we have come to a rather stable ground for a really scalable and clean architecture without sacrificing
the performance. Let’s hope that the third attempt is the good one and that a prototype will be created
anytime soon.

The F-CPU project can be split into several (approximate and not exhaustive) parts or layers that
provide compatibility and interoperability throughout the whole project’s lifespan (from Hardware to
Software):

* F-CPU Peripherals and Interfaces: bus, chipset, bridges...

* F-CPU Core Implementations: individual chips, or revisions (for example, F1, F2, F3...)
* F-CPU Cores generations, or families (for example, FC0, FC1, etc.)

* F-CPU Instruction Set and User-visible resources

* F-CPU Application Binary Interface

* Operating System (aimed at Linux-likes)

* Drivers

* End-User Applications

Any layer depends directly or indirectly from any other. The most important part is the Instruction
Set Architecture, because it can’t be changed at will and it is not a material part that can evolve when the
technology /cost ratio changes. On the other hand, the hardware must provide binary compatibility but
the constraints are less important. That is why the instructions should run on a wide range of processor
micro architectures, or "CPU cores" that can be changed or swapped when the budget changes.

Any core family will be binary compatible with each other and execute the same applications, run
under the same operating systems and deliver the same results with different instruction scheduling rules,
special registers, prices and performances. Each core family can be implemented in several "flavors" like
a different number of instructions executed by cycle, different memory sizes, different word sizes, but the
software should directly benefit from these features without (much) changes.

This document is a study and working basis for the definition of the F-CPU architecture, aimed
at prototyping and first commercial chip generation (codenamed "F1"). This document explains the
architectural and technical backgrounds that led to the current state of the "FCO0" core as to reduce the
amount of basic discussions on the mailing list and introduce the newcomers (or those who come back
from vacations) to the most recent concepts that have been discussed.

]

Some development rules:

* This Project is an experiment to prove it’s possible to develop a processor in a bazaar-style envi-
ronment. The decisions are made by discussion and consensus on the mailing list.

* There is no leading or ivory tower (this is not a "cathedral"). In fact, this is a "Crystal tower"
because everything is as transparent as possible. Anyone may join the team and contribute - or
even contribute without officially "joining" in any way. Even those with limited or no knowledge of
CPU development can have something to contribute. A lot of motivation and free time is required,
however...

* The name of the game is Freedom, so our designs are being developed openly and will be openly
distributed under the GNU Public License, so anyone will be able to (if they have the funding at
least) use our designs, manufacture and sell their own F-CPU or derivative chips, but any changes
will have to be made freely available again. Read the GNU Public License and the F-CPU charter
for more details.

* We are aware of the extreme ambitiousness of this Project, but we believe it to be necessary for
the continued existence of free software in a world of increasingly proprietary hardware, so we will
persevere until we are successful.

* We are also fed up of being forced to use proprietary HW because we are not able to influence the
platform. As users, we understand that Free Software can’t blossom without Free Hardware.

* Remember, here at the Freedom CPU Project we are not anti-Intel, anti-Microsoft, or in fact anti-
anything. We are only pro-Freedom!

* Never flame, never respond to flame bait, but please do make and take constructive criticism.

* “Design and let design” could sum up most of the behaviors adopted in the group. Some strong
disagreements have and will appear during the discussions, but whether the subject corresponds to
the f-cpu goals or not, everybody has the right to play with his ideas. Do not force others to agree,
but discuss constructively and explore the subject, instead of flaming other’s idea down. A good
architecture can come from a mutual respect, not from flame wars.

F-CPU Design Team
FCO layout / synoptic diagram
(C) Yann Guidon 1/4/2001

(2) @oeuLIUI NVYHAS

Figure 1.1: the FCO Architecture

> — — >
s | |2 2llg
D P 3 3 A3 .
Data o1l @ |2 Instruction
Cache & |3 D p & Cache
@) =} =, ()
3 | |3 3|3
%) AV Y—3
@)
)
>
<
=
T
oy
o
D
B Fetcher
; instruction
I/D TLB (4*8 entries) Decoder
1 imm16
r JAef e T YTt
ROP2 >) Scoreboard
07 /scheduler
INC . WAL
SHL - Register set
« 63 x 64 bits, 3R 2W
ASU > Xbar
IMU —
» Special Registers,
» s Monitors,
IDIV > j JTAG/Debug,
Semaphores ...
POPC —

2 FCO Architecture

The FCO is the first version of F-CPU. See figure 1 for a detailed synoptic schema. Its main characteristics
are:

e Super pipelined processor with a critical data path of 6 logic gates. This means that all we can do
in one cycle must be done with at most 6 logic gates (AND, OR, NOT, etc.). This is few, but this
can made the processor very fast.

e 64 bits by default, but it can be extended to any multiple of 64.

e SIMD. That means that several data can be processed at the same time. Practically, register are
cut into several chunks, where operation are done. For example, a 64-bit register contains 4x16 bits
chunks.

r2\ \ r3\ \

.

rl \ \
Single Instruction Single Data

2| | | | | 3] | | | |

e7 QZ v v
rl| | | | |
Single Instruction Multiple Data

Registers are cut into chunks.
Operation is performed chunks to chunks

Figure 1.2: SIMD in FCO

e There are special registers that are used to configure the state and the behavior of the f-cpu.

e Support for logical vs. physical addresses. The correspondence is done through the TLB, which
associate each logical address to a physical address. This is useful for any modern OS that do
memory mapping and protection, like Linux.

e The cache is divided into 2 cache types, the data cache and the instruction cache.
e There are L.O and L1 cache for each instruction and data, burned directly into the CPU.
e The cross bar (aka Xbar) is a complex bus architecture that links Each module to each other.

e ecach module is super-pipelined and commanded by the scoreboard/scheduler with out of order
algorithms. This means that the result of one operation may be ready before the one of the precedent
instruction. Complex mechanisms are needed to avoid data decency conflicts.

3 SystemC

SystemC is A C++ framework that helps designing complex hardware-based systems.
5

3.1

A new language for modelisation

Hardware coder already have VHDL and Verilog to describe their Hardware architecture, but nowadays,
the systems are becoming more and more complex, pushing the developers to design and verify at higher
levels of abstraction. There is also a problem with hardware and software co-design. In the first steps
of design, we know that we want a DVD player; there will be an mpeg2 decoder, a subtitles rasteriser,
etc. Some will be coded in hardware other in software, all will work together. However, the Software
development has to be done at early times. This is called Software/Hardware co-design. We need a new
language and this language will be based on C++ because:

3.2

Verilog and VHDL are not very good at high-level design.
Developer’s existing knowledge of C/C++ can be leveraged.
Software developments are mainly done in C/C++, integration will be easy.

The C++ language has many tools and supports (compilers, debuggers, books, etc.)

Levels of abstraction

Basically, we have:

3.3

UTF: UnTimed Functional. That describes a process in its behavior only. Basically, it is a C
function that will get a MPEG file in input, ad that will output a YUV video stream.

No need of systemC here.
TLM: Transaction Level Model. We describe here the transactions needed to make our MPEG

decoder communicate with other modules. Will the MPEG file transmitted byte-after-byte or
frame-after-frame? What control signals do we need?

The systemC may help here. TLM module can be connected with other TLM module to verify the

global architecture.

BCA: Bus cycle accurate. Here we define exactly what append on the bus when there is a transaction.
The intern behavior of the module is still coded in behavioral, in order to be as fast as possible
during a simulation.

SystemC and co simulation are a precious help here. A module coded in BCA can be connected to
other BCA modules, CA modules, RTL modules and even to real HW chips.

CA: Cycle Accurate. In this model, we can know exactly how much time (how much clock cycles)
is needed for the real chip to compute an operation.

SystemC and VHDL/Verilog are used here; SystemC is known to be faster.

RTL: Register Transfer Level. Here, all the details of the micro architecture are described, this
model can be automatically compiled to a real chip.

SystemC doesn’t bring any real advantage here; The RTL is in the greatest part VHDL /Verilog
only.

SystemC evolution

SystemC is currently developed by the Open SystemC Initiative (OSCI), a non-profit organization with
many members from the Hardware companies.

SystemC 1.0 implements C++ class needed to describe RTL, CA and BCA models. No concept is
added compared to VHDL/Verilog.

e SystemC 2.0 as more general system level modeling capabilities with channels, interfaces, and events.
This is the current version of SystemC, the one that is useful.

o SystemC 3.0 will focus on software and scheduler modeling.

Chapter 11

Instruction Set Simulators (ISS), several
approaches.

1 ISS definition

An instruction set simulator, according to its widest definition, is a software tool, which runs on a host
machine, generally a workstation, to simulate the execution of a program on a target machine, allowing
the user to examine more or less precisely the internal state of the target machine during the execution of
each instruction. Typically, an ISS decodes an instruction-flow designed for the target CPU, and converts
it into another instruction-flow which has the equivalent semantics inside the simulator.

ISS can perform both architectural (functional) or micro-architectural simulation. Architectural simu-
lation, also called functional simulation, refers to simulation of the processor instruction set, whereas
micro-architectural simulation refers to components inside the processor such as pipelines, caches, func-
tional units, etc.

2 Why using an ISS ?

public application of ISS’s is the emulation, which is in fact the simulation of a whole computing system
on another. For example such emulators are available to execute 1386/ Windows applications on a Macin-
tosh.

However, what is the most interesting for us in the F-CPU project is the integration of the ISS into a
hardware/software simulation platform. ISS’s are indeed today the central part of co simulation, which
has brought a large improvement in the methodology of microelectronic design, and has allowed to design
Systems on chip.

The co simulation allows for example to perform tests on the base software (compiler and OS) before a
first version of the hardware is available, and thus spare lots of time and money.

ISS are also helpful in the hardware design flow. For example, they can be used to tune some perfor-
mance/cost issues such as cache or FIFO sizes. They can be also used to show up the strongness (or
weakness) of some design choices (cf. Chapter XX).

In short, ISS and co simulation has brought a cheap, quick and efficient new test and validation method-
ology, and though these can’t fully take the place of classical hardware-based verification, they can be
performed up-stream in the design-flow and thus drastically reduce the expensive use of tools such as
hardware debuggers or hardware simulators.

Obviously, base-software verification and hardware-design performance tuning don’t require the same type
of ISS.

3 Different ISS types

In this section, we will first define the different simulation levels, then we will determine how to evaluate
the quality of an ISS and eventually we will compare different techniques to build an ISS.

3.1

Simulation levels

There are several well-known levels to define the accuracy of a simulator. The higher the level, the less
accurate the simulator. Here are these levels from the up most to the downmost.

3.2

Untimed Functional : at this level, the execution atom is the assembly instruction. The simulator
executes an instruction at a time even though in the real processor, instructions may be pipelined,
and it systematically accesses the memory, even though the real processor has a cache. This level
is well suited to help design and debug software

Transactional Level: at this level, the simulator performs the same memory operations as the real
processor would do, and these operations are handled by events. This simulation level is often
needed by system level designers to perform system analysis.

Bus Cycle Accurate: at this level, the memory accesses are signal based. The simulator is thus the
exact copy of the real processor if seen as a black box. This level is used to perform optimizations
on the micro-architecture.

Cycle Accurate or Register Transfer Level: here the simulator equals the real processor. This level
is used for synthesis and micro-architecture simulation.

ISS quality metrics

Though the most obvious evaluation criterion is its simulation-speed, other qualities are required to make
a good ISS, for example:

3.3

Compilation speed: this evaluates the time needed by the simulator to bring an application into
a suitable state for the simulation. This criterion is only relevant in the case of compilation-based
simulation, where the target-machine input code is translated into host instructions or into a series
of virtual-machine instruction. This last technique is often used to build highly retargetable ISS.

Traceability: evaluates both the variety of information available to the user about the state of the
target machine during simulation, and how easy this information can be retrieved. This quality is
in close relationship with the targeted accuracy of the simulator.

Interoperability: capacity for the simulator to interact with other tools such as debuggers, execution
profilers, simulation cores (e.g. SystemC), or CAD tools.

Retargetability: how easy can an ISS be changed to simulate another target machine. For example,
there exist ISS?s, which can simulate any kind of RISC processor, by only writing an instruction-set
configuration file.

ISS tasks

In this section, we define what an ISS has to perform.

Register Mapping

The ISS has to host the registers of the target CPU on the machine it is running on.

The way the registers are hosted in the ISS memory is called register mapping. Most of the time, this is
done with a simple array of words in the data segment, but in some very high-speed simulators, target
registers can be mapped directly to host-CPU registers.

Memory Mapping

The memory around the target CPU can be simulated inside the ISS process itself, for example in a huge
array stored in its heap. In such a case, the ISS is said ’standalone’. This very simple solution offers poor
interoperability and traceability, but these are quite enough in some cases. For better interoperability
and traceability, this memory should be externalized: the memory is then accessed through a read/write
interface, so that the memory access can be logged. Such externalization is often performed by wrapping
a standalone ISS into a SystemC model.

Instruction translation

Obviously, the primary task of the ISS is to decode an input instruction-flow designed for the target CPU,
and convert it into another instruction-flow, which has the equivalent semantics inside the simulator.
The translation of each instruction should be composed of two distinguishable steps:

e Decode: the binary instruction is translated into a target-machine assembly instruction.

e Execute: the target-machine assembly instruction is mapped to one or more host-machine instruc-
tion, which have the same semantics.

According to the type of ISS, this translation is made at compile time or at load time for compilation
based simulation, or at execution time for interpretation based simulation.

3.4 Compilation vs. Interpretation
Compilation based simulation

In this kind of simulation, the input instruction-flow is translated either at compile time, as in the case
of static compiled simulation, or at load time, as in the case of dynamic compiled simulation.

An example of static compiled simulation is shown by Figure II.1. The input file is translated according
to a translation table as shown by Table I1.1. In this example, the ISS emits C code, but several ISS
directly emit host machine assembly.

To
C Compiler

Figure II.1: Static Compiled Simulation

10

Target assembly instruction C translation

add r1,r2,r3 ; r[3]

r[1] + r[2] ;

load ri1,r2 ; r[2] memoryread(r[1]) ;

Table II.1: Example of Translation Table

This kind of simulation offers very high speed but poor simulation accuracy. Indeed, it doesn’t test
the instruction fetching and can’t handle self-modifying code, since the output instruction-flow is fixed
before execution time.

Thus, this simulation strategy is well suitable for testing and debugging software at functional level, but
insufficient for simulation of system architecture.

Interpretation based simulation

Interpretation based simulators builds in memory a data structure representing the state of the target
processor, according to the register and memory mapping, and it maintains it up-to-date all through the
execution of the instruction-flow. Thus, it allows a much better accuracy than the compiled approach,
but this has a cost: a much lower simulation-speed.

An interpretative ISS consists of an infinite loop, which executes the sequence of actions:

Fetch: reads an instruction from memory

the opcode field, the flags and the registers from the instruction, in C, this is usually done with a
custom struct data type as shown by Figure 11.2

dispatch : jumps to the appropriate code to handle the instruction

execute: updates the processor state mapped in memory according to the semantics of the instruc-
tion

An example of such a loop is shown by Figure I1.3.

11

struct instruction_s

{
unsigned int opcode : 8 ;
unsigned int flags : 6 ;
union
{
struct
{
unsigned int rl : 6 ;
unsigned int r2 : 6 ;
unsigned int r3 : 6 ;
} 3regs ;
struct
{
unsigned int r : 6 ;
int immi2 12
} 1reglimmi2 ;
} reg ;
Y
Figure I1.2: Decoding Structure
while(1)
{
instr = fetch(PC) ; /* fetch and decode */
PC += 4 ;
switch(instr.opcode) /* dispatch */

{

case OPCODE_ADD:

/* execute the add instruction */
add(instr.reg.3regs.rl, instr.reg.3regs.r2, instr.reg.3regs.r3) ;
break ;

case OPCODE_JMP:

/* execute the jump instruction */
jmp(instr.regl) ;
break ;

b

3

Figure I1.3: Main Loop of an Interpretative ISS

12

Chapter III

Study of what exists

As said before, the f-cpu project is free, and the model is nearer form the Bazaar than form the Cathe-
dral. The project is hosted at f-cpu.seul.org. Each project contributor has an account of seul.org,
and publishes his files in his directory on fcpu. However, the most important files are uploaded to
http://fcpu.seul.org/new/. It may also have been some contributors that have no account in seul.org,
and that host their projects in their own web site. Finding all that have been written on f-cpu is currently
not an easy task.

Moreover, the bazaar model implies that there are many born-dead subprojects.

Index of /new michael98nonblocking..> 19-Mar-2002 20:52 183k VHDL-HOWTO. f-cpu 28-Jul-2002 19:15 61k
Name Last modified Size snapshot_yg_3-2002.t..> 18-Apr-2002 16:17 288k snapshot_jws_29_07_2..> 28-Jul-2002 20:37 59k
fcpu-mr-20020513.tar.gz 13-May-2002 17:50 27k snapshot_jws_30_07_2..> 30-Jul-2002 10:38 121k

Parent Directory 25-Jun-2002 21:46 - dct_£c0.tgz 24-May-2002 21:02 133k std_logic_misc.vhd 31-Jul-2002 04:28 33k
micropipelines.pdf 07-Jan-2001 15:06 2.2M yglfs_scripts.tgz 27-May-2002 21:15 136k 20010906 . PDF 31-Jul-2002 04:31 185k
SRB.0BJ 07-Jan-2001 20:53 28k banner. jpg 28-May-2002 21:15 34k scheduler.png 01-Aug-2002 19:27 29k
SRB.EPS 07-Jan-2001 20:53 31k banner2. jpg 29-May-2002 22:18 43k snapshot_jws_03_08_2..> 02-Aug-2002 19:00 122k
exb.tar.gz 14-Feb-2001 12:42 3k conf_parinux.zip 13-Jun-2002 02:13 445k xbar_jws_4_aug_2002.png 03-Aug-2002 19:23 27k
GNL.6.tar.gz 14-Feb-2001 12:45 22k snapshot_yg_6_24_200..> 24-Jun-2002 05:05 274k f-cpu_logo.png 18-Sep-2002 17:25 1k
gdups.c 20-Mar-2001 05:53 27k snapshot_yg_6_26_200..> 25-Jun-2002 20:35 287k yglfs_scripts_prelim..> 29-Sep-2002 20:27 78k
update.zip 09-Jul-2001 23:14 2.9M vhdl-tools.tar.gz 25-Jun-2002 20:44 6k F-CPU_boot . txt 12-0ct-2002 02:32 17k
snapshot_yg_8_23_200..> 22-Aug-2001 19:26 93k LICENSE.txt 25-Jun-2002 21:58 15k gcefcpu.20021203.tgz 03-Dec-2002 06:13 23k
snapshot_yg_9-1-2001..> 01-Sep-2001 13:55 120k mr_error.txt 26-Jun-2002 18:48 1k gce32fcpu_20021229.tgz 31-Dec-2002 05:35 127k
snapshot_yg_9-3-2001..> 03-Sep-2001 16:27 127k generic_adder.vhdl 26-Jun-2002 18:49 14k fctools-0.1.tar.gz 01-Jan-2003 18:50 226k
fcpu-mr-20010905.tar.gz 04-Sep-2001 20:07 22k fcpu-mr-20020628.tar.gz 28-Jun-2002 18:23 28k fctools-0.1-0.1.1.diff 02-Jan-2003 18:01 1k
snapshot_yg_9-7-2001..> 07-Sep-2001 18:19 139k FC0-02_07_2002.gif 03-Jul-2002 01:41 15k 19c3-presentation.pdf 08-Jan-2003 05:37 1.7M
mr-as-0.0.tar.gz 07-Sep-2001 18:47 109k snapshot_yg_04_07_20..> 04-Jul-2002 12:07 298k gcc32fcpu_20030110.tgz 10-Jan-2003 13:12 133k
snapshot_yg_13_9_200..> 12-Sep-2001 18:56 191k fcpu-mr-20020706.tar.gz 06-Jul-2002 12:02 42k fctools-0.2.tar.gz 11-Jan-2003 21:43 231k
snapshot_yg_9_20_200..> 06-0ct-2001 22:57 193k snapshot_yg_07_07_20..> 07-Jul-2002 20:10 310k gce32fcpu_20030113.tgz 13-Jan-2003 18:14 81k
fcpu-shl-mr-20010927..> 06-0ct-2001 22:58 11k snapshot_jws_16_07_2..> 16-Jul-2002 07:49 30k fctools-0.3.tar.gz 08-Feb-2003 19:44 256k
FF.gif 25-Nov-2001 10:16 30k Snapshot_jws_19_07_2..> 19-Jul-2002 07:50 24k fcpu-mr-20030327.tar.gz 27-Mar-2003 18:29 49k
fcpu-mr-20011127.tar.gz 26-Nov-2001 18:24 27k snapshot_jws_21_07_2..> 20-Jul-2002 22:49 28k fcpu-mr-20030402.tar.gz 02-Apr-2003 18:53 49k
ROP2-YG-2001201.tgz 01-Dec-2001 00:52 39k Snapshot_jws_22_07_2..> 22-Jul-2002 17:08 31k fcpu-mr-20030407 . tar.gz 07-Apr-2003 18:34 57k
1m02.tgz 09-Dec-2001 20:38 50k fcpusim_23_july_2002..> 22-Jul-2002 22:26 26k fcpu-mr-20030418.tar.gz 18-Apr-2003 18:55 63k
gifs.zip 11-Dec-2001 11:23 30k snapshot_jws_25_07_2..> 24-Jul-2002 19:07 53k fcpu-mr-regfile-2003..> 22-Jun-2003 18:27 6k
EPS.TGZ 25-Dec-2001 00:15 59k snapshot_yg_25_07_20..> 24-Jul-2002 20:32 333k assign.tgz 18-Aug-2003 22:07 65k
snapshot_yg_12_25_20..> 25-Dec-2001 13:01 283k snapshot_yg_25_07_20..> 25-Jul-2002 07:056 357k f-cpu_logo.eps 03-Feb-2004 23:12 24k
stable_yg_12_31_2001..> 31-Dec-2001 04:45 294k snapshot_jws_26_07_2..> 26-Jul-2002 16:45 58k fcpu-mr-20040215.tar.gz 15-Feb-2004 18:39 73k
manuel_arith.pdf 29-Jan-2002 18:31 800k snapshot_yg_27_07_20..> 27-Jul-2002 13:55 365k fcpu-fpu-adder-annex..> 12-Mar-2004 16:59 441k
F-CPU_manual-0.2.4-e..> 17-Feb-2002 17:27 1.1M snapshot_jws_27_07_2..> 27-Jul-2002 15:07 58k fcpu-fpu-adder-rappo..> 12-Mar-2004 16:59 475k
fromfs.yg01.tgz 14-Mar-2002 19:01 8k snapshot_yg_29_07_20..> 28-Jul-2002 19:12 366k fasu-presentation.pdf 19-Mar-2004 07:21 1.4M

Figure IT1.1: listing of the /new directory. Everything’s not so new..

The initial project subject was to implement an ISS for f-cpu. After having known what is an ISS, we
have searched in the f-cpu files if there where some project that could match the definition.

1 The C implementation of fcO by Yann Guidon

The first project that may match the definition of an ISS is the project of rewriting some parts of fcO
in C. The project was born to make an alternative to the slow and very precise VHDL implementation
of fc0. The two models were nearly equivalents, i.e. the C implementation followed the VHDL. This C
implementation was Cycle Accurate even RTL.

13

The project is not officially stopped, but the C code is out of date since a while.
The problem is that:

e We need to maintain each implementation up to date with the other.

e Finally, the simulation time gains are not so important.

2 Fctools

Fctools is a set of useful tools for building programs for the f-cpu. You can found ELF ! tools, an
assembler, a disassembler, a linker and two “instruction-level emulators”:

e emu is an program that takes a raw memory dump, and start the emulation at address 0. This
emulator integrate a small command line debugger, that allows to execute instructions step-by-step,
see the content of registers, memory, etc.

e elfemu take a “real” elf binary, statically linked.

2.1 Fctools global architecture

There are two main parts:
e The first is a port of standard binary tools based on libelf.
e The second is the fcpu instruction set specific tools; the assembler, disassembler and emulators.

Only the second part is interesting for our project. The instruction set is still (less and less) moving. The
part that encodes, decodes the instructions is factorized into the fcpu_opcodes “library”.

2.2 emu.cC

fctools’ emu contains two emulators, but a great part of the emulation core is shared. emu.c contains
the instruction dispatcher. This is a big file with the implementation of each instruction behavior. It
contains lot of C tricks to make the writing of the code, more efficient, while still execution efficiency.
The dispatch is made with a sorted table of flagged opcodes (this means that the load opcode will not
execute the same function if the instruction has the flag LS_BIG_ENDIAN). The correct function to call is
then found in the table by the classic dichotomist algorithm.

2.3 Memory structure

In the two emulators of fctools0.3, the memory is directly accessed, after a call to memmap(). This
function gets an address, and return the pointer to the memory associated to this address. This allows
the implementation of a simple TLB (the module that manages the access right of the different memory
segments)

2.4 Register structure

The registers of the f-cpu are made of multiple variable-size chunks, for SIMD. The emulator provides a
big union to implement that.

'ELF is a binary format, that provides a description of the various part of the binary (data segment, code segment,
dynamic link infos, etc.)

14

/* a single register */
union reg {

Us b [CHUNKS(b)];
Ui6 d [CHUNKS(d)];
U32 q[CHUNKS(q)];
U64 o [CHUNKS (0)];
18 sb [CHUNKS (b)];
116 sd [CHUNKS (d)] ;
132 sq [CHUNKS(q)1;
164 so [CHUNKS (o)1 ;

float F[CHUNKS(F)];
double D[CHUNKS(D)];
};

/* the register set */
extern struct regs {
union reg r[64];
union reg r_pc;
} regs;

Figure II1.2: the register data structure

2.5 Why choosing this emulator as a basis for our project?

Many arguments made us chose to base on this code, instead of doing our own ISS, which was the original
plan:

e The code of Michael Riepe is of a big quality, far better than we may have produced. It is no use
remaking another architecture, instead of studying a good one, and improve its functionalities.

e fctools is an alive project, Michael is still developing it and has the will of making it the more
modular possible.

3 Other emulators
We have also heard about other old f-cpu emulator cores, but these were not very advanced and reusable.

We also have thinking about using generic library such as microlib[4] or Simlt [3], but fctools was a
better start.

15

Chapter 1V

Realization

1 TLB, LO Cache and systemC

As said above, fctools provide a very good base for an ISS. With fctools, we have a behavior accurate
simulator. The next step is to build a bus cycle accurate simulator.

The SystemC is here to give us a clock. We first have to make a box for fctools’s emu, making a
C++/system C wrapper to it. Then we will be able to connect it to other systemC modules such as a
motherboard with memory, PCI bus, etc.

The other thing needed to put 'emu’ in a systemC system is Cache simulation. We have decided to
implement the L0 caches of the fcpu (Instruction cache, aka prefetcher and Data Cache) which is very
specific to f-cpu (lot of interactions with the core). The L1 and L2 caches then are more classical and are
very easily implementable as systemC modules.

2 LO Cache specification

The LO cache is a very important part of the f-cpu. It will determine a great part of the real amount of
instruction processed.

As you can see in figure ?? page 77?7, there are two LO Cache. The data cache and the instruction
cache. Each cache is very small and fast, so it needs to be managed carefully. This management is done
by 2 units.

e The prefetcher is dedicated to the instruction cache.
e The LSU is dedicated to the data cache.

As far as we know, the prefetcher has been much more thought than the LSU, the specification is clear
and we manage to implement it efficiently.

2.1 LO-I Cache

Here is the description of the prefetcher behavior, given by Michael Riepe, one of the main developers of
the f-cpu project [5]:

Let one fetcher line be the "current” line. The next instruction will be fetched from this line. Fvery
line shall have an associated address, which is the address of the first instruction contained in the line (that
is, the address is a multiple of 32). If all instructions from the current line have been fetched, the fetcher
will switch to the "next" line (which should have been prefetcher while the current line was executed). That
18, the "next" line becomes the new current line.

Any fetcher line can be in one of at least three different states:

o 1 - The line is invalid

16

e 2 - The line is being prefetched but not yet valid
o 3 - The line is valid

In case the current line is not valid, let the CPU stall until it is. If the line is in ‘invalid’ state, start
prefetching and proceed to state 2.

Whenever the current line is "switched" as outlined above, let the fetcher take the associated address
of the new current line, add 32 to it (that’s not really an add but a "shifted" increment operation) and
start prefetching the (new) next line at the calculated address. If there were only these two lines, they
would work just like double or "tandem" buffers — read from one of them while the other is filled in the
background.

When "loadaddr([i]" is executed, take the target address, mask off the least significant 5 bits, and start
prefetching at the resulting address (if the corresponding line isn’t already being prefetched or even wvalid).
In either case, associate the register number with the corresponding fetcher line.

When a jump instruction is executed (and the jump is taken), instructions from the target address
may reside in the current line or another (or none at all, which will cause a stall). In the second and
third case, switch to the new current line and start prefetching the new "next" line as outlined above. In
the first case, simply continue.

If the return address is stored in a register (3-operand form), associate the register number with the
line the next instruction would have been fetched from if the jump had not been taken. This will be either
the old current line (which is already loaded) or the old next line (which should already be prefetched), so
there is no need to start another prefetch operation if the CPU (or the emulator) is in a sane state. If
the return address is mot stored, and the target address does not reside in the current or mext line, the
fetcher may (but need not) stop prefetching the old "next" line and/or invalidate it.

If the jump is NOT taken, there is no need to do anything.

Whenever a register is overwritten (note: this applies to ALL instructions!), break the association
between the register number and the corresponding fetcher line. If the line is no longer associated with
any register afterwards, it may (but need not) be invalidated. Note that an instruction may modify more
than one register, so it may be necessary to invalidate several associations at once. On the other hand, it
is impossible that any register is associated with more than a single fetcher line (because it can hold only
one address at any time).

From a virtual point of view, the current line is always associated with the instruction pointer (PC),
and the "next" line is associated with some nameless register inside the prefetcher. These lines must never
be invalidated.

There are also special events to consider, e.g. instructions like ‘jump r1,r1’ must be correctly handled.
Another question is whether it makes sense to start another prefetch if a constant is added to or subtracted
from an "associated” pointer. It may speed up "calculated jumps”, but it seems to be pretty useless in
other cases.

If the fetcher is "full” — that s, all lines are in use —, invalidate and overwrite the least recently used

(LRU) line that is NOT associated with the instruction pointer (current line) or the prefetcher.
You can see in figure 2.1 page 18 the instruction cache as we have implemented it.

17

Nb |RegRef Addr valid Inst
Nb | LinRef 00 FF 0000000000000FCO 1 01C001C9
" il / 01 02 0000000000000FC4 01C00010 :> Decoder
r2 02 / 02 FF 0000000000000FC8 3C0004C0
3 05 — 03 FF 0000000000000FCC 33C00254

Fr W 04 FF 0000000000000FDO 0 33C00295

r4
5 r 05 FF 0000000000000FD4 1BC1454F L1
6 o 06 FF 0000000000000FD8 18C103D0

07 FF 0000000000000FDC 1840A78A

3
16 05

Figure IV.1: the icache structure

The “current” line, the 5th, is being prefetched (L1 data coming in), and the 2nd line is being sent to
the instruction decoder.

As you can see, registers may be associated with a line. This must be a bidirectional association to
quickly invalidate it if needed. For example:

e The 1st association is valid, if a “jmp r2” occurs, the CPU will not stall.

e The 2nd association is not valid. 5th line is being prefetched, all the associations in 4th to 7th have
been invalidated.

e The 3rd association is not valid. The r6 register may have changed recently.

Differences between Michael’s description and our implementation.

There are some minor differences between our model and Michael’s one.

e The instructions are fetched 4 by 4, and not 8 by 8. This is of course reconfigurable easily by
modifying the IL1_GRANULARITY constant. More studies about the effect of such a choice can be
read in a later chapter.

e When a register whose content is present in the cache is incremented, the reference to the cache line
is just forgotten. No complicated optimizations are made.

We have implemented the minimal behavior of the fcO prefetcher. We can’t implement the complicated
optimizations, before the RTL is concretized.

18

Cycle accurate issues

We have implemented some indicators of CPU cycle lost to prefetching. This is important to explore the
validity of our model. Although, the values are not just indicators, and are not strictly cycle accurate.
We don’t have enough experience in RTL to make any decision on the optimizations, or even on the micro

architecture.

2.2 LO-D Cache

In the specifications, the Load-Store Unit is defined as following: the Load-Store Unit is just like the

Prefetcher, with a granularity of one byte.
However, one can notice other differences:

e The Load-Store Unit namely acts as a read/write cache, whereas the Prefetcher is read only. The
write method to L1 cache memory write — through,write — back hasn’t been explicitly defined,
even though some words in the manual make think about a write-back method.

The data-flow, handled by the Load-Store Unit, has a variable throughput, ranging from 0 to
64 bits (and more) per cycle, whereas the Prefetcher handles a fixed, 32-bit-per-cycle throughput
instruction-flow. Thus, the always-fetch strategy used by the Prefetcher may be unadapted to the
L/S-U, as it may cause some useful lines to be swept away from the buffer.

The association between cache-line and register implies much more complex logics, for example in
handling copy of pointer. Indeed, if the source register is a pointer and its pointed memory area is
already in the cache, then the destination register should be associated to the same line. Thus, this
needs a multiple register association, which is unreasonably complex for a high-speed seeking data
cache. Figure IV.2 shows up such a code that can cause the Load/Store Unit to become messy if
no verification logic is used to track copies of pointers.

loadaddrid %myData, ril

//

rl <- @[MyData]

load rl, r3 ; // r3 <- Mem[r1]

inc r3, r3 ; // r3 <-r3 +1

store rl, r3 ; // Mem[ri1] <- r3

move rl, r2 ; // r2 <- r1 (Copy of pointer)
load r2, r3 ; // r3 <- Mem[r2]

bseti %2, r4d ; // r4d <- 4

add r3, rd, r3 ; // r3 <-1r3 + 4

store r2, r3 ; // Mem[r2] <- r3

myData:

.long 4 ;

In Table IV.3, we see that the same memory-area is mapped twice in the data-cache, thus the strange
results(Table IV.2).

Thus, we have implemented the L/S-U as a classical set-associative write-back data-cache, with Least
Recently Fetched(LRF) replacement policy. In addition, we don’t use the always-fetch strategy of the
Prefetcher. Instead, the data fetching is triggered either by a cache-miss or by a loadaddr [i]d instruction.
Nevermind, the real L/S-U should functionally and approximately act the same way as our data-cache.

Figure 1V.2: Example of code which uses copy of pointers

19

Reg Data
rl | @[myDatal
r2 | @QmyData]
r3 9
r4 4

Table IV.1: Expected Register State after execution

Reg Data
rl | @[myData]
r2 | @Q[myDatal
r3 8
r4 4

Table IV.2: Resulting Register State

Reg | Valid | Dirty Data
rl true true | 000000000000005
r2 true true | 000000000000008

Table IV.3: Resulting State of the Load-Store Unit

3 Integrating fctools’s emu into a SystemC simulator

We finaly have implemented a basic systemc simulator based on fctools’ emu, and our modifications on
the cache. The goal is to model a complete system, with regard to the cache system.

3.1 Global architecture

Here is the architecture of our systemC model.

e The F-CPU module is a wrapper to the C functions of fctools’ emu. Because the L0 caches are very
dependant from f-cpu, they are intagrated in this module.

e The L1D cache, is the level 1 data cache, connected to the f-cpu core and to L2 cache
e The L1I cache, is the level 1 instruction cache, connected to the f-cpu core and to 1.2 cache

e The L2 cache is the last wall before the RAM..

20

main bus

|

L2 Cache
7) 7 T 3
L1 Data L1 Instr
\) \)
, % \
1 e ‘ ~ - N)
LSU (LO-dc) Prefetcher (LO-ic)

fctools’s emu core

f—cpu module

78
A

Figure 1V.3: the fcpu systemC model

3.2 Limits of our implementation

As you may see by reading the code, our implementation of the theoric model is very simple (for time
reasons).

e Our L1 caches are of infinite size, it is implemented as a STL map that remember all the access. If
the address as already been accessed, we wait "hit’ cycles, else we wait 'miss’ cycles.

e There is no L2 cache. The L1 caches access directly the memory.

The result is a little simulator, which should share the emulator core with emu and elfemu.

21

Chapter V

Results: It works! Optimization issues

Our output simulator, though its differences with the specifications (some optimizations are not performed
by the prefetcher, and the definition of the Load/Store Unit is incomplete), is close enough to the real
F-CPU to study some optimization issues at software level (mostly at compiler level).

1 The benchmark programs
To track these possible optimization tricks, we have written two assembly programs:

e matmul, a matrix of 64-bit integers multiplication program to examine the behavior of the prefetcher
regarding three embraced loops and multiple loadaddri instructions.

e bbsort, a simple bubble-sort program. This program operates on an 8-bit data vector and highly
(excessively) stimulates the Load-Store Unit, as it uses many read-after-write.

The first execution of matmul has shown up the problem in the specifications (or at least in our
understanding of the specifications) of the Load/Store Unit.
Then we were able to measure the speed-ups of both the prefetcher and the load-store unit.
For that, we have implemented some reports into the ISS. At the end of the simulation, the profile of the
program, i.e. the total amount of clock cycle used for each instruction of the program. Before each asm
instruction of the program, a line is displayed with

e The total amount of cycle used here

e The detailed profile, i.e. the number of cycle used each time the instruction was executed. This is
useful to know why this instruction is so used. If there are a lot of 1, this means that this instruction
is very often used, and that the cache is very useful (each time the instruction takes only one cycle).
If you have a bigger value, this means that the CPU has stalled during some cycles to fetch or save
a data/ an instruction.

e The values in parenthesis are for cycles used in data cache. Remember that when there is a data
cache access, the prefetcher is not loosing its time; it is still prefetching the next block of instructions.

22

19 = 19 01 = 1 08 = 1+1+1+1+1+1+1+1

0000 bseti $0x14, r0, r62 0044 move rl, r7 0088 add.d r10, r30, ri10
o1 = 1 01 = 1 08 = 1+1+1+1+1+1+1+1
0004 loadaddrid $0xc4, ri 0048 loadaddri $0xc, ri7 008c add.d r9, r28, r9
o1 = 1 01 = 1 --
0008 loadaddrid $0xe0, 12 004c loadaddri $0x14, ri8 10 = 1+1+1+1+3+1+1+1
o1 = 1 -- 0090 inc ri3, ri3
000c loadaddrid $0xfc, r3 15 = 15 08 = 1+1+1+1+1+1+1+1
- 0050 loadaddri $0x24, ri9 0094 cmpg ri3, r5, ri4
15 = 15 01 = 1 08 = 1+1+1+1+1+1+1+1
0010 bseti $0x2, r0, r24 0054 jmp 17 0098 jmpnz ri4, ri9
01 = 1 08 = 1+7 04 = 1+1+1+1
0014 bseti $0x3, r0, r28 0058 move r0, ri12 009c¢c store r3, ri6
01 = 1 02 = 1+1 --
0018 move r0, 4 005¢ move 2, 18 61 = (19)+1+(19) +1+1+(19)+1
01 = 1 - 00a0 add r3, r28, r3
001c move r0, rb 24 = 19+5 04 = 1+1+1+1
- 0060 jmp rl8 00a4 inc ri2, ri2
15 = 15 10 = 1+7+1+1 04 = 1+1+41+1
0020 move r0, ré 0064 move r0, ri13 00a8 add r8, r28, r8
o1 = 1 04 = 1+1+1+1 04 = 1+1+1+1
0024 loadcons.0 $0x2, rd 0068 move r8, rl0 00ac cmpg ri2, r6, ri4
01 = 1 04 = 1+1+1+1 --
0028 loadcons.0 $0x2, 5 006¢c move r7, r9 04 = 1+1+1+1
01 = 1 - 00b0 jmpnz ri4, ri8
002c loadcons.0 $0x2, r6 20 = 15+1+3+1 02 = 1+1
- 0070 move r0, ri6é 00b4 inc rii, rii
15 = 15 04 = 1+1+1+1 02 = 1+1
0030 move rl, r7 0074 Jjmp ri9 00b8 add.d r31, r7, r7
01 = 1 14 = 1+1+1+1+1+1+1+7 02 = 1+1
0034 move r2, r8 0078 load r9, r20 00bc cmpg ril, r4, rid
01 = 1 46 = (19)+1+(19) +1+1+1+1+1+1+1 -
0038 mul.d r28, r6, r30 007c load ri0, r21 02 = 1+1
01 = 1 - 00cO jmpnz ri4, ri7
003c mul.d r28, r5, r31 67 = (19)+1+(19) +1+1+(19) +1+3+1+1+1 01 = 1
-- 0080 mul r20, r21, rib 00c4 halt
15 = 15 08 = 1+1+1+1+1+1+1+1 453 cycles in total
0040 move r0, rii 0084 add rl6, ri5, ri6

Figure V.1: The profile of the matmul program

2 Software level optimizations for fcpu’s caches.

The fact is that compilators sometimes add nop into programs. The main reason given is that it is to
avoid pipeline faults (for example, data dependency error, when an instruction need a value that is not
yet totally computed). This is mind; we have wondered if there would be some optimization to avoid
cache misses.

2.1 LO-I Cache.

We have made a script that add 0 to 5 nops in many places of our matmul program, and then find the
best combination, that needs the least number of cycles to compute the matrix multiplication. The result
is actually difficult to interpret. There are in fact alignment issues that may affect the execution time of
one program, It is clear that adding nop may correct the alignment of the beginning of a loop, placing it
at an divisible-by-16 address. However, placing too much nop means loosing the time needed to execute
the nop...

For high performance, a program should always jump to a well-aligned address

2.2 LO-D Cache.

We haven’t enough time to run tests on optimizing the D-Cache access at compiler level.

2.3 Further analysis.

As we said before, the results are not easy to interpret. Compilers usualy use heuritic to optimise such
issues. We are sure that it is possible to find other optimisation clues that simply say please jmp at aligned
address, however, this work need time and probably a more important bibliography, and may be achieved
in another study.

23

15 = 15 15 = 15

0050 loadaddri $0x24, ri9 0050 nop
01 = 1 01 = 1
0054 jmp ri7 0054 loadaddri $0x24, ri19
08 = 1+7 01 = 1
ri7-> 0058 move r0, ri2 0058 jmp 17
02 = 1+1 08 = 1+7
005¢ move r2, r8 ri17-> 005c move r0, ri2
24 = 1946 25 = 1946
0060 jmp rig8 0060 move r2, 8
10 = 1+7+1+1 02 = 1+1
ri8-> 0064 move r0, ri3 0064 jmp ri8
04 = 1+1+1+1 10 = 1+1+1+7
0068 move r8, r10 ri18-> 0068 move r0, ri3
04 = 1+1+1+1 04 = 1+1+1+1
006¢c move r7, r9 006¢ move r8, ri10
20 = 15+1+3+1 24 = 15+1+3+5
0070 move r0, r16 0070 move r7, r9
04 = 1+1+1+1 04 = 1+1+1+1
0074 jmp ri9 0074 move r0, rlé
14 = 1+1+1+1+1+1+147 04 = 1+1+1+1
ri9-> 0078 load r9, r20 0078 jmp rl9
46 = (19)+1+(19) +1+1+1+1+1+1+1 08 = 1+1+1+1+1+1+1+1
007c load ri0, r21 ri18-> 007c load r9, r20
67 = (19)+1+(19) +1+1+(19) +1+3+1+1+1 48 = (19)+1+1+1+1+(19) +1+1+3+1
0080 mul r20, r21, ribs 0080 load ri0, r21
08 = 1+1+1+1+1+1+1+1 46 = (19)+1+(19) +1+1+1+1+1+1+1
0084 add rl6, ri15, rié 0084 mul r20, r21, rib
08 = 1+1+1+1+1+1+1+1 08 = 1+1+1+1+1+1+1+41
0088 add.d r10, r30, ri0 0088 add r16, ri5, ri6
08 = 1+1+1+1+1+1+1+1 08 = 1+1+1+1+1+1+1+1
008c add.d r9, r28, r9 008c add.d r10, r30, ri10
10 = 1+1+1+1+3+1+1+1 10 = 1+1+1+1+1+1+3+1
0090 inc ri3, ri3 0090 add.d r9, r28, r9
08 = 1+1+1+1+1+1+1+1 08 = 1+1+1+1+1+1+1+41
0094 cmpg ri3, r5, ri4 0094 inc ri3, ri3
08 = 1+1+1+1+1+1+1+1 08 = 1+1+1+1+1+1+1+41
0098 jmpnz ri4, ri9 0098 cmpg ri3, r5, ri4
04 = 1+1+1+1 08 = 1+1+1+1+1+1+1+41
009c store r3, ri6 009c¢ Jjmpnz ri4, ri9
61 = (19)+1+(19) +1+1+(19)+1 04 = 1+1+1+1
00a0 add r3, r28, r3 00a0 store r3, ril6
04 = 1+1+1+1 42 = (19)+1+1+(19) +1+1
00a4 inc ri2, ri2 00a4 add r3, r28, r3
04 = 1+1+1+1 04 = 1+1+1+1
00a8 add r8, r28, r8 00a8 inc ri2, ri2
04 = 1+1+1+1 04 = 1+1+1+1
00ac cmpg ri2, r6, ri4 00ac add r8, r28, r8
04 = 1+1+1+1 04 = 1+1+1+1
00b0 jmpnz ri4, ri8 00b0 cmpg rl2, r6, ri4
02 = 1+1 04 = 1+1+1+1
00b4 inc rii, ri1 00b4 Jjmpnz ri4, ri8
02 = 1+1 02 = 1+1
00b8 add.d r31i, r7, r7 00b8 inc rii, rii
02 = 1+1 02 = 1+1
00bc cmpg ril, r4, rid 00bc add.d r31, r7, 7
02 = 1+1 02 = 1+1
00cO0 jmpnz ri4, ri7 00c0 cmpg ril, r4, ri4
01 = 1 02 = 1+1
00c4 halt 00c4 jmpnz ri4, ri7
453 cycles in total 01 = 1
00c8 halt

415 cycles in total

Figure V.2: Profile of the naive program version , and a “nop-optimised” version. 10 % of gain with 1
well placed nop.

24

Conclusion

The main result of this project is for us a far better understanding of what is an ISS, and why it is very
usefull in System on Chip development. Then, we have the satisfaction to have made the f-cpu project
advance, by giving the first implementation of the prefetcher, long time discussed, but never coded. We
hope that this will give motivation to the RTL coders of the f-cpu team to resolve the micro-architecture
issues of such a module..

Our results about data cache fill us a bit less with enthusiasm, as it became a simple LRF cache in
order to work and answer all the cases.

The next process for fctools is beeing though by Michael Riepe, as he said recently in the mailing
list. He is thinking on some changes that will make his simulator cycle accurate. This implies that the
simulator gives all informations about cycles lost in pipeline and in cache. For the last thing, we hope
that our work will fit the needs, and will be useful for him.

25

Bibliography

[1] F-CPU Design Team, F-CPU Manual rev. 0.2.7c
http://www.f-cpu.org/

[2] Yann Guidon and F-CPU Design Team, Présentation ISIMA
http://fcpu.seul.org/waigee/ISIMA

[3] W. Qin, S. Malik, Arm Simlit, CA and BCA ISS for ARM

http://www.ee.princeton.edu/ ~wqin/armsim.htm

[4] G. Mouchard, MicroLib
http://www.microlib.org/

[5] Michael Riepe Prefetcher description posted on the mailing list
http://archives.seul.org/f-cpu/f-cpu/Jan-2004/msg00019.html

26

