
Quick
Reference

for

Verilog HDL

Rajeev Madhavan
AMBIT Design Systems, Inc.

Released with permission from
Automata Publishing Company

San Jose, CA 95129

Quick

Reference

for

Verilog HDL

Rajeev Madhavan
AMBIT Design Systems, Inc.

Design Automation Series

Released with Permission
from

Automata Publishing Company
San Jose, CA 95129

Cover design: Sam Starfas
Printed by: Technical Printing, Inc. Santa Clara
Copyright1993, 94, 95 Automata Publishing Company

UNIX is a registered trademark of AT&T
Verilog is a registered trademark of Cadence Design Systems, Inc.

In addition to this book, the following HDL books are available
from Automata Publishing Company:

1. Digital Design and Synthesis with Verilog HDL
2. Digital Design and Synthesis with VHDL

For additional copies of this book or for the source code to the
examples, see the order form on the last page of the book.

This book may be reproduced or transmitted for distribution provided
the copyright notices are retained on all copies. For all other rights
please contact the publishers.

Automata Publishing Company
1072 S. Saratoga-Sunnyvale Rd, Bldg A107
San Jose, CA 95129
Phone: 408-255-0705
Fax: 408-253-7916

Printed in the United States of America
10 9 8 7 6 5 4 3 2

ISBN 0-9627488-4-6

Copyright1993, 94, 95 Automata Publishing Company

Published by Automata Publishing Company

Quick Reference for Verilog HDL

Preface

This is a brief summary of the syntax and semantics of the Ver-
ilog Hardware Description Language. The summary is not
intended at being an exhaustive list of all the constructs and is
not meant to be complete. This reference guide also lists con-
structs that can be synthesized. For any clarifications and to
resolve ambiguities please refer to the Verilog Language Refer-
ence Manual, Copyright 1993 by Open Verilog Interna-
tional, Inc. and synthesis vendors Verilog HDL Reference
Manuals.

In addition to the OVI Language Reference Manual, for further
examples and explanation of the Verilog HDL, the following
text book is recommended:Digital Design and Synthesis With
Verilog HDL, Eli Sternheim, Rajvir Singh, Rajeev Madhavan
and Yatin Trivedi, Copyright 1993 by Automata Publishing
Company.

Rajeev Madhavan

Copyright1993, 1994, 1995 Automata Publishing Company.

c

c

Quick Reference for Verilog HDL

Quick Reference for Verilog HDL

Quick Reference
for

Verilog HDL

1.0 Lexical Elements ... 1
1.1 Integer Literals .. 1
1.2 Data Types... 1

2.0 Registers and Nets ... 2

3.0 Compiler Directives... 3

4.0 System Tasks and Functions.. 4

5.0 Reserved Keywords... 5

6.0 Structures and Hierarchy ... 6
6.1 Module Declarations ... 6
6.2 UDP Declarations.. 7

7.0 Expressions and Operators .. 10
7.1 Parallel Expressions .. 13
7.2 Conditional Statements ... 13
7.3 Looping Statements... 15

8.0 Named Blocks, Disabling Blocks.. 16

9.0 Tasks and Functions... 16

10.0 Continous Assignments ... 18

11.0 Procedural Assignments .. 18
11.1 Blocking Assignment .. 19
11.2 Non-Blocking Assignment .. 19

12.0 Gate Types, MOS and Bidirectional Switches 19
12.1 Gate Delays ... 21

13.0 Specify Blocks... 22

14.0 Verilog Synthesis Constructs ... 23
14.1 Fully Supported Constructs....................................... 23
14.2 Partially Supported Constructs.................................. 24
14.3 Ignored Constructs .. 25
14.4 Unsupported Constructs .. 25

15.0 Index .. 27

All rights reserved. This document is intended as a quick

reference guide to the Verilog HDL. Verilog is a reg-

istered trademark of Cadence Design Systems, Inc.

R

Use and Copyright

Copyright (c) 1994, 1995 Rajeev Madhavan
Copyright (c) 1994, 1995 Automata Publishing Company

Permission to use, copy and distribute this book for any
purpose is hereby granted without fee, provided that

(i) the above copyright notices and this permission
notice appear in all copies, and

(ii) the names of Rajeev Madhavan, Automata Publish-
ing and AMBIT Design Systems may not be used in any
advertising or publicity relating to this book without the
specific, prior written permission of Rajeev Madhavan,
Automata Publishing and AMBIT Design Systems.

 THE BOOK IS PROVIDED "AS-IS" AND WITH-
OUT WARRANTY OF ANY KIND, EXPRESS,
IMPLIED OR OTHERWISE, INCLUDING WITH-
OUT LIMITATION, ANY WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE.

 IN NO EVENT SHALL RAJEEV MADHAVAN OR
AUTOMATA PUBLISHING OR AMBIT DESIGN
SYSTEMS BE LIABLE FOR ANY SPECIAL, INCI-
DENTAL, INDIRECT OR CONSEQUENTIAL DAM-
AGES OF ANY KIND, OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE,
PROFITS, WHETHER OR NOT ADVISED OF THE
POSSIBILITY OF DAMAGE, AND ON ANY THE-
ORY OF LIABILITY, ARISING OUT OF OR IN CON-
NECTION WITH THE USE OF THIS BOOK.

Quick Reference for Verilog HDL

1

1.0 Lexical Elements
The language is case sensitive and all the keywords are lower case.
White space, namely, spaces, tabs and new-lines are ignored. Verilog
has two types of comments:

1. One line comments start with // and end at
the end of the line

2. Multi-line comments start with /* and end
with */

Variable names have to start with an alphabetic character or underscore
followed by alphanumeric or underscore characters. The only excep-
tion to this are the system tasks and functions which start with a dollar
sign. Escaped identifiers (identifier whose first characters is a backslash
(\)) permit non alphanumeric characters in Verilog name. The
escaped name includes all the characters following the backslash until
the first white space character.

1.1 Integer Literals

Integer literals can have underscores embedded in them for improved

readability. For example,

1.2 Data Types

The values z and Z stand for high impedance, and x and X stand for

uninitialized variables or nets with conflicting drivers. String symbols

are enclosed within double quotes (“string ”).and cannot span multi-

ple lines. Real number literals can be either in fixed notation or in sci-

entific notation.
Real and Integer Variables example

Binary literal 2’b1Z

Octal literal 2’O17

Decimal literal 9 or ’d9

Hexadecimal literal3’h189

Decimal literal 24_000

real a, b, c ; // a,b,c to be real

integer j, k ; // integer variable
integer i[1:32] ; // array of integer variables

Quick Reference for Verilog HDL

2

Time, registers and variable usage

2.0 Registers and Nets
A register stores its value from one assignment to the next and is used
to model data storage elements.

Nets correspond to physical wires that connect instances. The default

range of awire or reg is one bit. Nets do not store values and have to

be continuously driven. If a net has multiple drivers (for example two

gate outputs are tied together), then the net value is resolved according

to its type.
Net types

For awire , if all the drivers have the same value then thewire

resolves to this value. If all the drivers except one have a value ofz

then thewire resolves to the nonz value. If two or more nonz drivers
have different drive strength, then thewire resolves to the stronger
driver. If two drivers of equal strength have different values, then the

time newtime ;
/* time and integer are similar in functionality,
time is an unsigned 64-bit used for time variables
*/

reg [8*14:1] string ;
/* This defines a vector with range

[msb_expr: lsb_expr] */

initial begin
 a = 0.5 ; // same as 5.0e-1. real variable
 b = 1.2E12 ;
 c = 26.19_60_e-11 ; // _’s are

// used for readability
 string = “ string example ” ;
 newtime =$time;
end

reg [5:0] din ;
/* a 6-bit vector register: individual bits
din[5],.... din[0] */

wire tri
wand triand
wor trior
tri0 tri1
supply0 supply1
trireg

Quick Reference for Verilog HDL

3

wire resolves tox . A trireg net behaves like awire except that
when all the drivers of the net are in high impedance (z) state, then the
net retains its last driven value. trireg ’s are used to model capaci-
tive networks.

A wand net ortriand net operates as a wiredand(wand) , and awor

net ortrior net operates as a wiredor (wor) , tri0 andtri1 nets
model nets with resistivepulldown orpullup devices on them. When
a tri0 net is not driven, then its value is 0. When atri1 net is not
driven, then its value is 1.supply0 andsupply1 model nets that are
connected to the ground or power supply.

Memories are declared using register statements with the address range
specified as in the following example,

The keywordscalared allows access to bits and parts of a bus and
vectored allows the vector to be modified only collectively.

3.0 Compiler Directives
Verilog has compiler directives which affect the processing of the input

wire net1 ;
/* wire and tri have same functionality. tri is
used for multiple drive internal wire */

trireg (medium) capacitor ;
/* small, medium, weak are used for charge
strength modeling */

wand net2 ; // wired-and
wor net3 ; // wired-or
triand [4:0] net4 ; // multiple drive wand
trior net5 ; // multiple drive wor
tri0 net6 ;
tri1 net7 ;
supply0 gnd ; // logic 0 supply wire
supply1 vcc ; // logic 1 supply wire

reg [15:0] mem16X512 [0:511];
// 16-bit by 512 word memory
// mem16X512[4] addresses word 4
// the order lsb:msb or msb:lsb is not important

wire vectored [5:0] neta;
/* a 6-bit vectored net */
tri1 vectored [5:0] netb;
/* a 6-bit vectored tri1 */

Quick Reference for Verilog HDL

4

files. The directives start with a grave accent(‘) followed by some
keyword. A directive takes effect from the point that it appears in the
file until either the end of all the files, or until another directive that
cancels the effect of the first one is encountered. For example,

This defines a macro namedOPCODEADD. When the text‘OPCODEADD

appears in the text, then it is replaced by00010 . Verilog macros are
simple text substitutions and do not permit arguments.

If ‘‘ SYNTH’’ is a defined macro, then the Verilog code until ‘endif is
inserted for the next processing phase. If ‘‘SYNTH’’ is not defined macro
then the code is discarded.

The code in<Verilog file> is inserted for the next processing
phase. Other standard compiler directives are listed below:

4.0 System Tasks and Functions
System taska are tool specific tasks and functions..

‘define OPCODEADD 00010

`ifdef SYNTH <Verilog code> ‘endif

`include <Verilog file>

‘resetall - resets all compiler directives to default values
‘define - text-macro substitution
‘timescale 1ns / 10ps - specifies time unit/precision
‘ifdef, ‘else, ‘endif - conditional compilation
‘include - file inclusion
‘signed, ‘unsigned - operator selection (OVI 2.0 only)
‘celldefine, ‘endcelldefine - library modules
‘default_nettype wire - default net types
‘unconnected_drive pull0|pull1,
‘nounconnected_drive - pullup or down unconnected ports
‘protect and ‘endprotect - encryption capability
‘protected and ‘endprotected - encryption capability
‘expand_vectornets, ‘noexpand_vectornets,
‘autoexpand_vectornets - vector expansion options
‘remove_gatename, ‘noremove_gatenames

- remove gate names for more than one instance
‘remove_netname, ‘noremove_netnames

- remove net names for more than one instance

$display(“Example of using function”);
/* display to screen */

$monitor($time, “a=%b, clk = %b,
add=%h”,a,clk,add); // monitor signals

$setuphold(posedge clk, datain, setup, hold);
// setup and hold checks

Quick Reference for Verilog HDL

5

A list of standard system tasks and functions are listed below:

5.0 Reserved Keywords
The following lists the reserved words of Verilog hardware description
language, as of OVI LRM 2.0.

$display, $write - utility to display information
$fdisplay, $fwrite - write to file
$strobe, $fstrobe - display/write simulation data
$monitor, $fmonitor - m onitor, display/write information to file
$time, $realtime - current simulation time
$finish - exit the simulator
$stop - stop the simulator
$setup - setup timing check
$hold, $width- hold/width timing check
$setuphold - combines hold and setup
$readmemb/$readmemh - read stimulus patterns into memory
$sreadmemb/$sreadmemh - load data into memory
$getpattern - fast processing of stimulus patterns
$history - print command history
$save, $restart, $incsave

- saving, restarting, incremental saving
$scale - scaling timeunits from another module
$scope - descend to a particular hierarchy level
$showscopes - complete list of named blocks, tasks, modules...
$showvars - show variables at scope

and always assign attribute
begin buf bufif0 bufif1
case cmos deassign default
defparam disable else endattribute
end endcase endfunction endprimitive
endmodule endtable endtask event
for force forever fork
function highz0 highz1 if
initial inout input integer
join large medium module
nand negedge nor not
notif0 notif1 nmos or
output parameter pmos posedge
primitive pulldown pullup pull0
pull1 rcmos reg release
repeat rnmos rpmos rtran
rtranif0 rtranif1 scalared small
specify specparam strong0 strong1
supply0 supply1 table task
tran tranif0 tranif1 time
tri triand trior trireg
tri0 tri1 vectored wait
wand weak0 weak1 while
wire wor

Quick Reference for Verilog HDL

6

6.0 Structures and Hierarchy
Hierarchical HDL structures are achieved by defining modules and
instantiating modules. Nested module definitions (i.e. one module defi-
nition within another) are not permitted.

6.1 Module Declarations
The module name must be unique and no other module or primitive can
have the same name. The port list is optional. A module without a port
list or with an empty port list is typically a top level module. A macro-
module is a module with a flattened hierarchy and is used by some sim-
ulators for efficiency.

module definition example

module dff (q,qb,clk,d,rst);
input clk,d,rst ; // input signals
output q,qb ; // output definition

//inout for bidirectionals

// Net type declarations
wire dl,dbl ;

// parameter value assignment
paramter delay1 = 3,

delay2 = delay1 + 1; // delay2
// shows parameter dependance

/* Hierarchy primitive instantiation, port
connection in this section is by
ordered list */

nand #delay1 n1(cf,dl,cbf),
n2(cbf,clk,cf,rst);

nand #delay2 n3(dl,d,dbl,rst),
n4(dbl,dl,clk,cbf),
n5(q,cbf,qb),
n6(qb,dbl,q,rst);

/***** for debuging model initial begin
#500 force dff _lab.rst = 1 ;
#550 release dff_lab.rst;
// upward path referencing
end ********/

endmodule

Quick Reference for Verilog HDL

7

Overriding parameters example

Stimulus and Hierarchy example

6.2 User Defined Primitive (UDP) Declarations
The UDP’s are used to augment the gate primitives and are defined by
truth tables. Instances of UDP’s can be used in the same way as gate
primitives. There are 2 types of primitives:

1. Sequential UDP’s permit initialization ofoutput

terminals, which are declared to be ofreg type and they store values.
Level-sensitive entries take precedence over edge-sensitive
declarations. An input logic stateZ is interpreted as anX. Similarly, only
0, 1, X or - (unchanged) logic values are permitted on the output.

2. Combinational UDP’s do not store values and cannot be
initialized.

The following additional abbreviations are permitted in UDP declara-
tions.

module dff_lab;
reg data,rst;
// Connecting ports by name.(map)
dff d1 (.qb(outb), .q(out),

.clk(clk),.d(data),.rst(rst));
// overriding module parameters
defparam

dff_lab.dff.n1.delay1 = 5 ,
dff_lab.dff.n2.delay2 = 6 ;

// full-path referencing is used
// over-riding by using #(8,9) delay1=8..

dff d2 #(8,9) (outc, outd, clk, outb, rst);
// clock generator
always clk = #10 ~clk ;
// stimulus ... contd

initial begin: stimuli // named block stimulus
clk = 1; data = 1; rst = 0;
#20 rst = 1;
#20 data = 0;
#600 $finish;

end

initial // hierarchy: downward path referencing
begin

#100 force dff.n2.rst = 0 ;
#200 release dff.n2.rst;

end
endmodule

Quick Reference for Verilog HDL

8

Combinational UDP’s example

Logic/state Representation/transition Abbrevation

don’t care (0, 1 or X) ?

Transitions from logic x to logic y (xy).
(01), (10), (0x), (1x), (x1), (x0)

(?1) ..

(xy)

Transition from (01) R or r

Transition from (10) F or f

(01), (0X), (X1): positive transition P or p

(10), (1x), (x0): negative transition N or n

Any transition * or (??)

binary don’t care (0, 1) B or b

// 3 to 1 mulitplexor with 2 select

primitive mux32 (Y, in1, in2, in3, s1, s2);
 input in1, in2, in3, s1, s2;
 output Y;

 table

//in1 in2 in3 s1 s2 Y
0 ? ? 0 0 : 0 ;
1 ? ? 0 0 : 1 ;
? 0 ? 1 0 : 0 ;
? 1 ? 1 0 : 1 ;
? ? 0 ? 1 : 0 ;
? ? 1 ? 1 : 1 ;
0 0 ? ? 0 : 0 ;
1 1 ? ? 0 : 1 ;
0 ? 0 0 ? : 0 ;
1 ? 1 0 ? : 1 ;
? 0 0 1 ? : 0 ;
? 1 1 1 ? : 1 ;

endtable

endprimitive

Quick Reference for Verilog HDL

9

Sequential Level Sensitive UDP’s example

Sequential Edge Sensitive UDP’s example

// latch with async reset
primitive latch (q, clock, reset, data);
 input clock, reset, data ;
 output q;

reg q;

initial q = 1’b1; // initialization

 table

// clock reset data q, q+
? 1 ? : ? : 1 ;
0 0 0 : ? : 0 ;
1 0 ? : ? : - ;
0 0 1 : ? : 1 ;

endtable
endprimitive

// edge triggered D Flip Flop with active high,
// async set and reset
primitive dff (QN, D, CP, R, S);
 output QN;
 input D, CP, R, S;
 reg QN;
table
 // D CP R S : Qtn : Qtn+1

1 (01) 0 0 : ? : 0;
1 (01) 0 x : ? : 0;
? ? 0 x : 0 : 0;
0 (01) 0 0 : ? : 1; // clocked data
0 (01) x 0 : ? : 1; // pessimism
? ? x 0 : 1 : 1; // pessimism
1 (x1) 0 0 : 0 : 0;
0 (x1) 0 0 : 1 : 1;
1 (0x) 0 0 : 0 : 0;
0 (0x) 0 0 : 1 : 1;
? ? 1 ? : ? : 1; // asynch clear
? ? 0 1 : ? : 0; // asynchronous set
? n 0 0 : ? : -;
* ? ? ? : ? : -;
? ? (?0) ? : ? : -;
? ? ? (?0): ? : -;
? ? ? ? : ? : x;

endtable
endprimitive

Quick Reference for Verilog HDL

10

7.0 Expressions and Operators
Arithmetic and logical operators are used to build expressions. Expres-
sions perform operation on one or more operands, the operands being
vectored or scalared nets, registers, bit-selects, part selects, function
calls or concatenations thereof.

• Unary Expression
<operator> <operand>

• Binary and Other Expressions
<operand> <operator> <operand>

• Parentheses can be used to change the precedence of
operators. For example,((a+b) * c)

Operator precedence

a = !b;

if (a < b) // if (<expression>)
{c,d} = a + b ;
// concatenate and add operator

Operator Precedence

+,-,!,~ (unary) Highest

*, / %

+, - (binary)

<<. >>

<, < =, >, >=

=, ==. !=

===, !==

&, ~&

^, ^~

|, ~|

&&

||

?: Lowest

Quick Reference for Verilog HDL

11

• All operators associate left to right, except for the
ternary operator “?:” which associates from right to
left.

Relational Operators

Arithmetic Operators

Logical Operators

Operator Application

&& a && b ; // is a and b true?
// returns 1-bit true/false

|| a || b ; // is a or b true?
// returns 1-bit true/false

! if (!a) ; // if a is not true
 c = b ; // assign b to c

Operator Application

< a < b // is a less than b?
 // return 1-bit true/false

> a > b // is a greater than b?

>= a >= b // is a greater than or
// equal to b

<= a <= b // is a less than or
 // equal to b

Operator Application

* c = a * b ; // multiply a with b

/ c = a / b ; // int divide a by b

+ sum = a + b ; // add a and b

- diff = a - b ; // subtract b
// from a

% amodb = a % b ; // a mod(b)

Quick Reference for Verilog HDL

12

Equality and Identity Operators

Unary, Bitwise and Reduction Operators

Operator Application

= c = a ; // assign a to c

== c == a ; /* is c equal to a
returns 1-bit true/false
applies for 1 or 0, logic
equality, using X or Z oper-
ands returns always false
‘hx == ‘h5 returns 0 */

!= c != a ; // is c not equal to
// a, retruns 1-bit true/

// false logic equality

=== a === b ; // is a identical to
// b (includes 0, 1, x, z) /
// ‘hx === ‘h5 returns 0

!== a !== b ; // is a not
// identical to b returns 1-
// bit true/false

Operator Application

+ Unary plus & arithmetic(binary) addition

- Unary negation & arithmetic (binary) sub-
traction

& b = &a ; // AND all bits of a

| b = |a ; // OR all bits

^ b = ^a ; // Exclusive or all bits of a

~&, ~|,
~^

NAND, NOR, EX-NOR all bits to-gether
c = ~& b ; d = ~| a; e = ̂ c ;

~,&, |, ^ bit-wise NOT, AND, OR, EX-OR
b = ~a ; // invert a
c = b & a ; // bitwise AND a,b
e = b | a ; // bitwise OR
f = b ^ a ; // bitwise EX-OR

~&, ~|,
~^

bit-wise NAND, NOR, EX-NOR
c = a ~& b ; d = a ~| b ;
e = a ~^ b ;

Quick Reference for Verilog HDL

13

Shift Operators and other Operators

7.1 Parallel Expressions
fork ... join are used for concurrent expression assignments.

fork ... join example

7.2 Conditional Statements
The most commonly used conditional statement is the if, if ... else ...
conditions. The statement occurs if the expressions controlling the if
statement evaluates to true.

Operator Application

<< a << 1 ; // shift left a by
// 1-bit

>> a >> 1 ; // shift right a by 1

?: c = sel ? a : b ; /* if sel
is true c = a, else c = b ,
?: ternary operator */

{} {co, sum } = a + b + ci ;
/* add a, b, ci assign the
overflow to co and the re-
sult to sum: operator is
called concatenation */

{{}} b = {3{a}} /* replicate a 3
times, equivalent to {a, a,
a} */

initial
begin: block
 fork

// This waits for the first event a
// or b to occur
@a disable block ;
@b disable block ;

// reset at absolute time 20
#20 reset = 1 ;
// data at absolute time 100
#100 data = 0 ;
// data at absolute time 120
#120 data = 1 ;

 join

end

Quick Reference for Verilog HDL

14

if .. else . ..conditions example

case, casex, casez : case statements are used for switching
between multiple selections(if (case1) ... else if (case2)

... else ...). If there are multiple matches only the first is evalu-
ated. casez treats high impedance values as don’t care’s andcasex

treats both unknown and high-impedance as don’t care’s.

case statement example

always @(rst)// simple if -else
if (rst)

// procedural assignment
q = 0;

else // remove the above continous assign
deassign q;

always @(WRITE or READ or STATUS)
begin
// if - else - if

if (!WRITE) begin
out = oldvalue ;

 end
else if (!STATUS) begin

q = newstatus ;
STATUS = hold ;

 end
else if (!READ) begin

out = newvalue ;
 end

end

 module d2X8 (select, out); // priority encode
input [0:2] select;

output [0:7] out;
reg [0:7] out;
always @(select) begin

out = 0;
case (select)

0: out[0] = 1;
1: out[1] = 1;
2: out[2] = 1;
3: out[3] = 1;
4: out[4] = 1;
5: out[5] = 1;
6: out[6] = 1;
7: out[7] = 1;

endcase
end

endmodule

Quick Reference for Verilog HDL

15

casex statement example

casez statement example

7.3 Looping Statements
forever, for, while and repeat loops example

casex (state)
// treats both x and z as don’t care
// during comparison : 3’b01z, 3’b01x, 3b’011
// ... match case 3’b01x
3’b01x: fsm = 0 ;
3’b0xx: fsm = 1 ;
default: begin
// default matches all other occurances

fsm = 1 ;
next_state = 3’b011 ;

 end
endcase

casez (state)
// treats z as don’t care during comparison :
// 3’b11z, 3’b1zz, ... match 3’b1??: fsm = 0 ;
3’b1??: fsm = 0 ; // if MSB is 1, matches 3?b1??
3’b01?: fsm = 1 ;
default: $display(“wrong state”) ;

endcase

forever
// should be used with disable or timing control

@(posedge clock) {co, sum} = a + b + ci ;

for (i = 0 ; i < 7 ; i=i+1)
memory[i] = 0 ; // initialize to 0

for (i = 0 ; i <= bit-width ; i=i+1)
// multiplier using shift left and add

if (a[i]) out = out + (b << (i-1)) ;

repeat(bit-width) begin
if (a[0]) out = b + out ;
b = b << 1 ; // muliplier using
a = a << 1 ; // shift left and add

end

while(delay) begin @(posedge clk) ;
ldlang = oldldlang ;
delay = delay - 1 ;

end

Quick Reference for Verilog HDL

16

8.0 Named Blocks, Disabling Blocks
Named blocks are used to create hierarchy within modules and can be
used to group a collection of assignments or expressions.disable

statement is used to disable or de-activate any named block, tasks or
modules. Named blocks, tasks can be accessed by full or reference
hierarchy paths (example dff_lab.stimuli). Named blocks can
have local variables.

Named blocks anddisable statement example

9.0 Tasks and Functions
Tasks and functions permit the grouping of common procedures and
then executing these procedures from different places. Arguments are
passed in the form of input/inout values and all calls to functions and
tasks share variables. The differences between tasks and functions are

initial forever @(posedge reset)
disable MAIN ; // disable named block

// tasks, modules can also be disabled

always begin: MAIN // defining named blocks
if (!qfull) begin

#30 recv(new, newdata) ; // call task
if (new) begin

q[head] = newdata ;
head = head + 1 ; // queue

end
end
else

disable recv ;
end // MAIN

Tasks Functions

Permits time control Executes in one simulation
time

Can have zero or more argu-
ments

Require at least one input

Does not return value,
assigns value to outputs

Returns a single value, no
special output declarations
required

Can have output arguments,
permits#, @, ->,

wait, task calls.

Does not permitoutputs,

#, @, ->, wait, task

calls

Quick Reference for Verilog HDL

17

task Example

function Example

// task are declared within modules
task recv ;

output valid ;
output [9:0] data ;
begin

valid = inreg ;
if (valid) begin

ackin = 1 ;
data = qin ;
wait(inreg) ;
ackin = 0 ;

end
end

// task instantiation
always begin: MAIN //named definition

if (!qfull) begin
recv(new, newdata) ; // call task
if (new) begin

q[head] = newdata ;
head = head + 1 ;

end
 end else

disable recv ;
end // MAIN

 module foo2 (cs, in1, in2, ns);
input [1:0] cs;
input in1, in2;
output [1:0] ns;
function [1:0] generate_next_state;
input[1:0] current_state ;
input input1, input2 ;
reg [1:0] next_state ;
// input1 causes 0->1 transition
// input2 causes 1->2 transition
// 2->0 illegal and unknown states go to 0
begin
 case (current_state)

 2’h0 : next_state = input1 ? 2’h1 : 2’h0 ;
 2’h1 : next_state = input2 ? 2’h2 : 2’h1 ;
 2’h2 : next_state = 2’h0 ;
 default: next_state = 2’h0 ;

endcase
generate_next_state = next_state;
end
endfunction // generate_next_state

assign ns = generate_next_state(cs, in1,in2) ;
endmodule

Quick Reference for Verilog HDL

18

10.0 Continous Assignments
Continous assignments imply that whenever any change on the RHS of
the assignment occurs, it is evaluated and assigned to the LHS. These
assignments thus drive both vector and scalar values onto nets. Conti-
nous assignments always implement combinational logic (possibly
with delays). The driving strengths of a continous assignment can be
specified by the user on the net types.

• Continous assignment on declaration

• Continous assignment on already declared nets

11.0 Procedural Assignments
Assignments to register data types may occur withinalways, ini-

tial, task and functions . These expressions are controlled by
triggers which cause the assignments to evaluate. The variables to
which the expressions are assigned must be made of bit-select or part-
select or whole element of areg , integer , real or time . These trig-
gers can be controlled by loops,if, else ... constructs.assign and
deassign are used for procedural assignments and to remove the con-
tinous assignments.

/* since only one net15 declaration exists in a
given module only one such declarative continous

assignment per signal is allowed */

wire #10 (atrong1, pull0) net15 = enable ;
/* delay of 10 for continous assignment with
strengths of logic 1 as strong1 and logic 0 as
pull0 */

assign #10 net15 = enable ;
assign (weak1, strong0) {s,c} = a + b ;

module dff (q,qb,clk,d,rst);
output q, qb;
input d, rst, clk;
reg q, qb, temp;
always

#1 qb = ~q ; // procedural assignment

always @(rst)
// procedural assignment with triggers
if (rst) assign q = temp;
else deassign q;

always @(posedge clk)
temp = d;

endmodule

Quick Reference for Verilog HDL

19

force and release are also procedural assignments. However, they
canforce or release values on net data types and registers.

11.1 Blocking Assignment

11.2 Non-Blocking Assignment
Allows scheduling of assignments without blocking the procedural
flow. Blocking assignments allow timing control which are delays,
whereas, non-blocking assignments permit timing control which can be
delays or event control. The non-blocking assignment is used to avoid
race conditions and can model RTL assignments.

12.0 Gate Types, MOS and Bidirectional
Switches
Gate declarations permit the user to instantiate different gate-types and
assign drive-strengths to the logic values and also any delays

module adder (a, b, ci, co, sum,clk) ;
input a, b, ci, clk ;
output co, sum ;
reg co, sum;
always @(posedge clk) // edge control
// assign co, sum with previous value of a,b,ci

{co,sum} = #10 a + b + ci ;
endmodule

/* assume a = 10, b= 20 c = 30 d = 40 at start of
block */

always @(posedge clk)
begin:block

a <= #10 b ;
b <= #10 c ;
c <= #10 d ;

end

/* at end of block + 10 time units, a = 20, b = 30,
c = 40 */

<gate-declaration> ::= <component>
<drive_strength>? <delay>? <gate_instance>

 <,?<gate_instance..>> ;

Quick Reference for Verilog HDL

20

Gates, switch types, and their instantiations

Gate level instantiation example

Gate Types Component

Gates Allows
strengths

and, nand, or,
nor,xor, xnor
buf, not

Three State
Drivers

Allows
strengths

buif0,bufif1
notif0,notif1

MOS
Switches

No strengths nmos,pmos,cmos,
rnmos,rpmos,rcmos

Bi-directional
switches

No strengths,
non resistive

tran, tranif0,
tranif1

No strengths,
resistive

rtran,rtranif0,
rtranif1

Allows
strengths

pullup
pulldown

cmos i1 (out, datain, ncontrol, pcontrol);
nmos i2 (out, datain, ncontrol);
pmos i3 (out, datain, pcontrol);
pullup (neta) (netb);
pulldown (netc);
nor i4 (out, in1, in2, ...);
and i5 (out, in1, in2, ...);
nand i6 (out, in1, in2, ...);
buf i7 (out1, out2, in);
bufif1 i8 (out, in, control);
tranif1 i9 (inout1, inout2, control);

// Gate level instantiations
nor (highz1, strong0) #(2:3:5) (out, in1,

in2);
// instantiates a nor gate with out
// strength of highz1 (for 1) and
// strong0 for 0 #(2:3:5) is the
// min:typ:max delay

pullup1 (strong1) net1;
// instantiates a logic high pullup
cmos (out, data, ncontrol, pcontrol);
// MOS devices

Quick Reference for Verilog HDL

21

The following strength definitions exists

• 4 drive strengths (supply, strong, pull,

weak)

• 3 capacitor strengths (large, medium, small)

• 1 high impedance statehighz

The drive strengths for each of the output signals are

• Strength of an output signal with logic value 1
supply1, strong1, pull1, large1, weak1,
highz1

• Strength of an output signal with logic value 0
supply0, strong0, pull0, large0, weak0,
highz0

12.1 Gate Delays
The delays allow the modeling of rise time, fall time and turn-off
delays for the gates. Each of these delay types may be in the min:typ:-
max format. The order of the delays are #(trise, tfall, tturn-

off) . Forexample,

Logic 0 Logic 1 Strength

supply0 Su0 supply1 Su1 7

strong0 St0 strong1 St1 6

pull0 Pu0 pull1 Pu1 5

large La0 large La1 4

weak0 We0 weak1 We1 3

medium Me0 medium Me1 2

small Sm0 small Sm1 1

highz0 HiZ0 highz1 HiZ0 0

nand #(6:7:8, 5:6:7, 122:16:19)
(out, a, b);

Quick Reference for Verilog HDL

22

For trireg , the decay of the capacitive network is modeled using the
rise-time delay, fall-time delay and charge-decay. For example,

13.0 Specify Blocks
A specify block is used to specify timing information for the module in
which the specify block is used. Specparams are used to declare delay
constants, much like regular parameters inside a module, but unlike
module parameters they cannot be overridden. Paths are used to declare
time delays between inputs and outputs.

Timing Information using specify blocks

Delay Model

#(delay) min:typ:max delay

#(delay, delay) rise-time delay, fall-time delay,
each delay can be with
min:typ:max

#(delay, delay, delay) rise-time delay, fall-time delay
and turn-off delay, each min:t-
yp:max

trireg (large) #(0,1,9) capacitor
// charge strength is large
// decay with tr=0, tf=1, tdecay=9

specify // similar to defparam, used for timing
specparam delay1 = 25.0, delay2 = 24.0;

// edge sensitive delays -- some simulators
// do not support this

(posedge clock) => (out1 +: in1) =
(delay1, delay2) ;

// conditional delays
if (OPCODE == 3’h4) (in1, in2 *> out1)

= (delay1, delay2) ;
// +: implies edge-sensitive +ve polarity
// -: implies edge sensitive -ve polarity
// *> implies multiple paths

// level sensitive delays
if (clock) (in1, in2 *> out1, out2) = 30 ;

// setuphold
$setuphold(posedge clock &&& reset,

in1 &&& reset, 3:5:6, 2:3:6);
(reset *> out1, out2) = (2:3:5,3:4:5);

endspecify

Quick Reference for Verilog HDL

23

Verilog

Synthesis Constructs

The following is a set of Verilog constructs that are supported by most
synthesis tools at the time of this writing. To prevent variations in sup-
ported synthesis constructs from tool to tool, this is the least common
denominator of supported constructs. Tool reference guides cover spe-
cific constructs.

14.0 Verilog Synthesis Constructs
Since it is very difficult for the synthesis tool to find hardware with
exact delays, all absolute and relative time declarations are ignored by
the tools. Also, all signals are assumed to be of maximum strength
(strength 7). Boolean operations onX and Z are not permitted. The
constructs are classified as

• Fully supported constructs — Constructs that are
supported as defined in the Verilog Language Reference
Manual

• Partially supported — Constructs supported with
restrictions on them

• Ignored constructs — Constructs that are ignored by the
synthesis tool

• Unsupported constructs — Constructs which if used,
may cause the synthesis tool to not accept the Verilog
input or may cause different results between synthesis
and simulation.

14.1 Fully Supported Constructs

<module instantiation,

with named and positional notations>

<integer data types, with all bases>

<identifiers>

<subranges and slices on right-hand

side of assignment>

<continuous assignments>

>>, << , ? : {}

assign (procedural and declarative), begin, end

case, casex, casez, endcase

default

Quick Reference for Verilog HDL

24

14.2 Partially Supported Constructs

disable

function, endfunction

if, else, else if

input, output, inout

wire, wand, wor, tri

integer, reg

macromodule, module

parameter

supply0, supply1

task, endtask

Construct Constraints

*, /, % when both operands constants,
or 2nd operand power of 2.

always only edge-triggered events.

for bounded by static variables:
only use “+” or “-” to index.

posedge, negedge only with always @ .

primitive,
endprimitive
table,endtable

Combinational and edge-sen-
sitive user defined primitives
are often supported.

<= limitations on usage with
blocking assignment.

and, nand, or,
nor, xor, xnor,
buf, not, buif0,
bufif1,notif0,
notif1

gate types supported
without X or Z constructs

!, &&, ||, ~, &,
|, ^, ^~, ~^, ~&,
~|, +, - , <, >,
<=, >=, ==, !=

operators supported without X
or Z constructs

Quick Reference for Verilog HDL

25

14.3 Ignored Constructs

14.4 Unsupported Constructs

All rights reserved. Please send any feedback to the author.
Verilog is a registered trademark of Cadence Design Sys-
tems, Inc.

<intra-assignment timing controls>

<delay specifications>

scalared, vectored

small, large, medium

specify

time (some tools treat these as integers)

weak1, weak0, highz0, highz1, pull0, pull1

$keyword (some tools use these to set

synthesis constraints)

wait (some tools support wait with a

bounded condition)

<assignment with variable used as bit select

on LHS of assignment>

<global variables>

===, !==

cmos, nmos, rcmos, rnmos, pmos, rpmos

deassign

defparam

event

force

fork, join

forever, while

initial

pullup, pulldown

release

repeat

rtran, tran, tranif0, tranif1, rtranif0,

rtranif1

table, endtable, primitive, endprimitive

R

Quick Reference for Verilog HDL

26

- NOTES -

Quick Reference for Verilog HDL

27

Symbols

$display, $write 5
$fdisplay, $fwrite 5
$finish 5
$getpattern 5
$history 5
$hold, $width 5
$monitor, $fmonitor 5
$readmemb, $readmemh 5
$save, $restart, $incsave 5
$scale 5
$scope, $showscopes 5
$setup, $setuphold 5
$showvars 5
$sreadmemb/$sreadmemh 5
$stop 5
$strobe, $fstrobe 5
$time, $realtime 5
/* */ 1
// 1
‘autoexpand_vectornets 4
‘celldefine, ‘endcelldefine 4
‘default_nettype 4
‘define 4
‘expand_vectornets 4
‘noexpand_vectornets 4
‘ifdef, ‘else, ‘endif 4
‘include 4
‘nounconnected_drive 4
‘protect, ‘endprotect 4
‘protected, ‘endprotected 4
‘remove_gatename 4
‘noremove_gatenames 4
‘remove_netname 4
‘noremove_netnames 4
‘resetall 4
‘signed, ‘unsigned 4
‘timescale 4
‘unconnected_drive 4

A

Arithmetic Operators 11

B

Binary Expressions 10
blocking assignment 19

C

case 14
casex 14
casez 14
compiler directives 3
continous assignments 18

D

delays 21
disable 16

E

Equality Operators 12
Escaped identifiers 1
Expressions 10

F

for 15
forever 15
fork ... join 13
Fully Supported Synthesis Con-

structs 23
function 16

G

Gate declaration 19
gate-types 19

I

if, if ... else 13
Integer literals 1
Identity Operators 12

L

Logical Operators 11

M

Memories 3
module 6

N

Named blocks 16
Nets 2
non-blocking assignments 19

Quick Reference for Verilog HDL

28

O

Operator precedence 10

P

Partially Supported Synthesis
Constructs 24

procedural assignments 18
pulldown 3
pullup 3

R

reg, register 2
Relational Operators 11
repeat 15
reserved words 5

S

scalared 3
Sequential edge sensitive UDP 9
Sequential level sensitive UDP 9
Shift, other Operators 13
specify block 22
specparam 22
String symbols 1
supply0 3
supply1 3
switch types 20
Synthesis Constructs 23
Synthesis Ignored Constructs 25
Synthesis Unsupported Con-

structs 25

T

task 16
tri0 3
tri1 3
triand 3
trior 3
trireg 3

U

UDP 7
Unary Expression 10
Unary, Bitwise and Reduction

Operators 12

V

vectored 3

W

wait 16
wand 3
while 15
wire 2
wor 3

X

x, X 1

Z

z, Z 1

Verilog HDL Publications Order Form
Automata Publishing Company

1072 S. Saratoga Sunnyvale Rd., Bldg. A107, Ste 325,
San Jose CA-95129. U.S.A

Phone: 408-255-0705 Fax: 408-253-7916

Verilog Publications:
Publication 1.Digital Design and Synthesis with Verilog HDL
Publication 2.Digital Design and Synthesis with Verilog HDL+

Source diskette + Quick Reference for Verilog HDL

P.O Number if any:_____________________________________
Charge my Visa/MC/AmExp. #___________________________
Expires on:_____________________________________

For large volume discounts contact Automata Publishing Company

Name:________________________ Title:_______________
Company:___
Address:__
__
City: ___
State:_______________________ Zip:________________
Ph:__________________________ Fax:________________

Publication 1 2

Quantity

Price per book (see below)

Shipping (see below)

Salex Tax (CA residents only,
@current rate)

Total amount due

Publication
Qty-Price/copy

1
(US$)

2
(US$)

1-4 59.95 65.95

5-9 54.95 60.95

10-19 49.95 54.95

20- 44 44.95 49.95

45 - 99 39.95 44.45

100 - 500 34.95 39.00

Shipping/copy 3.00 3.00

Quick Reference

for

Verilog® HDL

Rajeev Madhavan

This is a brief summary of the syntax and semantics of
the Verilog Hardware Description Language. The
reference guide describes all the Verilog HDL constructs
and also lists the Register-Transfer Level subset of the
Verilog HDL which is used by the existing synthesis
tools. Examples are used to illustrate constructs in the
Verilog HDL.

Automata Publishing Company, San Jose, CA 95129

ISBN 0-9627488-4-6

