The Semantic Challenge of Verilog HDL

The Semantic Challenge

of
Verilog HDL

HDL = Hardware Description Language

Overview of talk:

e HDL-based design
e Verilog and VHDL
e Tutorial introduction to Verilog

e Semantic challenges

Mike Gordon \ .
http://www.cl.cam.ac.uk/users/mjcg/ LICS'95, San Diego

The Semantic Challenge of Verilog HDL

Modern HDVLs

e Wide spectrum

— behaviour
— structure

— test harnesses
e Event simulation semantics
— changes propagated via event scheduling

e Language wars

— VHDL (based on Ada) versus
— Verilog (based on C)

“VHDL 1s one of the biggest mistakes
the Electronics Design Automation

industry has ever made”

[Attributed to Joe Costello (CEO of Cadence) in
John Cooley’s conference report on IVC ’95]

Mike Gordon 3 .
http://www.cl.cam.ac.uk/users/mjcg/ LICS'95, San Diego

The Semantic Challenge of Verilog HDL

Uses of HDLs

e Behavioural prototyping

— initial proof of concept

— behavioural models later refined

e Specification checking

— double entry comparative simulation

— compare specification with implementation
e Verification (by simulation)

— apply test data

Mike Gordon \ .
http://www.cl.cam.ac.uk/users/mjcg/ LICS'95, San Diego

The Semantic Challenge of Verilog HDL

Verilog HDL

e Widely used

Sun, Apply, Hewlett-Packard . ..

25,000 Verilog designers today

5,000 new ones each year

twice market share of VHDL (93 estimate)

Taught to second year CS undergraduates at
Cambridge University

Designed by industry (Gateway/Cadence)

— VHDL designed by Government committee
Supported by fast simulators

— many component models available

Undergoing IEEE standardization

Mike Gordon : .
http://www.cl.cam.ac.uk/users/mjcg/ LICS95, San Diego

The Semantic Challenge of Verilog HDL

Overview of Verilog (1)

e Modules are main units of behaviour
e Module behaviour can be specified:
— behaviourally: o = —(il Ai2)

module NAND (i1,i2,0);
input il, iz,
output o;

continuous
assignment

D&o

assigno=~(11 & i2);
endmodule

module AND (i1,i2,0);
input il,i2;
output o;

ammmmm?®

NAND NAND1(i1,i2,w);

NAND NAND2(w,w,0); -~ module instances

endmodule

e UUENEEEEEESEEEEEEEEEEEEy

Cammmm

Mike Gordon 3 .
http://www.cl.cam.ac.uk/users/mjcg/ LICS'95, San Diego

The Semantic Challenge of Verilog HDL

Overview of Verilog (2)

e FEach module has:

name

port list

declarations

body

e The body consists of one or more items:

<module instance>
<continuous assignment>
initial <statement>

always <statement>

e FEach item generates a separate thread

Mike Gordon 3 .
http://www.cl.cam.ac.uk/users/mjcg/ LICS'95, San Diego

The Semantic Challenge of Verilog HDL

Events and Scheduling

e FEvents are changes to wires or registers

(also abstract named events — ignored here)
e Statements can schedule events to:

— occur at particular times

— be triggered by other events

* in the current time slot

x at a later simulation time
e Several execution threads may be active

— they are enabled , delayed or guarded

e Simulation time advances when all

enabled threads have run

Mike Gordon 3 .
http://www.cl.cam.ac.uk/users/mjcg/ LICS'95, San Diego

The Semantic Challenge of Verilog HDL

Zero-delay Assignments

e (Continuous assignments: assign w =

— whenever value of e changes

— value on wire w scheduled for updating;:

* with new value of e

x 1n the current time slot
e Procedural assignment: r = e

— when reached in sequence

— register r scheduled for updating

* with value of e

* as next event in current thread
e Non-blocking assignment: r <= e

— when reached in sequence

— register r scheduled for updating

+ with new value of e

x end of current slot as a separate thread

Mike Gordon 3 .
http://www.cl.cam.ac.uk/users/mjcg/ LICS'95, San Diego

The Semantic Challenge of Verilog HDL

e Continuous assignment:
assign z = x + y;

— whenever x + y changes

— z scheduled for updating
e Blocking procedural assignment
2, X =§y; y = X;
— result: x =2 andy = 2
e Non-blocking procedural assignment
1; vy = 2; x <=y; y <= x;

— result: x =2 andy =1

Mike Gordon 3 .
http://www.cl.cam.ac.uk/users/mjcg/ LICS'95, San Diego

The Semantic Challenge of Verilog HDL

Timing Control

Delay control

#50 <statement>
delays <statement> for
50 units of simulation time
Event control

Q(x or y) <statement>

delays <statement> until x or y changes

Edge-sensitive event control
@(posedge clk) <statement>

delays <statement> until clk changes to 1

Level-sensitive event control
wait(c) <statement>

delays <statement> until ¢ becomes true

Mike Gordon \ .
http://www.cl.cam.ac.uk/users/mjcg/ LICS'95, San Diego

The Semantic Challenge of Verilog HDL

Timing Controlled Assignments:
Continuous Assignments

assign #50 w = e
whenever value of e changes
value on wire w is scheduled for updating;:

— with new value of e

— after 50 units of simulation time
inertial delay

— changes persisting for < 50 are ignored

Mike Gordon \ .
http://www.cl.cam.ac.uk/users/mjcg/ LICS'95, San Diego

The Semantic Challenge of Verilog HDL

Timing Controlled Assignments:
Procedural Assignments

e Blocking assignment: r = #50 e

— when reached in sequence

— register r scheduled for updating with
current value of e after delay of 50

— Sequential thread delayed for 50
e Non-blocking assignment: r <= #50 e

— when reached in sequence

— separate thread created
*x update r with with current value of e

after delay of 50

— old thread not delayed
(sequential flow not blocked)

Mike Gordon 3 .
http://www.cl.cam.ac.uk/users/mjcg/ LICS'95, San Diego

The Semantic Challenge of Verilog HDL

Inertial versus Transport Delay

e Compare:

1. assign #50 z = x + y

2. always @(x or y) z <= #50 x + y

e Differences:

z must be a wire
specifies inertial delay
changes scheduled immediately

z must be a register
specifies transport delay
@ scheduled changes to end of slot

Mike Gordon 3 .
http://www.cl.cam.ac.uk/users/mjcg/ LICS'95, San Diego

The Semantic Challenge of Verilog HDL

Inertial Assignment
(in VHDL but not Verilog)

Inertial assignment: r <+ #50 e

— when reached in sequence

— separate thread created

x update r with with current value of e
— old thread not delayed

x 1.e. non-blocking

— thread killed if r changes within 50

x 1.e. 1nertial

Mike Gordon 3 .
http://www.cl.cam.ac.uk/users/mjcg/ LICS'95, San Diego

The Semantic Challenge of Verilog HDL

More on Event Control

Recall: @(x or y) <statement>
Delays <statement> until x or y changes

Actually delays until end of time slot in
which change occurs

New construct: A(x or y) <statement>

delays <statement> until x or y changes

— <statement> enabled
immediately x or y change

A not in Verilog

— added for semantics of continuous

assignment

@(x or y) = A(x or y) #0

Mike Gordon 3 .
http://www.cl.cam.ac.uk/users/mjcg/ LICS'95, San Diego

The Semantic Challenge of Verilog HDL

Semantics of
Continuous Assignment

e Associate register w with each wire w

e Suppose e contains variables x4, ..., x,

e Define

assign #fn w = e

to stand for

always A(x; or --- or x,) @ < #n e

Mike Gordon \ .
http://www.cl.cam.ac.uk/users/mjcg/ LICS'95, San Diego

The Semantic Challenge of Verilog HDL

e Four basic values:

logic zero , or false
logic one , or true

unknown logic value

high impedance state

vectors represent words and busses
regl3:0] v

— declares v to be a 4-bit register

— components are: v[3], v[2], v[1], v[0]
e Also:

— memories , integers, reals

— events

Mike Gordon 3 .
http://www.cl.cam.ac.uk/users/mjcg/ LICS'95, San Diego

The Semantic Challenge of Verilog HDL

Mike Gordon 3 .
http://www.cl.cam.ac.uk/users/mjcg/ LICS'95, San Diego

The Semantic Challenge of Verilog HDL

The Multiplier in Verilog

e Specification:
reg CARRY;

reg [(n-1):0] P, A, B; reg [(2*%n-1):0] PROD

PROD = #(2*n) A * B;

e Implementation

begin
P=0; A=X; B
repeat (n)

begin #1 {CARRY,P} = P + ({n{A[0]}} & B);

#1 {P,A} = {CARRY,P,A} >> 1;
end

PROD = {P,A};
end

Mike Gordon

http://www.cl.cam.ac.uk/users/mjcg/ LICS'95, San Diego

The Semantic Challenge of Verilog HDL

A Complete Module
é::l MULT I—» PROD

module MULT(X,Y,PROD);

parameter n =4,

input [n-1:0] X, Y; output [2*n-1:0] PROD
'reg CARRY;

reg [n-1:0] P, A, B; reg [2*n-1:0] PROD;

begin #1 {CARRY ,P} =P + ({n{A[Q]}} & B);
#1{P,A} = {CARRY PA} >> 1;
, end
EPROD—{PAy

endmodule

Mike Gordon 3 o
http://www.cl.cam.ac.uk/users/mjcg/ LICS'95, San Diego

The Semantic Challenge of Verilog HDL

Test Data

MULT TEST DATA

module MULT_TEST_DATA (Xx,y),
parameter n = 4;
output x,y; reg [n-1:0] x,y;

Initial
begin x = 0;
forever
begin
y=0;
while (y <=x) #10y =y + 1;
X=X+1,
end
end

endmodule

Mike Gordon

http://www.cl.cam.ac.uk/users/mjcg/

LICS’95, San Diego

The Semantic Challenge of Verilog HDL

MULT TEST DATA

module MULT_TEST ();
parameter n = 4;
wire[n-1:0] x,y;
wire[2*n-1:0] p;

MULT_TEST _DATA M1(x,y);

MULT M2(X,y,p);

initial #1675 $finish;
endmodule

Mike Gordon 3 .
http://www.cl.cam.ac.uk/users/mjcg/ LICS'95, San Diego

The Semantic Challenge of Verilog HDL

Output from Simulator

Start: Time= 0, A = 0 (0000), B = 0 (0000)
End: Time= 8, PROD = 0 (00000000)

Start: Time =10, A = 1 (0001), B = 0 (0000)
End: Time= 18, PROD = 0 (00000000)

Start: Time = 1660, A = 15 (1111), B = 14 (1110)
End: Time= 1668, PROD = 210 (11010010)

Start: Time= 1670, A = 15 (1111), B = 15 (1111)
End: Time= 1678, PROD = 225 (11100001)

Mike Gordon \ .
http://www.cl.cam.ac.uk/users/mjcg/ LICS'95, San Diego

The Semantic Challenge of Verilog HDL

Semantic Challenges

Formal semantics of Verilog
Validity of simplified semantics
A minimal simulation calculus
Equivalence between modules

Correctness of synthesisers

Mike Gordon 3 .
http://www.cl.cam.ac.uk/users/mjcg/ LICS95, San Diego

The Semantic Challenge of Verilog HDL

e Devise a formal semantics

— accurate to the spirit of the language

— c.f. IEEE Simulation Semantics

e Diverse approaches for VHDL:

stream processing (Fuchs & Mendler)

functional programming (Breuer et al)
labelled transition systems (Van Tassel)
evolving algebras (Borger et al.)

Petri nets (Olcoz)

automata (Dohmen & Herrmann)

flow graphs (Reetz & Kropf)
denotational semantics (Davis)

state-delta temporal logic (Filippenko)

Mike Gordon 3 .
http://www.cl.cam.ac.uk/users/mjcg/ LICS'95, San Diego

The Semantic Challenge of Verilog HDL

Simplified Semantics

e Simulation semantics:

— easy to formalise (maybe)

— hard to work with
e Need simpler semantics

— maybe just for ‘well-behaved’ subsets

— needs to be related to simulation semantics

e Tractable semantics are level oriented

— simulation semantics is edge-oriented

— how can these be related?

Mike Gordon 3 .
http://www.cl.cam.ac.uk/users/mjcg/ LICS'95, San Diego

The Semantic Challenge of Verilog HDL

A Minimal Simulation Calculus

e Verilog is large and complicated

e Need to distill essence into a simple setting
— nice to also handle VHDL cycle

Consider:
ML and Haskell | A-calculus
Occam CSP
Lotos CCS
VHDL, Verilog 77

Need theory of equivalence and refinement
Relation to existing:

— process calculi

— programming logics

Mike Gordon 3 .
http://www.cl.cam.ac.uk/users/mjcg/ LICS'95, San Diego

The Semantic Challenge of Verilog HDL

Equivalence Between Modules

e Proof-of-concept behavioural prototypes are

refined to implementations

e Costly if prototype and implementation differ

e Example:

prove

PROD = #(2*n) A *x B;

equivalent to:

begin
P=0; A=X; B=Y;
repeat (n)
begin #1 {CARRY,P} = P + ({n{A[0]}} & B);
#1 {P,A} = {CARRY,P,A} >> 1;
end
PROD = {P,A};
end

Mike Gordon

http://www.cl.cam.ac.uk/users/mjcg/ LICS'95, San Diego

The Semantic Challenge of Verilog HDL

Correctness of Synthesisers

e Synthesis algorithms should be correct

— nice to formally prove correctness

— w.r.t. simulation semantics
e Existing work uses simplified semantics
— need to verify validity

e Example on next two slides - - -

Mike Gordon \ .
http://www.cl.cam.ac.uk/users/mjcg/ LICS'95, San Diego

The Semantic Challenge of Verilog HDL

/ mputclk p,q,r, s
- output [1:0] out; - declarations
. .reg [1:0] out;

" always @(posedge cl k)
begin

It (p)

: If (q & ~T)

out <={ ~s, s};
else

out <= ~out;

_-----------------------.‘

Mike Gordon 3 o
http://www.cl.cam.ac.uk/users/mjcg/ LICS'95, San Diego

The Semantic Challenge of Verilog HDL

Example of Design Synthesis

module EXAM(clk, p, g, 1, s, out);
input clk, p, q, r, s; output [1:0] out; reg [1:0] out;
always @(posedge clk)
begin
if (p) if (Q & ~r) out <={~s, s }; else out <= ~out;
end
endmodule

CSYN Verilog HDL System

module EXAM(clk, p, g, 1, S, out);
wire u10016, u10015, u10014, u10013, u10012, u10011, ul0010;
wire u10009, u10008, u10007, u10006, u10005, u10004, ul0003;
wire [1:0] u10002; output [1:0] out; input s, , q, p, clk;
INV u10014(u10014, out[0]);
CVMUX2 u10015(u10015, u10010, s, out[0]);
CVMUX2 ul10016(u10016, u10008, u10014, u10015);
BUF u10017(u10002[0], u10016); INV ul0005(u10005, r);
AND2 ul10006(ul0006, g, u10005); INV ul0007(u10007, u10006);
AND2 ul10008(u10008, p, u10007); INV ul0009(ul0009, out[1]);
AND2 u10010(u10010, p, ul10006); INV ul0011(u10011, s);
CVMUX2 u10012(u10012, u10010, ul0011, out[1]);
CVMUX2 u10013(u10013, u10008, u10009, u10012);
BUF u10018(u10002[1], u10013);
DFF ul10004(u10004, u10002[0], clk, 1, 0, 0);
BUF u10019(out[0], u10004);
DFF ul10003(u10003, u10002[1], clk, 1, 0, 0);
BUF u10020(out[1], u10003);

endmodule

Mike Gordon 3 .
http://www.cl.cam.ac.uk/users/mjcg/ LICS'95, San Diego

The Semantic Challenge of Verilog HDL

Conclusions

Verilog & VHDL are real-world languages

Need more theoretical support
Pose interesting challenges

— semantic
— logical

Formal methods for electronic design
automation (EDA) are starting to be

commercially significant

My name s Henry Coz. I am in the
process of preparing a report discussing
the potential commercialization of
formal verification for a large EDA
vendor. (I signed a NDA, so I'm afraid
that I can’t tell you who it is.)

[recent email message)]

Mike Gordon 3 o
http://www.cl.cam.ac.uk/users/mjcg/ LICS'95, San Diego

