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Abstract

The Verilog hardware description language (HDL)
is widely used to model the structure and behaviour
of digital systems ranging from simple hardware build-
ing blocks to complete systems. Its semantics is based
on the scheduling of events and the propagation of
changes. Different Verilog models of the same device
are used during the design process and it is important
that these be ‘equivalent’; formal methods for ensuring
this could be commercially significant. Unfortunately,
there is very little theory available to help.

This self-contained tutorial paper explains the se-
mantics of Verilog informally and poses a number of
logical and semantic problems that are intended to pro-
voke further research. Any theory developed to support
Verilog is likely to be useful for the analysis of the sim-
ilar (but more complex) language VHDL.
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1 Introduction
Modern hardware description languages enable the de-
signer to mix different levels of design abstraction.
The lowest level is a connection of gates (netlists),
which may be generated manually or automatically as
the output of synthesisers. The next level contains
structures such as counters, multipliers etc. The high-
est level is ‘behavioural’ and uses programming con-
structs such as assignments, conditionals and while-
loops. A common approach is to first build and test
a prototype using behavioural constructs. As the de-
sign matures, modules which were first specified be-
haviourally are recoded in a subset of the HDL from
which hardware can be synthesised automatically.
VHDL and Verilog are the two most widely used
languages in industry. In the academic formal meth-
ods community VHDL is much better known and
many people (e.g. me until quite recently) have barely



heard of Verilog, even though it has been estimated
that there are 25,000 Verilog designers today, with
5,000 additional students trained in Verilog graduat-
ing each year [4]. Verilog is employed by designers in
numerous companies including Sun Microsystems, Ap-
ple and Hewlett-Packard. An industry survey recently
found that in 1995 Verilog was getting 66 per cent of
business and VHDL 34 per cent [3]. As a language
Verilog has much in common with VHDL, however its
programming constructs are based on C, whilst those
of VHDL are based on Ada.

Verilog is taught to second year computer science
undergraduates studying at Cambridge University as
part of their hardware laboratory work. It is hoped
(suitable theory permitting) that it will eventually
come to underlie a third year course on the specifi-
cation and formal verification of hardware.

I have chosen to work with Verilog primarily be-
cause of its role in teaching at Cambridge, but also
because it is simpler (though less general) than VHDL.

The structure of the rest of the paper is as follows.
Section 2 is an introduction to Verilog aimed at readers
with a logical and semantic background. Some of the
behavioural subtleties of the language that would need
to be handled by a formal semantics are discussed.
Section 3 specifies a subset of Verilog intended as a
vehicle for semantic experiments. Section 4 is an infor-
mal semantics of the selected subset. This is intended
to provide a self-contained reference for future formal-
ization. Finally, Section 5 describes some problems
that are of theoretical interest and practical utility.

2 Overview of Verilog

A specification in Verilog consists of one or more mod-
ules. The top level module specifies a closed system
containing both test data and hardware models. It is
what is executed by Verilog simulators. Component
modules will normally have input and output ports.
Events on the input ports cause events on the outputs.
Events can either be changes in the values of wires
or registers, or can be explicitly generated abstract
events. Modules can represent bits of hardware rang-
ing from simple gates to complete systems (e.g. micro-
processors), they can either be specified behaviourally
or structurally (or a combination of the two). A be-
havioural specification defines the behaviour of a mod-
ule using programming language constructs. A struc-
tural specification expresses a module as a hierarchical
interconnection of submodules. At the bottom of the
hierarchy the components must either be primitives or
specified behaviourally. Verilog’s library of predefined
primitives will not be discussed here.

2.1 Simple combinational examples
Here is a behavioural specification of a module vanD:
the value output on port o is the negation of the con-
junction of the value input on ports i1 and i2.

module NAND (il,i2,0);
input il, i2; output o;

assign o = “(il & i2);
endmodule

The ports i1, i2 and o are wires. The symbols -
and & denote negation and conjunction, respectively.
The continuous assignment assign o = ~(il & i2) con-
tinuously watches for changes to variables in its right
hand side (it and i2 in this example) and whenever
a change happens the right hand side is re-evaluated
and the result immediately propagated to the left hand
side (o in the example).

Here is the structural specification of a module
anD_IMP obtained by connecting the output of one vanp
to both inputs of another one.

module AND_IMP (il,i2,0);
input i1,i2; output o; wire w;

NAND NAND1(il,i2,w);
NAND NAND2(w,w,0);

endmodule

This structure has two instances of nvawp (called
vanD1, and wAND2), connected together by an internal
wire w. The behaviour implied by this structure is
expressed directly in the definition of the module Anp:

module AND (il1,i2,0);
input i1, i2; output o;

assign o = il & i2;
endmodule

Verilog is used not only to specify hardware devices
but also to specify test data. The module AND_TEST_DATA
generates the inputs i1=0 and i2=0, i1=0 and i2=1, i1=1
and i2=0, it=1 and i2=1 at successive times.

module AND_TEST_DATA (i1,i2);
output i1,i2; reg i1,i2;

initial begin il = 0; i2 = 0;
#1 i2 = 1;
#1 i1 = 1; i2 = 0;
#1 i2 = 1;
end
endmodule

The module aND_TEST_DATA has no inputs and two out-
puts i1 and i2. Inside the module definition, the out-
puts are declared to be registers. Registers are vari-
ables that ‘remember’ the last value that was proce-
durally assigned to them (just like variables in imper-
ative programming languages). Wires are the default
kind of variable; they have no storage capacity. They
can be continuously driven (e.g. with a continuous as-
signment or by the output of a module) or left un-
connected, in which case they get a special value x



that represents ‘unknown’. Continuous assignments
use the keyword assign, whereas procedural assign-
ments just have the form v = e, where v is a register
and e an expression.

The body of anp_TEST DATA has the form initial s,
where s is a statement. This means that statement s
is to be executed once at the start of the simulation.
In the example here, the statement to be executed is a
sequential block consisting of a sequence of procedural
assignments, some of which are delayed. When con-
trol reaches a statement of the form #n s, there is a
delay of n units of simulation time before execution is
continued at s. The effect of executing AND_TEST DATA is
thus to immediately assign 0 to both it and i2, then
to delay one unit of time, then to assign 1 to i2, then
to delay another unit of time, then to assign 1 to i1
and o to i2, then to delay another unit of time and
finally to assign 1 to i1.

To apply the test data specified in AND_TEST_DATA to
the modules anp and anp_1vp the following module is

defined.

module AND_TEST ();
wire i1,i2,01,02;

AND_TEST_DATA M1(i1,i2);
AND M2(i1,i2,01);
AND_IMP M3(il,i2,02);
initial
$monitor
("Time = %0d, i1 = %b, i2 = %b, ol = %b, 02 = %b",
$time, il, i2, ol, 02);

endmodule

AND_TEST connects the outputs of AND_TEST_DATA to the
inputs of AND and AND_IMP using wires. Separate output
wires o1 and o2 are used for anD and AND_IMP, SO that
the outputs can be compared. It is a rule of Verilog
that wires must be used to connect modules. Thus
although inside the definition of AND_TEST_DATA the two
outputs are registers, when the module is instantiated
in AND_TEST the outputs are wires.

The statement $monitor(---) is a directive to the sim-
ulator to print out the values on the wires whenever
they change. Such extra-language constructs (which
include statements prefixed by $, macros and embed-
ded comments) are historically not part of the Ver-
ilog language, though the IEEE 1364 Draft document
includes some of them. With real hardware proto-
typing, a device is built and then connected to oscil-
loscopes, logic analysers etc to observe its operation.
Using Verilog, a model can be programmed and then
controlled and observed using ‘software probes’. The
simulator and compiler directives provide a kind of
metalanguage for manipulating the execution of the
Verilog object language. This is different from VHDL,
which contains both modelling and monitoring con-
structs within a single language.

Simulating the module anp_TEST results in the fol-
lowing output.

Time = 0, i1 = 0, i2 =0, ol = 0, 02 = 0
Time = 1, i1 =0, i2 =1, ol =0, 02 = 0
Time = 2, i1 =1, i2 =0, ol = 0, 02 = 0
Time = 3, i1 =1, i2 =1, ol =1, 02 = 1

This verifies that for all possible inputs, avp and
anp_1MP produce the same output.

2.2 Feedback and memory
An SR flipflop is device with memory. It is built
using two NAND gates:

o}
N

This has two stable states. The value 1 can be stored
by simultaneously driving s=0 and r=1, which will cause
q=1 and gbar=0. The value 0 can be stored by driving
s=1 and r=0, which will cause g=0 and gbar=1. If both s
and r are then driven with 1, the stored value will be
maintained in the feedback loops and is available on
output q. Driving both s and r with o is illegal (the
subsequent behaviour will be unpredictable).

An SR flipflop is represented in Verilog by:

module SRFF (s,r,q,qgbar);
input s,r; output q,gbar;

NAND NAND1(s,gbar,q);
NAND NAND2(q,r,gbar);

endmodule

The operation of this can be tested with the module:

module TEST ();
reg s,r; wire g,gbar;

initial begin s =0;r=1;
#5 s = 1;
#5 r = 0;
#5 r = 1;
#5 s = 0;
#5 r = 0;
#5 s = 1; r = 1;
end
SRFF M(s,r,q,gbar);
initial
$monitor

("Time = %0d, s = %b, T
$time, s, r, q, gbar);

endmodule

b, q = %b, gbar = %b",

which generates the following output:

Time = 0, s=0, r=1, q=1, gbar = 0
Time =1, s=1, r=1, q =1, gbar = 0
Time =5, s=1, r=0, q =0, gbar = 1
Time = 6, s=1, r=1, q =0, gbar = 1
Time = 10, s =0, r =0, q =1, gbar = 1
Time = 15, s =1, r =1, q =0, gbar = 1

This shows that 1 is loaded at time o and then stored
in the flipflop until time 5 when o is loaded and then
stored. At time 10 the flipflop is driven with the ille-
gal input s=0 and r=0 causing both q and gpar to hold



the value 1. At time 15, s is driven with 1 causing q
to be 0 and then r is driven with 1 causing in gbar to
be 1. If s and r had been driven in the reverse order
(i.e. r = 1; s = 1) at time 15 then first gbar would be-
come 0 and then q would become 1. Another possible
behaviour at time 15 would be oscillation with both g
and gbar switching between 1 and o.. This effect can
be obtained by subtly changing the behaviour of the
NAND by using a procedural assignment rather than a
continuous assignment.
Consider the module nawop (“p” for procedural):

module NANDP (i1,i2,0);

input il, i2; output o; reg o;

always Q@(il or i2) o = "(il & i2);

endmodule

The body of nanpp is of the form always s, which means
that s should be repeated forever. In this example s
is the procedural assignment o = ~(i1 & i2), with the
timing control e(it or i2) that waits for a change of
value to either i1 or i2. Whenever it or i2 changes,
the wawp of their values is scheduled to be assigned
to o ‘at the end of the current time slot’ (technically
after a ‘zero delay’ — see Section 2.7). This means
that if nanpp is used instead of wanp in the SR flipflop,
the simulation will go into an infinite loop at time 15
(which represents an oscillation).

The explanation is that when, at time 15, s is driven
with 1 then q is scheduled to get value o, but it does
not get this value immediately. First r is driven with
1 which, in turn, schedules gbar to get 0. Only after
the values of s and r have been changed to 1 are the
values of q and gbar changed to 0. Since q and gbar are
fed back into the nawDSs, the e(s or gbar) and e(q or r)
fire and q and gbar are then both scheduled to change
back to 1 again. An infinite loop ensues.

Another standard memory element is an edge-
triggered Dtype register.

d — —4a
DTYPE

ck —

Whenever there is a positive edge on the input cx (i.e. a
change from o to 1) the value being input on d is stored
and then output on q. A behavioural specification is:
module DTYPE (ck,d,q);

input ck,d; output q; reg q;

always Q(posedge ck) q = d;

endmodule

The body of dTYPE is of the form always @(posedge ck) s,
where s is the procedural assignment q = d. The tim-
ing control e(posedge ck) waits for a positive edge on
ck. The behaviour this module is that whenever cx

changes to 1 (i.e. a positive edge) the value being in-
put on 4 is assigned to the register q.

A standard implementation of a Dtype is the circuit
below. This will not be explained here, but can be
understood from either a physical [11, Chapter 7] or
logical [7] perspective.

NAND wa

w3
NAND NAND +——q
wb
NAND
w2

d NAND wl

The three-input NAND-gate wanp3 is specified by:

module NAND3 (i1,i2,i3,0);
input i1, i2, i3; output o;

]|

ck . NAND3

assign o = “(il & i2 & i3);
endmodule

The Dtype implementation above is represented by

the Verilog module:
module DTYPE_IMP (ck,d,q);
input ck,d; output q; wire wil,w2,w3,w4,w5;

NAND Mi(w2,d,wl);
NAND3 M2(w3,ck,wl,w2);
NAND M3(w4,ck,w3);
NAND M4(wl,w3,wd);
NAND M5(w3,w5,q9);
NAND M6(q,w2,w5);

endmodule
The module DTYPE TEST DATA specifies some test sig-
nals (everything following // on a line is a comment):

module DTYPE_TEST_DATA (ck,d);
output ck,d; reg ck,d;

initial begin ck = 0; // time 0
#5 d =1; // time 5
#5 ck = 1; // posedge ck at time 10
#10 ck = 0; // negedge ck at time 20
#5 d = 0; // time 25
#5 ck = 1; // posedge ck at time 30
#5 d = 1; // time 35

end
endmodule

A test harness to compare the behavioural specifi-
cation and implementation with this test data is the
module DTYPE_TEST

module DTYPE_TEST ();
wire ck,d,ql,q2;

DTYPE_TEST_DATA Mi(ck,d);

DTYPE M2(ck,d,ql);
DTYPE_IMP M3(ck,d,q2);
initial

$monitor

("Time = %0d, ck = %b, d = %b, q1 = %b, q2 = %b",
$time, ck, d, qi, q2);

endmodule



Running this results in:

Time = 0, ck =0, d=x, ql =x, g2 = x
Time = 5, ck =0,d=1, ql =x, g2 = x
Time = 10, ck =1, d =1, ql =1, g2 =1
Time = 20, ck =0, d=1, ql =1, g2 =1
Time = 25, ck =0, d =0, q1l =1, g2 =1
Time = 30, ck =1, d=0, q1 =0, g2 =0
Time = 35, ck =1, d=1, q1 =0, g2 =0

Only times at which ck, 4, q1 or q2 change are shown.
The value x, representing ‘unknown’, is assigned to all
variables (wires and registers) at the beginning of the
simulation. This output shows that at time 10 there
is the first positive edge of ck and at that time the
value 1 being input on d is ‘latched’ by both pTYPE and
pTYPE_IMP. The values on the outputs q1 and g2 remain
stable at 1 until the next positive edge, which is at
time 30, when the input 0 on 4 is latched.

This test shows that DTYPE and DTYPE_IMP are equiv-
alent for the test data in DTYPE_TEST_DATA, however one
would like to be able to formally prove from the se-
mantics of Verilog that they are equivalent for all pos-
sible inputs (if indeed they are). This is a semantic
challenge (see 5.6). Some models used for verification
by formal proof (e.g. the relational model — see 5.2)
cannot predict that feedback loops in zero-delay com-
binational circuits will exhibit memory; however, the
way Verilog’s simulation semantics propagates signal
changes enables this to be predicted.

2.3 Inertial and transport delay
The examples in the previous section are unrealistic
because the components have no delay.

Verilog supports continuous assignments with de-
lay. These have the form assign #n w = e and specify
that whenever the value of e changes, w is scheduled
to be driven with its new value after a delay of n time
units. Verilog’s semantics specifies that at most one
change to a given wire can be scheduled at any one
time, so if a change is scheduled before a previously
scheduled one has been carried out, then the earlier
one is cancelled. This rather subtle behaviour is called
inertial delay. It has the effect that if two changes to
e’s value happen within » time units, then the effect
of the first change is cancelled. To illustrate this, con-
sider a simple unit-delay element.

module DEL (i,o0);
input i; output o;
assign #1 o = i;

endmodule

Two unit-delays in series is:
module DEL_DEL (i,o0);
input i; output o; wire w;

DEL M1(i,w);
DEL M2(w,o0);

endmodule

This can be compared with an inertial delay of 2.

module DEL2 (i,o);
input i; output o;

assign #2 o = i;
endmodule

The following trace shows an example of DEL DEL’S
and DEL2’S outputs for a particular sequence of inputs.
OQutput from DEL_DEL

Time Input Qutput from DEL2

0 X b4 x
1 X X X
2 X X X
3 X b4 x
4 X b4 b4
5 0 b4 x
6 0 X X
7 0 0 0
8 0 0 0
9 0 0 0
10 1 0 0
11 0 0 0
12 0 1 0
13 0 0 0
14 0 0 0
15 1 0 0
16 1 0 0
17 0 1 1
18 0 1 1
19 0 0 0

When input i changed to 1 at time 10 the change w=1
is scheduled inside pEL DEL for time 11, and the change
o=t is scheduled by DEL2 at time 12. At time 11 the
change w=1 happens inside pEL DEL, which causes o=1 to
be scheduled at time 12. When i changes to 0 at time
11, the continuous assignment in DEL2 schedules o=0 at
time 13, which cancels the o=1 scheduled for time 12.
Thus at time 12, the change to o in DEL DEL happens,
but the change to o in DEL2 has been cancelled. At time
13, o in DEL2 is 0 so the previously scheduled o=0 has
no effect. When i changes from o to 1 at time 15, DEL2
schedules o=1 for time 17. Since i doesn’t change at
time 16, o=1 is not cancelled and DEL2’s output changes
at time 17.

DEL_DEL exhibits transport delay: all changes to its
input are propagated to its output with a delay of 2.
DEL2 exhibits inertial delay: only changes that persist
for at least two time units are propagated. Note that
DEL_DEL implements transport delay only because its in-
ternal delays are unit delays. T'wo DEL2s in series would
exhibit a mixture of transport and inertial delay.

2.4 Blocking & non-blocking assignments
Verilog’s non-blocking assignment enables transport
delays to be expressed behaviourally. A non-blocking
assignment has the form v <= #n e, where v is a register.
Such an assignment causes no delay in the execution
of the current module, but schedules the current value
of e to be assigned to v after a delay of n. In con-
trast to continuous assignments, non-blocking assign-
ment allows multiple changes to be scheduled to the



same variable: no cancelling happens. Thus the fol-
lowing module has the same transport delay behaviour

as DEL_DEL.
module TRANS_DEL2 (i,o);
input i; output o; reg o;

always Q@(i) o <= #2 i;
endmodule
This generates an infinite loop (always) with the be-
haviour that whenever i changes (e(i)) the new value
of i is scheduled to be assigned to o after a delay of 2.
Blocking assignments have the form v = #ne. When
such an assignment is reached, the value of e is com-
puted, execution is delayed (‘blocked’) for n time units
and then the previously computed value of e is as-
signed to v. For example, consider:
begin x = 1; y = 2; x = #5 y; y = #5 x; end
When control reaches x = #5 y, the variable x has value
1 and y value 2. The computation is delayed for 5 time
units and then x is assigned the value 2. The compu-
tation is then delayed another 5 time units and then y
gets the value 2 that x had just been assigned. Thus
executing this sequential block takes 10 time units and
results in x and y both having the value 2.

Consider now:
begin x = 1; y = 2; x <= #5 y; y <= #5 x; end

When control reaches x <= #5 y, the variable x has
value 1 and y the value 2, as before. The effect of
x <= #5 y is to schedule x=2 for 5 time units in the fu-
ture; x is not changed until then. The non-blocking
assignment itself takes no time and control immedi-
ately proceeds to y <= #5 x which itself takes no time,
but schedules y=1 also for 5 units of time in the future.
The execution of the sequential block is now finished.
5 time units later x gets value 2 and y gets value 1.
Thus executing this sequential block takes zero time
and results in x being scheduled to have the value 2
and y the value 1 after 5 time units have passed.

A blocking assignment v = #n e differs from a de-
layed assignment #n v = e because the former evalu-
ates e before the delay occurs, but the latter evaluates
it after the delay has taken place.

2.5 Datatypes

Verilog allows variables to be declared to carry arbi-
trary bitstrings (called vectors), signed integers, times
(which are unsigned) and reals. For example, the dec-
laration reg[3:0] v declares v to be a 4-bit vector reg-
ister (reg is a reserved word). Its components are ac-
cessed by expressions (from most to least significant)
v[31, v[2], v[1] and v[o0].

Vectors of vectors, called memories, can also be
declared. For example reg[7:0] mem[0:255] declares a
memory mem consisting of 256 eight-bit registers. The
details of Verilog’s datatypes are not considered here.

2.6 Imperative programming constructs
Verilog provides a selection of familiar programming
constructs including conditionals, case switches, while-
statements, for-statements, sequential and parallel
blocks. For simplicity, only a subset of these will be
considered.

In the example that follows, the programming con-
structs are used to specify a behavioural model of a
divider (p1vipe) and also provide some test data for it
(DIVIDE_TEST_DATA).

Whenever either x or y changes (always Q(x or y)),
the module p1viDE computes, by repeated subtraction,
the quotient q and remainder r of dividing x by y (the
arithmetic operators + and - apply to vectors inter-
preted as natural numbers using modular arithmetic).

module DIVIDE(x,y,q,r);
input [1:0] x,y; output q,r; reg [1:0] q,r;

always Q@(x or y)

begin

q=0;

r = x;

while (y<=r) begin
r = #1 r-y;
q = #1 q+1;
end

$display
("Time = %0d, x = %04, y = %0d, q = %0d, r = %0d4",
$time, x, y, g, 1);

end

endmodule

The initialisation assignments of q and r are modelled
as taking zero delay, but each assignment in the body
of the while-loop is given unit delay.

The statement $display(---) prints out the time and
the values of x, y, q and r (in decimal notation) when
control reaches it (which is just after the while-loop
has terminated).

The module DIVIDE TEST.DATA generates all non-zero
combinations of x and y in sequence, changing the val-
ues each 10 time units.

module DIVIDE_TEST_DATA (x,y);

output x,y; reg [1:0] x,y;

initial

begin x=1; y=1;

while (x<=3) begin

while (y<3) #10 y=y+1;
#10 x = x+1; y=1;
end

end

endmodule

Notice that the outer while-statement is an infinite
loop because addition on values of size [1:0] is modulo
four.

The test harness pIVIDE TEST feeds the data gener-
ated by DIVIDE_TEST_DATA to DIVIDE. It also sets up a
separate thread that waits for 100 time units and then
halts the simulation ($finish). The infinite loop (and
the need for the separate thread) could be avoided by
replacing x<=3 by x>0 in DIVIDE_TEST_DATA.



module DIVIDE_TEST ();
wire [1:0] x,y,q,r;

DIVIDE_TEST_DATA Mi(x,y);
DIVIDE M2(x,y,q,r);

initial #100 $finish;
endmodule
Simulating this example results in the following
(printed by the $display statement in DIVIDE).

Time =2, x=1,y=1,q=1, r =0
Time = 10, x =1, y =2, q=0, r=1
Time = 20, x =1, y =3, q=0, r=1
Time = 34, x =2, y=1,q=2, r=0
Time = 42, x =2, y=2,q=1, r =0
Time = 60, x =2, y=3, q=0, r =2
Time = 66, x =3, y=1, q=3, r=0
Time = 72, x =3, y=2,q=1, r =1
Time = 82, x =3, y=3,q=1, r=0
Time = 90, x =0, y=1, q=0, r =0

At the start of the simulation x and y are initialised
to the ‘unknown’ value. At time o they are both
assigned value 1 by DIVIDE_TEST DATA, which triggers
@(x or y) in DIVIDE causing the while-loop to be exe-
cuted to compute q and r. This only takes one itera-
tion, which takes two time units (one for each assign-
ment in the body of the while), thus the $display(.--)
is first reached at time 2 generating the first line of
output. The next change to x and y happens at time
10, when DIVIDE_TESTDATA increments y. This triggers
@(x or y) in DIVIDE again, but this time the test of
the while-loop is false, so no iterations are done and
$display(---) is reached for the second time at time 10.

2.7 Concurrent threads

The general form of a module specification is:

module name ( porty,..., port,);
declarations ;

itemy

itemn
endmodule

Each item is executed in parallel in a separate
thread of computation. The main module items are
continuous assignments, instances of other modules,
initial-statements and always-statements. Shared
variables can lead to non-determinism. For example,
consider:

module INTERLEAVE ();
integer x;

initial begin x=0; x=x+2; end

initial x=1;

endmodule

This is an example of a race condition: the seman-
tics does non uniquely determine the result. If the
first initial-statement is completed before the second
one is started, then x is set to 1. This behaviour can
be forced by putting a zero delay before the second
initial-statement:

initial #0 x=1

If the first initial-statement is started after the sec-
ond one is completed, then x is set to 2. This can be
forced by putting a zero delay before the first initial-
statement:

initial #0 begin x=0; x=x+2; end

If the second initial-statement is executed after the
x=0 in the first initial-statement, but before the x=x+2,
then x is set to 3. This can be forced by:

initial begin x=0; #0 #0 x=x+2; end

initial #0 x=1;

The use of explicit zero delays to force determinacy
is considered a bad programming style by some. The
exact semantics of delays is explained in section 4.

The use of non-blocking assignment can lead to fur-
ther subtlety. For example, consider:

module NONBLOCK_INTERLEAVE ();
integer x;

initial begin x=0; x<=x+2; end
initial x=1;
endmodule
With the Viper/free simulator from interHDL [16] the
result is that x is set to 1, but with the Veriwell simu-
lator from Wellspring Solutions Inc. [15], x is set to 2.
According to my reading of the official IEEE schedul-
ing semantics [8], x should never end up set to 1 since
non-blocking assign update events are scheduled for
the very end of the simulation cycle, and the only way
x could end up with 1 is if the assignment x=1 is sched-
uled after the update created by x<=x+2. However, I
may have misread the IEEE document!

Concurrent threads can also be generated using
parallel blocks (fork—join), but these will not be con-
sidered here.

3 V: a simple version of Verilog

This section specifies a language called V that is pro-
posed as a vehicle for experiments in contructing and
using a formal semantics of Verilog.

V is close to being a subset of Verilog, but contains
two constructs not in it. The first of these are assign-
ments of the form v < #n e that are like delayed non-
blocking assignments, but with inertial delay. Having
these simplifies the description of the simulation cycle,
by enabling continuous assignments to be translated
into always-statements. The second construct in V, but
not Verilog, is a timing control A that is very similar
to e, but without the zero-delay discussed in connec-
tion with ¥awpp in Section 2.2. This timing control is
also used for modelling continuous assignments.

The syntax of V will be specified in a BNF style, us-
ing metavariables to range over the various constructs.



Occurrences of metavariables may be distinguished
by decorating them with subscripts, superscripts or
primes.

3.1 Modules

A specification in V consists of a set of modules, one
of which is singled out as the top level module.

Modules in V have a name, port list (which may
be empty), set of declarations and a set of module
items. Each item is either a continuous assignment, an
initial-statement, an always-statement or an instance
of another module. Details of datatypes and declara-
tions are avoided here, as the main goal is to describe
the simulation cycle.

3.2 Expressions
Expressions are composed out of variables, constants
(ranged over by =), unary operators (ranged over by
u) and binary operators (ranged over by b). For sim-
plicity, V assumes expressions are evaluated to yield
either a non-negative number (which can be thought
of as a bitstring), or the special value x.

The syntax of expressions is specified by:

e:=vlnluelerbexle?er ezl (e)

Thus an expression e is either a variable v, or a con-
stant n, or a unary operator u applied to an expression
e, or an infixed binary operator » applied to two ex-
pressions e; and es, or a conditional e 7 e; : e; meaning
“if e then e; else ey”, or parenthesised.

The value of an expression in V is a natural number
or x (the unknown value). Unary and binary operators
are assumed ‘strict’ (i.e. if an argument is x then the
result is x). Conditionals are strict in their first argu-
ment. In the test expressions occurring in conditionals
and while-statements, a non-zero result represents true
and zero represents false.

Verilog supports various automatic coercions on
bitwidths, which can make it tricky to handle arith-
metic overflows. However, the details of these are
orthogonal to the simulation semantics and are not
treated here.

3.3 Timing controls

Timing controls (ranged over by ¢) are used for
scheduling. They are sequences of atomic timing con-
trols (ranged over by ¢), which are either delays (#e)
or guards (ranged over by g). Guards are either edge
sensitive (A(n) or e(n)) or level sensitive (wait e).

7 ::=v | posedge v | negedge v | n; or --- or ny
g := Al | e(n) | wait e
¢ ::i=#elg

o

= |l e

3.4 Statements
The syntax of statements is given by:

sii=u=e (assignment)
lv=ce (delayed assignment)
lv<=ce (non-blocking assignment)
|l v<+#ne (inertial assignment)
lcs (timing controlled statement)
| if (e) s (one-armed conditional)
| if (e) s1 else s2 (two-armed conditional)
| begin s1;---;sn end (sequential block)
| while (e) s (while-statement)
(

| forever s forever-statement)

4 Semantics of V

The semantics of V is described by explaining how
the top-level module is simulated. The first stage is
to extract a collection of statements to be executed
concurrently.

The top level module is ‘fattened’ by (i) renam-
ing all local variables in instances of modules to avoid
clashes, (ii) replacing module instances by the appro-
priately instantiated sequence of items they contain
and (iii) declaring all local variables at top level. The
result of this is a module that only contains contin-
uous assignments and statements (i.e. no module in-
stances).

After this flattening, the only way that a wire
can be driven is by a continuous assignment (in un-
flattened modules they can be driven by module in-
stances). For simplicity, it is assumed that each wire
is driven by at most one continuous assignment (in
Verilog, wires can be multiply driven and rules are
given for computing the resultant value).

After flattening, the top-level module is further
transformed so that the only module items it contains
are initial-statements.

Let v1, ... , v, be the variables occurring in e,
then all continuous assignments assign v = e are re-
placed by always A(v; or -+ or v,) v = e and all de-
layed continuous assignments assign #n v = e are re-
placed by always A(v; or .- or vw,) v <+ #n e. Note
that the wires driven by continuous assignments be-
come registers.

All always-statements always s are replaced by
initial forever s.

The resulting flattened and transformed module
has the form:
module name ( porty,..., port,);

declarations ;

initial $3

initial sp
endmodule



The statements si, ..., s, are executed concurrrently.
Each s; gives rise to a separate thread of execution.

This flattening and transforming process is called
normalisation. A more formal account will not be
given here, but the following example of the result of
normalising AND_TEST (see above) should illustrate the
process (the $monitor statement is omitted).

module FLAT_AND_TEST ();
reg il,i2,01,02,w;

initial begin il = 0; i2 = 0;
#1 i2 = 1;
#1 i1 = 1; i2 = 0;
#1 i2 = 1;
end

initial forever A(il or i2) ol = il & i2;

initial forever A(il or i2) w = ~(il & i2);
initial forever A(w) 02 = “(w & w);
endmodule

Observe how normalisation has converted all wires to
registers.

4.1 The global state

The global state of a simulation consists of the simula-

tion time, the values of registers and the set of threads.
Each thread consists of a statement (the code being

executed) and a local state specifying:

1. an execution point, which indicates where to con-
tinue from the next time the thread is executed;

2. a status, which can be

(a) enabled: the thread can be executed imme-
diately;

(b) delayed until t: execution is scheduled for a
later simulation time ¢;

(¢) guarded by g: the thread is waiting to be
triggered by a change to a variable in g;

(d) finished: a thread is finished when there are
no more statements to execute;

3. a possible pending assignment (only present if the
thread was delayed within » past time units by a
blocking assignment v = ¢ e).

Threads are classified into (i) statement threads, which
are the executions of statements extracted from the
normalised module and (ii) updates, which are gener-
ated by non-blocking assignments.

4.2 The simulation cycle

The execution of a program is initialized by setting
the simulation time to o, setting the values of all vari-
ables to x, creating an enabled statement thread (with
no pending assignments) for each statement extracted

from the normalised top-level module with the execu-

tion points at the beginning of each statement.
Thereafter, the following simulation cycle is re-

peated. Let ¢ denote the current simulation time.

1 If there are any enabled statement threads then
choose one and go to (2, else if there are any
threads delayed to ¢ (the current simulation time),
then enable all such threads and go to |1, else if
there are any enabled updates, then choose one,
perform it, delete it and go to '3 , else if there are
any threads delayed to t', where ¢’ > ¢, then go
to 4.

2 If there is a pending assignment then perform it,
delete it from the state. Go to '3 .

If the thread has no pending assignment, then
make one step along it (see 4.2.1). Go to 3 .

3 If the value of a register has changed, then enable
all guarded threads whose guards fire (see 4.2.2).
Goto 1.

4 Advance simulation time the minimum amount
(which must be non-zero) needed to reach a time
at which at least one thread is scheduled to
restart. Enable all threads scheduled to restart
at this time. Go to 1 .

The simulation terminates when all threads are fin-
ished.

4.2.1 Stepping along a thread

If the execution point is at the end of a thread, then
stepping along the thread causes it to finish. If there
is a statement following the execution point, then for
each kind of statement the effect of taking a step is
described below.

The expression e is evaluated and the resulting
value assigned to the register v in the global state. If
there is a next statement in the thread it is enabled,
otherwise the thread is finished.

The expression e is evaluated to get a number,
n say, and then the status of the thread is set according
to ¢ (see 4.2.2), the assignment v = n is made pending
and the execution point is moved to the end of the
assignment,.

The expression e is evaluated to get a num-
ber, n say, and then a new update thread is created

consisting of just the assignment v = n with the execu-
tion point at the beginning, the status of the thread



is set according to ¢ (see 4.2.2) and no pending as-
signment. If there is a next statement in the original
thread it is enabled, otherwise the thread is finished.

The expression e is evaluated to get a num-

ber, m say, and then a new statement thread is cre-
ated consisting of just the assignment v = m with the
execution point at the beginning, the status delayed
according to #n (see 4.2.2) and no pending assignment.
All other delayed threads of the form v = m’ which are
scheduled earlier than the one just created are deleted.
If there is a next statement in the original thread it is
enabled, otherwise the thread is finished.

The execution point is moved to just before s and
the status of the thread is set according to ¢ (see 4.2.2).

The expression e is evaluated. If the result
is true then the execution point moves to s and the
thread remains enabled. If e is false and there is a next

statement in the thread, then it is enabled, otherwise
the thread is finished.

|if (e) 51 else s, | The expression e is evaluated. If the
result is true then the execution point moves to si,
otherwise it moves to s2. In both cases the thread
remains enabled.

|begin $13 35 end| Control moves to the first state-
ment s; and the thread remains enabled.

The thread is replaced by the statement

if (e) begin s; while (e) s end With the execution point
at the beginning and the thread enabled.

This is equivalent to while (1) s.

4.2.2 Setting up a delay or guard

In general, a timing control is a non-empty sequence
$1 ¢2 -+ ¢, Of atomic timing controls. Such a sequence
is evaluated by considering ¢; as below and prefixing
¢2 -+ ¢n (which might be empty) to the statement
following the execution point of the thread.

The value of e is added to the current simulation
time to get a future time, ¢ say, and the status of the
thread becomes delayed until #. Note that a delayed
thread is not enabled, so the effect of a zero delay #o is
to schedule the rest of the thread for the current time,
but after all currently enabled statement threads and
before all currently enabled updates (see 1 above).

This is equivalent to the sequence A(n) #0.

The thread becomes guarded with a guard that
will fire whenever v is changed.
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The thread becomes guarded with a

guard that will fire whenever v changes to 1.

The thread becomes guarded with a

guard that will fire whenever » changes to o.

|A(771 or ---
any of n, ...

If e is true then the thread remains enabled; if
it is false then a guard is created that will fire whenever
e becomes true.

4.3 Warning!

The semantics of V is intended to be a prototype for a
semantics of Verilog. It is based on a careful reading of
various sources [8, 12, 13, 14] and experiments with the
Veriwell [15] and Viper/free [16] simulators. I hope to
validate the semantics with a combination of review
by Verilog experts (I am not one) and formalisation
experiments, but until this is done the reader is warned
not to place too much trust in the details. Already
several errors in an earlier version of the simulation
semantics have been corrected.

or 1) | A guard is created that fires when
, nn, fire.

5 Semantic challenges

The semantic challenges in this section are intended
to combine theoretical interest with practical utility.
Many of them are instantiations to the world of Ver-
ilog of general topics in logic and semantics for which
considerable abstract theory already exists.

5.1 Formal semantics of Verilog

The first challenge is just to get a formal semantics
of Verilog, starting with the subset V, that is both
accurate to the spirit of the language and mathemat-
ically tractable. Many attempts to give a formal se-
mantics of VHDL [9, 5, 10] are in progress. These
use a variety of techniques including stream processing
(Fuchs & Mendler), functional programming (Breuer
et al), labelled transition systems (Van Tassel), evolv-
ing algebras (Borger et al.), Petri nets (Olcoz), finite
state automata (Dohmen & Herrmann), flow graphs
(Reetz & Kropf), denotational semantics (Davis) and
the state-delta temporal logic formalism (Filippenko).
The semantics of other kinds of event simulation lan-
guages are also being studied [1, 2].

5.2 Validity of simplified semantics

Any semantics that reflects the spirit of the language
(i.e. formalises the simulation cycle) is likely to be
hard to work with and may well not be syntax di-
rected (compositional). A second challenge is to de-
velop simpler and more tractable semantics for subsets
of the language and to prove that these agree with the
general semantics on the subset.



One standard approach is to model hardware de-
vices as a relation between sequences of values (the
sequences representing successive values on a wire) [6].
There is considerable experience in using this model
and it would be particularly useful if it could be re-
lated to Verilog’s semantics.

5.3 A minimal simulation calculus

V is a first attempt to distill the essence of the Verilog
simulation semantics into a simple setting. However,
it is still relatively large, ad hoc and redundant. A
challenge is to devise a minimal discrete event simu-
lation calculus that would form a canonical basis for
theoretical analysis. This calculus would be to Ver-
ilog/VHDL roughly as the A-calculus is to functional
programming.

5.4 Correctness of synthesisers

Current synthesisers can generate hardware imple-
mentations from substantial subsets of Verilog. For
example, the CV Verilog Compiler implemented by
David Greaves and used at Cambridge University can
synthesise hardware implementations of modules that
contain continuous assignments (without delays) and
behavioural statements with e(posedge v) timing con-
trols, non-blocking assignments, conditionals and se-
quential blocks.

A challenge is to formalise real-world synthesis al-
gorithms and show that the hardware structures gen-
erated are equivalent to the behavioural source. There
has been quite a lot of work on verifying synthesisers
in the past, but none (that I know of) for synthesis
from modern event-based HDLs.

5.5 Definition of equivalences
For many purposes it is important to ensure that
pairs of specifications are ‘equivalent’. However, ex-
actly what equivalence means is subtle. The strongest
equivalence would be that two specifications were in-
distinguishable by the simulator. However, in prac-
tice this is likely to be too strong: one may only
need equivalence with respect to certain classes of test
data. For example, an implementation using inertial
delay might be equivalent to a behavioural specifica-
tion with transport delay, under the condition that
signals change slowly.

A challenge is to develop a general theory of be-
havioural equivalence for Verilog, together with ‘laws’
for using the theory.

5.6 Conditions for equivalence

Ensuring that behavioural specifications are equiva-
lent to structural implementations is an important
practical problem. Hardware components are often
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given several different models at different levels of ab-
straction and much time and expense can be wasted if
there are undocumented differences. A challenge (that
we hope to address at Cambridge) is to develop ‘ver-
ification conditions’ that are sufficient to ensure that
two specifications are equivalent.

5.7 Relation to timed process calculi
Timed process calculi (e.g. timed CCS, and timed
CSP) provide a standard compositional paradigm for
representing timed behaviour. Is it possible to trans-
late Verilog into such a calculus and prove the trans-
lation sound? The various theories of equivalence and
refinement for process algebra might suggest useful no-
tions for Verilog (e.g. kinds of equivalence).

5.8 Programming logic

Verilog’s imperative programming constructs (assign-
ment, sequencing, conditionals, while-loops etc.)
should satisfy proof rules like those for Hoare logic,
with suitable restrictions. Under what conditions can
existing methods for reasoning about sequential and
parallel programs be applied to subsets of Verilog?
How can these methods be proved sound with respect
to simulation semantics?

5.9 Checkable properties

The most successful applications of formal methods to
hardware design have been the use of decision proce-
dures and model checkers (usually based on binary de-
cision diagrams — BDDs) to automatically verify prop-
erties. A challenge is to discover classes of properties
of Verilog programs that can be automatically checked
using such existing methods. To do this properly re-
quires that metatheorems be proved establishing that
the properties are equivalent to standard decision or
model checking problems.

6 Summary and conclusions

Verilog is a relatively simple real-world language in
need of theoretical support. It poses a variety of in-
teresting semantic and logical challenges ranging from
routine applications of standard techniques (e.g. for-
malizing the simulation cycle) to hard theoretical
problems (e.g. developing a theory of behavioural con-
gruence).
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