EEL 4783: Hardware/Software Co-design
with FPGAs

Lecture 5: Digital Camera: Software Implementation®

Prof. Mingjie Lin

UCF

Stands For Opportunity

1

* Some slides based on ISU CPrE 588

Design

« Determine system’s architecture
— Processors

« Any combination of single-purpose (custom or standard) or general-
purpose processors

— Memories, buses
« Map functionality to that architecture
— Multiple functions on one processor
— One function on one or more processors
* Implementation
— A particular architecture and mapping
— Solution space is set of all implementations
« Starting point
— Low-end general-purpose processor connected to flash memory
« All functionality mapped to software running on processor

» Usually satisfies power, size, and time-to-market constraints
« If timing constraint not satisfied then later implementations could:

— rewrite functional specification

Implementation 1

Low-end processor could be Intel 8051 microcontroller
Total IC cost including NRE about $5

Well below 200 m\W power

Time-to-market about 3 months

However, one image per second not possible

— 12 MHz, 12 cycles per instruction
« Executes one million instructions per second
— CcdppCapture has nested loops resulting in 4096 (64 x 64) iterations
» ~100 assembly instructions each iteration
* 409,000 (4096 x 100) instructions per image
» Half of budget for reading image alone

— Would be over budget after adding compute-intensive DCT and
Huffman encoding

Implementation 2

///
/EE‘P}{O/%/ 8051 // RAM/
7 /.

RERRRRRRRRRARRRRR RN
« CCDPP function implemented on custom single-purpose processor

— Improves performance — less microcontroller cycles
— Increases NRE cost and time-to-market
— Easy to implement

» Simple datapath
 Few states in controller

« Simple UART easy to implement as single-purpose processor also

« EEPROM for program memory and RAM for data memory added as
well

Microcontroller

« Synthesizable version of Intel 8051
available
— Written in VHDL Block diagram of Intel 8051 processor core

..

— Captured at register transfer level -
(RTL) Instruction

Decoder
 Fetches instruction from ROM
- Decodes using Instruction Decoder | AV
» ALU executes arithmetic operations ...\

— Source and destination registers To External Memory Bus
reside in RAM

» Special data movement instructions
used to load and store externally

» Special program generates VHDL
description of ROM from output of C
compiler/linker

Controller 128

UART

UART in idle mode until invoked

— UART invoked when 8051 executes
store instruction with UART’s enable
register as target address

* Memory-mapped communication

between 8051 and all single-purpose
processors

» Lower 8-bits of memory address for
RAM

» Upper 8-bits of memory address for
memory-mapped I/O devices
Start state transmits O indicating start of

byte transmission then transitions to Data
state

Data state sends 8 bits serially then
transitions to Stop state

Stop state transmits 1 indicating
transmission done then transitions back to
idle mode

FSMD description of UART

Transmit
LOW

Transmit
data(l),
then [++

Stop:
Transmit

CCDPP

Hardware implementation of zero-bias
operations

Interacts with external CCD chip

— CCD chip resides external to our SOC mainly because
combining CCD with ordinary logic not feasible FSMD description of CCDPP

Internal buffer, B, memory-mapped to 8051

Variables R, C are buffer’s row, column
indices
GetRow state reads in one row from CCD to
B

— 06 bytes: 64 pixels + 2 blacked-out pixels

ComputeBias state computes bias for that
row and stores in variable Bias

FixBias state iterates over same row
subtracting Bias from each element

NextRow transitions to GetRow for repeat of

process on next row or to Idle state when all
64 rows completed

B[R][C]=PxI

=C+

ComputeBias:
Bias=(B[R][11] +
B[R][10])/2

FixBias:
B[R][C]=B[R][C]-Bias

Connecting SOC Components

« Memory-mapped

— All single-purpose processors and RAM are connected to 8051's memory bus
« Read

— Processor places address on 16-bit address bus

— Asserts read control signal for 1 cycle

— Reads data from 8-bit data bus 1 cycle later

— Device (RAM or SPP) detects asserted read control signal

— Checks address

— Places and holds requested data on data bus for 1 cycle
Write

— Processor places address and data on address and data bus

— Asserts write control signal for 1 clock cycle

— Device (RAM or SPP) detects asserted write control signal

— Checks address bus

— Reads and stores data from data bus

Software

- System-level model provides majority of code

Module hierarchy, procedure names, and main program unchanged
« Code for UART and CCDPP modules must be redesigned

Simply replace with memory assignments

xdata used to load/store variables over external memory bus

_at_specifies memory address to store these variables
Byte sentto U_TX REG by processor will invoke UART

U_STAT_REG used by UART to indicate its ready for next byte
+ UART may be much slower than processor

Similar modification for CCDPP code
- All other modules untouched

Original code from system-level model Rewritten UART module

#include <stdio.h> static unsigned char xdata U_TX REG _at_65535;
static FILE *outputFileHandle; static unsigned char xdata U_STAT_ REG _at_65534;
void UartInitialize (const char *outputFileName) { void UARTInitialize (void) ({}

outputFileHandle = fopen(outputFileName, "w"); void UARTSend (unsigned char d) {
} q while(U _STAT REG == 1) {
void UartSend(char d) ({ /* busy wait */

fprintf (outputFileHandle, "%i\n", (int)d):; }
} U_TX REG = d;

}

Analysis

 Entire SOC tested on VHDL simulator

— Interprets VHDL descriptions and
functionally simulates execution of

system
) \R;ﬁl%dlll é) égcg;:ﬁ)?oc;]ogfe é’glr\]ﬂs'ated to Obtaining design metrics of interest
— Tests for correct functionality vioL || vaor || veor

Power
equation
Gate level
simulator

Power

— Measures clock cycles to process
one image (performance)

» Gate-level description obtained
through synthesis

— Synthesis tool like compiler for

SPPs '
— Simulate gate-level models to Freeution time —’ Chip area
obtain data for power analysis
* Number of times gates switch from

1Tto0or0Oto1

— Count number of gates for chip
area

\v ~
VHDL Synthesis
simulator tool

gates gates | gates

10

Implementation 2 (cont.)

* Analysis of implementation 2

Total execution time for processing one image:
* 9.1 seconds

Power consumption:
+ 0.033 watt

Energy consumption:
« 0.30 joule (9.1 s x 0.033 watt)

Total chip area:
« 98,000 gates

11

Implementation 3

* 9.1 seconds still doesn’'t meet performance constraint
of 1 second

« DCT operation prime candidate for improvement

— Execution of implementation 2 shows microprocessor
spends most cycles here
— Could design custom hardware like we did for CCDPP
* More complex so more design effort

— Instead, will speed up DCT functionality by modifying
behavior

12

DCT Floating-Point Cost

* Floating-point cost

— DCT uses ~260 floating-point operations per pixel
transformation

— 4096 (64 x 64) pixels per image
— 1 million floating-point operations per image
— No floating-point support with Intel 8051

« Compiler must emulate

— Generates procedures for each floating-point operation
* mult, add
— Each procedure uses tens of integer operations

— Thus, > 10 million integer operations per image
— Procedures increase code size

. Eived.nnint arithmet . b

13

Fixed-Point Arithmetic

Integer used to represent a real number

— Constant number of integer’s bits represents fractional portion of
real number

* More bits, more accurate the representation
— Remaining bits represent portion of real number before decimal
point
Translating a real constant to a fixed-point representation
— Multiply real value by 2 * (# of bits used for fractional part)
— Round to nearest integer
— E.g., represent 3.14 as 8-bit integer with 4 bits for fraction
« 204 =16
« 3.14 x 16 = 50.24 = 50 = 00110010

» 16 (2"4) possible values for fraction, each represents 0.0625 (1/16)
» Last 4 bits (0010) = 2

« 2x0.0625=0.125

[] I~

accuracy)

14

Fixed-Point Arithmetic Operations

« Addition
— Simply add integer representations
— E.9.,,3.14+2.71=5.85
« 3.14 — 50 = 00110010
« 2.71 - 43 =00101011
« 50 +43 =93 =01011101
« 5(0101) + 13(1101) x 0.0625 = 5.8125 = 5.85
« Multiply
— Multiply integer representations
— Shift result right by # of bits in fractional part
— E.g.,3.14 * 2.71 = 8.5094
« 50 *43 =2150 = 100001100110
« >>4=10000110
« 8(1000) + 6(0110) x 0.0625 = 8.375 = 8.5094

- _Range of real values used limited by bit widths of possible resulting
values 15

Fixed-Point CODEC

COS_TABLE gives 8-bit fixed-point representation of cosine values
6 bits used for fractional portion

Result of multiplications shifted right by 6

16

Code

- COS_TABLE gives 8-bit fixed-

Ltatic const char code COS_TABLE[8] [8] = {

point representation of cosine (6, 62, 59, 53, 45, 35, 24, 12},
64, 53, 24, -12, -45, -62, -59, -35},
values ‘ :
{ 64, 35, -24, -62, -45, 12, 59, 53 },
{ 64, 12, -59, -35, 45, 53, -24, -62},
H H H { 64, -12, -59, 35, 45, -53, -24, 62 },
- 6 bits used for fractional portion
{ 64, -35, -24, 62, -45, -12, 59, =53 },
{ 64, -53, 24, 12, -45, 62, -59, 35 },
{ 64, -62, 59, =53, 45, -35, 24, -12 })

+ Result of multiplications shifted
rig]r]t t))/ (3 Etatic const char ONE_OVER_SQRT TWO = 5;

tatic short xdata inBuffer[8] [8], outBuffer([8][8], idx;

ttatic unsigned char C(int h) { return h ? 64 : ONE OVER_SQRT TWO;}

tatic int F(int u, int v, short img[8][8]) ({ void CodecInitialize(void) { idx = 0; })

long s[8], r = 0; woid CodecPushPixel (short p) {

unsigned char x, j; if(idx == 64) idx = 0;

for(x=0; x<8; x++} { inBuffer[idx / 8][idx % 8] = p << 6; idx++;

s[x] = 0;)

for(j=0; j<8; j++)

void CodecDoFdct (void) {
unsigned short x, y;
} for (x=0; x<8; x++)
for (y=0; y<8; y++)
outBuffer([x] [y] = F(x, y, inBuffer);
return (short) ((((xr * (((16*C(u)) >> 6) *C(v)) >> 6)) >> 6) >> 6); idx = 0;

s[x] += (img[x][j] * COS_TABLE[j][v]) >> 6;

for (x=0; x<8; x++) r += (s[x] * COS_TABLE[x] [u]) >> 6;

17

Implementation 3 (cont.)

* Analysis of implementation 3
— Use same analysis techniques as implementation 2

— Total execution time for processing one image:
« 1.5 seconds

— Power consumption:
« 0.033 watt (same as 2)

— Energy consumption:
* 0.050 joule (1.5 s x 0.033 watt)
 Battery life 6x longer!!

— Total chip area:
* 90,000 gates
8,000 less gates (less memory needed for code)

18

Implementation 4

/1]
/EEPROMﬁ/ 80; / / R;M /
— 7 7

CODEC ART DPP

/ /][]
RRRERRRRRRRRRRRRRRRRRA AN

« Performance close but not good enough

* Must resort to implementing CODEC in hardware
— Single-purpose processor to perform DCT on 8 x 8 block

19

CODEC Design

4 memory mapped registers

— C DATAI REG/C DATAO REG used to push/pop 8 x 8 block into
and out of CODEC

— C CMND REG used to command CODEC
» Writing 1 to this register invokes CODEC

— C_STAT _REG indicates CODEC done and ready for next block
» Polled in software

Direct translation of C code to VHDL for actual hardware
iImplementation

— Fixed-point version used
CODEC module in software changed similar to UART/CCDPP

20

Code

static unsigned char
static unsigned char
static unsigned char
static unsigned char

(char)p; }

}

C_CMND REG = 1;

xdata
xdata
xdata
xdata

short CodecPopPixel (void) ({
return ((C_DATAI_BEG << 8) | C_DATAI_BEG);

void CodecDoFdct (void) {

whlle(C STAT REG == 1

C_STAT REG _at 65527;
C_ CMND REG _at_ 65528;
C DATAT REG at 65529;
C_| DATAO REG _at_ 65530;

void CodecInitialize (void) {}
void CodecPushPixel (short p) { C_DATAO REG =

) { /* busy wait */ }

21

Implementation 4 (cont.)

* Analysis of implementation 4

— Total execution time for processing one image:
* 0.099 seconds (well under 1 sec)

— Power consumption:
* 0.040 watt
* |Increase over 2 and 3 because SOC has another
processor
— Energy consumption:

* 0.00040 joule (0.099 s x 0.040 watt)
 Battery life 12x longer than previous implementation!!

— Total chip area:
« 128,000 gates
. Signif . ous imp .

22

Summary of Implementations

——tmptermentatomr-s—m/™M™M™Mm™m™M™M™m™/™m™/™/™/™™™™™
— Close in performance
— Cheaper

— Less time to build

* |Implementation 4
— Great performance and energy consumption

— More expensive and may miss time-to-market window

 If DCT designed ourselves then increased NRE cost and time-

to-market
« If existing DCT purchased then increased IC cost

 Which is better?

Implementation 2 |Implementation 3 |Implementation 4

Performance (second) 9.1 1.5 0.033
Power (watt) 0.033 0.033 0.040

Size (gate) 98,000 90,000 128,000

23

Summary

* Digital camera example
— Specifications in English and executable language
— Design metrics: performance, power and area

« Several implementations
— Microcontroller: too slow

— Microcontroller and coprocessor: better, but still
too slow

— Fixed-point arithmetic: almost fast enough

— Additional coprocessor for compression: fast
enough, but expensive and hard to design

— Tradeoffs between hw/sw — one of the main
-~ l|essons of this course!

24

Final issues

« Come by my office hours (right after class)

* Any questions or concerns?

25

