
1

EEL 4783: Hardware/Software Co-design
with FPGAs

Lecture 9: Short Introduction to VHDL*

Prof. Mingjie Lin

* Beased on notes of Turfts lecture

2

What does HDL stand for?

HDL is short for Hardware Description Language

(VHDL – VHSIC Hardware Description Language)
 (Very High Speed Integrated Circuit)

3

Why use an HDL?

Question:
 How do we know that we have not made a mistake when we manually

draw a schematic and connect components to implement a function?

Answer:
 By describing the design in a high-level (=easy to understand) language,

we can simulate our design before we manufacture it. This allows us to
catch design errors, i.e., that the design does not work as we thought it
would.

•  Simulation guarantees that the design behaves as it should.

4

How does the simulation work?

5

What is the output of C?

6

The two-phase simulation cycle

1)  Go through all functions. Compute the next value to
appear on the output using current input values and store
it in a local data area (a value table inside the function).

2) Go through all functions. Transfer the new value from the
 local table inside to the data area holding the values of
 the outputs (=inputs to the next circuit)

7

Cycle-based simulators

Go through all functions using current
inputs and compute next output

Update outputs & increase time with 1
delay unit

8

Event-based Simulators

Go through all functions whose inputs has
changed and compute next output

Update outputs & increase time with 1
delay unit

9

Event-based simulators with event queues

Go through all functions whose inputs has
changed and compute value and time for
next output change

Increase time to first scheduled event &
update signals

10

VHDL Simulation Cycle

•  VHDL uses a simulation cycle to model the stimulus and
response nature of digital hardware.

11

VHDL Delay Models

•  Delay is created by scheduling a signal assignment for a
future time.

•  Delay in a VHDL cycle can be of several types

•  Inertial

•  Transport

•  Delta

12

Inertial Delay

•  Default delay type
•  Allows for user specified delay
•  Absorbs pulses of shorter duration than the specified delay

13

Transport Delay

•  Must be explicitly specified by user
•  Allows for user specified delay
•  Passes all input transitions with delay

14

Delta Delay

• Delta delay needed to provide support for concurrent
 operations with zero delay

– The order of execution for components with zero delay is
not clear

• Scheduling of zero delay devices requires the delta
 delay

– A delta delay is necessary if no other delay is specified
– A delta delay does not advance simulator time
– One delta delay is an infinitesimal amount of time
– The delta is a scheduling device to ensure repeatability

15

Example – Delta Delay

16

How do we write code?

17

Basic Form of VHDL Code

•  Every VHDL design description consists of at least
one entity / architecture pair, or one entity with multiple
architectures.
•  The entity section is used to declare I/O ports of the
circuit. The architecture portion describes the circuit’s
behavior.
•  A behavioral model is similar to a “black box”.
•  Standardized design libraries are included before
entity declaration.

18

Standard Libraries

•  Include library ieee; before entity declaration.
•  ieee.std_logic_1164 defines a standard for designers to use in

describing interconnection data types used in VHDL modeling.
•  ieee.std_logic_arith provides a set of arithmetic, conversion,

comparison functions for signed, unsigned, std_ulogic, std_logic,
std_logic_vector.

•  Ieee.std_logic_unsigned provides a set of unsigned arithmetic,
conversion, and comparison functions for std_logic_vector.

•  See all available packages at http://www.cs.umbc.edu/portal/help/VHDL/

stdpkg.html

19

Entity Declaration

•  An entity declaration describes the interface of the component. Avoid using
Altera’s primitive names which can be found at c:/altera/91/quartus/common/
help/webhelp/master.htm#

•  PORT clause indicates input and output ports.
•  An entity can be thought of as a symbol for a component.

20

Port Declaration

•  PORT declaration establishes the interface of the object to the outside
world.

•  Three parts of the PORT declaration
•  Name

• Any identifier that is not a reserved word.

•  Mode
• In, Out, Inout, Buffer

•  Data type
• Any declared or predefined datatype.

•  Sample PORT declaration syntax:

21

Architecture Declaration

•  Architecture declarations describe the operation of the component.
•  Many architectures may exist for one entity, but only one may be active at a

time.
•  An architecture is similar to a schematic of the component.

22

Modeling Styles

•  There are three modeling styles:

•  Behavioral (Sequential)

•  Data flow

•  Structural

23

VHDL Hierarchy

24

Sequential vs Concurrent Statements

•  VHDL provides two different types of execution:
sequential and concurrent.

•  Different types of execution are useful for modeling of real
hardware.
•  Supports various levels of abstraction.

•  Sequential statements view hardware from a
“programmer” approach.

•  Concurrent statements are order-independent and
asynchronous.

25

Sequential Style

26

Data flow Style

27

Structural Style

28

Sequential Style Syntax

•  Assignments are executed sequentially inside processes.

29

Sequential Statements

•  {Signal, Variable} assignments
•  Flow control

•  if <condition> then <statments>
 [elsif <condition> then <statments>]
 else <statements>
 end if;
•  for <range> loop <statments> end loop;
•  while <condition> loop <statments> end loop;
•  case <condition> is

 when <value> => <statements>;
 when <value> => <statements>;
 when others => <statements>;

•  Wait on <signal> until <expression> for <time>;

30

Data Objects

•  There are three types of data objects:
•  Signals

•  Can be considered as wires in a schematic.
•  Can have current value and future values.

•  Variables and Constants
•  Used to model the behavior of a circuit.
•  Used in processes, procedures and functions.

31

Constant Declaration

•  A constant can have a single value of a given type.
•  A constant’s value cannot be changed during the simulation.
•  Constants declared at the start of an architecture can be used

anywhere in the architecture.
•  Constants declared in a process can only be used inside the specific

process.

CONSTANT constant_name : type_name [: = value];

CONSTANT rise_fall_time : TIME : = 2 ns;
CONSTANT data_bus : INTEGER : = 16;

32

Variable Declaration

•  Variables are used for local storage of data.
•  Variables are generally not available to multiple components or

processes.
•  All variable assignments take place immediately.
•  Variables are more convenient than signals for the storage of

(temporary) data.

33

Signal Declaration

•  Signals are used for communication between components.
•  Signals are declared outside the process.
•  Signals can be seen as real, physical signals.
•  Some delay must be incurred in a signal assignment.

34

Signal Assignment

•  A key difference between variables and signals is the assignment
delay.

35

Variable Assignment

36

IF – vs CASE – statement Syntax

37

FOR – vs WHILE – statement Syntax

For is considered to be a
combinational circuit by some
synthesis tools. Thus, it cannot
have a wait statement to be
synthesized.

While is considered to be an
FSM by some synthesis tools.
Thus, it needs a wait statement
to be synthesized.

38

WAIT – statement Syntax

•  The wait statement causes the suspension of a process statement or a
procedure.

•  wait [sensitivity_clause] [condition_clause] [timeout_clause];
•  Sensitivity_clause ::= on signal_name

wait on CLOCK;

•  Condition_clause ::= until boolean_expression
wait until Clock = ‘1’;

•  Timeout_clause ::= for time_expression
wait for 150 ns;

39

Sensitivity-lists vs Wait-on - statement

40

Concurrent Process Equivalents

•  All concurrent statements correspond to a process equivalent.
 U0: q <= a xor b after 5 ns;

 is short hand notation for
 U0: process

 begin

 q <= a xor b after 5 ns;

 wait on a, b;

 end process;

41

Structural Style

•  Circuits can be described like a netlist.
•  Components can be customized.
•  Large, regular circuits can be created.

42

Structural Statements

•  Structural VHDL describes the arrangement and
interconnection of components.
•  Behavioral descriptions, on the other hand, define responses to

signals.

•  Structural descriptions can show a more concrete relation
between code and physical hardware.

•  Structural descriptions show interconnects at any level of
abstraction.

43

Structural Statements

•  The component instantiation is one of the building blocks of structural
descriptions.

•  The component instantiation process
 requires component declarations and
 component instantiation statements.

•  Component instantiation declares the
 interface of the components used in
 the architecture.

•  At instantiation, only the interface is visible.
•  The internals of the component are hidden.

44

Component Declaration

•  The component declaration declares the interface of the component to
the architecture.

•  Necessary if the component interface is not declared elsewhere
(package, library).

45

Component Instantiation

•  The instantiation statement maps the interface of the component to
other objects in the architecture.

46

Component Instantiation Syntax

•  The instantiation has 3 key parts
•  Name
•  Component type
•  Port map

47

Component Libraries

•  Component declarations may be
made inside packages.

•  Components do not have to be
declared in the architecture body

48

Generics

•  Generics allow the component to be customized upon instantiation.
•  Generics pass information from the entity to the architecture.
•  Common uses of generics

•  Customize timing
•  Alter range of subtypes
•  Change size of arrays

entity ADDER is generic(n: natural :=2); port(A: in std_logic_vector(n-1 downto 0); B: in std_logic_vector(n-1 downto 0); carry: out std_logic; sum: out std_logic_vector(n-1 downto 0)); end ADDER; entity ADDER is generic(n: natural :=2); port(A: in std_logic_vector(n-1 downto 0); B: in std_logic_vector(n-1 downto 0); carry: out std_logic; sum: out std_logic_vector(n-1 downto 0)); end ADDER;

ENTITY adder IS
GENERIC(n: natural :=2);
PORT(
 A: IN STD_LOGIC_VECTOR(n-1 DOWNTO 0);
 B: IN STD_LOGIC_VECTOR(n-1 DOWNTO 0);
 C: OUT STD_LOGIC;
 SUM: OUT STD_LOGIC_VECTOR(n-1 DOWNTO
0));
END adder;

entity ADDER is generic(n: natural :=2); port(A: in std_logic_vector(n-1 downto 0); B: in std_logic_vector(n-1 downto 0); carry: out std_logic; sum: out std_logic_vector(n-1 downto 0)); end ADDER; entity ADDER is generic(n: natural :=2); port(A: in std_logic_vector(n-1 downto 0); B: in std_logic_vector(n-1 downto 0); carry: out std_logic; sum: out std_logic_vector(n-1 downto 0)); end ADDER;

49

Technology Modeling

•  One use of generics is to alter the timing of a certain component.
•  It is possible to indicate a generic timing delay and then specify the exact

delay at instantiation.

•  The example above declares the interface to a component
named inv.

•  The propagation time for high-to-low and low-to-high transitions
can be specified later.

50

Structural Statements

•  The GENERIC MAP is similar to the PORT MAP in that it maps specific
values to generics declared in the component.

51

Generate Statement

•  Structural for-loops: The GENERATE statement
•  Some structures in digital hardware are repetitive in nature. (RAM, ROM,

registers, adders, multipliers, …)

•  VHDL provides the GENERATE statement to automatically create regular
hardware.

•  Any VHDL concurrent statement may be included in a GENERATE
statement, including another GENERATE statement.

52

Generate Statement Syntax

•  All objects created are similar.
•  The GENERATE parameter must be discrete and is undefined outside

the GENERATE statement.

53

Example: Array of AND-gates

54

VHDL Data Types

55

Predefined Data Types

•  bit (‘0’ or ‘1’)
•  bit_vector (array of bits)
•  integer
•  real
•  time (physical data type)

56

Integer

•  Integer
•  Minimum range for any implementation as defined by standard:

-2,147,483,647 to 2,147,483,647
•  Integer assignment example

57

Real

•  Real
•  Minimum range for any implementation as defined by standard: -1.0E38 to

1.0E38
•  Real assignment example

58

Enumerated

•  Enumerated
•  User defined range
•  Enumerated example

59

Physical

•  Time units are the only predefined physical type in VHDL.

•  Physical
•  Can be user defined range
•  Physical type example

60

Array

•  Array
•  Used to collect one or more elements of a similar type in a single construct.
•  Elements can be any VHDL data type.

61

Record

•  Record
•  Used to collect one or more elements of different types in a single construct.
•  Elements can be any VHDL data type.
•  Elements are accessed through field name.

62

Subtype

•  Subtype
•  Allows for user defined constraints on a data type.
•  May include entire range of base type.
•  Assignments that are out of the subtype range result in error.
•  Subtype example

63

Natural and Positive Integers

•  Integer subtypes:
•  Subtype Natural is integer range 0 to integer’high;

•  Subtype Positive is integer range 1 to integer’high;

64

Boolean, Bit and Bit_vector

•  type Boolean is (false, true);
•  type Bit is (‘0’, ‘1’);
•  type Bit_vector is array (integer range <>) of bit;

65

Char and String

•  type Char is (NUL, SOH, …, DEL);
•  128 chars in VHDL’87
•  256 chars in VHDL’93

•  type String is array (positive range <>) of Char;

66

IEEE Predefined data types

•  type Std_ulogic is (‘U’, ‘X’, ‘0’, ‘1’, ‘Z’, ‘W’, ‘L’, ‘H’, ‘-’);
•  ‘U’ -- Uninitialized
•  ‘X’ -- Forcing unknown
•  ‘0’ -- Forcing zero
•  ‘1’ -- Forcing one
•  ‘Z’ -- High impedance
•  ‘W’ -- Weak Unknown
•  ‘L’ -- Weak Low
•  ‘H’ -- Weak High
•  ‘-’ -- Don’t care

•  type std_logic is resolved std_ulogic;
•  type std_logic_vector is array (integer range <>) of std_logic;

67

Assignments

•  constant a: integer := 523;
•  signal b: bit_vector(11 downto 0);

 b <= “000000010010”;
 b <= B”000000010010”;
 b <= B”0000_0001_0010”;
 b <= X”012”;
 b <= O”0022”;

68

Vector & Array assignments

•  subtype instruction: bit_vector(31 downto 0);
•  signal regs: array(0 to 15) of instruction;

regs(2) <= regs(0) + regs(1);

regs(1)(7 downto 0) <= regs(0)(11 downto 4);

69

Alias Statement

•  Signal instruction: bit_vector(31 downto 0);

•  Alias op1: bit_vector(3 downto 0) is instruction(23 downto 20);
•  Alias op2: bit_vector(3 downto 0) is instruction(19 downto 16);
•  Alias op3: bit_vector(3 downto 0) is instruction(15 downto 12);

•  Op1 <= “0000”;
•  Op2 <= “0001”;
•  Op3 <= “0010”;

•  Regs(bit2int(op3)) <= regs(bit2int(op1)) + regs(bit2int(op2));

70

Type Conversion (Similar Base)

•  Similar but not the same base type:

•  signal i: integer;
•  signal r: real;

•  i <= integer(r);
•  r <= real(i);

71

Type Conversion (Same Base)

•  Same base type:
 type a_type is array(0 to 4) of bit;
 signal a:a_type;
 signal s:bit_vector(0 to 4);

 a<=“00101” -- Error, is RHS a bit_vector or an a_type?
 a<=a_type’(“00101”); -- type qualifier
 a<=a_type(s); -- type conversion

72

Type Conversion (Different Base)

•  Different base types:
 Function int2bits(value:integer;ret_size:integer) return bit_vector;
 Function bits2int(value:bit_vector) return integer:

 signal i:integer;
 signal b:bit_vector(3 downto 0)

 i<=bits2int(b);
 b<=int2bits(i,4);

73

Built-In Operators

•  Logic operators
•  AND, OR, NAND, NOR, XOR, XNOR (XNOR in VHDL’93 only!!)

•  Relational operators
•  =, /=, <, <=, >, >=

•  Addition operators
•  +, -, &

•  Multiplication operators
•  *, /, mod, rem

•  Miscellaneous operators
•  **, abs, not

74

Simulate Design using Quartus II

•  Altera’s Quartus II is a PLD design software suitable for high-
density FPGA designs.

•  Schematic Editor, VHDL/Verilog Editor, Waveform Simulator.

75

Final issues

•  Come by my office hours (right after class)

•  Any questions or concerns?

