
1

EEL 5722C
Field-Programmable Gate Array Design

Lecture 14: Introduction to SystemC*

Prof. Mingjie Lin

* SystemC Tutorial, Silvio Veloso

2

Outline

• Needed tools
• Starting example
•  Introduction
• SystemC highlights
• Differences
• Modules, processes, ports, signals, clocks

and data types

3

Needed tools

• SystemC library package v2.0.1
Download in www.systemc.org

• Linux platform
• GCC compiler
• GTKWave – Waveform tool
• some text editor

4

Install SystemC

See Course Webpage

5

Starting Example:Full Adder

6

Introduction

• What is SystemC ?
– SystemC is a C++ class library and methodology

that can effectively be used to create a cycle-
accurate model of a system consisting of
software, hardware and their interfaces.

7

Introduction

• Where can I use SystemC ?
– In creating an executable specification of the

system to be developed.

• What should I know to learn SystemC ?
– Notions of C++ programming and VHDL helps

you a lot.

8

SystemC highlights

• Supports hardware and software co-design
• Developing an executable specification

avoids inconsistency and errors
• Avoids wrong interpretation of the

specification
• SystemC has a rich set of data types for

you to model your systems
•  It allows multiple abstraction levels, from

high level design down to cycle-accurate
RTL level

9

Why is SystemC different ?

• Current design methodology

•  Manual conversion creates errors

•  The C model is not more used

•  Many tests are needed to validate

10

Why is SystemC different ?

•  SystemC design methodology

• Better methodology, translate is not necessary

• Written in only one language

11

Modules

• Modules are the basic building blocks to
partition a design

• Modules allow to partition complex
systems in smaller components

• Modules hide internal data representation,
use interfaces

• Modules are classes in C++
• Modules are similar to „entity“ in VHDL

12

Modules

SC_MODULE(module_name)
{

// Ports declaration
// Signals declaration
// Module constructor : SC_CTOR
// Process constructors and sensibility list
// SC_METHOD
// Sub-Modules creation and port mappings
// Signals initialization

}

They can contain ports, signals, local data,

other modules, processes and constructors.

13

Modules

•  Module constructor
•  Similar to „architecture“ in VHDL

14

Modules

• Sub-modules instantiation:

•  Instantiate module

Module_type Inst_module (“label”);

•  Instantiate module as a pointer

Module_type *pInst_module;
// Instantiate at the module constructor SC_CTOR

pInst_module = new module_type (“label”);

15

Modules

• How to connect sub-modules ?

– Named Connection or

– Positional Connection

16

Modules

•  Named Connection

17

Modules

•  Positional Connection

18

Modules

•  Internal Data Storage
•  Local variables: can not be used to connect ports
•  Allowed data types

–  C++ types
–  SystemC types
–  User defined types

19

Modules

•  Example: Mux 2:1

20

Modules

•  Example:

21

Processes

•  Processes are functions that are identified to the
SystemC kernel. They are called if one signal of
the sensitivity list changes its value.

•  Processes implement the funcionality of modules

•  Processes are very similar to a C++ function or
method

•  Processes can be Methods, Threads and CThreads

22

Processes

• Methods
When activated, executes and returns
 - SC_METHOD(process_name)

• Threads
Can be suspended and reactivated
 - wait() -> suspends
 - one sensitivity list event -> activates
 - SC_THREAD(process_name)
• CThreads
Are activated in the clock pulse
 - SC_CTHREAD(process_name, clock value);

23

Processes

Type SC_METHOD SC_THREAD SC_CTHREAD
Activates Exe

c.
Event in sensit. list Event in sensit. List Clock pulse

Suspends Exe
c.

NO YES YES

Infinite Loop NO YES YES
suspended/ r
eactivated by

N.D. wait() wait()
wait_until()

Constructor &
Sensibility def

inition

SC_METHOD(call_back);
sensitive(signals);

sensitive_pos(signals);
sensitive_neg(signals);

SC_THREAD(call_back);
sensitive(signals);

sensitive_pos(signals);
sensitive_neg(signals);

SC_CTHREAD(
call_back,

clock.pos());
SC_CTHREAD(

call_back,
clock.neg());

24

Processes

•  Process Example

25

Ports and Signals

•  Ports of a module are the external interfaces that
pass information to and from a module

•  In SystemC one port can be IN, OUT or INOUT

•  Signals are used to connect module ports
allowing modules to communicate

•  Very similar to ports and signals in VHDL

26

Ports and Signals

•  Types of ports and signals:

–  All natives C/C++ types
–  All SystemC types
–  User defined types

•  How to declare

–  IN : sc_in<port_typ>
–  OUT : sc_out<port_type>
–  Bi-Directional : sc_inout<port_type>

27

Ports and Signals

•  How to read and write a port ?

– Methods read(); and write();

•  Examples:

–  in_tmp = in.read(); //reads the port in to in_tmp

–  out.write(out_temp); //writes out_temp in the out port

28

Clocks

•  Special object
•  How to create ?

sc_clock clock_name (
 “clock_label”, period, duty_ratio, offset,

initial_value);
•  Clock connection

f1.clk(clk_signal); //where f1 is a module

•  Clock example:

29

Hello World!

30

counter

31

Final issues

•  Come by my office hours (right after class)

•  Any questions or concerns?

