
1

EEL 5722C
Field-Programmable Gate Array Design

Lecture 15: Introduction to SystemC* (cont.)

Prof. Mingjie Lin

* SystemC Tutorial, Silvio Velo

2

Starting Example:Full Adder

3

Modules

•  Example:

4

Processes

•  Processes are functions that are identified to the
SystemC kernel. They are called if one signal of
the sensitivity list changes its value.

•  Processes implement the funcionality of modules

•  Processes are very similar to a C++ function or
method

•  Processes can be Methods, Threads and CThreads

5

Processes

• Methods
When activated, executes and returns
 - SC_METHOD(process_name)

• Threads
Can be suspended and reactivated
 - wait() -> suspends
 - one sensitivity list event -> activates
 - SC_THREAD(process_name)
• CThreads
Are activated in the clock pulse
 - SC_CTHREAD(process_name, clock value);

6

Processes

Type SC_METHOD SC_THREAD SC_CTHREAD
Activates Exe

c.
Event in sensit. list Event in sensit. List Clock pulse

Suspends Exe
c.

NO YES YES

Infinite Loop NO YES YES
suspended/ r
eactivated by

N.D. wait() wait()
wait_until()

Constructor &
Sensibility def

inition

SC_METHOD(call_back);
sensitive(signals);

sensitive_pos(signals);
sensitive_neg(signals);

SC_THREAD(call_back);
sensitive(signals);

sensitive_pos(signals);
sensitive_neg(signals);

SC_CTHREAD(
call_back,

clock.pos());
SC_CTHREAD(

call_back,
clock.neg());

7

Processes

•  Process Example

8

Ports and Signals

•  Ports of a module are the external interfaces that
pass information to and from a module

•  In SystemC one port can be IN, OUT or INOUT

•  Signals are used to connect module ports
allowing modules to communicate

•  Very similar to ports and signals in VHDL

9

Ports and Signals

•  Types of ports and signals:

–  All natives C/C++ types
–  All SystemC types
–  User defined types

•  How to declare

–  IN : sc_in<port_typ>
–  OUT : sc_out<port_type>
–  Bi-Directional : sc_inout<port_type>

10

Ports and Signals

•  How to read and write a port ?

– Methods read(); and write();

•  Examples:

–  in_tmp = in.read(); //reads the port in to in_tmp

–  out.write(out_temp); //writes out_temp in the out port

11

Clocks

•  Special object
•  How to create ?

sc_clock clock_name (
 “clock_label”, period, duty_ratio, offset,

initial_value);
•  Clock connection

f1.clk(clk_signal); //where f1 is a module

•  Clock example:

12

Data Types

•  SystemC supports:
– C/C++ native types
– SystemC types

•  SystemC types
– Types for systems modelling
– 2 values (‘0’,’1’)
– 4 values (‘0’,’1’,’Z’,’X’)
– Arbitrary size integer (Signed/Unsigned)
– Fixed point types

13

SystemC types

Type Description
sc_logic Simple bit with 4 values(0/1/X/Z)

sc_int Signed Integer from 1-64 bits

sc_uint Unsigned Integer from 1-64 bits

sc_bigint Arbitrary size signed integer

sc_biguint Arbitrary size unsigned integer

sc_bv Arbitrary size 2-values vector

sc_lv Arbitrary size 4-values vector

sc_fixed templated signed fixed point

sc_ufixed templated unsigned fixed point

sc_fix untemplated signed fixed point

sc_ufix untemplated unsigned fixed point

14

SystemC types

• Simple bit type
• Assignment similar to char

– my_bit = ‘1’;
• Declaration

– bool my_bit;

Operators
Bitwise & (and) | (or) ^ (xor) ~ (not)

Assignment =
 &=
 |=
 ^=

Equality ==
 !=

15

SystemC types

•  SC_LOGIC type

•  More general than bool, 4 values :
–  (‘0’ (false), ‘1’ (true), ‘X’ (undefined) , ‘Z’(high-impedance))

•  Assignment like bool
–  my_logic = ‘0’;
–  my_logic = ‘Z’;

•  Simulation time bigger than bool
•  Operators like bool
•  Declaration

–  sc_logic my_logic;

16

SystemC types

•  Fixed precision integers
•  Used when arithmetic operations need fixed size

arithmetic operands
•  INT can be converted in UINT and vice-versa
•  “int” in C++

–  The size depends on the machine
–  Faster in the simulation

•  1-64 bits integer
–  sc_int<n> -- signed integer with n-bits
–  sc_uint<n> -- unsigned integer with n-bits

17

SystemC types

18

SystemC types

•  Arbitrary precision integers
•  Integer bigger than 64 bits

–  sc_bigint<n>
–  sc_biguint<n>

•  More precision, slow simulation
•  Operators like SC_LOGIC
•  Can be used together with:

–  Integer C++
–  sc_int, sc_uint

19

SystemC types

•  Bit vector
–  sc_bv<n>
–  2-value vector (0/1)
–  Not used in arithmetics operations
–  Faster simulation than sc_lv

•  Logic Vector
–  sc_lv<n>
–  Vector to the sc_logic type

•  Assignment operator (“=“)
–  my_vector = “XZ01”
–  Conversion between vector and integer (int or uint)
–  Assignment between sc_bv and sc_lv
–  Additional Operators

 Reduction and_reduction() or_reduction() xor_reduction()
 Conversion to_string()

20

SystemC types

•  Examples:

–  sc_bit y, sc_bv<8> x;
–  y = x[6];

–  sc_bv<16> x, sc_bv<8> y;
–  y = x.range(0,7);

–  sc_bv<64> databus, sc_logic result;
–  result = databus.or_reduce();

–  sc_lv<32> bus2;
–  cout << “bus = “ << bus2.to_string();

21

User defined types

•  Comparation operator
– Operator “Built-in” “==“ can’t be used
–  function inline must be defined for user types

inline bool operator == (const packet_type& rhs) const
{

return (rhs.info==info && rhs.seq==seq &&
rhs.retry==retry);

}

22

Debugging

23

Text-based Debugging

•  C++ “printf” debugging

printf(“Hello World”);

cout << “Hello World” << endl;

24

Text-based Debugging

•  Constructor Debugging
•  Find out how your design is built up when the simulation

starts.
•  Use the name() method to identify SystemC classes:

25

Text-based Debugging

•  Debugging methods available on all SystemC
objects:
– const char* name()

•  Returns the name of the object

– const char* kind()
•  Returns the object’s sub-class name

– void print(ostream& out)
•  Prints the object’s name to the output stream

– void dump(ostream& out)
•  Prints the objects diagnostic data to the output stream.

26

Text-based Debugging

•  Debugging threads and methods
– All SystemC data types can be “printed” to cout.

•  e.g.: print inputs A, B, and F to cout in a table:

27

Text-based Debugging

28

Advanced Debugging

•  Standard C++ debugging tools
– GDB, etc...

•  SystemC-specific debuggers and visualizers.

29

Advanced Debugging

30

Wave-form Debugging

•  Requires adding additional SystemC statements to
sc_main()
"  Wave-form data written to file as simulation runs.
"  Sequence of operations:

•  Declare and create the trace file
•  Register signals or events for tracing
•  Run the simulation
•  Close the trace file

31

Wave-form Tracing

32

Wave-form Tracing

•  Sample Output

33

Final issues

•  Come by my office hours (right after class)

•  Any questions or concerns?

