
1

EEL 5722C
Field-Programmable Gate Array Design

Lecture 19: Hardware-Software Co-Simulation*

Prof. Mingjie Lin

* Rabi Mahapatra, CpSc489

2

How to cosimulate?

•  How to simulate hardware components of a mixed
hardware-software system within a unified environment?
–  This includes simulation of the hardware module, the processor,

and the software that the processor executes.

•  How to simulate hardware and software at same time?
•  What are various challenges?

–  Software runs faster than hardware simulator. How to run the
system simulation fast keeping the above synchronized?

–  Slow models provide detailed and accurate results than fast
models. How to balance these effects?

–  Use of different platforms for simulations.

3

Some basic approaches

•  Detailed Processor Model:
–  processor components(memory, datapath, bus, instruction decoder etc)

are discrete event models as they execute the embedded software.
–  Interaction between processor and other components is captured using

native event-driven simulation capability of hardware simulator.
–  Gate level simulation is extremely slow (~tens of clock cycles/sec),

behavioral model is ~hundred times faster. Most accurate and simple
model

ASIC

Model
(VHDL Simulation) software

Gate-Level

HDL

(Backplane)

4

Some basic approaches

•  Bus Model (Cycle based simulator):
–  Discrete-event shells that only simulate activities of bus interface

without executing the software associated with the processor. Useful for
low level interactions such as bus and memory interaction.

–  Software executed on ISA model and provide timing information in clock
cycles for given sequence of instructions between pairs of IO operation.

–  Less accurate but faster simulation model.

ASIC

Model
(VHDL Simulation)

(Backplane)

Bus Function

Model

HDL

Software

executed

by ISA

 Model

Program

running

on Host

5

Some basic approaches

•  Instruction Set Architecture Model:
–  ISA can be simulated efficiently by a C program. C program is an

interpreter for the embedded software.
–  No hardware mode. Software executed on ISA model. Execution on

ISA model provides timing (clock) details of the cosimulation.
–  Can be more efficient than detailed processor modeling because

internals of the processor do not suffer the expense of discrete-event
scheduling.

ASIC

Model
(VHDL Simulation) software

ISA Modell

C program

(Backplane)

Program

Running

on Host

6

Some basic approaches

•  Compiled Model:
–  very fast processor models are achievable in principle by translating the

executable embedded software specification into native code for
processor doing simulation. (Ex: Code for programmable DSP can be
translated into Sparc assembly code for execution on a workstation)

–  No hardware, software execution provides timing details on interface to
cosimulation.

–  Fastest alternative, accuracy depends on interface information.

ASIC

Model
(VHDL Simulation)

(Backplane)

Software compiled

for native code

of the host

Program

running on

host

7

Some basic approaches

•  Hardware Model:
–  If processor exists in hardware form, the physical hardware can often be

used to model the processor in simulation. Alternatively, processor could
be modeled using FPGA prototype. (say using Quickturn)

–  Advantage: simulation speed
–  Disadvantage: Physical processor available.

ASIC

Model
(VHDL Simulation)

(Backplane)

FPGA

Processor

8

A New Approach

•  This is a combined HW/SW approach. The host is responsible of
having OS, some applications and might have superset simulating
environment (RSIM, SIMICS, SIMOID).

•  Use of fast backplane (PCI) for communication. Real processor or
processor core in FPGA as hardware model, and ASIC/FPGA for
interface and interconnection for hardware modeler.

•  Good for fast complex architecture simulations including
multiprocessor.

Host

with

ISA Simulator

Processor

or

FPGACore

Interface

Logic in

FPGA

PCI Bus

9

Domain coupling

•  In four out of six approaches, we have host that run
software and required to interact with hardware model or
simulator.

•  Difficulties:
–  providing timing information across the boundaries
–  coupling two domains with proper synchronization

10

Migration across cosimulation

•  Consider the system simulation at different levels of abstraction
throughout the design process:
–  In the beginning of design process, hardware synthesis is not

available. Hence use functional model to study the interaction between
HW and SW.

–  As design progress with more implementations, replace functional
model of hardware by netlist level.

–  Once detail operation of hardware is verified, swap back the high level
description of HW design to gain simulation speed.

•  The cosimulation environment should have this migration support
across the levels of abstraction.

•  Off-the-shelf Components: design is not a part of the current design
process. Functional model is enough, no need to know internal
details.

11

Master slave cosimulation

•  One master simulator and one or more slave simulators: slave is
invoked from master by procedure call.

•  The language must have provision for interface with different
language

•  Difficulties:
–  No concurrent simulation possible
–  C procedures are reorganized as C functions to accommodate calls

HDL

HDL Interface

C simulator

Master

Slave

12

Distributed cosimulation

•  Software bus transfers data between simulators using a procedure
calls based on some protocol.

•  Implementation of System Bus is based on system facilities (Unix
IPC or socket). It is only a component of the simulation tool.

•  Allows concurrency between simulators.

VHDL

Simulator
VEC Interface to

Software Bus

C program

Interface to

software Bus

Cosimulation (Software) Bus

13

Synchronization and Time in cosimulation

•  In case of a single simulator (say Verilog) there is no problem for
timing as single event queue is managed for simulation.

•  If there are several simulators and software programs in the domain:
–  hardware and software domain are using a handshaking protocol to

keep their time (clock) synchronized. Signals (events) transferred from
one side to the other should have attached a time stamp.

–  It is possible to use a loosely coupled strategy which allows the two
domain to proceed more independently. If a signal is received with a
time stamp lower than the current clock in the respective domain, the
respective simulator have to be back up.

14

Aspects of cosimulation

•  A frame work of cosimulation consists of variety of components,
levels of abstractions and different models.

Analog model

Netlist-level Detail arch. model

Instruction-set model

Functional Model Functional Model

.

.

.

.

15

Final issues

•  Come by my office hours (right after class)

•  Any questions or concerns?

