EEL 5722C
Field-Programmable Gate Array Design

Lecture 19: Hardware-Software Co-Simulation®

Prof. Mingjie Lin

UCF

Stands For Opportunity

* Rabi Mahapatra, CpSc489 1

How to cosimulate?

* How to simulate hardware components of a mixed
hardware-software system within a unified environment?
— This includes simulation of the hardware module, the processor,
and the software that the processor executes.
 How to simulate hardware and software at same time?

* What are various challenges?

— Software runs faster than hardware simulator. How to run the
system simulation fast keeping the above synchronized?

— Slow models provide detailed and accurate results than fast
models. How to balance these effects?

— Use of different platforms for simulations.

Some basic approaches

 Detailed Processor Model:

— processor components(memory, datapath, bus, instruction decoder etc)
are discrete event models as they execute the embedded software.

— Interaction between processor and other components is captured using
native event-driven simulation capability of hardware simulator.

— Gate level simulation is extremely slow (~tens of clock cycles/sec),
behavioral model is ~hundred times faster. Most accurate and simple

model

Gate-Leve
HD

ASIC
Model

softhre

I (Backplane)

Some basic approaches

« Bus Model (Cycle based simulator):

— Discrete-event shells that only simulate activities of bus interface
without executing the software associated with the processor. Useful for
low level interactions such as bus and memory interaction.

— Software executed on ISA model and provide timing information in clock
cycles for given sequence of instructions between pairs of IO operation.

— Less accurate but faster simulation model.

Bus Function ASIC
Program , Model Model
running HDL (VHDL §jmulation)
on Host 1 T
(Backplane)

Some basic approaches

* Instruction Set Architecture Model:

— ISA can be simulated efficiently by a C program. C program is an
interpreter for the embedded software.

— No hardware mode. Software executed on ISA model. Execution on
ISA model provides timing (clock) details of the cosimulation.

— Can be more efficient than detailed processor modeling because
internals of the processor do not suffer the expense of discrete-event
scheduling.

ISA Mode ASIC

Program |.C.program Model

Running softhre MDLTM&MDL
on Host (Backplane)

\

Some basic approaches

« Compiled Model:

— very fast processor models are achievable in principle by translating the
executable embedded software specification into native code for

processor doing simulation. (Ex: Code for programmable DSP can be
translated into Sparc assembly code for execution on a workstation)

— No hardware, software execution provides timing details on interface to
cosimulation.

— Fastest alternative, accuracy depends on interface information.

ASIC

Model
for native code

running on MELTNMDDL
€ Nnos
host ‘ (Backplane)

Program Software compiled

Some basic approaches

« Hardware Model:

— If processor exists in hardware form, the physical hardware can often be
used to model the processor in simulation. Alternatively, processor could
be modeled using FPGA prototype. (say using Quickturn)

— Advantage: simulation speed
— Disadvantage: Physical processor available.

ASIC
Model

Processor : :
_I I (Backplane)

FPGA

A New Approach

 This is a combined HW/SW approach. The host is responsible of
having OS, some applications and might have superset simulating
environment (RSIM, SIMICS, SIMOID).

« Use of fast backplane (PCI) for communication. Real processor or
processor core in FPGA as hardware model, and ASIC/FPGA for
interface and interconnection for hardware modeler.

» Good for fast complex architecture simulations including
multiprocessor.

\1%4

Host
with
ISA Simulator

Domain coupling

» |In four out of six approaches, we have host that run
software and required to interact with hardware model or

simulator.
 Difficulties:
— providing timing information across the boundaries
— coupling two domains with proper synchronization

Migration across cosimulation

Consider the system simulation at different levels of abstraction
throughout the design process:
— In the beginning of design process, hardware synthesis is not

available. Hence use functional model to study the interaction between
HW and SW.

— As design progress with more implementations, replace functional
model of hardware by netlist level.

— Once detail operation of hardware is verified, swap back the high level
description of HW design to gain simulation speed.
The cosimulation environment should have this migration support
across the levels of abstraction.

Off-the-shelf Components: design is not a part of the current design
process. Functional model is enough, no need to know internal
details.

10

Master slave cosimulation

One master simulator and one or more slave simulators: slave is
invoked from master by procedure call.

The language must have provision for interface with different
language

Difficulties:

— No concurrent simulation possible
— C procedures are reorganized as C functions to accommodate calls

Master

Slave

11

Distributed cosimulation

Software bus transfers data between simulators using a procedure
calls based on some protocol.

Implementation of System Bus is based on system facilities (Unix
IPC or socket). It is only a component of the simulation tool.

Allows concurrency between simulators.

Software Bus software Bus

12

Synchronization and Time in cosimulation

In case of a single simulator (say Verilog) there is no problem for
timing as single event queue is managed for simulation.

If there are several simulators and software programs in the domain:

— hardware and software domain are using a handshaking protocol to
keep their time (clock) synchronized. Signals (events) transferred from
one side to the other should have attached a time stamp.

— ltis possible to use a loosely coupled strategy which allows the two
domain to proceed more independently. If a signal is received with a
time stamp lower than the current clock in the respective domain, the
respective simulator have to be back up.

13

Aspects of cosimulation

A frame work of cosimulation consists of variety of components,
levels of abstractions and different models.

14

Final issues

« Come by my office hours (right after class)

* Any questions or concerns?

15

