
C.K. Yang M216A
courtesy of M. Horowitz and T. Chanak Design of VLSI Circuits and Systems
Verilog According to Tom

1.0 What’s Verilog?
The name Verilog refers to both a language and a simulator which are used to
functionally specify and model digital systems. This document describes Verilog in
the context of producing RTL models of hardware, especially hardware which will
subsequently be implemented.

Hopefully this document along with some example Verilog code provide what
most students need to master Verilog syntax, semantics, and good coding prac-
tice, leaving the Verilog reference manuals to be reference manuals.

1.1 The Verilog Language
Verilog HDL (Hardware Description Language) was concocted by Gateway
Design Automation and later put in the public domain by Cadence Design Sys-
tems in order to promote the language as a standard.

Verilog models look like programs. Descriptions are partitioned into Verilog mod-
ules. Modules resemble subroutines in that you can write one description and use
(instantiate) it in multiple places.

You can assemble modules hierarchically. Lower-level modules will have inputs
and outputs which syntactically look like procedure parameters. The higher-level
module instantiates them and connects their input and output ports with Verilog
“wires” in a syntax that looks like a procedure call.

The lowest modules in the hierarchy, and possibly others, will have descriptions of
functionality. Both declarative and procedural descriptions look like C-language
statements with C-like expression operators, but with different meaning for the
“variables”.

// Verilog Example, an SR-latch made from two nand gates
// This description has no delays, so it won’t actually work,
// but it shows how modules are put together.

module nand(in1, in2, out);
input in1, in2;
output out;

assign out = ~(in1 & in2);

endmodule
Verilog According to Tom 1

C.K. Yang M216A
courtesy of M. Horowitz and T. Chanak Design of VLSI Circuits and Systems
// This module instantiates and “hooks up” two “nand” modules

module srlatch(s, r, q, q_b);
input s,r;
output q, q_b;

nand nand1(s, q_b, q);
nand nand2(r, q, q_b);

endmodule

1.2 The Verilog Simulator
Cadence Design Systems sells Verilog-XL, a simulator for the Verilog HDL lan-
guage. Verilog-XL compiles and runs a system’s modules either interactively or in
batch mode. Special waveform and state displays are available. Section 5.0 con-
tains details and hints for running Verilog-XL.

If the simulated system spans several files, Verilog-XL can assemble it regardless
of the order the files are specified in. Verilog-XL compiles the entire system on
each invocation, so there are no intermediate “object” files nor is there an explicit
link phase. The compilation step is quite fast, not at all in the way of getting things
done.

Cadence restricts our use of Verilog-XL, so it will only run on particular machines
by the grace of various key files. Contact the authorities for details.

1.3 Of What Use is Verilog?
This document considers Verilog a hardware modeling tool. Producing a Verilog
model should be one part of your design process. If your code is an end in itself,
you’re reading the wrong thing, and somebody else will have to tell you what Ver-
ilog is worth!

1.3.1 Exploring Options

At best, your Verilog model will be your design’s most easily manipulated abstrac-
tion among those that both correspond to hardware and are executable. It makes
sense to use Verilog to explore design options at a high level while keeping in
sight the approximate hardware implications of your choices. Synthesis tools can
vastly improve the quality of these approximations.

1.3.2 Simulating and Verifying Functionality

You can execute your Verilog model, so you can gain confidence that your sys-
tem’s design is functionally correct. Functional simulation ferrets out many errors
in complex systems.
Verilog According to Tom 2

C.K. Yang M216A
courtesy of M. Horowitz and T. Chanak Design of VLSI Circuits and Systems
1.3.3 Generating Functional Test Vectors

The Verilog system should be the earliest executable model of your design, so it
can save tedious work by automatically producing functional test vectors for sub-
sequent simulations at lower abstractions or even the completed hardware.

1.3.4 Input for Downstream Tools

By “working”, the Verilog model becomes a good specification. Verilog models can
specify functionality to synthesis tools like Synopsys, connectivity to routers, and
so on.

2.0 An RTL HW-Modeling Verilog Subset
The Verilog language and simulator have a lot of features, but a small number of
constructs are sufficient for RTL hardware modeling. Many exotic Verilog features
like tasks, functions, and named blocks obscure the connection between the func-
tional model and its implementation in hardware. Others, like primitive gates and
support for a complete MOS switch-level system are too low-level to manipulate
easily.

2.1 Values
Disregarding the signal-strength system that supports switch-level MOS, all nodes
in a Verilog model will have one of four values: 1, 0, X (undefined/error), or Z (high
impedance). If the node has multiple drivers, they combine as in FIGURE 1..

Verilog defaults to decimal constants. Binary, octal, decimal, and hexadecimal
constants can be expressed, but only binary constants may contain X or Z. The
most general constant syntax is a string with a size in bits, an apostrophe, a radix
(b, o, d, or h), and the constant. Examples:

100 // Decimal 100, 32 bits by default
6’h3a // Binary 111010
1’bx // One-bit X
32’bz // 32 bits of High-Z

0

1 X Z0

1

X

Z

0 X

X 1

X

X

X X X

Z

1

0

1 X0

X

FIGURE 1. Value Combinations
Verilog According to Tom 3

C.K. Yang M216A
courtesy of M. Horowitz and T. Chanak Design of VLSI Circuits and Systems
Code targeted for synthesis by Synopsys should have sizes on all constants. The
sizes will prevent Synopsys from generating lots of warnings and from synthesiz-
ing unnecessary hardware by assuming constants are 32 bits.

2.2 Objects

2.2.1 Nodes

The verilog wire data type corresponds to a circuit node. The wire keyword itself
appears in declarations. Verilog assumes that undeclared identifiers are names
for one-bit wires.

Verilog has other data types similar to wire which indicate wired logic. They’re
declared wand, wor and tri, you shouldn’t need them. Synopsys will occasionally
output tri, but it’s a synonym for wire.

2.2.2 Ports

The inputs, outputs, and bidirectional ports of modules are either wire or reg
objects. They can be vectors, and are declared with the input, output, and inout
keywords.

2.2.3 Reg

Reg data types are referenced like wires, but a reg’s value is whatever was most
recently procedurally assigned to it. You create state in Verilog modules by selec-
tively assigning to reg objects.

A Reg can be a vector, and can also have an integer subscript.

2.3 Hierarchy (Modules)
Modules are the basic units in Verilog models. They contain functional descrip-
tions and have input, output, and bidirectional ports for interfaces. A module can
contain instantiations of other modules. The instantiation syntax looks like a pro-
cedure call, complete with parameter renaming for port connections.

The following are true of module interfaces:

• An input or inout port is a wire within its module.

• An output port must be a wire if it is generated by a submodule.

• An output port must be a wire if it is generated declaratively.

• An output port must be a reg if it is assigned to procedurally.

Bidirectional ports cannot be assigned to procedurally. A method for working
around this limitation is described in section 3.2.3.

Modules tend to partition into leaf modules and connection modules, where leaf
modules contain procedural (always) and declarative (assign) functionality, and
Verilog According to Tom 4

C.K. Yang M216A
courtesy of M. Horowitz and T. Chanak Design of VLSI Circuits and Systems
higher modules connect them together by instantiating them and connecting their
ports with wires.

2.4 Expressions
Expressions in a C-like syntax do the combinational logic in Verilog. The operators
are C-like logical and arithmetic operators, and the operands are wires, regs, or
constants.

2.4.1 Logic

Bitwise and logical operators look like their C counterparts. There are also logical
reduction operators.

Comparisons can have two different semantics in the presence of X values. The
== and != operators return X if either argument is X, while the === and !== opera-
tors can compare to the value X itself.

Verilog includes the C conditional expression (question mark - colon) construct.

2.4.2 Arithmetic

All arithmetic is signed. The carry can be recovered if the result is one bit larger
than the largest operand, see the example in section 2.4.3.

Keep in mind that arithmetic can be expensive! Grouping of terms in expressions
can affect how well synthesis tools can share resources. Synopsys will not even
synthesize divide or modulus operations.

2.4.3 Concatenation

Verilog has a unique syntax for vector concatenation. The fields are comma-sepa-
rated between braces. An integer preceding the brace repeats the result. Exam-
ples:

word[31:0] = {short1[15:0], short2[15:0]};
{cout, result[7:0]} = byte1[7:0] + byte2[7:0] + cin;

// OK, OK, it’s not really an expression ...
word[31:0] = {24{byte[7]}, byte[7:0]};

// sign-extend “byte”

2.5 Declarative Descriptions (assign)
The assign construct expresses functionality declaratively. Syntactically, the key-
word assign precedes one or more assignments. The left side of each is a wire,
and the right hand of each is an expression.

In Verilog nomenclature, the result is a continuous assignment. The assign
asserts that the assigned-to wire is driven with the value of the right-hand expres-
sion at all times, with a delay if any is specified.
Verilog According to Tom 5

C.K. Yang M216A
courtesy of M. Horowitz and T. Chanak Design of VLSI Circuits and Systems
Assign constructs always express combinational logic. Examples:

assign sum[4:0] = a[3:0] + b[3:0];
assign a = x & y, o = x | y;

2.6 Procedural Descriptions (always)
The initial and always constructs express functionality procedurally. Both cause
the execution of a Verilog statement, but initial executes the statement only once
while always executes the statement repeatedly.

A Verilog statement can be compound, with multiple statements in a begin-end
block. Simple statements are assignments to reg variables, flow control, (if, case),
or system tasks. You won’t have many system tasks in your code unless you’re
debugging.

2.6.1 Timing Control

All of the always blocks in a system can be thought of as separate, concurrent pro-
cesses. Each has a “program counter” which starts at the beginning of the block,
advances to the end, and restarts at the beginning. Multiple statements in a block
are executed one at a time, so that the side-effects of statements are available to
subsequent ones, but simulated time advances only at timing-control points.

Any statement can be proceeded by a timing-control construct. When Verilog
encounters one, execution of statements in that always block is suspended until
the event control is satisfied. Simulated time will only advance when event control
is blocking execution of the always. This example has no event control at all, which
causes the simulator to hang:

always
begin

sum = a + b;
diff = a - b;

end

There are two common types of timing control, delay controls and event controls.
Delay controls suspend execution in their always blocks for the specified number
of time units. Event controls suspend execution until one of the listed signals
changes. Most of your always blocks will have single, initial event control lists as
their only timing control.
Verilog According to Tom 6

C.K. Yang M216A
courtesy of M. Horowitz and T. Chanak Design of VLSI Circuits and Systems
// 50% duty cycle clock, 20 time unit period
always

begin
clock = 0;
#10 // Delay control - 10 units
clock = 1;
#10
clock = 0;

end

// set x to be a xor b; combinational logic
always @(a or b)// Event control - only continue

// when a changes or b changes
begin

x = a | b;
if (a & b)

x = 0;
end

2.6.2 Flow Control

Verilog provides if-else and case for flow control. The case statement also comes
in variants casex and casez, which treat X and Z specially.

The if condition can be a single-bit reg or wire, or an expression. X or Z will cause
the else arm of the if to execute.

Example?

2.6.3 State

Assignments in always blocks are made to reg variables. The reg retains the last
value it was last assigned, so if an always block conditionally assigns to a reg
between timing controls, state is implied. Section 3.2.1, for example, shows how to
build latches and flip-flops with this mechanism.

The interaction of timing control and flow control indirectly implies state, so the
most general use of timing control can hopelessly obfuscate the functionality of
your model. The coding guidelines of section 4.5 are highly recommended in
order to avoid deadly, subtle errors.

3.0 How to Model Stuff

3.1 Assign vs. Always
A functional object that needs state requires specification via always, and driving
an inout port requires an assign, but a lot of combinational logic could be specified
with either mechanism. Often the choice is a matter of taste, but each method
does have advantages.
Verilog According to Tom 7

C.K. Yang M216A
courtesy of M. Horowitz and T. Chanak Design of VLSI Circuits and Systems
Assign is less error prone. Section 4.5 explains in detail how innocent-looking
always blocks can have unintended meaning.

Always is often less tedious to work with. Logic can be embedded in code that
already must exist to create latches and flops. Sequential assignments and/or
case statements express some logic more cleanly than conditional expressions
can.

wire d;
reg p;
// The following two lines each accomplish the
// same thing
assign d = a & b;
always @(a or b) p = a & b;

3.2 Common Primitive Objects

3.2.1 Flops and Latches

Model your flip-flops and flow latches with always blocks. A reg variable holds the
state, and flow and timing controls regulate updates.

For flow latches, be sure to model transparency. The latch inputs should appear
on the event control list.

You can combine several latches or flops in the same always block, but flops must
all have the same clock.

reg Qff, Ql;
reg [31:0] a, b;

// Positive edge-triggered D flip flop
always @(posedge clk)

Qff = D;

// D flow latch
always @(clk or D)

if (clk) Ql = D;

// Two 32-bit latches
always @(phi1 or x or y)

if (phi1)
begin

a = x;
b = y;

end

3.2.2 Muxes

Conditional expressions naturally form 2-input muxes. For a higher number of
inputs, muxes will be easier to express procedurally. If the selects aren’t fully
Verilog According to Tom 8

C.K. Yang M216A
courtesy of M. Horowitz and T. Chanak Design of VLSI Circuits and Systems
decoded and you intend to synthesize, be careful of implied priority as described
in section 4.5.

assign muxout = select ? input1 : input2;

3.2.3 Buses

Any Verilog wire can have multiple drivers. You can specify a “high-impedance”
output for an object driving a bus by driving the Verilog value Z. Expressions in
both continuous assignments and always blocks can generate the value Z, but
remember that module inout port wires must be driven by a continuous assign-
ment. If it’s easier to compute the value you want to drive procedurally, you will
need an intermediate reg and a continuous assignment to drive it. All three of
these approaches accomplish the same thing:

module adder(phi1, bus, loada, loadb, drive);
input phi1, load, drive;
inout[7:0] bus;

reg [7:0] opa, opb;

// Two load-qualified latches to hold operands
always @(phi1 or bus or loada or loadb)

if (phi1)
begin

if (loada) opa = bus;
if (loadb) opb = bus;

end

// You can do it this way -

assign bus = drive ? opa + opb : 8’bz;

// Or this way -

reg [7:0] sum;
assign bus = drive ? sum : 8’bz;
always @(opa or opb) sum = opa + opb;

// Or this way -

reg [7:0] busout;
assign bus = busout;
always @(opa or opb or drive)

busout = drive ? opa + opb : 8’bz;

endmodule

Remember that even for buses, the module port can be an output rather than an
inout if the value isn’t used as an input in that module because pure outputs can
also be driven with a Z.
Verilog According to Tom 9

C.K. Yang M216A
courtesy of M. Horowitz and T. Chanak Design of VLSI Circuits and Systems
3.3 State Machines
There are a lot of ways to make state machines. This section describes a method-
ical way of writing state machine descriptions. The resulting code and hardware
are hopefully easy to understand and modify.

First, decide whether you want a Moore or a Mealy machine. The organization of
the code will differ for the two machine types.

FIGURE 2. illustrates which type of machine is which. A Moore machine’s outputs

depend only on its state, while a Mealy machine’s outputs depend on its state and
inputs. A Mealy machine typically has fewer states than a Moore machine for the
same function. System timing constraints are less obvious for systems containing
Mealy machines.

Represent the state with one register, either a flop or a master-slave latch pair.
Use the preprocessor or parameters to give the states symbolic names. Case
statements in always blocks work well for specifying next-state logic and decode
logic. If you want to make a Moore machine, it may be a good idea to keep the
next-state logic and the output decode logic in separate always blocks. The follow-
ing example is deliberately long-winded for what it accomplishes, in order to illus-
trate the desired coding style.

FIGURE 2. Moore and Mealy
Machines

Moore Mealy

0

1

0 1 0/1 1/0

Clk

Next-State
Logic

O
ut

pu
t D

ec
od

e

S
ta

te

Clk

S
ta

te

Next-State/
Output
Logic

inputs

outputs
Verilog According to Tom 10

C.K. Yang M216A
courtesy of M. Horowitz and T. Chanak Design of VLSI Circuits and Systems
// Mickey-mouse parity machine
// (Master-slave latches for state)

reg state_s1, state_s2;

// Slave state latch
always @(phi1 or state_s1)

if (phi1) state_s2 = state_s1;

// Master state latch & next-state logic
always @(phi2 or in or state_s2)

case (state_s2)
‘ODD:

if (in)
state_s1 = EVEN;

else
state_s1 = ODD;

‘EVEN:
if (in)

state_s1 = ODD;
else

state_s1 = EVEN;
endcase

// Output logic
always @(state_s2)

case (state_s2)
‘EVEN: out = 0;
‘ODD: out = 1;
// We want combinational logic here, so:
default: out = 1’bx;

endcase

3.3.1 Synopsys State-Machine targeting

If you want a single edge-triggered state machine, (you probably don’t,) there is a
way to specify the state encoding with the Verilog parameter mechanism and
some pseudo-comment directives for the benefit of the FSM Compiler in Synop-
sys. The ordinary Synopsys Design Compiler will synthesize state machines as
they are described, but the FSM Compiler can manipulate state encodings in
order to get better answers.

4.0 Coding Style
A uniform coding style may seem unnecessarily restrictive, but there are many
advantages. Other people will understand your code more easily, a big plus if you
are part of a team or even if you ever need some help. Certain good habits can
protect you from entire classes of errors. Finally, tools other than the Verilog simu-
lator that accept Verilog as input may restrict what the code can look like.
Verilog According to Tom 11

C.K. Yang M216A
courtesy of M. Horowitz and T. Chanak Design of VLSI Circuits and Systems
4.1 General Guidelines
• Write one module per file. You can find stuff easily, multiple people can work on

one system, the design can be sent piecemeal to other tools, and it’s easy to
swap subsystems.

• Don’t write modules as primitive as “latch”, “mux”, and “driver”, they are as easy
to express in Verilog when needed as they are to instantiate.

• Beware of describing hardware that cannot be started. Initial blocks have no
hardware counterpart, nor do comparisons to X (===, !==, ??????casex)

4.2 Documentation
Documentation - you know, comments! (Ugh!)

• Write a large comment near the header of each module that describes its con-
text. People will be more able to find their way around your design hierarchy.

• Use vertical or horizontal whitespace to keep code and comments apart.

• As usual, point out subtleties

4.3 Targeting Synopsys
Synopsys accepts a subset of Verilog. Aside from following the guidelines in this
section:

• Bit field indices cannot be variables, Synopsys won’t synthesize the required
shifter nor can it determine the width of the result.

If you are synthesizing more than random/control logic:

• Synopsys cannot synthesize memories or dividers.

• You will save hardware by manually grouping common subexpressions.

4.4 Naming Conventions
• Have one module per file, and name the file and the module the same thing.

• Often, a module has exactly one instantiation in a system. If so, name the mod-
ule and the instantiation the same thing.

• Formal/Actual name mapping can take place in every module instantiation.
Make every effort to use the same name for a given circuit node everywhere in
the system’s hierarchy. Unless modules have multiple instantiations, you will be
able to do this.

4.4.1 Identifier Suffixes

Choose a convention for labeling every node identifier with a suffix which
describes assertion level, clock timing-type, and other good information (pipeline
stage names, for example) both to avoid mistakes and to aid documentation.
Verilog According to Tom 12

C.K. Yang M216A
courtesy of M. Horowitz and T. Chanak Design of VLSI Circuits and Systems
When all identifiers have suffixes, inspection or automatic tools can help to find
errors and inconsistencies.

4.4.2 Abbreviations

When you name something, avoid abbreviating words to less than three letters.
Everybody may know what an ALU is, but there are a lot of common words that
want the same one or two-letter abbreviations. What abbreviations you use, use
uniformly.

Suggestions:
Register reg
Address addr (not add or adr)
Drive drv
Result res
Bus bus
Immediate imm
Load load (not ld)
Store store (not st)

4.5 Procedural Pitfalls
Don’t mix delay timing control with event timing control, the meaning of your code
will quickly evade you. Each always block should have a single event control list at
its beginning.

The statements in an always block execute in sequence. The sequencing often
implies priority that you didn’t intend, but synthesis tools will build unnecessary
hardware, not knowing any better.

Procedural Verilog semantics allow for the possibility of some very subtle prob-
lems. Incomplete event control lists and unintentional implication of latches cause
a lot of bugs. The real dangers of both of these common errors are that both lead
to models which appear to simulate correctly but synthesize incorrectly and that
both can be very difficult to casually notice.

4.5.1 Incomplete Event Control Lists

Always blocks that specify combinational logic and/or flow latches should execute
any time that any input changes. If an input is missing from the event control list,
that input will have unwanted state behavior, as if it were connected through some
strange sort of flop or latch.

Every value referenced in a combinational or flow-latch always block should be
included in the event control list. Referenced values include:

• Operands in expressions

• If and case arguments

• Reg subscripts on the left-hand side of an assignment
Verilog According to Tom 13

C.K. Yang M216A
courtesy of M. Horowitz and T. Chanak Design of VLSI Circuits and Systems
A subscripted reg should be in the event control list with the same subscript it is
referenced with. If it is used with multiple subscripts, they should all be on the list.
Example:

always @(foo or memaddr or reg[aspec] or
reg[bspec] or aspec or bspec)

begin
if (foo)

mem[memaddr] = reg[aspec];
else

mem[memaddr] = reg[bspec];
cspec = aspec | bspec;

4.5.2 Unwanted Implicit State

A reg keeps the value of its last assignment until it is assigned to again. If a reg is
assigned to on some path of execution through an always block but not on all
paths, it behaves as a latch. Make sure that non-latch reg variables are assigned
to through every path - both arms of ifs, and all arms of cases. A case should have
a default even if all possible inputs match some label. You may want to assign a
default value (perhaps X) to variables early in the always block.

5.0 Running the Simulator
The Verilog simulator runs on the L&IR Sparcstations (the elaines) in Sweet Hall.

Simply invoke Verilog with all of your source files as command-line arguments,
and they will be compiled and run. If you have specified a waveform analyzer, it
will appear. You may have to send a Ctrl-C to make the simulator pause the exe-
cution of your model and give you a prompt.

From the prompt, you can send a Ctrl-D to exit the simulator, or begin using Ver-
ilog interactively as described in section 5.2. With execution paused, you can also
use the analyzer.

5.1 System Tasks
You can insert calls to special system tasks in blocks of procedural code. All sys-
tem task names begin with the character $.

Some system tasks “execute” fully as they are encountered. $display and $stop
are examples of such tasks, which you would use in always blocks. Others like
$monitor and $gr_waves instantiate processes which continue to run after they
are executed. You would probably put calls to such tasks in initial blocks.

• $display
$display corresponds to printf in C. The first, optional argument is a format
string, like C except that “%h” is hexadecimal, not “%x”, and there are formats
“%t” for times and “%m” for hierarchical names.
Verilog According to Tom 14

C.K. Yang M216A
courtesy of M. Horowitz and T. Chanak Design of VLSI Circuits and Systems
• $stop
When Verilog encounters a $stop, it pauses as if you sent a Ctrl-C.

• $finish
Verilog exits as if you sent Ctrl-D when it encounters $finish.

• $monitor
Verilog instantiates a process which, for all subsequent time, prints its argu-
ments according to the optional format string as in $display whenever one of
those arguments changes in the course of simulation.

• $time
$time is not a system task, but a system variable which can be especially useful
as an argument to $display or $monitor.

• $gr_waves , $gr_addwaves (see
Both of these tasks instantiate processes which set up waveform analyzer
traces and update them during subsequent simulation. Section 5.3 has more
on the analyzer.

5.2 Debugging in Interactive Mode
The command-line argument “-s” will cause Verilog to begin in interactive mode
rather than immediately starting execution. You may want just that if your model is
screwing up early on.

5.2.1 Seeing Out-of-Scope Nodes

Verilog has a mechanism and syntax for accessing values from lower scopes than
the current module. Such access would be a bad practice for modeling, but it can
be very useful for instrumenting and debugging, especially with $gr_waves.

5.2.2 Interactive Mode

Things you type at the interactive prompt execute as if they were in a sort of initial
block. There are several Verilog constructs that are handy in interactive mode, and
there are some system tasks intended specifically to be used interactively.

• $scope
You can set the current default scope, analogously to “cd” in Unix, with the
$scope command.

• $showscopes
$showscopes prints all of the modules, tasks, and functions in the current
scope.

• $showvars
$showvars displays the status of Verilog “variables”. $showvars is useful for
debugging multi-driver busses, because it is the one way to see what the indi-
vidual drivers are trying to put on the wire, rather than the overall “X” you usu-
ally see.
Verilog According to Tom 15

C.K. Yang M216A
courtesy of M. Horowitz and T. Chanak Design of VLSI Circuits and Systems
• $list
$list prints the source text for the current scope, annotated with the current val-
ues of variables.

• ,
A comma will step the execution through a single statement.

• .
A period will resume execution to the next $stop or Ctrl-C.

• $db_help
Shows a long list of debugger options that allows you to set breakpoints much
like the C-debugger. For instance,

$db_breakonposedge(clock);

will cause a break on every cycle of clock.

Verilog interactive mode allows the forever construct, which is like an always con-
struct. The usual timing controls are available, so you can set breakpoints in many
ways:

#10000 $stop; // Stop after 10,000 time units
forever @(posedge clk) $stop; // stop at each clock cycle
forever @(opcode)

if (opcode==72) $stop; // stop when “opcode” becomes 72

Break conditions could possibly be quite complex.

5.2.3 Viewing the waveform

During the interactive mode, the waveform of the signals can still be viewed. The
next section describes two methods of viewing the waveform.

Gr_waves can be applied through the command line. Existing gr_wave commands
already in the code will display the appropriate signals as you step through.

Simwave, however, is a bit more difficult to use. Since simwave loads the data
through the “dump” file, you must first ensure that the latest information is entirely
dumped to file. This can be forced by typing on the command line:

$dumpflush;

To load the results with the new information, the File->Setup->Restore option is
very handy once you save the setup.

5.3 The Waveform Analyzer
There are several methods of displaying a waveform in Verilog. The first section
describes gr_waves. For our Verilog environment, gr_waves is not available. How-
ever a more user friendly tool can be used through Cadence called simwave. The
second portion of this section describes how to use simwave. A third option is to
use a run-time debugger. This feature is not currently supported.
Verilog According to Tom 16

C.K. Yang M216A
courtesy of M. Horowitz and T. Chanak Design of VLSI Circuits and Systems
5.3.1 gr_waves

If Verilog executes a $gr_waves task, it opens a graphics window and keeps it
updated with the history of the values of the variables you want to monitor.

History prior to the $gr_waves call does not get recorded, so $gr_waves calls are
almost always in initial blocks.

Only one $gr_waves call is allowed. More signals can be added to the analyzer
with the variation $gr_addwaves. $gr_addwaves might be useful interactively, if
old values are not of interest.

You will often want to access out-of-scope values with the analyzer, so it makes
sense to put all of your $gr_waves and $gr_addwaves calls in an initial block in the
topmost module in your system, where all nodes are accessible.

// Somewhere in a top-level module...
initial

begin
$gr_waves(“Phi1”, phi1, “Phi2”, phi2);
$gr_addwaves(“T”, datapath.tbus, “S”, datapath.sbus);
$gr_addwaves(“Reset”, reset);
$gr_addwaves(“bogus signal”, interface.controller.foo);

end

When the simulator is not executing, you can use a mouse to manipulate the
waveform display. The first and second buttons move and swap the two cursors,
the third moves the time axis. A menu of pushbuttons allows zooming, among
other things.

5.3.2 simwave

Simwave is a post-processing tool that can read the dumped output of Verilog.
You can launch simwave by typing at the command prompt:

>> simwave

Simwave will open a display window. The menus are fairly self explanatory. The
File->Database->Load allows you to load a new Verilog dumped output which is
the vcd format. Verilog can also generate the shm format but it is not as conve-
nient to use. File->Setup->Save/Restore allows you to save a particular setup so
that you can reload it next time you startup simwave. Tools->Browser allows you
to open a browser for selecting the signals to display. Play around or use their
Help to get familiar with the tool.

To generate the dump output from Verilog, there are several commands that are
useful within the Verilog code.

$dumpfile(<filename>);

$dumplimit(<filesize>);

$dumpflush;

$dumpall;
Verilog According to Tom 17

C.K. Yang M216A
courtesy of M. Horowitz and T. Chanak Design of VLSI Circuits and Systems
The first instantiates a file to dump. Otherwise, it defaults to verilog.dump. The
second limits the dump filesize to avoid runaways. The third makes sure all data in
the buffer are stored in file before proceeding. The last gives a checkpoint at the
instance in time it is called.

$dumpon;

$dumpoff;

Stops or resumes the recording of data values.

$dumpvars(<level>,<module|variable>....);

$dumpvars(2,count,clkmod, trafmod);

IMPORTANT, <level> refers to the depth that it can probe if you give it a module
name. Every register/wire inside that heirarchical depth is logged. Otherwise, to
save space you can specify a specific variable. Typically, I use the modules to
save time. As an example,

// Somewhere in a top-level module...
initial

begin
$dumpfile(“outfile”);
$dumpvars(2, datapath, datapath.sbus);

end
Verilog According to Tom 18

	Verilog According to Tom
	1.0 What’s Verilog?
	1.1 The Verilog Language
	1.2 The Verilog Simulator
	1.3 Of What Use is Verilog?
	1.3.1 Exploring Options
	1.3.2 Simulating and Verifying Functionality
	1.3.3 Generating Functional Test Vectors
	1.3.4 Input for Downstream Tools

	2.0 An RTL HW-Modeling Verilog Subset
	2.1 Values
	FIGURE 1. Value Combinations

	2.2 Objects
	2.2.1 Nodes
	2.2.2 Ports
	2.2.3 Reg

	2.3 Hierarchy (Modules)
	2.4 Expressions
	2.4.1 Logic
	2.4.2 Arithmetic
	2.4.3 Concatenation

	2.5 Declarative Descriptions (assign)
	2.6 Procedural Descriptions (always)
	2.6.1 Timing Control
	2.6.2 Flow Control
	2.6.3 State

	3.0 How to Model Stuff
	3.1 Assign vs. Always
	3.2 Common Primitive Objects
	3.2.1 Flops and Latches
	3.2.2 Muxes
	3.2.3 Buses

	3.3 State Machines
	FIGURE 2. Moore and Mealy Machines
	3.3.1 Synopsys State-Machine targeting

	4.0 Coding Style
	4.1 General Guidelines
	4.2 Documentation
	4.3 Targeting Synopsys
	4.4 Naming Conventions
	4.4.1 Identifier Suffixes
	4.4.2 Abbreviations

	4.5 Procedural Pitfalls
	4.5.1 Incomplete Event Control Lists
	4.5.2 Unwanted Implicit State

	5.0 Running the Simulator
	5.1 System Tasks
	5.2 Debugging in Interactive Mode
	5.2.1 Seeing Out-of-Scope Nodes
	5.2.2 Interactive Mode
	5.2.3 Viewing the waveform

	5.3 The Waveform Analyzer
	5.3.1 gr_waves
	5.3.2 simwave

