FPGA Express
HDL Reference Manual

December 1997

Comments?
E-mail your comments about Synopsys documentation to
doc@synopsys.com

SYNOPSYS

Copyright Notice and Proprietary Information

Copyright © 1997 Synopsys, Inc. All rights reserved. This software and documentation are owned by Synopsys, Inc., andfiderishikcense
agreement. The software and documentation may be used or copied only in accordance with the terms of the license agpeenoénheNsmftware and
documentation may be reproduced, transmitted, or translated, in any form or by any means, electronic, mechanical, menoabtbptiwise, without
prior written permission of Synopsys, Inc., or as expressly provided by the license agreement.

Right to Copy Documentation

The license agreement with Synopsys permits licensee to make copies of the documentation for its internal use only. Ealtinchmlesall copyrights,
trademarks, service marks, and proprietary rights notices, if any. Licensee must assign sequential numbers to all capeged bleak contain the
following legend on the cover page:

“This document is duplicated with the permission of Synopsys, Inc. for the exclusive use of
and its employees. This is copy humber

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the United States of Americar®tschagionals of other countries
contrary to United States law is prohibited. It is the reader’s responsibility to determine the applicable regulatiorsgpiy taitb them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Trademarks

Synopsys, the Synopsys logo, BINMOS-CBA, CMOS-CBA, COSSAP, DESIGN (ARROWS), DesignPower, DesignWare, dont_use, ExpressModel, in
Sync, LM-1000, LM-1200, Logic Modeling, the Logic Modeling logo, Memory Architect, ModelAccess, ModelTools, Pagidébug,

SmartLicense, SmartLogic, SmartModel, SmartModels, SNUG, SOLV-IT!, SourceModel Library, Stream Driven Simulator, SynopsZoRMidilr,
Synthetic Designs, Synthetic Libraries, TestBench Manager, and TimeMill are registered trademarks of Synopsys, Inc.

3-D Debugging, AMPS, Arcadia, Arkos, Behavioral Compiler, CBA Design System, CBA-Frame, characterize, Chip Architect, ©msigiiex] Core
Network, Cyclone, Data Path Express, DataPath Architect, DC Expert, DC Expert Plus, DC Professional, DelayMill, DesigrCadviStore, Design
Analyzer, Design Compiler, DesignSource, DesignTime, DesignWare Developer, Direct RTL, Direct Silicon Access, dont_totainchlargtwork,

ECL Compiler, ECO Compiler, Embedded System Prototype, Floorplan Manager, Formality, FoundryModel, FPGA Compiler, FPGA-Eaxpeess,
Compiler, Floorplan Manager, Formality, FoundryModel, FPGA Compiler, FEXpRess, Frame Compiler, General Purpose Post-Processor, GPP, HDL
Advisor, HDL Compiler, Integrator, Interactive Waveform Viewer, Library Compiler, LM-1400, LM-700, LM-family, Logic Model, [Hodece,
ModelWare, Module Compiler, MS-3200, MS-3400, Power Compiler, PowerArc, PowerGate, PowerMill, PrimeTime, RailMill, RTL ABaadwmr
Debugger, Silicon Architects, SimuBus, SmartCircuit, SmartModel Windows, Source-Level Design, SourceModel, SWIFT, SWIEF, Byerdasys
Graphical Environment, Test Compiler, Test Compiler Plus, Test Manager, TestSim, Timing Annotator, Trace-On-Demand, VHDRirBykttomn
Visualyze, Vivace, VSS Expert, and VSS Professional are trademarks of Synopsys, Inc.

All other products are trademarks of their respective holders and should be treated as such.

Printed in the U.S.A.

Table of Contents

1 FPGA Express with Verilog HDL
Hardware DescriptionLanguagescooviiiniennnnn.. 1-1
The FPGA ExpressDesign Process., 1-2
Using FPGA Expressto CompileaVerilog HDL Design............ 1-3
Design Methodologycoiiiii i e e 1-4
2 Description Styles
DesignHierarchy e e 2-2
Structural DesCriptions. oo e 2-2
Functional DesCriptionsot 2-3
Mixing Structural and Functional Descriptions. 2-4
Design Methodologyo oo 2-6
Description Style. 2-6
Language CoNStIUCES.o ot et e 2-6
Design Constraints. . ..o vt e e 2-6
Register SAlection. i 2-7
Asynchronous DESIgNS.o oo e e 2-7
3 Structural Descriptions
MOUIES . . . 3-2
macromodule Constructso 33

FPGA Express HDL Referencxe Manual

Port DEfINILIONS . . .\ttt e e e 33

POrt Names 34
Module Statementsand Constructs 35
Structural Data TyPeS . ..o oot 3-6
parameter Definitions. 3-6

Wire Data TYPES. . ot e e 37

Wand Data TYPES . . oottt 37

WOr Dala TyPes ..o 3-8

t DAl TYPES. . oot e e 3-8
supplyO/ supplyl DataTypeS . .. oo 39

reg Dala TYPES. . ottt 39

Port Declarations. 3-10
input Declarations 3-10
output Declarations ...t 3-10

inout Declarations i 3-10
ContinUOUS ASSIgNMENtot teeeee 311
Module Instantiations. 3-12
Named and Positional Notation. 3-13
Parameterized DeSIgNSo 3-13
GateLevel Modeling 3-15
Three-State Buffer Instantiation 3-16

4 Expressions

Constant-Valued EXPressionsovv it ci it 4-1
O aOrS . . ot e 4-2
Arithmetic Operators.o oo e e 4-4
Relational Operatorso vt 4-4
Equality Operators.o e 4-5
Handling Comparisonsto X orZcciviiiinenann.. 4-5
Logical Operatorsooi i e e 4-6
Bit-Wise Operatorst e 4-7
Reduction Operatorsot e 4-8
Shift Operators . ..o e 4-8
Conditional Operators. ... ovvvi e e e 4-9
Concatenation Operator.o vttt et e e 4-10
Operator Precedence.t e 4-11
OPEraNdS. . . ot e 4-12
NUMDEYS . .. 4-12
Wiresand RegiSterS. oot e 4-12
Bit-Selects e 4-13
Part-Selects.o 4-13
FunctionCalls. 4-13
Concatenationof Operands. iiiiiiiin.... 4-14
Expression BitWidths. 4-14

FPGA Express HDL Reference Manual

5 Functional Descriptions

Using Sequential Constructscooviii i e e 51
function Declarations.t 5-3
inpUt DecClarations.t e 54
Function Output.o e 54
regDeclarations. 55
Memory Declarationst e 55
parameter Declarations. 5-6
integer Declarations. 5-6
Function Statements. 5-7
Procedural Assignments 5-7
RTL ASSIgNMENtSottt e i 5-8
begin...endBlock Statements 5-10
if...elseStatements. i 5-11
Conditional Assignments 5-13
Case StateMmentS. 5-13
Full Caseand Pardllel Case.t 5-14
CasEX StAeMENTS 5-16
Casez StalementSo 5-18
fOr LOOPS. . oot e 5-19
While LOOPS. . ..o e 5-20
forever LOOPS . ..o oo e 5-21
disable Statements. 5-22
task Statements.ot 5-23
aAwaysBIoCKS. e 5-24
Incomplete Event Specification 5-26
6 Register and Three-State Inference

Register Inference i e e 6-1
Reporting Register Inference i, 6-2
Controlling Register Inferenceo ... 6-3
Attributes that Control Register Inference. 6-3
Inferring LatChes. oot 6-5
Inferring SRLatChes i i 6-5
InferringD Latches ... 6-8
Inferring Flip-Flops. i 6-17
InferringD Flip-Flops i 6-17
Understanding the Limitations of D Flip-Flop Inference 6-30
Three-State Inference. 6-34
Reporting Three-State Inference. 6-34
Controlling Three-StateInference. 6-34
Inferring Three-State Drivers 6-34
Simple Three-State Driver.t 6-35
Registered Three-State Drivers oot 6-38

FPGA Express HDL Reference Manual

vi

Understanding the Limitations of Three-State Inference 6-40

7 FPGA Express Directives
Notation for FPGA ExpressDirectivesS 7-1
translate_off and trandate_on Directives. 7-2
parallel_case Directive. 7-3
full_caseDirective. 7-4
Component Implicationc.cou i 7-6
8 Flip-Flops
Trandating Flip-flops. i 8-1
9 Verilog Syntax
Y1 G 9-1
BNF Syntax Formalism.o, 9-1
BNF SYNtaX.ot 9-3
Lexical Conventions.t 9-9
WhiteSpace. 9-9
COMMENTS . . . o 9-9
NUMDENS . . 9-10
ldentifiers 9-11
(007 = (0] 9-12
Macro Substitutions. 9-12
include Construct. 9-12
Simulation DIrectiveso 9-13
Verilog SystemFunctions. i 9-14
VerilogKeywords i e 9-14
Unsupported Verilog Language Constructs. 9-14
Unsupported Definitions and Declarations. 9-15
Unsupported Statements. oot 9-15
Unsupported Operators.oov vt 9-16
Unsupported Gate-Level Constructs. 9-16
Unsupported Miscellaneous Constructso oo ... 9-16

FPGA Express HDL Reference Manual

FPGA Express with Verilog HDL

FPGA Expresstrandates and optimizes a Verilog HDL description into an
internal gate-level equivalent, then compiles this representation to produce
an optimized architecture-specific design in a given FPGA technology.

This chapter introduces the main concepts and capabilities of FPGA
Expressin the following sections:

» Hardware Description Languages
» FPGA Express and the design process
» Design methodol ogy

Hardware Description Languages

Hardware description languages (HDLs) describe the architecture and
behavior of discrete electronic systems. Modern HDL s and their associated
simulators are very powerful tools for integrated circuit designers.

A typical HDL supports a mixed-level description in which gate and netlist
constructs are used with functional descriptions. This mixed-level

capability enables you to describe system architectures at avery high level
of abstraction, then incrementally refine a design’s detailed gate-level
implementation.

FPGA Express with Verilog HDL 1-1
Hardware Description Languages

1-2

HDL descriptions play an important role in modern design methodol ogy for
three main reasons:

Design functionality can be verified early in the design process. A design
written as an HDL description can be simulated immediately. Design
simulation at this higher level, before implementation at the gate-level,
allows you to evaluate architectural and design decisions.

FPGA Express provides Verilog compilation and logic synthesis, allowing
you to automatically convert an HDL description to a technology-specific
implementation in atarget FPGA technology. This step eliminates the
former technology-specific design bottleneck, the majority of circuit design
time, and the errors introduced when you hand trandate an HDL
specification to gates.

With FPGA Expresslogic optimization, you can automatically transform a
synthesized design into a smaller or faster circuit. FPGA Express provides
both logic synthesis and optimization. For further information, refer to the
FPGA Express online help.

HDL descriptions provide technol ogy-independent documentation of a
design and its functionality. An HDL description is more easily read and
understood than a netlist or schematic description. Because the initial HDL
design description is technol ogy-independent, you can useit again to
generate the design in a different technology, without having to translate
from the original technology.

The FPGA Express Design Process

FPGA Expresstrandlates Verilog language hardware descriptions to a
Synopsys internal design format. The design can then be optimized and
mapped to a specific FPGA technology library by FPGA Express, as shown
in Figure 1-1.

FPGA Express with Verilog HDL
The FPGA Express Design Process

Figure1-1 FPGA Express Design Process

C/erilog Descripti@

GPGA Technology Libra9_ FPGAEXxpress
Optimized
Technology-Specific
Netlist

FPGA Express supports a mgjority of the Verilog constructs. For
exceptions, see Chapter 9, “Verilog Syntax.”

Using FPGA Express to Compile a Verilog HDL Design
When a Verilog design is read into FP&#press, it is converted to an
internal database format so FP@&Rpress can synthesize and optimize the
design. When FPGEXpress optimizes a design, it may restructure part or
all the design. You control the degree of restructuring. Options include
» Fully preserving a design’s hierarchy
» Allowing full modules to be moved up or down in the hierarchy

» Allowing certain modules to be combined with others

n Compressing the entire design into one module (called flattening the
design) if it is beneficial

The following section describes the design process that uses ERiB&s
with a Verilog HDL simulator.

FPGA Express with Verilog HDL 1-3
Using FPGA Express to Compile a Verilog HDL Design

Design Methodology
Figure 1-2 shows atypical design process that uses FPGA Express and a

Verilog HDL simulator. Each step of this design model isdescribed in
detall.

Figure 1-2 Design Flow

Verilog HDL
Description

0

Verilog
Test Driver @
FPGA Express
FPGA
Development System
Verilog HDL Verilog HDL
Simulator Simulator

Simulation N_ | Compare Simulation
Output Output Output

1-4 FPGA Express with Verilog HDL
Design Methodology

Theses are the steps in the design flow in Figure 1-2.

Write adesign description in the Verilog language. This description can be
acombination of structural and functional elements (as shown in Chapter 2,
“Description Styles"). This description is used with both FPExfress
and a Verilog simulator.

Provide Verilog-language test drivers for the Verilog HDL simulator. For
information on writing these drivers, see the appropriate simulator manual.
The drivers supply test vectors for simulation and gather output data.

Simulate the design by using a Verilog HDL simulator. Verify that the
description is correct.

Use FPGAEXpress to synthesize and optimize the Verilog design
description into a gate-level netlist. FP&#press generates optimized
netlists to satisfy timing constraints for a targeted FPGA architecture.

Use your FPGA development system to place and route the FPGA netlist.
Then, generate a Verilog netlist for post-place and route simulation. The
development system includes simulation models and interfaces required for
the design flow.

Simulate the technology-specific version of the design with the Verilog
simulator. You can use the original Verilog simulation drivers from Step 2
because module and port definitions are preserved through the translation
and optimization processes.

Compare the output of the gate-level simulation (Step 6) with the output of
the original Verilog description simulation (Step 3) to verify that the
implementation is correct.

FPGA Express with Verilog HDL 1-5
Design Methodology

1-6 FPGA Express with Verilog HDL
Design Methodology

Description Styles

The style of your initial Verilog description has amajor effect on the
characteristics of the resulting gate-level design synthesized by FPGA
Express. The organization and style of aVerilog description determines the
basic architecture of your design. Because FPGA Express automates most
of the logic-level decisionsrequired in your design, you can concentrate on
architectural tradeoffs.

Y ou can use FPGA Express to make some of the high-level architectural
decisions. Certain Verilog constructs are well suited to synthesis. To make
the decisions and use the constructs, you need to become familiar with the
following concepts:

Design hierarchy

Structural descriptions

Functional descriptions

Mixing structural and functional descriptions
Design constraints

Register selection

Asynchronous designs

Description Styles

2-2

Design Hierarchy

FPGA Express maintains the hierarchical boundaries you define when you
use structural Verilog. These boundaries have two major effects:

Each module specified in your HDL description is synthesized separately
and maintained as a distinct design. The constraints for the design are
maintained, and each module can be optimized separately in FPGA
Express.

Module instantiations within HDL descriptions are maintained during
input. The instance name you assign to user-defined components is carried
through to the gate-level implementation.

Chapter 3, “Structural Descriptions,” discusses modules and module
instantiations.

Note: FPGA Express does not automatically maintain (create) the
hierarchy of other nonstructural Verilog constructs such asblocks, loops,
functions, and tasks. These elements of an HDL description are
trandlated in the context of their design. After analyzing and
implementing a design, you can use the Modules constraint table for the
implementation to group the gatesin a block, function, or task. Refer to
the FPGA Express online help for further information.

The choice of hierarchical boundaries has a significant effect on the quality
of the synthesized design. Using FP&xXpress, you can optimize a design
while preserving these hierarchical boundaries. However, HEXpress

only partially optimizes logic across hierarchical modules. Full

optimization is possible across those parts of the design hierarchy that are
collapsed in FPGAXxpress.

Structural Descriptions

The structural elements of a Verilog structural description consist of
generic logic gates, library-specific components, and user-defined
components connected by wires. In one way, a structural description can be
viewed as a simple netlist composed of nets that connect instantiations of
gates. However, unlike a netlist, nets in the structural description can be
driven by an arbitrary expression that describes the value assigned to the
net. A statement that drives an arbitrary expression onto a net is called a
continuous assignment. Continuous assignments are convenient links
between pure netlist descriptions and functional descriptions.

Description Styles
Design Hierarchy

A Verilog structural description can define a range of hierarchical and
gate-level constructs, including module definitions, module instantiations,

and netlist connections. Refer to Chapter 3, “Structural Descriptions,” for
more information.

Functional Descriptions

The functional elements of a Verilog description consist of function
declarations, task statements, and always blocks. These elements describe
the function of the circuit but do not describe its physical makeup, layout,

or choice of gates and components.

You can construct functional descriptions with the Verilog functional
constructs described in Chapter 5, “Functional Descriptions.” These
constructs can appear within functions or always blocks. Functions imply
only combinational logic always blocks can imply either combinational or
sequential logic.

Although many Verilog functional constructs appear sequential in hature
(for example, for loops and multiple assignments to the same variable),
these constructs describe combinational-logic networks. Other functional
constructs imply sequential-logic networks. Latches and registers are
inferred from these constructs. Refer to Chapter 6, “Register and
Three-State Inference,” for details.

Description Styles 2-3
Functional Descriptions

2-4

Mixing Structural and Functional Descriptions

When you use a functional description style in adesign, the combinational
portions of adesign aretypically described in Verilog functions, always
blocks, and assignments. The complexity of the logic determines whether
you use one or many functions.

Example 2-1 shows how structural and functional description styles are

mixed in a design specification. In Example 2-1, the function detect_logic
determines whether the input bit is a 0 or a 1. After this determination is
made, detect_logic sets ns to the next state of the machine. An always block
infers flip-flops to hold the state information between clock cycles.

Elements of a design can be specified directly as module instantiations at
the structural level. For example, see the three-state buffer, t1, in Example
2-1. (Note that three-state buffesan be inferred. For more information,

refer to Chapter 6, “Register and Three-State Inference.”) You can also use
this description style to identify the wires and ports that carry information
from one part of the design to another.

Description Styles
Mixing Structural and Functional Descriptions

Example 2-1 Mixed Structural and Functional Descriptions

/1 This finite state machine (Mealy type) reads one
/1l bit per clock cycle and detects three or nore
/'l consecutive 1s.

nmodul e three_ones(signal, clock, detect, output_enable);
i nput signal, clock, output_enable;
out put detect;

/! Declare current state and next state vari abl es.
reg [1:0] cs;

reg [1:0] ns;

Wi re ungat ed_det ect;

/'l declare the synbolic nanmes for states
paranmeter NO ONES = 0, ONE_ ONE = 1,
TWO ONES = 2, AT_LEAST_THREE _ONES = 3

// kkkhkkhkkkkkkkkk*%x STRLUURAL DESO?' PTIO\] R SR S I S
/'l Instance of a three-state gate that enabl es output
three_state t1 (ungated_detect, output_enable, detect);

// **************I*** ALV\AYS BLw(kkkkikkkkikikkkkikikkkikikkkk*%
/1l always block infers flip-flops to hold the state of
/'l the FSM
al wvays @ (posedge clock) begin
CS = ns;
end

// kkkkkkkhkikkkki*x FUNC']’I O\IAL DESCRI PTIO\' kkkkikkkkikikkkkikikkkk*k
function detect_| ogic;

i nput [1:0] cs;

i nput signal;

begi n
detect _logic = 0; /1 default val ue
if (signal == 0) // bit is zero
ns = NO_ONES;
el se /] bit is one, increment state
case (cs)
NO ONES: ns = ONE_ONE
ONE_ONE: ns = TWO _ONES
TWO ONES, AT_LEAST_THREE ONES:
begi n
ns = AT_LEAST_THREE_ONES;
detect _logic = 1;
end
endcase
end

endf uncti on

// kkkkhkkhkkkkhkikkkhkikx aSSI gn STATENEN]’ kkkkikkkkikhkkkkikik*x
assi gn ungated detect = detect logic(cs, signal);
endnodul e

Description Styles
Mixing Structural and Functional Descriptions

2-5

For astructural or functional HDL description to be synthesized, it must
follow the Synopsys synthesis policy, which has three parts:

» Design methodology
» Description style
» Language constructs

Design Methodology

Design methodology refers to the synthesis design process described in
Chapter 1, “FPGAxpress with Verilog HDL.”

Description Style

Use the HDL design and coding style that makes the best use of the
synthesis process to obtain high-quality results from FE&hess.

Language Constructs

The third component of the Verilog synthesis policy is the set of Verilog
constructs that describe your design, determine its architecture, and give
consistently good results.

Synopsys has chosen HDL constructs that maximize coding flexibility
while producing consistently good results. Although FRE@ress can

read the entire Verilog language, a few HDL constructs cannot be
synthesized. These constructs are unsupported because they cannot be
realized in logic. For example, you cannot use simulation time as a trigger,
because time is an element of the simulation process and cannot be
realized. See Chapter 9, “Verilog Syntax,” for unsupported Verilog
constructs.

Design Constraints

You can describe the performance constraints for a design module with the
FPGAExpress Implementation window. Refer to the FP@&#pressonline
help for further information.

2-6 Description Styles
Design Constraints

Register Selection

The placement of registers and the clocking scheme are important
architectural decisions. There are two ways to define registers in your
Verilog description. Each method has specific advantages.

Method 1. You can directly instantiate registers into a Verilog description,
selecting from any element in your FPGA library. Clocking schemes can be
arbitrarily complex. Y ou can choose between aflip-flop and a latch-based
architecture. The main disadvantages to this approach are

» The Verilog description is specific to a given technology because you
choose structural elements from that technology library. However, you
can isolate the portion of your design with directly instantiated registers
as a separate component (module), then connect it to the rest of the
design.

» The description is more difficult to write.

Method 2. You can use some Verilog constructs to direct FFERpxess to

infer registers from the description. The advantages of this approach
directly counter the disadvantages of the previous approach. With register
inference, the Verilog description is much easier to write, and it is
technology independent. This method allows FREXress to select the

type of component inferred, based on constraints. Therefore, if a specific
component is necessary, instantiation should be used. Some types of
registers and latches cannot be inferred.

See Chapter 6, “Register and Three-State Inference,” for a discussion of
latch and register inference.

Asynchronous Designs

You can use FPGEXxpress to construct asynchronous designs that use
multiple clocks or gated clocks. Although these designs are logically
(statically) correct, they might not simulate or operate correctly because of
race conditions.

Description Styles 2-7
Register Selection

2-8 Description Styles
Asynchronous Designs

Structural Descriptions

A Verilog circuit description can be one of two types: a structural
description or afunctional description, also referred to as a Register
Transfer Level (RTL) description. A structural description defines the exact
physical makeup of the circuit, detailing components and the connections
between them. A functional or RTL description describes a circuit in terms
of itsregisters and the combinational logic between the registers.

This chapter describes the construction of structural descriptionsin the
following sections:

Modules

Macromodules

Port definitions

Module statements and constructs
Module instantiations

Structural Descriptions

32

Modules

The principal design entity in the Verilog language is amodule. A module
consists of the module name, its input and output description (port
definition), a description of the functionality or implementation for the
module (modul e statements and constructs), and named instantiations.

Figure 3-1 illustrates the basic structural parts of a module.

Figure 3-1 Structura Parts of aModule

Module

Module Name and
Port List

Definitions:
Port, Wire, Register,
Parameter, Integer, Function

Module Statements and
Constructs

Module Instantiations

Example 3-1 Module Definition

Example 3-1 shows a simple modul e that implements a 2-input NAND gate
by ingtantiating an AND gate and an INV gate. Thefirst line of the module
definition provides the name of the module and alist of ports. The second
and third lines give the direction for all ports. (Ports are either input, output,
or bidirectional.) A wire variableis created in the fourth line of the
description. Next, the two components are instantiated; copies named
instancel and instance2 of the components AND and INV are created.
These components are connected to the ports of the module and finally
connected by using the variable and_out.

modul e NAND(a, b, z);
i nput a, b; /1 Inputs to NAND gate
out put z; /1 Qutputs from NAND gate
wire and_out; // CQutput from AND gate

AND i nstancel(a, b, and_out);
I NV instance2(and_out, 2z);
endnodul e

Structural Descriptions
Modules

macromodule Constructs

The macromodule construct makes simulation more efficient by merging
the macromodul e definition with the definition of the calling (parent)
module. However, FPGA EXxpress treats the macromodule construct as a
modul e construct. Whether you use module or macromodul e the synthesis
process, the hierarchy it creates, and the end result are the same. Example
3-2 shows how to use the macromodul e construct.

Example 3-2 macromodule Construct

macr onodul e adder (inl,in2,outl);
input [3:0] inl,in2
output [4:0] outl;

assign outl = inl + in2;
endnodul e

Note: When a macromodule isinstantiated, a new level of hierarchy is
created. You can ungroup this new level of hierarchy in the Modules
constraint table for the implementation

Port Definitions

A port list consists of port expressions that describe the input and output
interface for amodule. Define the port list in parentheses after the module
name, as shown below.

nmodul e nane (port_list) ;

A port expression in a port list can be any of the following:

An identifier

A single bit selected from a bit vector declared within the module

A group of bits selected from a bit vector declared within the module

A concatenation of any of the above

Concatenation is the process of combining several single-bit or multiple-bit

operands into one large bit vector. For more information on concatenation,
see Chapter 4, “Expressions.”

Structural Descriptions 3-3
macromodule Constructs

34

Each port in a port list must be declared explicitly as input, output, or

bidirectional in the module with an input, output, or inout statement. (See

“Port Declarations” later in this chapter.) For example, the module

definition in Example 3-1 shows that module NAND has three ports, a, b,
and z, connected to 1-bit nets a, b, and z. These connections are declared in
the input and output statements.

Port Names

Example 3-3 Module Port Lists

Some port expressions are identifiers. If the port expression is an identifier,
the port name is the same as the identifier. A port expression is not an
identifier if the expression is a single bit or group of bits selected from a
vector of bits, or a concatenation of signals. In these cases, the port is
unnamed unless you explicitly name it.

Example 3-3 shows some module definition fragments that illustrate the
use of port names. The ports for module ard.named &, and z, and are
connected to nets a, b, and z, respectively. The first two ports of module
ex2 are unnamed; the third port is named z. The ports are connected to nets
a[1], a[0], and z respectively. Module elx&s two ports: the first port is
unnamed and is connected to a concatenation of nets a and b; the second
port, named, is connected to net z.

nmodul e ex1(a, b, z);
i nput a, b;

out put z;

endnodul e

nmodul e ex2(a[1], a[0], z);
i nput [1:0] a;

out put z;

endnodul e

modul e ex3({a, b}, z);
i nput a, b;
out put z;
endnodul e

You can rename a port by explicitly assigning a name to a port expression
with the dot (.) operator. The module definition fragments in Example 3-4
show how to rename ports. The ports for module ex4 are explicitly named
in_a, in_b, and out. These ports are connected to nets a, b, and z. Module
ex5 shows ports namét], i0, and z connected to nets a[1], a[0], and z,
respectively. The first port for module ex6 (the concatenation of nets a and
b) is named i.

Structural Descriptions
Port Definitions

Example 3-4

Naming Portsin Modules

modul e ex4(.in_a(a), .in_b(b), .out(z));
i nput a, b;
out put z;

endnodul e

modul e ex5(.il(a[1]), .i0(a[0]), z);
i nput [1:0] a;
out put z;

endnodul e

nmodul e ex6(.i({a,b}), z);
i nput a, b;
out put z;

endnodul e

Module Statements and Constructs

FPGA Express recognizes the following Verilog statements and constructs
when they are used in a Verilog module;

» parameter declarations
 wire, wandwor, tri, supply0, and supplyl declarations
* reg declarations

* input declarations
 output declarations

* inout declarations

« Continuous assignments
* Module instantiations

» Gate instantiations

» Function definitions
 always blocks

* task statements

Data declarations and assignments are described in this section. Module
and gate instantiations are described later in this chapter. Function
definitions, task statements, and always blocks are described in Chapter 5,
“Functional Descriptions.”

Structural Descriptions 3-5
Module Statements and Constructs

3-6

Structural Data Types

Verilog structural datatypes include wire, wand, wor, tri, supply0, and
supplyl. Although parameter does not fall into the category of structural
datatypes, it is presented here because it is used with structural data types.

Y ou can define an optional range for all the data types presented in this
section. The range provides ameans for creating a bit vector. The syntax
for arange specification is

[meb : |sb]

Expressions for msb (most significant bit) and Isb (least significant bit)
must be non-negative constant-valued expressions. Constant-valued
expressions are composed only of constants, Verilog parameters, and
operators.

parameter Definitions

Verilog parameters allow you to customize each instantiation of a module.

By setting different values for the parameter when you instantiate the

module, you can cause different logic to be constructed. For more
information, see “Building Parameterized Designs,” later in this chapter.

A parameter definition represents constant values symbolically. The
definition for a parameter consists of the parameter name and the value
assigned to it. The value can be any constant-valued expression of integer
or Boolean type, but not of type real. If you do not set the size of the
parameter with a range definition or a sized constant, the parameter is
unsized and defaults to a 32-bit quantity. Refer to Chapter 4, Expressions,”
for information about the format of constants.

You can use a parameter wherever a number is allowed, and you can define
a parameter anywhere within a module definition. However, the Verilog
language requires that you define the parameter before you use it.

Example 3-5 shows two parameter declarations. Parameters TRUE and
FALSE are unsized, and have values of 1@&nmeéspectively. Parameters

S0, S1, S2, and S3 have values of 3, 1, 0, and 2 respectively, and are stored
as 2-bit quantities.

Example 3-5 parameter Declarations

paranmeter TRUE=1, FALSE=0;
paraneter [1:0] S0=3, Sl=1, S2=0, S3=2;

Structural Descriptions
Module Statements and Constructs

wire Data Types

A wire datatypein aVerilog description represents the physical wiresin a
circuit. A wire connects gate-level instantiations and modul e instantiations.
The Verilog language allows you to read awire value from within a
function or abegin...end block, but you cannot assign awire vaue from
within afunction or abegin...end block. (An always block is a specific type
of begin...end block).

A wire does not store its value. It must be driven in one of two ways:
< By connecting the wire to the output of a gate or module
« By assigning a value to the wire in a continuous assignment

In the Verilog language, an undriven wire defaults to a value of Z (high
impedance). However, FPG&xpress either leaves undriven wires
unconnected or connects some undriven wires to a constraint value,
depending on the requirements of the vendor place and route tool. When an
undriven wire is connected to a constant value, FIE@Aess issues a

warning for the corresponding implementation. Multiple connections or
assignments to a wire short the wires together.

In Example 3-6, two wire data types are declards .aasingle-bit wire,

while b is a 3-bit vector of wires. Its most significant bit (msb) has an index
of 2 and its least significant bit (Isb) has an index of 0.

Example 3-6 wire Declarations

wire a;
wire [2:0] b;

You can assign a delay value in a wire declaration, and you can use the
Verilog keywordsscalared andvectored for simulation. FPGAExpress

accepts the syntax of these constructs, but they are ignored when the circuit
is synthesized.

Note: You can use delay information for modeling, but FPGA Express
ignoresthis delay information. If the functionality of your circuit
depends on the delay information, FPGA Express might createlogic with
behavior that does not agree with the behavior of the simulated circuit.

wand Data Types
The wand (wired AND) data type is a specific type of wire data type.

In Example 3-7, two variables drive the variable c. The value of c is
determined by the logic&IND of a and b.

Structural Descriptions 3-7
Module Statements and Constructs

3-8

Example 3-7 wand (wired AND) Data Types

nodul e wand_test(a, b, c);
i nput a, b;
out put c;

wand c;
assign c

assign c
endnodul e

a;
b;

Y ou can assign a delay value in awand declaration, and you can use the
Verilog keywords scalared and vectored for simulation. FPGA EXxpress
acceptsthe syntax of these constructs, but they are ignored when the circuit
is synthesi zed.

wor Data Types
The wor (wired OR) datatype is a specific type of wire datatype.

In Example 3-8, two variables drive the variable ¢. Thevalue of cis
determined by the logical OR of aand b.

Example 3-8 wor (wired-OR) Data Types

modul e wor _test(a, b, c);
i nput a, b;
out put c;

WwWor c;
assign c

assign c
endnodul e

non
sl

tri Data Types

Thetri (three-state) datatype is a specific type of wire datatype. Only one
of the variables that drive the tri data type can have anon-Z (high
impedance) value. This single variable determines the value of thetri data

type.

Note: FPGA Express does not enforce the above condition. You must
ensure that no more than one variable driving a tri data type has a value
other than Z.

In Example 3-9, three variables drive the variable out.

Structural Descriptions
Module Statements and Constructs

Example 3-9 tri (Three-State) Data Types

modul e tri_test (out, condition);
i nput [1:0] conditon;
out put out;

reg a, b, c;
tri out;

always @(condition) begin
a = 1'bz;// set all variables to Z

b =1bz;
c =1bz;
case (condition) //set only one variable to
non-Z
2'b00 : a = 1'b1;
2'b01: b =1bO;
2’b10:c=1b1;
endcase
end
assign out = a; /I make the tri connection

assign out = b;
assign out = ¢c;
endmodule

supply0/ supplyl Data Types

The supply0 and supplyl data types define wirestied to logic 0 (ground)
and logic 1 (power). Using supplyO and supplyl is the same as declaring a
wireand assigningaO or al toit. In Example 3-10, power istied to logic 1
and gnd istied to logic O.

Example 3-10 supply0 and supplyl Constructs

Example 3-11 reg Declarations

supplyO gnd;
supplyl power;

reg Data Types

A reg represents avariable in Verilog. A reg can be a 1-bit quantity or a
vector of bits. For avector of bits, the range indicates the most significant
bit (msb) and least significant bit (Isb) of the vector. Both bits must be
non-negative constants, parameters, or constant-valued expressions.
Example 3-11 shows some reg declarations.

reg x;// single bit
reg a,b,c;// 3 1-bit quantities
reg [7:0] g;// an 8-bit vector

Structural Descriptions
Module Statements and Constructs

3-9

3-10

Port Declarations

Y ou must explicitly declare the direction (input, output, or bidirectional) of
each port that appearsin the port list of a port definition. Use the input,
output, and inout statements, as described in the following sections.

input Declarations

All input ports of amodule are declared with an input statement. An input
isatype of wireand is governed by the syntax of wire. Y ou can use arange
specification to declare an input that is a vector of signals, asfor input b in
the following example. The input statements can appear in any order in the
description but must be declared before they are used. For example:

i nput a;
i nput [2:0] b;

output Declarations

All output ports of amodule are declared with an output statement. Unless
otherwise defined by areg, wand, wor, or tri declaration, an output isatype
of wire and is governed by the syntax of wire. An output statement can
appear in any order in the description, but you must declare the output
before you useiit.

Y ou can use arange specification to declare an output value that is avector
of signals. If you use areg declaration for an output, the reg must have the
same range as the vector of signals. For example:

out put a;
out put [2:0]b;
reg [2:0] b;

inout Declarations

Y ou can declare bidirectional ports with the inout statement. Aninout isa
type of wire and is governed by the syntax of wire. FPGA Express allows
you to connect only inout ports to module or gate instantiations. Y ou must
declare an inout before you use it. For example:

i nout a;
i nout [2:0]b;

Structural Descriptions
Module Statements and Constructs

Continuous Assignment

If you want to drive avalue onto awire, wand, wor, or tri, use a continuous
assignment to specify an expression for the wire value. Y ou can specify a
continuous assignment in two ways:

« Use an explicit continuouwsssignment statement after the wire, wand, wor,
or tri declaration.

» Specify the continuous assignment in the same line as the declaration for a
wire.

Example 3-12 shows two equivalent methods for specifying a continuous
assignment for wire a.

Example 3-12 Two Equivalent Continuous Assignments

wire a; /1 declare
assign a = b & c; /] assign
wirea=>b &c; /1 declare and assign

The left side of a continuous assignment can be
* A wire, wand, wor, or tri
» One or more bits selected from a vector
« A concatenation of any of these

The right side of the continuous assignment statement can be any supported
Verilog operator, or any arbitrary expression that uses previously declared
variables and functions. Note that you cannot assign a value to areg in a
continuous assignment.

Verilog allows you to assign drive strength for each continuous assignment
statement. FPGAXpress accepts drive strength, but it does not affect the
synthesis of the circuit. Keep this in mind when you use drive strength in
your Verilog source.

Assignments are performed bit-wise, with the low bit on the right side
assigned to the low bit on the left side. If the number of bits on the right
side is greater than the number on the left side, the high-order bits on the
right side are discarded. If the number of bits on the left side is greater than
the number on the right side, operands on the right side are zero-extended.

Structural Descriptions 3-11
Module Statements and Constructs

3-12

Module Instantiations

Module instantiations are copies of the logic that define component
interconnections in a module.

nmodul e_nane instance_nane (termnall, termnal2),...;

A moduleinstantiation consists of the name of the module (module_name),
followed by one or more instantiations. An instantiation consists of an
instantiation name (instance_name) and a connection list. A connection list
isalist of expressions called terminals, separated by commas. These
terminal's are connected to the ports of the instantiated module.

Terminals connected to input ports can be any arbitrary expression.
Terminals connected to output and inout ports can be identifiers, single-bit
or multiple-bit slices of an array, or a concatenation of these. The bit
widths for aterminal and its module port must be the same.

If you use an undeclared variable as aterminal, the terminal is implicitly
declared as a scalar (1-bit) wire. After the variable isimplicitly declared as

awire, it can appear wherever awire is allowed.

Example 3-13 shows the declaration for the module SEQ with two
instances (SEQ_1 and SEQ 2).

Example 3-13 Module Instantiations

nmodul e SEQ BUSO, BUS1, QUT); // description of nodul e SEQ
i nput BUSO, BUS1;
out put OUT;

endﬁbdul e

nmodul e top(DO, D1, D2, D3, OQUTO, QUT1);
input DO, D1, D2, D3;
out put OUTO, OUT1;

SEQ SEQ 1(D0, D1, QUTO), // instantiations of nodul e SEQ
SEQ 2(.QUT(QUT1), .BUS1(D3), . BUSO(D2));
endnodul e

Structural Descriptions
Module Instantiations

Named and Positional Notation

M oduleinstantiations can use either named or positional notation to specify
the terminal connections.

In name-based module instantiation, you explicitly designate which port is
connected to each terminal in thelist. Undesignated portsin the module are
unconnected.

In position-based module instantiation, you list the terminals and specify
connections to the module according to the terminal’s position in the list.
The first terminal in the connection list is connected to the first module
port, the second terminal to the second module port, and so on. Omitted
terminals indicate that the corresponding port on the module is
unconnected.

In Example 3-13, SEQ _i2 instantiated with named notation, as follows:
Signal OUTL1 is connected to port OUT of the module SEQ.
Signal D3 is connected to port BUSL1.

Signal D2 is connected to port BUSO

SEQ 1 is instantiated by using positional notation, as follows:
Signal DO is connected to port BUSO of module SEQ.

Signal D1 is connected to port BUS1.

Signal OUTO is connected to port OUT.

Parameterized Designs

The Verilog language allows you to create parameterized designs by
overriding parameter values in a module during instantiation. In Verilog,
you can do this with the defparam statement or with the following syntax.

nmodul e_name #(paraneter_val ue, paraneter_val ue,...)instance_nane (term nal _Iist)

FPGAExpress does not support the defparam statement but does support
the syntax above.

The module in Example 3-14 contains a parameter declaration.

Structural Descriptions 3-13
Module Instantiations

3-14

Example 3-14 parameter Declaration in aModule

nodul e foo (a,b,c);
paraneter width = 8;

i nput [width-1:0] a,b;
out put [wi dth-1:0] c;

assign ¢ = a & b;

endnodul e

In Example 3-14, the default value of the parameter width is 8, unless you
override the value when the modul e isinstantiated. When you change the

value, you build a different version of your design. This type of designis

called a parameterized design.

FPGA Express reads parameterized designs astemplates. These designsare
stored in an intermediate format so that they can be built with different
(nondefault) parameter values when they are instantiated.

One way to build atemplate into your design is by instantiating it in your
Verilog code. Example 3-15 shows how to do this.

Example 3-15 Instantiating a Parameterized Design in Verilog Code

nodul e param (a, b, c);

i nput [3:0] a,b;
output [3:0] c;

foo #(4) Ul(a,b,c); // instantiate foo

endnodul e

Example 3-15 instantiates the parameterized design, foo, which has one
parameter that is assigned the value 4.

Because module foo is defined outside the scope of module param, errors
such as port mismatches and invalid parameter assignments are not
detected until an implementation is created. When FPGA Express links
module param, it searches for template foo in memory. If foo isfound, it is
automatically built with the specified parameters. FPGA Express checks
that foo has at |east one parameter and three ports, and that the bit widths of
the ports in foo match the bit-widths of portsa, b, and c. If template foo is
not found, the link fails and the instance U1 is treated as a black box.

Structural Descriptions
Module Instantiations

Gate-Level Modeling

Verilog provides a number of basic logic gates that enable modeling at the
gate level. Gate-level modeling is a special case of positional notation for
modul e instantiation that uses a set of predefined module names. FPGA
Express supports the following gate types:

e and
* nand
e or

e nor
e Xor
e Xnor
e buf
e not
e tran

Connection lists for instantiations of a gate-level model use positional
notation. In the connection lists for and, nand, or, nor, xor, and xnor gates,
the first terminal connects to the output of the gate, and the remaining
terminals connect to the inputs of the gate. You can build arbitrarily wide
logic gates with as many inputs as you want.

Connection lists for buf, not, and tran gates also use positional notation.
You can have as many outputs as you want, followed by only one input.
Each terminal in a gate-level instantiation can be a 1-bit expression or
signal.

In gate-level modeling, instance names are optional. Drive strengths and

delays are allowed, but they are ignored by FRERpress. Example 3-16
shows two gate-level instantiations.

Example 3-16 Gate-Level Instantiations

buf (buf_out,e);
and and4(and_out, a, b, c,d);

Note: Delay options for gate primitives are parsed but ignored by FPGA
Express. Because FPGA Expressignoresthe delay information, it can
createlogic whose behavior does not agree with the ssimulated behavior of
the circuit. See Chapter 6, “Register and Three-State Inference,” for
more information.

Structural Descriptions 3-15
Module Instantiations

3-16

Three-State Buffer Instantiation

FPGA Express supports the following gate types for instantiation of
three-state gates:

bufif0 (active-low enable line)
bufifl (active-high enable line)
notifO (active-low enable line; output inverted)
notifl (active-high enable line; output inverted)

Connection lists for bufif and notif gates use positional notation. Specify
the order of the terminals as follows:

The first terminal connects to the output of the gate.
The second terminal connects to the input of the gate.
The third terminal connects to the control line.

Example 3-17 shows a three-state gate instantiation with an active high
enable and no inverted output.

Example 3-17 Three-State Gate Instantiation

modul e three_state (inl,outl,cntrll);
i nput inl,cntrl1;

out put out1;

bufifl (outl,inl,cntrll);

endnodul e

Structural Descriptions
Module Instantiations

Expressions

In Verilog, expressions consist of asingle operand or multiple operands
separated by operators. Use expressions where avalue is required in
Verilog.

This chapter explains how to build and use expressions using:

Constant-valued expressions

Operators

Operands

Expression bit widths

Constant-Valued Expressions

A constant-valued expression is an expression whose operands are either
constants or parameters. FP&Xpress determines the value of these
expressions.

In Example 4-1, size-1 is a constant-valued expres$iomexpression (op

== ADD) ? a+b : a-b is not a constant-valued expression because the value
depends on the variable op. If the value ofsop, b is added to a;

otherwise, b is subtracted from a.

Expressions 4-1
Constant-Valued Expressions

4-2

Example4-1 Valid Expressions

/1 all expressions are constant-val ued,
/'l except in the assign statenent.
nmodul e add_or_subtract(a, b, op, s);
/1l performs s = a+b if opis ADD

/1 s a-b if op is not ADD
par aneter size=8;

parameter ADD=1'b1;

input op;

input [size-1:0] a, b;

output [size-1:0] s;

assign s = (op == ADD) ? a+b : a-b; // not a
constant-

Il valued expression

endmodule

The operators and operands used in an expression influence the way a
design is synthesized. FPGA Express eval uates constant-valued
expressions and does not synthesize circuitry to compute their value. If an
expression contains constants, they are propagated to reduce the amount of
circuitry required.

Operators

Operators represent an operation to be performed on one or two operandsto
produce a new value. Most operators are either unary operators that apply
to only one operand or binary operators that apply to two operands. Two
exceptions are conditional operators, which take three operands and
concatenation operators, which take any number of operands.

The Verilog language operators supported by FPGA Express arelistedin
Table 4-1. A description of the operators and their order of precedenceis
given in the following sections.

Expressions
Operators

Table4-1 Verilog Operators Supported by FPGA Express

Operator Type

Operator

Description

Arithmetic operators

arithmetic

modulus

Relational operators

relational

Equality operators

logical equality

logical inequality

Logical operators

logical NOT

logical AND

logical OR

Bit-wise operators

bit-wise NOT

bit-wise AND

bit-wise OR

bit-wise XOR

bit-wise XNOR

Reduction operators

reduction AND

reduction OR

reduction NAND

reduction NOR

reduction XOR

~N or N~

reduction XNOR

Shift operators

<<

left shift

>>

right shift

Conditional operator

?:

conditional

Concatenation

{}

concatenation

In the following descriptions, the terms variable and variable operand refer
to operands or expressions that are not constant-valued expressions. This

group includes wires and registers, bit-selects and part-sel ects of wires and
registers, function calls, and expressions that contain any of these elements.

Expressions
Operators

4-3

44

Arithmetic Operators

Example4-2 Addition Operator

Arithmetic operators perform simple arithmetic on operands. The Verilog
arithmetic operators are

addition (+)
subtraction (-)
multiplication (*)
division (/)
modulus (%)

You can use the +, -, and * operators with any operand form (constants or
variables). The + andoperators can be used as either unary or binary
operators. FPG/AXxpress requires that / and % operators have
constant-valued operands.

Example 4-2 shows three forms of the addition operator. The circuitry built
for each addition operation is different because of the different operand
types. The first addition requires no logic, the second synthesizes an
incrementer, and the third synthesizes an adder.

par aneter size=8;
wire [3:0] a,b,c,d,e;

assign ¢ = size + 2; // constant + constant
assign d = a + 1; /] variable + constant
assign e = a + b; /1 variable + variable

Relational Operators

Relational operators compare two quantities and yield a 0 or 1 value. A true
comparison evaluates to 1; a false comparison evaluates to 0. All
comparisons assume unsigned quantities. The circuitry synthesized for
relational operators is a bit-wise comparator whose size is based on the
sizes of the two operands.

The Verilog relational operators are
less than(<)

less than or equal to (<=)

greater than (>)

greater than or equal to (>=)

Expressions
Operators

Example 4-3 shows the use of arelational operator.

Example 4-3 Relational Operator

function [7:0] max(a, b);
input [7:0] a,b;
if (a>=Db) mx
el se max
endf uncti on

Equality Operators

Equality operators generate a 0 if the expressions being compared are not
equal and a 1 if the expressions are equal. Equality and inequality
comparisons are performed bit-wise.

The Verilog equality operators are
e equality (==
* inequality (=)
Example 4-4 shows the equality operator used to test for a JMP instruction.

The output signal jump is set tafthe two high-order bits of instruction
are equal to the value of paramei®tP; otherwisejump is set to O.

Example 4-4 Equality Operator

modul e is_junp_instruction (instruction, junp);
parameter JMP = 2’h3;

input [7:0] instruction;
output jump;
assign jump = (instruction[7:6] == JMP);

endmodule

Handling Comparisons to Xor Z

Comparisonsto an X or aZ are alwaysignored. If your code contains a
comparison to an X or aZ, awarning message is displayed indicating that
the comparison is dways evaluated to false, which might cause simulation
to disagree with synthesis.

Expressions 4-5
Operators

4-6

Example 4-5 shows code from afile called test2.v. Variable B is always
assigned to the value 1, because the comparison to X isignored.

Example4-5 Comparison to X Ignored

al ways begin

if (A==1'bx) //thisisline 10
B =0;

else

B=1,

end

When FPGA Express reads this code, the following warning message is
generated.

Warning:Comparisons to a “don’t care” are treated as

always being false in routine test2 line 10 in file

‘test2.v’. This may cause simulation to disagree with
synthesis. (HDL-170)

For an alternate method of handling comparisonsto X or Z, insert the
Il synopsys trandate_off directive before the comparison and insert the
Il synopsys trandlate_on directive after the comparison. Inserting these
directives might cause simulation to disagree with synthesis.

Logical Operators

Logical operators generate al or a0, according to whether an expression
evaluatesto true (1) or false (0). The Verilog logical operators are

logical NOT (!)
logical AND (&&)
logical OR (]])

The logical NOT operator produces a value of 1 if its operand is zero and a
value of 0 if its operand is nonzero. The logical AND operator produces a
value of 1 if both operands are nonzero. The logical OR operator produces
a value of 1 if either operand is nonzero.

Example 4-6 shows some logical operators.

Expressions
Operators

Example 4-6 Logica Operators

nmodul e i s_valid_sub_inst(inst, node, valid, uninp);

parameter IMMEDIATE=2'b00, DIRECT=2"b01;

parameter SUBA_imm=8'h80, SUBA_dir=8’h90,
SUBB_imm=8'hc0, SUBB_dir=8'hd0;

input [7:0] inst;

input [1:0] mode;

output valid, unimp;

assign valid = (((mode == IMMEDIATE) && (
(inst == SUBA_imm) ||
(inst == SUBB_imm))) ||
((mode == DIRECT) && (
(inst == SUBA_dir) ||
(inst == SUBB_dir))));

assign unimp = lvalid;

endmodule

Bit-Wise Operators

Example4-7 Bit-Wise Operators

Bit-wise operators act on the operand bit by bit. The Verilog bit-wise
operators are

unary negation (~)
bit-wise AND (&)

bit-wise OR (|)

bit-wise XOR (")

bit-wise XNOR ("~ or ~")

Example 4-7 shows some bit-wise operators.

nmodul e full _adder(a, b, cin, s, cout);
input a, b, cin;
out put s, cout;

assign s =a”b"cin;
assign cout = (a&b) | (cin & (a]b));
endnodul e

Expressions
Operators

4-7

4-8

Reduction Operators

Example4-8 Reduction Operators

Reduction operators take one operand and return asingle bit. For example,
the reduction AND operator takes the AND value of al the bits of the
operand and returns a 1-bit result. The Verilog reduction operators are

reduction AND (&)
reduction OR (])

reduction NAND (~&)
reduction NOR (~|)
reduction XOR (")
reduction XNOR ("~ or ~")

Example 4-8 shows the use of some reduction operators.

nmodul e check input (in, parity, all_ones);
input [7:0] in;
output parity, all_ones;

Nion;
& in;

assign parity
assign all_ones
endnodul e

Shift Operators

A shift operator takes two operands and shifts the value of the first operand
right or left by the number of bits given by the second operand.

The Verilog shift operators are
shift left (<<)
shift right (>>)

After the shift, vacated bits are filled with zeros. Shifting by a constant
results in trivial circuitry (because only rewiring is required). Shifting by a
variable causes a general shifter to be synthesized. Example 4-9 shows how
a shift right operator is used to perform a division by 4.

Expressions
Operators

Example 4-9 Shift Operator

nmodul e di vide_by_4(dividend, quotient);

input [7:0] dividend;
output [7:0] quotient;

assign quotient = dividend >> 2; // shift right 2 bits

endnodul e

Conditional Operators

Example 4-10 Conditional Operator

The conditional operator (? :) evaluates an expression and returns a value
that is based on the truth of the expression. Example 4-10 shows how to use
the conditional operator. If the expression (op == ADD) evaluates to true,
the value a+b is assigned to result; otherwise, the value a-b is assigned to
result.

nmodul e add_or_subtract(a, b, op, result);

parameter ADD=1'b0;
input [7:0] a, b;

input op;

output [7:0] result;

assign result = (op == ADD) ? atb : a-b;
endmodule

Y ou can nest conditional operators to produce aniif . . . then construct.
Example 4-11 showsthe conditional operators used to eval uate the val ue of
op successively and perform the correct operation.

Expressions
Operators

4-9

Example4-11 Nested Conditional Operator

modul e arithmetic(a, b, op, result);

parameter ADD=3'h0,SUB=3'h1,AND=3'h2,
OR=3'h3, XOR=3'h4;

input [7:0] a,b;
input [2:0] op;
output [7:0] result;

assign result = ((op == ADD) ? a+b : (
(op==SUB)?a-b:(
(op == AND) ? a&b : (
(op== OR)?alb:(
(op == XOR) ? a"b : (a))))));
endmodule

Concatenation

Operator

Concatenation combines one or more expressions to form alarger vector.

In the Verilog language, you indicate concatenation by listing all

expressions to be concatenated, separated by commas, in curly braces ({}).
Any expression except an unsized constant is allowed in a concatenation.

For example, the concatenation {1'b1,1'b0,1'b0} yields the value 3'b100.

You can also use a constant-valued repetition multiplier to repeat the
concatenation of an expression. The concatenation {1'b1,1'b0,t&0}
also be written as {1'b1,{2{1'b0}}} to yield 3'b100. The expression

{2{ expr }}within the concatenation repeatxpr two times.

Example 4-12 shows a concatenation that forms the value of a
condition-code register.

Example4-12 Concatenation Operator

output [7:0] cecr;
wire half_carry, interrupt, negative, zero,
overflow, carry;

assign ccr = { 2'b00, half_carry, interrupt,
negative, zero, overflow, carry };

Example 4-13 shows an equivalent description for the concatenation.

4-10 Expressions
Operators

Example 4-13 Concatenation Equivalent

output [7:0] ccr;

assign ccr[7] = 1'b0;
assign ccr[6] = 1'b0;
assign ccr[5] = half_carry;
assign ccr[4] = interrupt;
assign ccr[3] = negative;
assign ccr[2] = zero;
assign ccr[1] = overflow;
assign ccr[0] = carry;

Operator Precedence

Table4-2 Operator Precedence

Table 4-2 lists the precedence of all operators, from highest to lowest. All
operators at the same level in the table are evaluated from |eft to right,
except the conditional operator (?:), which is evaluated from right to | eft.

Operator

< <=

Description
bit-select or part-select
parentheses
logical and bit-wise negation
reduction operators
unary arithmetic
concatenation
arithmetic
arithmetic
shift
relational
logical equality
bit-wise AND
bit-wise XOR and XNOR
bit-wise OR
logical AND
logical OR
conditional

Expressions
Operators

4-11

Operands

The following kinds of operands can be used in an expression:
Numbers

Wires and registers

Bit-selects

Part-selects

Function calls

Each of these operands is explained in the following subsections.

Numbers

A number is either a constant value or a value specified as a parameter. The
expression size-ih Example 4-1 illustrates how you can use both a
parameter and a constant in an expression.

You can define constants as sized or unsized, in binary, octal, decimal, or
hexadecimal bases. The default size of an unsized constant is 32 bits. Refer
to Chapter 9, “Verilog Syntax,” for a discussion of the format for numbers.

Wires and Registers

Example 4-14 Wire Operands

Variables that represent both wires and registers are allowed in an
expression. (Wires are described in Chapter 3, “Structural Descriptions.”
Registers are described in Chapter 5, “Functional Descriptions.”) If the
variable is a multibit vector and you use only the name of the variable, the
entire vector is used in the expression. Bit-selects and part-selects allow
you to select single or multiple bits, respectively, from a vector. These are
described in the next two sections.

In the Verilog fragment shown in Example 4-14, a, b, aack@-bit
vectors of wires. Because only the variable names appear in the expression,
the entire vector of each wire is used in evaluating the expression.

4-12 Expressions
Operands

Example 4-15 Bit-Select Operands

Bit-Selects

A bit-select isthe selection of asingle bit from awire, register, or
parameter vector. The value of the expression in brackets ([]) selects the bit
you want from the vector. The selected bit must be within the declared
range of the vector. Example 4-15 shows a simple example of a bit-select
with an expression.

Example4-16 Part-Select Operands

wire [7:0] a,b,c;
assign c[0] = a[0] & b[O0];

Part-Selects

A part-select is the selection of a group of bits from awire, register, or
parameter vector. The part-select expression must be constant-valued in the
Verilog language, unlike the bit-select operator. If avariable is declared
with ascending indices or descending indices, the part-sel ect (when applied
to that variable) must be in the same order.

The expression in Example 4-14 can aso be written (with descending
indices) as shown in Example 4-16.

assign c[7:0] = a[7:0] & b[7:0]

Function Calls

Verilog allows you to call one function from inside an expression and use
the return value from the called function as an operand. Functionsin
Verilog return avalue consisting of one or more bits. The syntax of a
function call is the function name followed by a comma-separated list of
function inputs enclosed in parentheses. Example 4-17 shows the function
call legal used in an expression.

Example4-17 Function Call Used as an Operand

assign error =1 legal (inl, in2);

Functions are described in Chapter 5, “Functional Descriptions."

Expressions
Operands

4-13

4-14

Concatenation of Operands

Concatenation is the process of combining several single-bit or multiple-bit
operandsinto one large bit vector. The use of the concatenation operators, a
pair of braces ({}), isdescribed earlier in this chapter.

Example 4-18 shows two 4-bit vectors (nibblel and nibble2) that are joined
to form an 8-hit vector that is assigned to an 8-bit wire vector (byte).

Example 4-18 Concatenation of Operands

wire [7:0] byte;
wire [3:0] nibblel, nibblez;
assign byte = {nibblel, ni bbl e2};

Expression Bit Widths

The bit width of an expression depends on the widths of the operands and
the types of operatorsin the expression.

Table 4-3 shows the bit width for each operand and operator. In thetable, i,
j, and k are expressions; L (i) isthe bit width of expressioni.

To preserve significant bits within an expression, Verilog fillsin zeros for
smaller-width operands. The rules for this zero-extension depend on the
operand type. Theserulesare also listed in Table 4-3.

Verilog classifies expressions (and operands) as either self-determined or
context-determined. A self-determined expression is onein which the width
of the operandsis determined solely by the expression itself. These operand
widths are never extended.

Expressions
Expression Bit Widths

Table4-3 Expression Bit-Widths

Expression
unsized constant

sized constant

%

i &

inj
ir
~i
==
j1==j
88

iy

../\,'

i>>j

Bit Length
32-bit

as specified
max(L(),L())
max(L(),L())
max(L(),L())
max(L(),L())
max(L(),L())
max(L(),L())
max(L(),L())
max(L(),L())
max(L(),L())
L()

1-bit

1-bit

1-bit

1-bit

1-bit

1-bit

1-bit

1-bit

1-bit

1-bit

1-bit

1-bit

1-bit

1-bit

L(7)

Comments

self-determined

self-determined

context-determined

context-determined

context-determined

context-determined

context-determined

context-determined

context-determined

context-determined

context-determined

context-determined

self-determined
self-determined
self-determined
self-determined
self-determined
self-determined
self-determined
self-determined
self-determined
self-determined
self-determined
self-determined
self-determined
self-determined

Jis self-determined

Expressions
Expression Bit Widths

4-15

Expression Bit Length Comments

{i{ih i*L(j) jis self-determined
i<<j L(}) jis self-determined
i?j:k Max(L(j),L(K)) Jis self-determined
{i,...;} L()+...+L() self-determined
{i{),....k} I*(L()+...+L(Kk)) self-determined

Example 4-19 shows a self-determined expression that is a concatenation of
variables with known widths.

Example4-19 Self-Determined Expression

output [7:0] result;
wre [3:0] tenp;

assign temp = 4'b1111;
assign result = {temp,temp};

The concatenation has two operands. Each operand has awidth of four bits

and a value of 4'b1111. The resulting width of the concatenation is 8 bits,
which is the sum of the width of the operands. The value of the
concatenation is 8'b11111111.

A context-determined expression is one in which the width of the

expression depends on all operand widths in the expression. For example,
Verilog defines the resulting width of an addition as the greater of the
widths of its two operands. The addition of two 8-bit quantities produces an
8-bit value; however, if the result of the addition is assigned to a 9-bit
guantity, the addition produces a 9-bit result. Because the addition operands
are context-determined, they are zero-extended to the width of the largest
guantity in the entirexpression.

Example 4-20 shows context-determined expressions.

Example 4-20 Context-Determined Expressions

if (((1'bl << 15)>>15)==1'h0)
/[This expression is ALWAYS true.

if ((((1'bl << 15) >> 15) | 20’'b0) == 1'b0)
/[This expression is NEVER true.

4-16 Expressions
Expression Bit Widths

The expression ((1'bl << 15) >> 15) produces a Ditlue (1'b0). The 1

is shifted off the left end of the vector, producing a value of 0. The right
shift has no additional effect. For a shift operator, the first operand (1'b1) is
context-dependent; the second operand (15) is self-determined.

The expressiof{(1'b1l << 15) >> 15) | 20’bOproduces a 20-bit 1 value
(20’b1). 20'b1 has a 1 in the least significant bit position and 0s in the other
19 bit positions. Because the largest operand within the expression has a
width of 20, the first operand of the shift is zero-extended to a 20-bit value.
The left shift of 15 does not drop the 1 value off the left end; the right shift
brings the 1 value back to the right end, resulting in a 20-bit 1 value
(20'b1).

Expressions 4-17
Expression Bit Widths

4-18 Expressions
Expression Bit Widths

Functional Descriptions

A Verilog circuit description can be one of two types: a structural
description or afunctional description, also referred to as a Register
Transfer Level (RTL) description. A structural description explainsthe
exact physica makeup of the circuit, detailing components and the
connections between them. A functional or RTL description describesa
circuit in terms of its registers and the combinational logic between the
registers.

This chapter describes the construction and use of functional descriptionsin
the following sections:

Sequential constructs

functiondeclarations

Function statements
taskstatements

alwaysblocks

Using Sequential Constructs

Although many Verilog constructs appear sequential in nature, they
describe combinational circuitry. A simple description that appears to be
sequential is shown in Example 5-1.

Functional Descriptions 5-1
Using Sequential Constructs

5-2

Example5-1 Seguential Statements

FPGA Express determines the combinational equivalent of this description.
In fact, FPGA Expresstreatsthe statementsin Example 5-1 the same way it
treats the statementsin Example 5-2

Example 5-2 Equivalent Combinational Description

if (y)

X = b + a
el se

X = b;

To describe combinational logic, you write a sequence of statements and
operatorsto generate the output values you want. For example, suppose the
addition operator (+) is not supported, and you want to create a
combinational, ripple-carry adder. The easiest way to describethiscircuitis
as a cascade of full adders, asin Example 5-3. The example has eight full
adders, with each adder following the one before. From this description,
FPGA Express generates a fully combinational adder.

Example5-3 Combinational Ripple-Carry Adder

function [7:0] adder;
input [7:0] a, b;

reg c;
i nteger i;
begi n
c =0
for (i =0; i <=7, i =i + 1) begin
adder[l] =a[i] ™ b[i] * c;
=a[i] &Db[i] | a[i] &c | b[i] & c;
end
end

endf uncti on

Functional Descriptions
Using Sequential Constructs

function Declarations

Verilog function declarations are one of the two primary methods for
describing combinational logic. The other method is the always block,
described later in this chapter. Y ou must declare and use Verilog functions
within amodule. You can call functions from the structural part of a
Verilog description by using them in a continuous assignment statement or
asatermina in amodule instantiation. Y ou can aso call functions from
other functions or from always blocks.

FPGA Express supports the following Verilog function declarations:
input declarations

reg declarations

memory declarations

parameter declarations

integer declarations

Functions begin with the keyword function and end with the keyword

endfunction. The width of the function’s return value (if any) and the name
of the function follow the function keyword, as shown in the syntax below.

function [range]l name_of_function ;
[func_decl aration]*
statenent_or_null

endf uncti on

Defining the bit range of the return value is optional. Specify range inside
square brackets ([]). If you do not define range, a 1-bit quantity is returned
by default. The function’s output is set by assigning it to the function name.

A function can contain one or more statements. If you use multiple
statements, enclose the statements between a begin...end pair.

A simple function declaration is shown in Example 5-4.

Example5-4 Simple Function Declaration

function [7:0] scranbl e;
input [7:0] a;
i nput [2:0] control;

i nteger i;
begi n
for (i =0; i <=7, 1 =i + 1)
scranble[i] =a[i ~ control];
end

endf uncti on

Functional Descriptions
function Declarations

5-3

Function statements supported by FPGA Express are discussed under
“Function Statements” later in this chapter.

input Declarations
Verilog input declarations specify the input signals for a function.

You must declare the inputs to a Verilog function immediately after you
declare the function name. The syntax of input declarations for a function is
the same as the syntax of input declarations for a module:

i nput [range] list_of variables ;

The optional range specification declares an input as a vector of signals.
Specify range inside square brackets ([]).

Note: Theorder in which you declare the inputs must match the order of
theinputsin the function call.

Function Output

The output from a function is assigned to the function name. A Verilog
function has only one output, which can be a vector. For multiple outputs
from a function, use the concatenation operation to bundle several values
into one return value. This single return value can then be unbundled by the
caller. Example 5-5 shows how unbundling is done.

Example5-5 Many Outputs from a Function

function [9:0] signed_add;
input [7:0] a, b;

reg [7:0] sum

reg carry, overflow

begi n
si Qned_add = {carry, overflow, suni;
end
endf uncti on

assi gn {C, V, result_bus} = signed_add(busA, busB);

54 Functional Descriptions
function Declarations

The signed_add function bundles the values of carry, overflow, and sum
into one value. This new valueisreturned in the assign statement following
the function. The original values are then unbundled by the function that
called the signed_add function.

reg Declarations

Example 5-6 Register Declarations

A register represents avariable in Verilog. The syntax for aregister
declarationis

reg [range] list_of_register_variables ;

A reg declaration can be a single-bit quantity or a vector of bits. The range
parameter specifies the most significant bit (msb) and |least significant bit
(Isb) of the vector enclosed in square brackets ([]). Both bits must be
nonnegative constants, parameters, or constant-valued expressions.
Example 5-6 shows some reg declarations.

reg Xx; /* single bit */
reg a, b, c; /* 3 single-bit quantities */
reg [7:0] q; /* an 8-bit vector */

The Verilog language allows you to assign avalue to areg variable only
within afunction or an always block.

In the Verilog simulator, reg variables can hold state information. A reg
variable can hold its val ue across separate callsto afunction. In some cases,
FPGA Express emulates this behavior by inserting flow-through latches. In
other cases, this behavior is emulated without a latch. The concept of
holding state is elaborated in Chapter 6, “Register and Three-State
Inference.”

Memory Declarations

The memory declaration models a bank of registers. In Verilog, the

memory declaration is actually a two-dimensional array of reg variables.

Sample memory declarations are shown in Example 5-7.

Functional Descriptions
function Declarations

5-5

Example5-7 Memory Declarations

reg [7:0] byte_reg;
reg [7:0] nmem_ bl ock [255:0];

In Example 5-7, byte regisan 8-bit register and mem_block is an array of
256 registers, each of which is 8 bitswide. Y ou can index the array of
registers to access individual registers, but you cannot access individual
bits of aregister directly. Instead, you must copy the appropriate register
into atemporary one-dimensional register. For example, to access the
fourth bit of the eighth register in mem_block, enter

byte reg = nmemblock [7];
i ndi vidual _bit = byte reg [3];

parameter Declarations

Parameter variables are local or global variables that hold values. The
syntax for a parameter declaration is

paraneter [range]l identifier = expression,identifier = expression,
The range specification is optional.

Y ou can declare parameter variables as local to afunction. However, you
cannot use alocal variable outside of that function. Parameter declarations

in afunction are identical to parameter declarations in amodule. (See
Chapter 3, “Structural Descriptions,” for more information.) The function
in Example 5-8 contains a parameter declaration.

Example5-8 Parameter Declaration in a Function

function gte;
paraneter width = 8;
i nput [width-1:0] a, b;
gte = (a >= b);

endf uncti on

integer Declarations

Integer variables are local or global variables that hold numeric values. The
syntax for an integer declaration is

integer identifier_list;

Functional Descriptions
function Declarations

Example5-9 Integer Declarations

Y ou can declare integer variables locally at the function level or globally at

the module level. The default size for integer variablesis 32 bits. FPGA

Express determines bit widths, except in the case of a don't care condition
resulting from a compile.

Example 5-9 illustrates integer declarations.

i nteger a; /* single 32-bit integer */
i nteger b, c; /* two integers */

Function Statements

The function statements supported by FPEfress are
Procedural assignments

Register transfer level (RTL) assignments

begin . . end block statements

if. . . else statements

case, casex, and casez statements

for loops

while loops

forever loops

disable statements

Procedural Assignments

Procedural assignments are assignment statements used inside a function.
They are similar to the continuous assignment statements described in
Chapter 3, “Structural Descriptions,” except that the left side of a
procedural assignment can contain only reg variables and integers.
Assignment statements set the value of the left side to the current value of
the right side. The right side of the assignment can contain any arbitrary
expression of the data types described in Chapter 3, “Structural
Descriptions,” including simple constants and variables.

The left side of the procedural assignment statement can contain only the
following data types:

* reg variables

Functional Descriptions 5-7
Function Statements

5-8

Bit-selects of reg variables

Part-selects afeg variables (must be constant-valued)
Integers

Concatenations of the above

Assignments are made bit-wise, with the low bit on the right side assigned
to the low bit on the left side. If the number of bits on the right side is
greater than the number on the left side, the high-order bits on the right side
are discarded. If the number of bits on the left side is greater than the
number on the right side, the right side bits are zero-extended. Multiple
procedural assignments are allowed.

Some examples of procedural assignments are shown in Example 5-10.

Example5-10 Procedural Assignments

sum= a + b;
control[5] = (instruction == 8’h2e);
{carry_in, a[7:0]} = 9'h 120;

RTL Assignments

Procedural assignmentsin Verilog can be blocking in nature. For example,
you can assign a delay of five time units with the following statement.

rega = #5 argl + arg2;

The expression argl + arg2 is evaluated, then execution is suspended for
fivetime units before the assignment is performed and the next statement is
processed. Execution of the next statement is blocked until the current
statement’s execution is completed.

On the other hand, RTL assignments let you define nonblocking procedural
assignments with timing controls. If you use a nonblocking RTL
assignment statement instead of the procedural assignment, the sum is
computed immediately, but the assignment is done after the five time-unit
delay.

rega <= #5 argl + argz,

However, execution proceeds without waiting for the assignment to finish.
FPGAEXpressignores intra-assignment and interassignment delays;
therefore, the RTL assignment behaves like the blocking procedural
assignment in this case.

Functional Descriptions
Function Statements

Example5-11 RTL Assignments

Toillustrate the difference in behavior between RTL assignments and
blocking procedural assignments, consider Example 5-11 and Example
5-12, where there are multiple assignments.

al ways @ posedge cl k) begin
regc <= data;
regd <= regc;

end

Figure5-1 Schematic of RTL Assignments

datal =/

TDPEQG
> ragd

I e

Example5-12 Blocking Assignment

Example 5-11 is adescription of a serial register implemented with RTL
assignments. The recently assigned value of regc, which isdata, is assigned
to regd as the schematic in Example 5-1 indicates. If blocking assignments
are used asin Figure 5-2, a serial register is not synthesized because
assignments are executed before proceeding.

al ways @ posedge cl k) begin
rega = data;
regh = rega;

end

Functional Descriptions
Function Statements

5-9

5-10

Figure5-2 Schematic of Blocking Assignment

e “x rage

R - i wragk

W
i
]

al k=

The following restrictions apply to RTL assignments:;

You cannot use procedural assignments with blocking delays and RTL
assignments at the same time. The following example is not allowed.

reg b, c;

al ways begin
b <= #4a;// RTL assignnment
c = #3b;// procedure assignnent with
/1 bl ocking del ay

end

Because FPGAXpress ignores delay information, synthesis might not
agree with simulation.

If you first assign a value to a reg variable with a procedural assignment,
you cannot use an RTL assignment on that reg anywhere in the module.

If you first assign a value to a reg variable with an RTL assignment, you
cannot use a procedural assignment on that reg anywhere in the module.

begin . .. end Block Statements

Block statements are a way of syntactically grouping several statements
into a single statement.

In Verilog, sequential blocks are delimited by the keywdatgn andend.
These begin...end blocks are commonly used in conjunction with if, case,
and for statements to group several statements together. Functions and
always blocks that contain more than one statement require a begin...end
block to group the statements. Verilog also provides a construct called a
named block, as shown in Example 5-13.

Functional Descriptions
Function Statements

Example 5-13 Block Statement with a Named Block

begin : bl ock_nane
reg local _variable_1,
i nteger local _variable 2,
paraneter [ocal _variable 3
statenents ...
end

In Verilog, no semicolon (;) follows the begin or end keywords. You
identify named blocks by following the begin keyword with a colon (:) and
ablock_name, as shown. Verilog syntax allows you to declare variables
locally in anamed block. Y ou can include reg, integer, and parameter
declarations within a named block but not in an unnamed block. Named
blocks allow you to use the disable statement.

if ... else Statements

Theif...else statements execute a block of statements according to the value
of one or more expressions.

The syntax of if...else statementsis

if (expr)
begin
statenents ...
end
el se
begin
Statenents ...
end

Theif statement consists of the keyword if, followed by an expression
enclosed in parentheses. Theif statement is followed by a statement or
block of statements enclosed with the begin and end keywords. If the value
of the expression is nonzero, the expression is true and the statement block
that follows is executed. If the value of the expression is zero, the
expression isfalse, and the statement block that followsis not executed.

An optional €lse statement can follow an if statement. If the expression
following the if keyword isfalse, the statement or block of statements
following the else keyword is executed.

Theif...el se statements can cause registers to be synthesized. Registers are
synthesi zed when you do not assigh a value to the same reg variable in all
branches of a conditional construct. Information on registersis provided in
Chapter 6, “Register and Three-State Inference.”

Functional Descriptions 5-11
Function Statements

5-12

FPGA Express synthesizes multiplexer logic (or similar select logic) from a
singleif statement. The conditional expression in an if statement is
synthesized as a control signal to a multiplexer, which determines the
appropriate path through the multiplexer. For example, the statementsin
Example 5-14 create multiplexer logic controlled by ¢ and place either aor
b in the variable x.

Example 5-14 if Statement that Synthesizes Multiplexer Logic

if (c¢)
X = a;
el se
X = b;

Example 5-15 illustrates how if and else can be used to create an arbitrarily
long if...elseif...else structure.

Example5-15 if...elseif...ese Structure

if (instruction == ADD)
begi n
carry_in = 0;
conmpl enent _arg = O;

end
else if (instruction == SUB)
begi n
carry_in = 1;
conpl enent _arg = 1;
end
el se

illegal _instruction = 1;

Example 5-16 shows how to use nested if and else statements.

Example5-16 Nested if and else Statements

if (select[1])

begi n
if (select[0]) out =in[3];
el se out = in[2];

end

el se

begi n
if (select[0]) out =in[1];
else out =in[0];

end

Functional Descriptions
Function Statements

Conditional Assignments

FPGA Express can synthesize alatch for a conditionally assigned variable.

If apath exists that does not explicitly assign avalueto avariable, the

variable is conditionally assigned. See Chapter 6, “Register and Three-State
Inference,” for more information.

In Example 5-17, the variable value is conditionally driven. If ¢ is not true,
value is not assigned and retains its previous value.

Example5-17 Synthesizing a Latch for a Conditionally Driven Variable

al ways begin
if (¢c) begin

val ue = x;
end
Y = value; //causes a latch to be synthesized for
[/ val ue
end

case Statements

Thecase statement is similar in function to tfie . . el se conditional
statement. The case statement allows a multipath branch in logic that is
based on the value of an expression. One way to describe a multicycle
circuit is with a case statement (see Example 5-18). Another way is with
multiple @ (clock-edge) statements, which are discussed later in this
section.

The syntax for a case statement is shown below.

case (expr)
case_iteml : begin

Statenents ...

end
case _jten? : begin

Statenents ...

end
default : begin

statenents ...
end
endcase

Functional Descriptions 5-13
Function Statements

5-14

Example5-18 case Statement

The case statement consists of the keyword case, followed by an expression
in parentheses, followed by one or more case items (and associated
statements to be executed), followed by the keyword endcase. A caseitem
consists of an expression (usually asimple constant) or alist of expressions
separated by commas, followed by a colon (3).

The expression following the case keyword is compared with each case
item expression, one by one. When the expressions are equal, the condition
evaluatesto true. Multiple expressions separated by commas can beused in
each case item. When multiple expressions are used, the condition is said to
betrueif any of the expressions in the case item match the expression
following the case keyword.

The first case item that evaluates to true determines the path. All
subsequent case items are ignored, even if they are true. If no caseitem is
true, no action is taken. Y ou can define a default case item with the
expression default, which is used when no other case item istrue.

An example of a case statement is shown in Example 5-18.

case (state)

| DLE: begin
if (start)
next state = STEPI1;
el se
next state = |IDLE
end
STEP1: begin
/* do first state processing here */
next state = STEPZ2;
end
STEP2: begin
/* do second state processing here */
next state = |IDLE
end
endcase

Full Case and Parallel Case

FPGA Express automatically determines whether a case statement isfull or
parallel. A case statement isreferred to asfull caseif al possible branches
are specified. If you do not specify all possible branches, but you know that
one or more branches can never occur, you can declare a case statement as

Functional Descriptions
Function Statements

full casewith the// synopsysfull_case directive. Otherwise, FPGA Express
synthesizes a latch. See Chapter 7, “FREgr ess Directives,” for more
information about full_case directives.

FPGAEXxpress synthesizes optimal logic for the control signals of a case
statement. If FPGAXxpress cannot statically determine that branches are
parallel, it synthesizes hardware that includes a priority encoder. If FPGA
Express can determine that no cases overfardllel case), a multiplexer

is synthesized, because a priority encoder is not necessary. You can also
declare a case statement as parallel case with the //synopsys parallel_case
directive. Refer to Chapter 7, “FPQpress Directives,” for information

about parallel_case directives.

Example 5-19 does not result in either a latch or a priority encoder.

Example5-19 A case Statement that Is Both Full and Parallel

i nput [1:0] a;
al ways @a or wor x or y or z) begin
case (a)
2'b11:
b=w;
2'b10:
b=x;
2'h01:
b=y;
2'b00:
b=z;
endcase
end

Example 5-20 shows a case statement that is missing branches for the cases
2'b01 and 2’b10. Example 5-20 infers a latch for b.

Example5-20 A case Statement that Is Parallel but Not Full

i nput [1:0] a;
al ways @a or w or z) begin
case (a)
2'b11:
b=w;
2'b00:
b=z;
endcase
end

The case statement in Example 5-21 is not parallel or full because the input
values of w and x cannot be determined. However, if you know that only
one of the inputs equals 2’b11 at a given time, you can use the // synopsys

Functional Descriptions 5-15
Function Statements

paralel_case directive to avoid synthesizing a priority encoder. If you

know that either w or x always equals 2'b11 (a situation known as a
one-branch tree), you can use the // synopsys full_case directive to avoid
synthesizing a latch.

Example5-21 A case Statement that Is Not Full or Parallel

always @ w or x) begin
case (2'b11)

W
b=10;
X:
b=01;
endcase
end

casex Statements

The casex statement allows a multipath branch in logic according to the
value of an expression, just like the case statement. The differences
between the case statement and the casex statement are the keyword and the
processing of the expressions.

The syntax for a casex statement is
casex (expr)
case_jtenl :begin
Statenents ...
end
case_i ten? : begin
statenents ...
end
default : begin
Statenents ...
end
endcase

A case item can have expressions consisting of

« A simple constant

« A list of identifiers or expressions separated by commas, followed by a
colon (3)

» Concatenated, bit-selected, or part-selected expressions
« A constant containing z, x, or ?

When a z, X, or ? appears in a case-item expression, it means that the
corresponding bit of the casex expression is nhot compared. Example 5-22
shows a case item that includes an x.

5-16 Functional Descriptions
Function Statements

Example 5-22 casex Statement with x

reg [3:0] cond;
casex (cond)
4’p100x: out = 1;
default: out = 0;
endcase

In Example 5-22, out is set to 1 if cond is equal to 4’1000 or 4’b1001,
because the last bit of cond is defined as x.

Example 5-23 shows a complicated section of code that can be simplified
with a casex statement that uses the ? value.

Example5-23 Before Using casex with ?

if (cond[3]) out = 0;

else if ('cond[3] & cond[2]) out = 1;

else if (!cond[3] & !cond[2] & cond[1]) out = 2;

else if ('cond[3] & !cond[2] & !cond[1l] & cond[0]) out = 3;
else if ('cond[3] & !cond[2] & !'cond[1l] & !'cond[0]) out = 4;

Example 5-24 shows the simplified version of the same code.

Example 5-24 After Using casex with ?

casex (cond)
4'h1??7?: out = 0;
4'b01??: out = 1;
4’n0017?: out = 2;
4’n0001: out = 3;
4’p0000: out = 4;
endcase

?, z, and x bits are allowed in case item expressions, but not in casex
expressions. Example 5-25 shows casex in an illegal expression.

Example5-25 lllegal casex Expression

express = 3'bxz?;
casex (express) /*illegal testing of an expression*/

endcase

Functional Descriptions 5-17
Function Statements

5-18

casez Statements

The casez statement allows a multipath branch in logic according to the
value of an expression, just like the case statement. The differences
between the case statement and the casez statement are the keyword and the
way the expressions are processed. The casez statement acts exactly the
same as the casex statement, except that x is not allowed in case item
expressions; only z and ? are accepted as special characters.

The syntax for a casez statement is

casez (expr)
case jiteml : begin
statenents ...
end
case_iten? : begin
Statenents ..
end
default : begin
statenents ...
end
endcase

A case item can have expressions consisting of
« A simple constant

« A list of identifiers or expressions separated by commas, followed by a
colon (3)

» Concatenated, bit-selected, or part-selected expressions
» A constant containing a z or ?

» When a casez statement is evaluated, the value z in the case item expression
is ignored. An example of a casez statement with z in the case item is
shown in Example 5-26.

Example 5-26 casez Statement with z

casez (what _is_it)
2'bz0: begin
[* accept anything with least significant bit zero */
it_is =even;
end
2'bz1: begin
[* accept anything with least significant bit one */
it _is = odd;
end
endcase

?and z bitsare allowed in caseitems, but not in casez expressions.
Example 5-27 shows anillegal expression in a casez statement.

Functional Descriptions
Function Statements

Example 5-27 lllega casez Expression

express = 1'bz;
casez (express) /*illegal testing of an expression*/

endcase

for Loops

The for loop repeatedly executes a single statement or block of statements.
The repetitions are performed over arange determined by the range
expressions assigned to an index. Two range expressions are used in each
for loop: low_range and high_range. Note that in the syntax lines that
follow, high rangeis greater than or equal to low_range. FPGA Express
recognizes both incrementing and decrementing loops. The statement to be
duplicated is surrounded by begin and end statements.

Note: FPGA Express allows four syntax forms for a for loop. They are

for (index = low_range;index < high_range;index= index + step)
for (index = high_range;index > low_range;index= index - step)
for (index = low_range;index <= high_range;index= index + step)
for (index = high_range;index >= low_range;index= index - step)

Example 5-28 shows asimple for loop.

Example5-28 A Simplefor Loop

for (i=0;i<=31;i=i+1) begin
s[i] = a[i] ~ b[i] * carry;
carry = a[i] & b[i] | ali] & carry |
b[i] & carry;
end

Note that for loops can be nested, as shown in Example 5-29.

Functional Descriptions 5-19
Function Statements

5-20

Example 5-29 Nested for Loops

Example 5-30 Examplefor Loop

for (i =6; i >=0; i =i - 1)
for (j =0; j <=i;j =] +1)
if (value[j] > value[j+1]) begin
tenmp = val ue[j +1];
val ue[j +1] = value[j];
value[j] = tenp;
end

Y ou can use for loops as duplicating statements. Example 5-30 shows afor
loop that is expanded into its longhand equivalent in Example 5-31.

for (i=0; i <8; i=i+1)
example[i] = a[i] & b[7-i];
Example5-31 Expanded for Loop
exanpl e[0] = a[0] & b[7];
exanmple[1l] = a[l] & b[6];
exanmple[2] = a[2] & b[5];
exanpl e[3] = a[3] & b[4];
exanple[4] = a[4] & b[3];
exanpl e[5] = a[5] & b[2];
exanpl e[6] = a[6] & b[1];
example[7] = a[7] & b[O0];

while Loops

The while loop executes a statement until the controlling expression
evaluatesto false. A while loop creates a conditional branch that must be
broken by one of the following statements to prevent combinational
feedback

@ (posedge clock) or @ (negedge cl ock)

FPGA Express supports while loops, if you insert one of the following
expressions in every path through the loop

@ (posedge clock) or @ (negedge cl ock)

Example 5-32 shows an unsupported while loop that has no event
expression.

Functional Descriptions
Function Statements

Example 5-32 Unsupported while Loop

al ways
while (x <vy)
X = X + z;

If you add @ (posedge clock) expressions after the while loop in Example
5-32, you get the supported version shown inExample 5-33.

Example 5-33 Supported while Loop

al ways
begin @ (posedge cl ock)
while (x <vy)
begi n
@ (posedge cl ock);
X =X + z;
end
end;

forever Loops
Infinite loopsin Verilog use the keyword forever. Y ou must break up an

infinite loop with an @ (posedge clock) or @ (negedge clock) expression to
prevent combinational feedback, as shown in Example 5-34.

Example5-34 Supported forever Loop

al ways
forever
begi n
@ (posedge cl ock);
X =X + z;
end

Y ou can use forever loops with a disable statement to implement

synchronous resets for flip-flops. The disable statement is described in the

next section. See Chapter 6, “Register and Three-State Inference,” for more
information on synchronous resets.

Functional Descriptions 5-21
Function Statements

5-22

The styleillustrated in Example 5-34 is not recommended because it is not
testable. The synthesized state machine does not reset to a known state;
therefore, it isimpossible to create atest program for the state machine.
Example 5-36 illustrates how a synchronous reset for the state machine can
be synthesized.

disable Statements

FPGA Express supports the disable statement when you use it in named
blocks. When a disable statement is executed, it causes the named block to
terminate. A comparator description that uses disable is shown in Example
5-35.

Example5-35 Comparator Using disable

begin : conpare
for (i =7, i > 0; i =i - 1) begin
if (a[i] '=Db[i]) begin
greater _than = ali];
|l ess_than = ~a[i];
equal _to = 0;
/* conparison is done so stop |ooping */
di sabl e compare;
end
end

/* If we get here a ==
If the disable statenent is executed, the next
three lines will not be executed */
greater _than = 0;
| ess_than = 0;
equal _to = 1;
end

Note that Example 5-355 describes a combinational comparator. Although
the description appears sequential, the generated logic runsin asingle clock

cycle.

Y ou can also use a disable statement to implement a synchronous reset, as
shown in Example 5-36.

Functional Descriptions
Function Statements

Example 5-36 Synchronous Reset of State Register Using disablein aforever Loop

al ways
forever
begi n: reset | abel
@ (posedge cl ock);
if (reset) disable reset | abel;
z = a;

@ (posedge cl ock);
if (reset) disable reset | abel;
zZ = b;
end

The disable statement in Example 5-36 causes the block reset_|abel to
immediately terminate and return to the beginning of the block. Therefore,
thefirst state in the loop is synthesized as the reset state.

task Statements

In Verilog, the task statements are similar to functions except that task
statements can have output and inout ports. Y ou can use the task statement
to structure your Verilog code so that a portion of code can be reused.

In Verilog, task statements can have timing controls, and they can take a
nonzero time to return. However, FPGA Expressignores al timing
controls, so synthesis might disagree with simulation if the timing controls
are critical to the function of the circuit.

Example 5-37 shows how atask statement is used to define an adder
function.

Functional Descriptions
task Statements

5-23

Example 5-37 Using the task Statement

nmodul e task_exanple (a,b,c);
input [7:0] a,b;
output [7:0] c;
reg [7:0] c;

task adder;
input [7:0] a,b;
out put [7:0] adder;
reg c;
i nteger i;

begi
c = 0;
for (i = i
adder [i] a[i] »
c = (a[i] &b[i])
end
end

endt ask
al ways
adder (a,b,c); // cis areg

0; <=7 = i+1) begin
= N (o

bl i
| (ali] &c) | (bli] &o);

endnodul e

Note: Only reg variables can receive output values from a task; wire
variables cannot.

always Blocks

An aways block can imply latches or flip-flops, or it can specify purely
combinational logic. An always block can contain logic triggered in
response to achangein alevel or therising or falling edge of asignal. The
syntax of an always block is
al ways @(event-expression[or event-expression*])
begi n

Sstatenents ...
end

The event-expression declares the triggers or timing controls. The word or
groups several triggers together. The Verilog language specifies that if

triggers in the event-expression occur, the block is executed. Only one

trigger in agroup of triggers needs to occur for the block to be executed.
However, FPGA Expressignores the event-expression unlessitisa

synchronous trigger that infers a register. Refer to Chapter 6, “Register and
Three-State Inference,” for details.

Example 5-38 is a simple example of an always block with triggers.

5-24 Functional Descriptions
always Blocks

Example 5-38 A Simple always Block

always @(a or b or ¢) begin
f =a&bé&c
end

In Example 5-38, a, b, and ¢ are asynchronous triggers. If any triggers
change, the simulator resimulates the always block and recal culates the
value of f. FPGA Expressignoresthe triggers in this example because
they are not synchronous. However, you must indicate all variablesthat are
read in the always block as triggers. If you do not indicate all the variables
astriggers, FPGA Express gives a warning message similar to the
following.

Warning: Variable ‘foo’ is being read in block ‘bar’

declared on line 88 but does not occur in the
timing control of the block.

For a synchronous always block, FPGA Express does not require all
variablesto be listed.

An aways block is triggered by any of the following types of
event-expressions:

» The change in a specified value. For example:

always @(identifier) begin
statenents ...
end

In the example above, FPA&press ignores the trigger.
« The rising edge of a clock. For example:

al wvays @ (posedge event) begin
Sstatenents ...
end

» The falling edge of a clock. For example:

al wvays @ (negedge event) begin
statenents ...
end

» A clock or an asynchronous preload condition. For example:

al ways @ (posedge CLOCK or negedge reset) begin
if !reset begin
statenents ...
end
el se begin
Statenents ...
end
end

Functional Descriptions 5-25
always Blocks

» An asynchronous preload that is based on two events joined by therword
For example:

al wvays @ (posedge CLOCK or posedge eventl1 or
negedge event2) begin
if (eventl) begin
statenents ...
end
else if (l'event2) begin
Statenents ..
end
el se begin
statenents ...
end
end

When theevent-expression does not contain posedge or negedge,
combinational logic (no registers) is usually generated, although
flow-through latches can be generated.

Note: The statements @ (posedge clock) and @ (negedge clock) are not
supported in functions or tasks.

Incomplete Event Specification
An always block can be misinterpreted if you do not list all signals entering

an always block in the event specification. Example 5-39 shows an
incomplete event list.

Example5-39 Incomplete Event List

al ways @a or b) begin
f =a &b &c;
end

FPGAExpress builds a 3-input AND gate for the description in Example
5-39. However, when this description is simulated, f is not recalculated
when ¢ changes, because c is not listed in the event-expression. The
simulated behavior isot that of a 3-input AND gate.

The simulated behavior of the description in Example 5-40 is correct
because it includes all signals in event-expression.

5-26 Functional Descriptions
always Blocks

Example 5-40 Complete Event List

always @a or b or c) begin
f =a &b &c;
end

In some cases, you cannot list all signalsin the event specification.
Example 5-41 illustrates this problem.

Example 5-41 Incomplete Event List for Asynchronous Preload Condition

al wvays @ (posedge ¢ or posedge p)

if (p)
z = d;
el se

Z = a;

In the logic synthesized for Example 5-41, if d changes while p is high, the
change is reflected immediately in the output (z). However, when this
description is simulated, z is not recal culated when d changes because d is
not listed in the event specification. As aresult, synthesis might not match
simulation.

Asynchronous prel oads can be correctly modeled only when you want
changesin the load data to be immediately reflected in the output. In
Example 5-41, datad must change to the preload value before prel oad
condition p transits from low to high. If you attempt to read avaluein an
asynchronous preload, FPGA Express prints awarning similar to the one
shown below.
Warning: Variable ‘d’ is being read asynchronously in

routine reset line 21 in file

‘lusritests/hdl/asyn.v’. This might cause
simulation-synthesis mismatches.

Functional Descriptions
always Blocks

5-27

5-28 Functional Descriptions
always Blocks

Register and Three-State Inference

FPGA Express can infer registers (latches and flip-flops) and three-state
cells. This chapter describes how to perform the following tasks when
inferring these types of cells:

Reporting the inference results
Controlling the inference behavior
Inferring the cells

Register Inference

Register inference allows you to use sequential logic in your designs and
keep your designs technology independent. A register is a simple, one-bit
memory device, either a latch or a flip-flop. A latch is a level-sensitive
memory device. A flip-flop is an edge-triggered memory device.

The register inference capability can support coding styles other than those
described in this chapter. However, for best results

Restrict each always block to a single type of memory-element inferencing:
latch, latch with asynchronous set or reset, flip-flop, flip-flop with asyn-
chronous reset, or flip-flop with synchronous reset.

Use the templates provided in the “Inferring Latches” and “Inferring
Flip-Flops” sections later in this chapter.

Register and Three-State Inference 6-1
Register Inference

6-2

Reporting Regi

ster Inference

FPGA Express generates an inference report that shows the information
about the inferred devices.

FPGA Express generates ageneral inference report when building adesign
and also provides the asynchronous set or reset, synchronous set or reset,
and synchronous toggle conditions of each latch or flip-flop expressed in
Boolean formulas. Example 6-1 shows the inference report for a JK
flip-flop. The inference report appears on the Messages page of the output
window for a pre-optimized chip.

Example6-1 Inference Report for JK Flip-Flop

Sync-reset: J' K

Sync-set: J K’

Sync-toggle: J K

Sync-set and Sync-reset ==> Q: X

The inference report in Example 6-1 consists of two sections—the first
section contains tables of the inferenced registers and three-state devices
and the second section reports detailed register behavior. In the report,

Y indicates the flip-flop has a synchronous reset (SR) and a synchronous set
(SS).

N indicates the flip-flop does not have an asynchronous reset (AR), an
asynchronous set (AS), or a synchronous toggle (ST).

In the inference report (Example 6-1), the last section of the report lists the
signals that control the synchronous reset and set conditions. In this
example, register Q_reg synchronously resets when J is low (logic 0) and K
is high (logic 1). The last line of the report indicates the register output
value when both the set and reset are active:

zero (0)
Indicates that the reset has priority and the output goes to logic O.

one (1)
Indicates that the set has priority and the output goes to logic 1.

Register and Three-State Inference
Register Inference

X
Indicates that the output value is undefined.

The “Inferring Latches” and “Inferring Flip-Flops” sections provide
inference reports for each register template.

FPGAEXpress generates a warning message when it infers a latch. FPGA
Express sends the warning in case the designer intended to describe
combinational logic in a process but instead has inferred latches because a
signal was not assigned a value in all cases in the process. This is useful for
verifying that a combinational design does not contain latches.

Controlling Register Inference

Use FPGAEXxpress directives to direct FPGEXxpress to the type of
sequential device you want inferred. FPG&Xpress directives give you
control over individual signals.

Attributes that Control Register Inference
FPGAExpress provides the following directives for controlling register
inference:

n async_set_reset

When a signal has this directive set to true, FAERpress looks for a
branch that uses the signal as a condition. FE&#ess then checks to see
whether the branch contains an assignment to a constant value. If the
branch does, the signal becomes an asynchronous reset or set.

Attach this directive to single-bit signals using the following syntax:
Il synopsys async_set_reset” signal _nanme_Ilist”

n async_set reset |ocal

FPGA Expresstreatslisted signalsin the specified block asif they have the
async_set_reset directive set to true.

Attach this directive to a block label using the following syntax:

[* synopsys async_set_reset_local bl ock_I abel
" signal _name_|ist"*

Register and Three-State Inference 6-3
Register Inference

64

async_set_reset_local_all

FPGA Expresstreats al signalsin the specified blocks as if they have the
async_set_reset directive set to true.

Attach this directive to block labels using the following syntax:

/* synopsys async_set_reset | ocal _all
" block | abel |ist”*

sync_set_reset

When a signal has this directive set to true, FPGA Express checks the
signal to determine whether it synchronously sets or resets aregister in the
design.

Attach this directive to single-bit signals using the following syntax:
//synopsys sync_set_reset ” signal _nane_list”

sync_set_reset local

FPGA Expresstreatslisted signalsin the specified block asif they have the
sync_set_reset directive set to true.

Attach this directive to ablock label using the following syntax:
[* synopsys sync_set_reset_local bl ock_I abel
" signal _name_|ist”*
sync_set reset local_all
FPGA Expresstreats al signalsin the specified blocks as if they have the
sync_set reset directive set to true.
Attach this directive to block labels using the following syntax:

* synopsys sync_set_reset_local_all
" block | abel |ist”*

one _cold

A one-cold implementation means that all signalsin agroup are active low
and that only one signal can be active at agiven time. The one_cold
directive prevents FPGA Express from implementing priority encoding
logic for the set and reset signals.

Add a check to the Verilog code to ensure that the group of signals hasa
one-cold implementation. FPGA Express does not produce any logic to
check this assertion.

Attach this directive to set or reset signals on sequential devices using the
following syntax:

/I synopsys one_cold ” signal _nanme_Ilist”

Register and Three-State Inference
Register Inference

» one_hot

A one-hot implementation means that all signalsin a group are active high
and that only one signal can be active at agiven time. The one_cold
directive prevents FPGA Express from implementing priority encoding
logic for the set and reset signals.

Add a check to the Verilog code to ensure that the group of signals hasa
one-hot implementation. FPGA Express does not produce any logic to
check this assertion.

Attach this directive to set or reset signals on sequentia devices using the
following syntax:

// synopsys one_hot ” signal _nanme_|ist”

The one_cold and one_hot directives cannot be used for FSM state vector
encoding. For information about controlling state vector encoding, see
“How to Specify Finite State Machines” in the FP&Rpress online help.

Inferring Latches

In simulation, a signal or variable holds its value until that output is
reassigned. In hardware, a latch implements this holding-of-state
capability. FPGAEXpress supports inference of the following types of
latches:

* SR latch
* D latch

If the target technology does not contain latches of the proper type,
optimization may not complete or it may build combinational feedback
circuits to achieve the desired functionality.

Inferring SR Latches

Use SR latches with caution because they are difficult to test. If you decide
to use SR latches, you must verify that the inputs are hazard-free (do not
glitch). FPGAEXxpress does not ensure that the logic driving the inputs is
hazard-free.

Register and Three-State Inference 6-5
Register Inference

6-6

Example 6-2 provides the Verilog code that implements the SR latch

described in the truth table in Table 6-1. Because the output y is unstable

when both inputs have alogic 0 value, you might want to include a check in

the Verilog code to detect this condition during simulation. Synthesis does

not support such checks, so you must put the synthesis_on and synthesis_

off directives around the check. See Chapter 7, “FE®&#kess

Directives,” for more information about FP@2xpress directives.

Example 6-2 includes the check and the synthesis_on and synthesis_off
directives. Example 6-3 shows the inference report generated by FPGA
Express.

Table6-1 SR Latch Truth Table (Nand Type)

Example6-2 SR Latch

set reset y
0 0 Not stable
0 1 1
1 0 0
1 1 y

nmodul e sr_latch (SET, RESET, Q;
i nput SET, RESET;
out put Q
reg Q

//synopsys async_set_reset "SET, RESET”
always @(RESET or SET)
if (~RESET)
Q=0
else if (~SET)
Q=1

endmodule

Register and Three-State Inference
Register Inference

Example 6-3 Inference Report for an SR Latch

Async-reset: RESET’
Async-set: SET’
Async-set and Async-reset ==> Q: 1

Figure6-1 SR Latch

JET=—0 — >Q

RERET] -=—0) n

Register and Three-State Inference 6-7
Register Inference

Inferring D Latches

When you do not specify the resulting value for asignal under all
conditions, asin an incompletely specified if or case statement, FPGA
ExpressinfersaD latch.

For example, theif statement in Example 6-4 infersa D latch because there
isno else clause. The Verilog code specifiesavaue for output Q only when
input GATE hasalogic 1 value. As aresult output Q becomes alatched
value.

Example 6-4 Latch Inference Using an if Statement

al ways @ (DATA or GATE) begin
if (GATE) begin
Q = DATA;
end
end

The case statement in Example 6-5 infers D latches because the case
statement does not provide assignments to decimal for values of | between
10 and 15.

Example 6-5 Latch Inference Using a case Statement

always @1) begin
case(l)
4'h0: decimal= 10’b0000000001;
4’h1: decimal= 10’'b0000000010;
4’h2: decimal= 10’b0000000100;
4’h3: decimal= 10'b0000001000;
4'h4: decimal= 10’b0000010000;
4'h5: decimal= 10’b0000100000;
4'h6: decimal= 10’b0001000000;
4’'h7: decimal= 10’b0010000000;
4'h8: decimal= 10’b0100000000;
4’h9: decimal= 10’b1000000000;

endcase
end

6-8 Register and Three-State Inference
Register Inference

To avoid latch inference, assign avalue to the signal under all conditions.
To avoid latch inference by the if statement in Example 6-4, modify the
block as shown in Example 6-6 or Example 6-7. To avoid latch inference
by the case statement in Example 6-5, add the following statement before
the endcase statement:

default: decimal= 10’b0000000000;

Example6-6 Avoiding Latch Inference

al ways @ (DATA, GATE) begin
= 0,
if (GATE)
Q = DATA;
end

Example 6-7 Another Way to Avoid Latch Inference

al ways @ (DATA, GATE) begin

if (GATE)
Q = DATA;
el se
Q=0;
end

Variables declared locally within a subprogram do not hold their value over
time because every time a subprogram is called, its variables are
reinitialized. Therefore, FPGA Express does not infer latches for variables
declared in subprograms. In Example 6-8, FPGA Express does not infer a
latch for output Q.

Example 6-8 Function: No Latch Inference

function MY_FUNC
i nput DATA, GATE;
reg STATE;

begi n
if (GATE) begin
STATE = DATA;
end
MY_FUNC = STATE;
end
end function

Q = MY_FUNC(DATA, GATE):

Register and Three-State Inference 6-9
Register Inference

6-10

Example6-9 D Latch

The following sections provide truth tables, code examples, and figures for
these types of D latches:

Simple D latch
D latch with asynchronous set or reset
D latch with asynchronous set and reset

Simple D Latch. When you infer a D latch, make sure that you can control
the gate and data signals from the top-level design ports or through
combinational logic. Controllable gate and data signals ensure that
simulation can initialize the design.

Example 6-9 provides the Verilog template for a D latch. FEE®@gkess
generates the verbose inference report shown in Example 6-10. Figure 6-2
shows the inferred latch.

nmodul e d_I| atch (GATE, DATA, Q;
i nput GATE, DATA;
out put Q
reg Q

al ways @ GATE or DATA)
i f (GATE)
Q = DATA;

endnodul e

Register and Three-State Inference
Register Inference

Example 6-10 Inference Report for aD Latch

reset/set: none

Figure6-2 D Latch

DATAL »— — >

=ATE[—])

Register and Three-State Inference 6-11
Register Inference

D Latch with Asynchronous Set or Reset. The templatesin this section
use the async_set_reset directive to direct FPGA Expressto the
asynchronous set or reset pins of the inferred latch.

Example 6-11 provides the Verilog template for aD latch with an

asynchronous set. FPGA Express generates the verbose inference report
shown in Example 6-12. Figure 6-3 shows the inferred latch.

Example6-11 D Latch with Asynchronous Set

nmodul e d_| atch_async_set (GATE, DATA, SET, Q;
i nput GATE, DATA, SET;
out put Q
reg Q

//synopsys async_set_reset "SET”
always @(GATE or DATA or SET)
if (~SET)
Q = 1'b1;
else if (GATE)
Q = DATA;
endmodule

Example 6-12 Inference Report for aD Latch with Asynchronous Set

| Register Name | Type |Width|Bus|AR|AS|SR|SS|ST|

Async-set: SET’

6-12 Register and Three-State Inference
Register Inference

Figure 6-3 D Latch with Asynchronous Set

GATE 55—

e
-

Note: When thetarget technology library does not contain a latch with an
asynchronous set, FPGA Express synthesizes the set logic using

combinational logic.

Register and Three-State Inference
Register Inference

6-13

6-14

Example 6-13 providesthe Verilog template for a D latch with an
asynchronous reset. FPGA Express generates the verbose inference report
shown in Example 6-14. Figure 6-4 shows the inferred latch.

Example 6-13 D Latch with Asynchronous Reset

nmodul e d_I| atch_async_reset (RESET, GATE, DATA, Q;
i nput RESET, GATE, DATA;
out put Q
reg Q

//synopsys async_set_reset "/RESET”
always @ (RESET or GATE or DATA)
if (~RESET)
Q = 1'h0;
else if (GATE)
Q = DATA;
endmodule

Example 6-14 Inference Report for aD Latch with Asynchronous Reset

| Register Name | Type |Width|Bus|AR|AS|SR|SS|ST|

Async-reset: RESET’

Figure 6-4 D Latch with Asynchronous Reset

T —{>a

A TE— o

EEEE@—Lr

Register and Three-State Inference
Register Inference

D Latch with Asynchronous Set and Reset. Example 6-15 provides the
Verilog template for a D latch with an active low asynchronous set and
reset. Thistemplate uses the async_set reset_local directiveto direct
FPGA Expressto the asynchronous signals in block infer. This template
uses the one_cold directive to prevent priority encoding of the set and reset
signals. For thistemplate, if you do not specify the one_cold directive, the
set signal has priority because it is used as the condition for the if clause.
FPGA Express generates the verbose inference report shown in Example
6-16. Figure 6-5 shows the inferred latch.

Example 6-15 D Latch with Asynchronous Set and Reset

modul e d_I| atch_async (GATE, DATA, RESET, SET, Q;
i nput GATE, DATA, RESET, SET;
out put Q
reg Q

Il synopsys async_set_reset_local infer "/RESET, SET”
/I synopsys one_cold "RESET, SET”
always @ (GATE or DATA or RESET or SET)
begin : infer
if (ISET)
Q = 1'b1;
else if {RESET)
Q = 1'bO;
else if (GATE)
Q = DATA;
end

/I synopsys translate_off
always @ (RESET or SET)
if (RESET ==1'b0 & SET == 1'b0)
$write ("ONE-COLD violation for RESET and SET.”);
Il synopsys translate_on
endmodule

Register and Three-State Inference 6-15
Register Inference

Example 6-16 Inference Report for aD Latch with Asynchronous Set and Reset

Async-reset: RESET’
Async-set: SET’
Async-set and Async-reset ==> Q: X

Figure 6-5 D Latch with Asynchronous Set and Reset

GATE > .

6-16 Register and Three-State Inference
Register Inference

Inferring Flip-Flops

FPGA Express can infer D flip-flops, JK flip-flops and toggle flip-flops.
The following sections provide details about each of these flip-flop types.

Inferring D Flip-Flops

FPGA ExpressinfersaD flip-flop whenever the sensitivity list of an
always block includes an edge expression (atest for therising or falling
edge of asignal). Use the following syntax to describe arising edge:

posedge SI GNAL

Use the following syntax to describe afalling edge:
negedge SI GNAL

When the sensitivity list of an aways block contains an edge expression,
FPGA Express creates flip-flops for all variables assigned valuesin the
block. Example 6-17 shows the most common usage of an aways block to
infer aflip-flop.

Example 6-17 Using an always Block to Infer a Flip-Flop

al ways @ edge_expressi on)
begi n

assi gnment statenents
end

Simple D Flip-Flop. When you infer a D flip-flop, make sure that you can
control the clock and data signals from the top-level design ports or through
combinational logic. Controllable clock and data signals ensure that
simulation can initialize the design. If you cannot control the clock and data
signals, you should infer aD flip-flop with asynchronous reset or set or
with a synchronous reset or set.

When inferring asimple D flip-flop, the always block can contain only one
edge expression.

Example 6-18 provides the Verilog template for a positive-edge-triggered
D flip-flop. FPGA Express generates the verbose inference report shown in
Example 6-19. Figure 6-6 shows the inferred flip-flop.

Register and Three-State Inference 6-17
Register Inference

Example 6-18 Positive-Edge-Triggered D Flip-Flop

nmodul e dff _pos (DATA, CLK, Q;
i nput DATA, CLK;
out put Q
reg Q

al ways @ posedge CLK)

Q = DATA;
endnodul e

Example 6-19 Inference Report for a Positive-Edge-Triggered D Flip-Flop

set/reset/toggle: none

Figure 6-6 Positive-Edge-Triggered D Flip-Flop

DATA > — —{ 0

CLE o

6-18 Register and Three-State Inference
Register Inference

Example 6-20 provides the Verilog template for a negative-edge-triggered
D flip-flop. FPGA Express generates the verbose inference report shown in
Example 6-21. Figure 6-7 shows the inferred flip-flop.

Example 6-20 Negative-Edge-Triggered D Flip-Flop

nmodul e dff _neg (DATA, CLK, Q;
i nput DATA, CLK;
out put Q
reg Q

al ways @ negedge CLK)

Q = DATA;
endnodul e

Example 6-21 Inference Report for a Negative-Edge-Triggered D Flip-Flop

set/reset/toggle: none

Figure 6-7 Negative-Edge-Triggered D Flip-Flop

DATA = [~a

u_»q::;—[>o—;. =

Register and Three-State Inference
Register Inference

6-19

D Flip-Flop with Asynchronous Set or Reset. When inferringaD
flip-flop with an asynchronous set or reset, include edge expressions for the
clock and the asynchronous signals in the sensitivity list of the adways
block. Specify the asynchronous conditions using if statements. Specify the
branches for the asynchronous conditions before the branches for the
synchronous conditions.

Example 6-22 provides the Verilog template for a D flip-flop with an
active-low asynchronous set. FPGA Express generates the verbose
inference report shown in Example 6-23. Figure 6-8 shows the inferred
flip-flop.

Example 6-22 D Flip-Flop with Asynchronous Set

nmodul e dff _async_set (DATA, CLK, SET, Q;
i nput DATA, CLK, SET;
out put Q
reg Q

al ways @ posedge CLK or negedge SET)
if (~SET)
Q = 1'b1;
else
Q = DATA;
endmodule

Example 6-23 Inference Report for aD Flip-Flop with Asynchronous Set

| Q_reg | Flipflop| 2 | - I[N |Y [N |N |N|

Async-set: SET’

Figure 6-8 D Flip-Flop with Asynchronous Set

l;l-_-r]:;:;j|

AT A -—=a

LT e

6—20 Register and Three-State Inference
Register Inference

Example 6-24 provides the Verilog template for a D flip-flop with an
active-high asynchronous reset. FPGA Express generates the verbose
inference report shown in Example 6-25. Figure 6-9 showsthe inferred
flip-flop.

Example 6-24 D Flip-Flop with Asynchronous Reset

nmodul e dff _async_reset (DATA, CLK, RESET, Q;
i nput DATA, CLK, RESET;
out put Q
reg Q

al ways @ posedge CLK or posedge RESET)
i f (RESET)
Q = 1'h0;
else
Q = DATA;
endmodule

Example 6-25 Inference Report for a D Flip-Flop with Asynchronous Reset

| Register Name | Type |Width|Bus|AR|AS|SR|SS|ST|

| Q_reg | Flipflop| 2 | - |Y [N |N [N |N|

Async-reset: RESET

Figure 6-9 D Hip-Flop with Asynchronous Reset

DT A —L >=a

e o

Register and Three-State Inference 6-21
Register Inference

6-22

D Flip-Flop with Asynchronous Set and Reset. Example 6-26 provides
the Verilog template for aD flip-flop with active high asynchronous set and
reset pins. The template uses the one_hot directive to prevent priority
encoding of the set and reset signals. For thistemplate, if you do not
specify the one_hot directive, the reset signal has priority becauseit is used
as the condition for the if clause. FPGA Express generates the verbose
inference report shown in Example 6-27. Figure 6-10 shows the inferred
flip-flop.

Example6-26 D Flip-Flop with Asynchronous Set and Reset

nmodul e dff _async (RESET, SET, DATA, Q CLK);
i nput CLK;
i nput RESET, SET, DATA;
out put Q
reg Q

Il synopsys one_hot "RESET, SET”
always @(posedge CLK or posedge RESET or
posedge SET)
if (RESET)
Q= 1'b0;
else if (SET)
Q=1b1;
else Q= DATA;

Il synopsys translate_off
always @ (RESET or SET)
if (RESET + SET > 1)
$write ("ONE-HOT violation for RESET and SET.”);
/I synopsys translate_on
endmodule

Register and Three-State Inference
Register Inference

Example 6-27 Inference Report for a D Flip-Flop with Asynchronous Set and Reset

Async-reset: RESET
Async-set: SET
Async-set and Async-reset ==> Q X

Figure 6-10 D Flip-Flop with Asynchronous Set and Reset

= ey

DATA = [~a

A e

nEs:D_[‘/\s—Lf

Register and Three-State Inference 6-23
Register Inference

D Flip-Flop with Synchronous Set or Reset. The previous examples
illustrate how to infer a D flip-flop with asynchronous controls—one way
to initialize or control the state of a sequential device. You can also
synchronously reset or set the flip-flop (see Example 6-28 and Example
6-30). The sync_set_reset directive directs FREzgress to the
synchronous controls of the sequential device.

When the target technology library does not have a D flip-flop with
synchronous reset, FP@xpress infers a D flip-flop with synchronous

reset logic as the input to the D pin of the flip-flop. If the reset (or set) logic
is not directly in front of the D pin of the flip-flop, initialization problems
can occur during gate-level simulation of the design.

Example 6-28 provides the Verilog template for a D flip-flop with

synchronous set. FPG&xpress generates the verbose inference report
shown in Example 6-29. Figure 6-11 shows the inferred flip-flop.

Example 6-28 D Flip-Flop with Synchronous Set

nmodul e dff _sync_set (DATA, CLK, SET, Q;
i nput DATA, CLK, SET;
out put Q
reg Q

//synopsys sync_set reset "SET”
always @(posedge CLK)
if (SET)
Q = 1'b1;
else
Q = DATA;
endmodule

Example 6-29 Inference Report for a D Flip-Flop with Synchronous Set

| Register Name | Type |Width|Bus|AR|AS|SR|SS|ST|

Sync-set: SET

6-24 Register and Three-State Inference
Register Inference

Figure6-11 D Flip-Flop with Synchronous Set

ST e

- e

Example 6-30 provides the Verilog template for aD flip-flop with
synchronous reset. FPGA Express generates the verbose inference report
shown in Example 6-31. Figure 6-12 shows the inferred flip-flop.

Example6-30 D Flip-Flop with Synchronous Reset

nmodul e dff _sync_reset (DATA, CLK, RESET, Q;
i nput DATA, CLK, RESET;
out put Q
reg Q

//synopsys sync_set_reset "RESET”
always @(posedge CLK)
if (~RESET)
Q = 1'h0;
else
Q = DATA;
endmodule

Example 6-31 Inference Report for aD Flip-Flop with Synchronous Reset

| Register Name | Type |Width|Bus|AR|AS|SR|SS|ST|

| Q_reg | Flipflop| 2 | - [N |N |Y [N |N|

Sync-reset: RESET’

Register and Three-State Inference 6-25
Register Inference

6-26

Figure6-12 D Flip-Flop with Synchronous Reset

REFET[—
OATA — A

ar— e

D Flip-Flop with Synchronous and Asynchronous L oad. D flip-flops
can have asynchronous or synchronous controls. To infer acomponent with
both synchronous and asynchronous controls, you must check the
asynchronous conditions before you check the synchronous conditions.

Example 6-32 provides the Verilog template for a D flip-flop with
synchronous load (called SLOAD) and an asynchronous load (called
ALOAD). FPGA Express generates the verbose inference report shown in
Example 6-33. Figure 6-13 showsthe inferred flip-flop.

Example 6-32 D Flip-Flop with Synchronous and Asynchronous L oad

nodul e df f _a_s_| oad (ALOAD, SLCAD, ADATA, SDATA, CLK,

i nput ALQAD, ADATA, Si_OAD, SDATA, CLK;
out put Q
reg Q

al wvays @ (posedge CLK or posedge ALQAD)
i f (ALOAD)
Q= ADATA:
el se i f (SLOAD)
Q = SDATA
endnodul e

Register and Three-State Inference
Register Inference

Example 6-33 Inference Report for a D Flip-Flop with Synchronous and Asynchronous Load

set/reset/toggle: none

Figure 6-13 D Flip-Flop with Synchronous and Asynchronous L oad

Ao r———— :

eLosa Jl—\\’— — ——~a

=asTA = . _)D—r
[ES
.#.I:I.‘.TAD—I-DC\ } i)—‘

Register and Three-State Inference 6-27
Register Inference

6-28

Multiple Flip-Flops with Asynchronous and Synchronous Controls. If
asignal issynchronousin one block but asynchronous in another block, use
the sync_set reset local and async_set_reset_local directivesto direct
FPGA Expressto the correct implementation.

In Example 6-34, block infer_sync uses the reset signal as a synchronous
reset, while block infer_async uses the reset signal as an asynchronous
reset. FPGA Express generates the verbose inference report shown in
Example 6-35. Figure 6-14 shows the resulting design.

Example 6-34 Multiple Flip-Flops with Asynchronous and Synchronous Controls

nodul e nmul ti_attr (DATALl, DATA2, CLK, RESET, SLOAD,

] @)l
i nput DATA1l, DATA2, CLK, RESET, SLOAD;
output Ql, Q;
reg Ql, @;

/Isynopsys sync_set_reset_local infer_sync "RESET”
always @(posedge CLK)
begin : infer_sync
if (~RESET)
Q1 =1b0;
else if (SLOAD)
Q1 = DATAL; /I note: else hold Q
end

/Isynopsys async_set_reset_local infer_async "RESET”
always @(posedge CLK or negedge RESET)
begin: infer_async
if (~RESET)
Q2 =1b0;
else if (SLOAD)
Q2 = DATA2;
end
endmodule

Register and Three-State Inference
Register Inference

Example 6-35 Inference Reports for Example 6-34

| Regi ster Nane | Type | Wdth | Bus | AR |
| Ql reg | Flip-flop | 1 | - | N |
Ql_reg

Sync-reset: RESET’
| Register Name | Type |Width|Bus|AR|AS|SR|SS|ST|
| Q2_reg | Flip-flop|] 1 | - |]Y [N [N [N |N |
Q2_reg

Async-reset: RESET’

Figure 6-14 Multiple Flip-Flops with Asynchronous and Synchronous Controls

(1 o
CLE = — Mo
AERET] = » 1
i
(1 % | |
=]

Register and Three-State Inference
Register Inference

6-29

6-30

Understanding the Limitations of D Flip-Flop Inference
If you use an if statement to infer D flip-flops, you must meet the following
requirements:

The signal in an edge expression cannot be an indexed expression.

The following always block isinvalid because it uses an indexed
expression:

al ways @ posedge cl k[1])
FPGA Express generates the following message when you use an indexed
expression in the always block:
Error: In an event expression with 'posedge’ and
'negedge’ qualifiers, only simple identifiers are
allowed %s. (VE-91)
Set and reset conditions must be single-bit variables.
The following reset condition isinvalid because it uses a bused variable:
always @(posedge clk and negedge reset_bus)
if ('reset_bus[1])
ehd
FPGA Express generates the foll owing message when you use a bused
variable in aset or reset condition:

Error: The expression for the reset condition of the

'if' statement in this "always’ block can only be a
simple identifier or its negation (%s). (VE-92)

Set and reset conditions cannot use complex expressions.

The following reset condition isinvalid because it uses a complex
expression:

always @(posedge clk and negedge reset)
if (reset == (1-1))

end
FPGA Express generates the VE-92 message when you use a complex
expression in a set or reset condition.

Register and Three-State Inference
Register Inference

» Anif statement must occur at the top level of the always block.

Thefollowing exampleisinvalid because the if statement does not occur at
the top level:

al ways @ posedge cl k or posedge reset) begin
if (reset)
end

FPGA Express generates the following message when the if statement does
not occur at the top level:

Error: The statements in this 'always’ block are

outside the scope of the synthesis policy (%s). Only

an'’if’ statement is allowed at the top level in this

"always’ block. Please refer to the HDL Compiler

reference manual for ways to infer flip-flops and
latches from "always’ blocks. (VE-93)

Minimizing Flip-Flop Count. An always block that contains a clock edge
in the sensitivity list causes FPGA Expresstoinfer aflip-flop for each
variable assigned avalue in that block. It might not be necessary to register
al variables in the block. Make sure your HDL description builds only as
many flip-flops as the design requires.

The description in Example 6-36 builds six flip-flops, one for each variable

assigned avalue in the block (COUNT(2:0), AND_BITS, OR_BITS, and
XOR_BITS).

Example 6-36 Circuit with Six Implied Registers

module count (CLK, RESET,
AND_BITS, OR_BITS, XOR_BITS);
input CLK, RESET;
output AND_BITS, OR_BITS, XOR_BITS;
reg AND_BITS, OR_BITS, XOR_BITS;

reg [2:0] COUNT;

always @ (posedge CLK) begin
if (RESET)
COUNT =0;
else
COUNT = COUNT + 1,

AND_BITS = & COUNT;
OR_BITS = | COUNT;
XOR_BITS =~ COUNT;
end
endmodule

Register and Three-State Inference 6-31
Register Inference

6-32

In this design, the outputs AND_BITS, OR_BITS, and XOR_BITS depend
solely on the value of variable COUNT. If the variable COUNT is
registered, these three outputs do not need to be registered.

To compute values synchronously and store them in flip-flops, set up an
aways block with asignal edge trigger. To let other values change
asynchronously, make a separate always block with no signal edge trigger.
Put the assignments you want clocked in the always block with the signal
edge trigger, and the other assignments in the other always block. This
technique is used for creating Mealy machines.

Toavoid inferring extraregisters, assign the outputsin an always block that
does not have aclock edgein its condition expression. Example 6-37 shows
a description with two always blocks, one with a clock edge condition and
one without. Put the registered (synchronous) assignments into the block
with the clock edge condition. Put the other (asynchronous) assignmentsin
the other block. This description style lets you choose the variables that are
registered and those that are not.

Example 6-37 Circuit with Three Implied Registers

nmodul e count (CLK, RESET,
AND BITS, OR BITS, XOR BITS);
i nput CLK, RESET;
output AND BITS, OR BITS, XOR BITS;
reg AND BITS, OR BITS, XOR BITS;

reg [2:0] COUNT;

/I synchronous bl ock
al ways @ posedge CLK) begin
i f (RESET)
COUNT = 0;
el se
COUNT = COUNT + 1;
end

/ I asynchronous bl ock
al ways @ COUNT) begin
AND BI TS = & COUNT;

OR_BITS = | COUNT;
XOR BI TS = ~ COUNT;
end
endnodul e

The technique of separating combinational logic from registered or
sequential logic is useful when describing finite-state machines.

Register and Three-State Inference
Register Inference

Correlating with Simulation Results. Using delay specifications with
registered values can cause the simulation to behave differently from the
logic synthesized by FPGA Express. For example, the description in
Example 6-38 contains delay information that causes FPGA Expressto
synthesize a circuit that behaves unexpectedly (the post-synthesis
simulation results do not match pre-synthesis simulation results).

Example 6-38 Delaysin Registers

nodule flip_flop (D, CLK, Q;
i nput D, CLK;
out put Q

endrmdul e

nmodule top (A, C, D, CLK);

.reg B;
always @ (A or Cor D or CLK)
begi n

B <= #100 A

flip_flop F1(A CLK ©O;
flip_flop F2(B, CLK, D);
end
endnodul e

In Example 6-38, B changes 100 nanoseconds after A changes. If the clock
period isless than 100 nanoseconds, output D is one or more clock cycles
behind output C during simulation of the design. However, because FPGA
Expressignores the delay information, A and B change values at the same
time, and so do C and D. This behavior isnot the sasme asin the
post-synthesis simulation.

When using delay information in your designs, make sure that the delays do
not affect registered values. In general, you can safely include delay
information in your description if it does not change the value that gets
clocked into aflip-flop.

Register and Three-State Inference 6-33
Register Inference

Three-State Inference

FPGA Expressinfers athree-state driver when you assign the value of z to
avariable. The z va ue represents the high-impedance state. FPGA Express
infers one three-state driver per block. Y ou can assign high-impedance
values to single-hit or bused variables.

Reporting Three-State Inference

FPGA Express can generate an inference report that shows the information
about the inferred devices.

Example 6-39 shows athree-state inference report.

Example 6-39 Three-State Inference Report

Thefirst column of the report indicates the name of the inferred three-state
device. The second column of the report indicates the type of three-state
device that FPGA Expressinferred.

Controlling Three-State Inference

FPGA Express awaysinfers athree-state driver when you assign the value

of zto avariable. FPGA Express does not provide any means of controlling
the inference.

Inferring Three-State Drivers
This section contains Verilog examples that infer the following types of
three-state drivers:
« Simple three-state drivers
« Registered three-state drivers

6-34 Register and Three-State Inference
Three-State Inference

Simple Three-State Driver

This section provides atemplate for a simple three-state driver. In addition,
this section provides examples of how allocating high-impedance
assignments to different blocks affects three-state inference.

Example 6-40 providesthe Verilog template for asimple three-state driver.
FPGA Express generates the inference report shown in Example 6-41.
Figure 6-15 shows the inferred three-state driver.

Example 6-40 Simple Three-State Driver

nmodul e three_state (ENABLE, I N1, QUT1);
i nput | N1, ENABLE;
out put OUT1;
reg QUTL;

al ways @ ENABLE or | N1) begin
i f (ENABLE)
QUT1 = I N1,
el se
OUTL1 = 1'bz; /lassigns high-impedance state
end
endmodule

Example 6-41 Inference Report for Simple Three-State Driver

Register and Three-State Inference 6-35
Three-State Inference

Example 6-42 provides an example of placing all high-impedance
assignmentsin asingle block. In this case the datais gated and FPGA
Expressinfers asingle three-state driver (Example 6-43 shows the
inference report). Example 6-44 provides an example of placing each
high-impedance assignment in separate blocks. In this case, FPGA Express
infers multiple three-state drivers (Example 6-45 shows the inference

report).

Example 6-42 Inferring One Three-State Driver from a Single Process

nmodul e three_state (A, B, SELA SELB, T);
i nput A, B, SELA, SELB;
output T;
reg T;

al wvays @ SELA or SELB or A or B) begin
T =1bz;
if (SELA
T=A;
if (SELB)
T=B;
end
endmodule

Example 6-43 Single Process Inference Report

| Three-state Device Name | Type |

| T tri | Three-state Buffer |

Figure 6-16 Inferring One Three-State Driver

=
SE

s o] T

6-36 Register and Three-State Inference
Three-State Inference

Example 6-44 Inferring Two Three-State Drivers

modul e three_state (A, B, SELA, SELB, T);
i nput A, B, SELA, SELB;
out put T;
reg T,

al ways @ SELA or A)
i f (SELA)
T=A

el se ’
T=1bz;

always @(SELB or B)
if (SELB)
T=B;
else
T=1bz;
endmodule

Example 6-45 Inference Report for Two Three-State Drivers

I Type I

Three-state Buffer |

Figure6-17 Inferring Two Three-State Drivers

Register and Three-State Inference
Three-State Inference

6-37

Registered Three-State Drivers

When avariableis registered in the same block in which it is three-stated,
FPGA Express also registersthe enable pin of the three-state gate. Example
6-46 shows an example of this type of code and Example 6-47 shows the
inference report. Figure 6-18 shows the schematic generated by the code.

Example6-46 Three-State Driver with Registered Enable

nmodul e ff_3state (DATA, CLK, THREE STATE, QUT1);
i nput DATA, CLK, THREE STATE;
out put OUT1;
reg QUTL,

al vays @ (posedge CLK) begin
i f (THREE_STATE)
OUT1 = 1'bz;
else
OUT1 = DATA;
end
endmodule

Example 6-47 Inference Report for Three-State Driver with Registered Enable

Three-state Device Name	Type
OUTL _tri	Three-state Buffer
OUTL1 tri_enable_reg	Flip-flop (width 1)

Figure 6-18 Three-State Driver with Registered Enable

THREE _STATE[— b
[[—
s
AT, _l—I =0Tl
[=r u.|

6-38 Register and Three-State Inference
Three-State Inference

In Example 6-46 the three-state gate has a register on its enable pin.
Example 6-48 uses two blocks to instantiate a three-state gate with a
flip-flop only on the input. Example 6-49 shows the inference report.
Figure 6-19 shows the schematic generated by the code.

Example 6-48 Three-State Driver without Registered Enable

nodul e ff_3state (DATA, CLK, THREE _STATE, OUT1);
i nput DATA, CLK, THREE_STATE;
out put OUT1,
reg QUTL,

reg TEMP;

al ways @ posedge CLK)
TEMP = DATA,

al wvays @ THREE STATE or TEMP)
i f (THREE_STATE)

QUT1 = TEWMP;
el se
OUT1 = 1'bz;
endmodule

Example 6-49 Inference Report for Three-State Driver without Registered Enable

| Three-state Device Name | Type |

| OUTL _tri | Three-state Buffer |

Figure 6-19 Three-State Driver without Registered Enable

'I'I-HEE.EI'.-':TE' -
|—|] > OlT1
DAT A]

Register and Three-State Inference 6-39
Three-State Inference

Understanding the Limitations of Three-State Inference

Y ou can use the Z value in the following ways:
» Variable assignment
« Function call argument
* Return value

You cannot use the Z value in an expression, except for comparison to Z.
Be careful when using expressions that compare to the Z value. FPGA
Express always evaluates these expressions to false and the pre- and
post-synthesis simulation results might differ. For this reason, FPGA
Expressissues a warning when it synthesizes such comparisons.

Example 6-50 shows an incorrect use of the Z value. Example 6-51 shows
a correct use of the Z value.

Example 6-50 Incorrect Use of the Z Value in an Expression

OUT_VAL = (1'bz && IN_VAL);

Example 6-51 Correct Use of the Z Value in an Expression

if (IN_VAL == 1'bz) then

6-40 Register and Three-State Inference
Three-State Inference

FPGA Express Directives

FPGA Expresstrandates a Verilog description to a Synopsys internal
format. Specific aspects of this process can be controlled by specia FPGA
Express directivesin the Verilog source code. These directives are treated
as comments by Verilog simulators and do not affect simulation.

This chapter describes FPGA Express directives and their effect on
tranglation in the following sections:

Notation for HDL Compiler Directives

trandate_off andtranslate_on Directives

parallel_case Directive

Full_case Directive

Component Implication

Notation for FPGA Express Directives

The special comments that make up FPEXfress directives begin, like

all Verilog comments, with the characters // or /*. The // characters begin a
comment that fits on one line (most FPG&Apress directives fit on one

line). If you use the /* characters to begin a multiine comment, you must
end the comment with */. You do not need to use the /* characters at the
beginning of each line, only at the beginning of the first line. The word

FPGA Express Directives 7-1
Notation for FPGA Express Directives

-2

synopsys (all lowercase) following the comment characters tells FPGA
Expressto treat the text following the word synopsys as a compiler
directive.

Note: You cannot use // synopsysin aregular comment. I n addition, the
compiler displays a syntax error if Verilog codeisin a
/I synopsys directive.

translate off and translate _on Directives

The// synopsystrandate off and // synopsys translate_on directives tell
FPGA Expressto suspend trandation of the source code and restart
trandation at a later point. Use these directives when your Verilog source
code contains commands specific to simulation that are not accepted by
FPGA Express.

Y ou turn translation off with

/'l synopsys transl ate_of f

or

/* synopsys translate off */

Y ou turn translation back on with

/'l synopsys transl ate_on

or

/* synopsys translate on */

At the beginning of each Verilog file, trandation is enabled. Subsequently,
you can use the tranglate _off and trandlate_on directives anywhere in the
text. These directives must be used in pairs. Each trandate _off directive
must appear before its corresponding trandate_on directive. Example 7-1
shows a simulation driver protected by atranslate off directive.

FPGA Express Directives
translate_off and translate_on Directives

Example 7-1 // synopsys translate_on and // synopsystranslate off Directives

modul e trivial (a, b, f);
i nput a, b;
out put f;

assign f = a & b;

/'l synopsys transl ate_of f

initial $monitor (a, b, f);

/'l synopsys transl ate_on
endnodul e

/* synopsys translate off */
nodul e dri ver;

reg [1:0] value_in;

i nteger i;

trivial trivl(value_in[1], value_in[0]);

initial begin
for (i =0; i <4; i =i + 1)
#10 value in = i;
end
endnodul e
/* synopsys translate on */

parallel _case Directive

The/l synopsys parallel_case directive affects the way logic is generated

for the case statement. As explained in Chapter 5, “Functional
Descriptions,” a case statement generates the logic for a priority encoder.
Under certain circumstances, you might not want to build a priority encoder
to handle a case statement. You can use the parallel_case directive to force
FPGAEXxpress to generate multiplexer logic instead.

The syntax for the parallel_case directive is
/'l synopsys parallel _case

or

/* synopsys parallel _case */

In Example 7-2 the states of a state machine are encodedla# signals.
If the case statement in the example were implemented as a priority
encoder, the generated logic would be more complex than necessary.

FPGA Express Directives 7-3
parallel_case Directive

Example 7-2 // synopsys pardlel_case Directives

reg [3:0] current_state, next_state;
parameter statel = 4’b0001, state2 = 4'’b0010,
state3 = 4'b0100, state4 = 4’b1000;

case (1)//synopsys parallel_case

current_state[0] : next_state = state2;
current_state[1] : next_state = state3;
current_state[2] : next_state = state4;
current_state[3] : next_state = statel;

endcase

Usethe parallel_case directive immediately after the case expression, as
shown. This directive makes all case-item evaluationsin parallel. All case
items that evaluate to true are executed (not just the first one, which might
give you unexpected results.)

In general, use parallel_case when you know that only one case item is
executed. If only one case item is executed, the logic generated from a
paralel_case directive performs the same function asthe circuit when it is
simulated. If two case items are executed, and you have used the parallel
case directive, the generated logic is not the same as the simulated
description.

full _case Directive

The// synopsysfull _case directive assertsthat all possible clauses of a case
statement have been covered and that no default clause is necessary. This
directive has two uses: it avoids the need for default logic, and it can avoid
latch inference from a case statement by asserting that all necessary

conditions are covered by the given branches of the case statement. As
explained in Chapter 5,”Functional Descriptions,” a latch can be inferred
whenever a variable is not assigned a value under all conditions.

The syntax for the full_case directive is

/'l synopsys full_case

or

/* synopsys full _case */

7-4 FPGA Express Directives
full_case Directive

If the case statement contains a default clause, FPGA Express assumes that
al conditions are covered. If there is no default clause, and you do not want
latches to be created, use the full _case directive to indicate that all
necessary conditions are described in the case statement.

Example 7-3 shows two uses of the full_case directive. Note that the
paralel_case and full _case directives can be combined in one comment.

Example 7-3 // synopsys full_case Directives

reg [1:0] in, out;

reg [3:0] current_state, next_state;

parameter statel = 4’b0001, state2 = 4'’b0010,
state3 = 4’0100, state4 = 4'b1000;

case (in) // synopsys full_case

0: out=2;

1:out=3;

2:out=0;
endcase

case (1) /I synopsys parallel_case full_case
current_state[0] : next_state = state2;
current_state[1] : next_state = state3;
current_state[2] : next_state = state4;
current_state[3] : next_state = statel;
endcase

In the first case statement, the condition in == 3 is not covered. Y ou can
either use a default clauseto cover all other conditions, or use the full_case
directive (asin thisexample) to indicate that other branch conditions do not
occur. If you cover all possible conditions explicitly, FPGA Express
recognizes the case statement as full case, so the full_case directive is not
necessary.

The second case statement in Example 7-3 does not cover al 16 possible

branch conditions. For example, current_state == 4'b0101 is not covered.
The parallel_case directive is used in this example because only one of the
four case items can evaluate to true and be executed.

Although you can use the full_case directive to avoid creating latches,
using this directive does not guarantee that latches will not be built. You
must still assign a value to each variable used in the case statement in all
branches of the case statement. Example 7-4 illustrates a situation where
the full_case directive prevents a latch from being inferred for variable b,
but not for variable a.

FPGA Express Directives 7-5
full_case Directive

7-6

Example 7-4 Latchesand // synopsys full_case

reg a, b;
reg [1:0] c;
case (c) // synopsys full _case
0: begin a = 1; = 0; end
1. begina=0; b=0; end
2: begina=1, b=1;, end
3: b =1, /1l ais not assigned here
endcase

In general, use the full_case directive when you know that all possible
branches of the case statement have been enumerated or at least al
branches that can occur. If al branches that can occur are enumerated, the
logic generated from the case statement performs the same function as the
simulated circuit. If acase condition is not fully enumerated, the generated
logic and the simulation are not the same.

Note: You do not need thefull_casedirectiveif you have a default branch
or you enumerate all possible branchesin a case statement because
FPGA Express assumes that the case statement isfull _case.

Component Implication

In Verilog, you cannot instantiate modules in behavioral code. To include
an embedded netlist in your behavioral code, use the directives// synopsys
map_to_module and // synopsys return_port_name for FPGA Expressto
recognize the netlist as a function being implemented by another module.
When this subprogram isinvoked in the behavioral code, the moduleis
instantiated.

Thefirst directive, // synopsys map_to_module, flags afunction for
implementation as a distinct component. The syntax is

/'l synopsys map_to_nodul e nodul enane

FPGA Express Directives
Component Implication

Example 7-5 Component Implication

The second directive identifies a return port, because functionsin Verilog
do not have output ports. A return port name must be identified to
instantiate the function as a component. The syntax is

/'l synopsys return_port_nane portnane

Note: Remember that if you add amap_to_module directiveto afunction,
the contents of the function are parsed and ignored and the indicated
module isinstantiated. You must ensure that the functionality of the
module instantiated in thisway and the function it replaces are the same;
otherwise, pre-synthesis and post-synthesis simulation do not match.

Example 7-5 illustrates the map _to_module and return_port_name
directives.

nmodul e mux_inst (a, b, c, d, e);

input a, b, c, d;

out put e;

function nux_func;

/'l synopsys map_to_nmodul e nmux_nodul e

/'l synopsys return_port_nane nux_ret

input inl, in2, cntrl;

/*

** the contents of this function are ignored for
** gsynthesis, but the behavior of this function
** must match the behavi or of mux_nodul e for

** simul ati on purposes

*/

begi n

if (cntrl) nmux_func = inil;
el se mux_func = in2;

end

endf uncti on

assign e = a & nmux_func (b, ¢, d); // this function
call

/1 actually instantiates conponent (nodule) mux_
nodul e

endnodul e

modul e mux_nodul e (inl, in2, cntrl, nmux_ret);
i nput inl, in2, cntrl;
out put nux_ret;

and and2_0 (wirel, inl, cntrl);

not notl (not_cntrl, cntrl);

and and2_1 (wire2, in2, not_cntrl);
or or2 (nmux_ret, wirel, wire2);

endnodul e

FPGA Express Directives
Component Implication

-7

7-8 FPGA Express Directives
Component Implication

Flip-Flops

This chapter isfor FPGA Express users whose current design descriptions
include hand-instantiated flip-flops. It explains how to translate these
flip-flops to dways blocks that can be used with FPGA Express. Read this
chapter after you have read Chapter 5, “Functional Descriptions.”

Some of the benefits of translating your hand-instantiated flip-flops to
always blocks are

Clearer code. The logic of the new module definitions is easier to
understand.

Continued compatibility. The new design descriptions can use the
expanded capabilities of future versions of FPBdress.

Technology independence. Any FPGA library can be used as the target for
synthesis of a Verilog description.

Multiple-bit values. Such values can be registered with a single statement,
rather than with multiple flip-flop instantiations.

Translating Flip-flops

The first step in translating a flip-flop to the always syntax is to be sure that
you understand the function of the module. Next, determine what parts of
the module description provide the flip-flop behavior.

Flip-Flops 8-1
Translating Flip-flops

82

Example8-1 Existing Module

Example 8-1 shows a simple module that uses three manually inserted
flip-flops.

modul e sinple (d, e, f, load, clk, zero);
input d, e, f, load, clk;
out put zero;
reg new_a, new_b, new c;

function zilch ;
i nput load, a, b, c;

begi n

if (Ioad
new_a
new_b
new_c

end

el se begin
new_a
new_b
new_c

end

begi n

)
d;
e
f

nonon
el

if (a==0 & b==0 & c==0)

zi | ch=1;
el se

zi | ch=0;
end

endf uncti on

FD1S a_reg (new_a, clk, a,

)
FD1S b_reg (new_b, clk, b,);
FD1S c_ reg (newc, clk, ¢,);

assign zero = zilch (load, a, b, ¢);
endnodul e

This module evaluates the three state variables, a, b, and c, to determine

whether al the values are 0. Additional input signals are load, which forces

a synchronous reset, and clk, which is the module’s clock. The
functionality of the module is described in the function zilch. The input
values are latched in the flip-flop described in the three statements
beginning with dFF (a D-type edge-triggered flip-flop). A final assign
statement assigns the returned value of the function zilch to the output zero.

Example 8-1 generates the schematic shown in Figure 8-1.

Flip-Flops
Translating Flip-flops

Figure8-1 Schematic from Example 8-1

Example8-2 Existing Module Logic

¢ ol TH T
load =

a_reg
ck = > b
; Dﬁ_ j>_D zero
b reg
> o
e

Totrandate this description, find the combinational logic and determine the
triggering events. In this case, the function zilch creates combinational
logic.

function zilch ;
i nput load, a, b, c;

if (load) begin
new a
new_b
new c

end

el se begin
new_a
new_b
new _c

end

if (a==0 & b==0 & ¢c==0)
zi |l ch=1;

el se
Zi | ch=0;

endf uncti on

d;
e;
f.

a;
b;
c

In Example 8-2, the values of a, b, ¢, d, e, f, and load are the triggers
(signalsthat areread). Y ou can rewrite this description as an always block
with triggers, as shown in Example 8-3.

Flip-Flops
Translating Flip-flops

8-3

Example 8-3 New Module Logic

always @(a or b or c or d or e or f or load) begin
if (load) begin

new a = d;
new b = e;
new c = f;

end

el se begin
new a = a;
new b = b;
new c = c;

end

if (a==0 & b==0 & c==0)
zero=1;

el se
zer 0=0;

end

The next step isto build an always block that replaces the flip-flop
instantiations—the three statements that begin with dFF.

Example 8-4 Existing Flip-flop Instantiations

dFF a_reg (new. a, clKk,
dFF b _reg (new b, clk,
dFF c_reg (newc, clk

OoOoTo

— N

Use the clock signal, clk, as the event-expression of the new always block,
as shown.

Example8-5 First Line of the New always Block

al wvays @ (posedge clk) begin

Put the values and the registers in the body of the always block. The Q
output values in the old module (a, b, and ¢) become the assigned values in
the new version. The clock from the old version is specified in the
event-expression of the new always block. The D input values in the old
module (new_a, new_b, and new_c) become the values read by the new
version, as shown in Example 8-6.

84 Flip-Flops
Translating Flip-flops

Example 8-6 New Clocked always Block

a
a
b

ways @ (posedge clk) begin
new a ;

new b ;

C = new.c ;

end

Now, label the input and output signals in the module. Look at the variable
declarations and determine which of the wires and functions serve the
flip-flop and which serve the logic of the module.

Example 8-7 Existing Inputs and Outputs

modul e sinple (d, e, f, load, clk, zero);
input d, e, f, load, cl
out put zero;

reg new a, new b, new c;

k;

In this case, as in most cases, the module’s inputs and outputs remain the
same. However, you must change the wire values to reg values. Declare the
output zero twice; once as the output and once as a reg, so it can be used in
the always block. Make the former function variables a, b, and c into reg
variables, because they are now assigned within the second always block.
Example 8-&hows the new input and output declarations.

Example 8-8 New Input and Output Declarations

nmodul e new sinple (d, e, f, load, clk, zero);
input d, e, f, load, clk;

out put zero;

reg zero;

reg a, b, c;

reg new a, new b, new c;

Example 8-9 shows the complete new module with always blocks.

Flip-Flops 8-5
Translating Flip-flops

Example 8-9 Translated Module Using always Blocks

modul e new sinple (d, e, f, load, clk, zero);
input d, e, f, load, clk;
out put zero;
reg zero;
reg a, b, c;
reg new a, new.b, new_c;

always @(a or b or c or d or e or f or load) begin

if (load) begin
new a = d;

new b = e;

new c = f;

end

el se begin

new a = a;

new b = b;

new c = c;

end

if (a==0 & b==0 & ¢c==0)
zero=1;
el se
zer 0=0;
end

al wvays @ (posedge clk) begin

a = new. a ;
b = new b ;
C = newc ;

end

endnodul e

8-6 Flip-Flops
Translating Flip-flops

Verilog Syntax

This chapter contains a syntax description of the Verilog language as
supported by FPGA Express. This chapter covers the following topics.

Syntax

Lexical Conventions

Verilog Keywords

Unsupported Verilog Language Constructs

Syntax

This section presents the syntax of the supported Verilog language in
Backus Naur Form (BNF), and presents the syntax formalism.

Note: The BNF syntax convention used in this section differsfrom the
Synopsys syntax convention used elsewhere in this manual.

BNF Syntax Formalism

White space separates lexical tokens.

Verilog Syntax 9-1
Syntax

9-2

nanme isakeyword.

<nane> isasyntax construct definition.

<name> isasyntax construct item.

<name>? isan optional item.

<name>* |szero, one, or more items.

<nane>+ isone or more items.

<port > <, <port >>* isacommaseparated list of items.
. . = gives asyntax definition to an item.

| | = refersto an alternative syntax construct.

Verilog Syntax
Syntax

BNF Syntax

<source_text >
;.= <description>*

<descri pti on>
1= <nmodul e>

<nmodul e>
;.= modul e <nane_of nodul e> <list_of ports>? ;

<nodul e_i t enp*
endnodul e

<nane_of _nodul e>
;.= <I| DENTI FI ER>

<|ist

|
<port
|
<port

nnv

of ports>
(<port> <, <port>>*)

()

<port _expressi on>?

_expressi on>

.= <port_reference>

= { <port_reference> <,

<port _reference>

<nanme_of vari abl e>

<name_of port> (<port_expression>?)

<port_reference>>* }

= <name_of _vari abl e> [<expression>]
= <name_of _variabl e> [<expression> : <expression>]

<nane_of port>
11 = <| DENTI FI ER>

<nane_of vari abl e>

<| DENTI FI ER>

<nodul e_itenp

<par anet er _decl aration
<i nput _decl arati on>
<out put _decl arati on>
<i nout _decl arati on>
<net decl arati on>
<reg_decl arati on>

<i nt eger _decl arati on>
<gate_instantiation>
<nodul e_i nstanti ati on>
<conti nuous_assi gn>
<function>

<function>
;.= function <range>? <nanme_of function> ;

<func_decl arati on>*
<statenent _or_null >
endf uncti on

>

Verilog Syntax
Syntax

9-3

<nane_of function>
11 = <| DENTI FI ER>

<func_decl arati on>

<par anet er _decl arati on>
<i nput _decl arati on>
<reg_decl arati on>

<i nt eger _decl arati on>

<identifier> or <identifier>)
posedge <identifier>)

negedge <identifier>)

<egde> or <edge> or ...)

o

5

<

n
ISISIS)

[T |
o
<
n

N
D
o
L Q
R ¢)
\%

posedge <identifier>
| | = negedge <identifier>

<par anet er _decl arati on>
.= paranmeter <range>? <list_of_assignnents> ;

<i nput _decl arati on>
;.= input <range>? <list_of variables> ;

<out put _decl arati on>
i = output <range>? <list_of_variabl es>

<i nout _decl arati on>
;.= inout <range>? <list_of variables> ;

<net _decl arati on>
.= <NETTYPE> <charge_strengt h>? <expandrange>? <del ay>?
<list_of variabl es>
| | = <NETTYPE><drive_strengt h>? <expandrange>? <del ay>?
<list_of _assignnents> ;

<NETTYPE>
Wre
wor
wand
tri

<expandr ange>

;1= <range>

| | = scal ared <range>
| | = vectored <range>

<reg_decl arati on>
.= reg <range>? <list_of register_variables> ;

<i nt eger _decl aration>
.= integer <list_of_integer_variabl es>

<conti nuous_assi gn>
;.= assign <drive_strength>? <del ay>? <list_of_ assi gnnents>

<list_of variabl es>
;.= <nane_of variabl e> <, <nanme_of vari abl e>>*

Verilog Syntax
Syntax

<nanme_of vari abl e>
<| DENTI FI ER>

<list_of _register_variabl es>

.= <register_variable> <, <register_variabl e>>*

<regi ster_vari abl e>
: = <| DENTI FI ER>

<l ist_of _integer_variabl es>
.= <integer_variable> <, <integer_vari abl e>>*

<i nt eger _vari abl e>
: = <| DENTI FI ER>

<char ge_strengt h>
:=(small)

(medium)

(large)

<drive_strengt h>
::= (<STRENGTHO> , <STRENGTH1>)
|| = (<STRENGHT1> , <STRENGTHO>)

<STRENGTHO>
suppl yo
strongO
pull0
weak0
hi ghzO0

<STRENGTH1>

o
©
=5
H

<range>
::= [<expression> : <expression>]
<list_of assignnents>

.= <assignment > <, <assignnent>>*
<gate_instantiation>

i = <GATETYPE> <drive_strengt h>? <del ay>? <gate_i nstance>

<, <gate_instance>>* ;

<GATETYPE>
and
nand
or
nor
xor
xnor
buf
not

Verilog Syntax
Syntax

9-5

<gat e_i nst ance>
::= <nane_of gate_instance>? (<term nal > <, <term nal >>*)

<nane_of gate_instance>
;.= <I| DENTI FI ER>

<term nal >
c:= <identifier>
| | = <expression>

<nodul e_i nstanti ati on>
.= <nane_of nodul e> <par anet er _val ue_assi gnment >? <nodul e_i nst ance>
<, <nobdul e_i nstance>>*

<nane_of nodul e>
.. = <| DENTI FI ER>

<paraneter val ue_assi gnnent >
#(<expressi on> <, <expressi on>>*)

<modul e_i nst ance>
;= <nane_of _nodul e_i nstance> (<list_of _nodul e_term nal s>?)

<nane_of nodul e_i nst ance>
11 = <| DENTI FI ER>

<list_of nodul e_term nal s>
;.= <nodul e_term nal >? <, <nodul e_t ermni nal >>*
| | = <naned_port _connection> <, <naned_port _connecti on>>*

<nodul e_t erm nal >
c:= <identifier>
| | = <expression>

<named_port_connecti on>
::= . IDENTIFIER (<identifier>)
|| = . IDENTIFIER (<expression>)

<st at enent >
.= <assignnment >
|]=1f (<expression>)
<statenent_or_null >
|]=1f (<expression>)
<statenent_or_null >
el se
<statenent _or_null >
| | = case (<expression>)
<case_itenp+
endcase
| | = casex (<expression>)
<case_itenp+
endcase
| | = casez (<expression>)
<case_itenp+
endcase
|| = for (<assignment> ; <expression> ; <assignnent>)
<st at enent >
| | = <seq_bl ock>
| | = di sabl e <I DENTI FI ER> ;

Verilog Syntax
Syntax

rever <statenment>

||= fo
|| = while (<expression>) <statenent>

<statenent _or_null >
;= statenent

|]=;

<assi gnnment >
.= <lvalue> = <expressi on>

<case_itenp
= <expression> <, <expressi on>>*
|| = default : <statenment_or_null >
|| = default <statenent _or_nul |l >

<seq_bl ock>
::= begin
<st at ement >*
end
| | = begin : <nanme_of bl ock>
<bl ock_decl ar ati on>*
<st at enent >*
end

<nane_of bl ock>
11 = <| DENTI FI ER>

<bl ock_decl arati on>

= <par amet er _decl arati on>
<reg_decl arati on>

<i nt eger _decl arati on>

<l val ue>

: <| DENTI FI ER>

|| = <I DENTIFIER> [<expression>]
| | = <concat enat i on>

<expr

ssi on>
<pri mary>
<UNARY_OPERATOR> <pri mary>
<expr essi on> <BlI NARY_OPERATOR>
<expressi on> ? <expression>

0]

OPERATOR>

=1

AN
c
: %
=

1 R 1
- &

> 1
>

+ !

<statenent_or_null>

<expr essi on>

Verilog Syntax
Syntax

9-7

<Bl NARY_OPERATOR>
o= Ty

~

<prima

-

y>
<number >

<identifier>

<identifier> [<expression>]
<identifier> [<expression>
<concat enati on>

<mul ti pl e_concat enati on>
<function_call >

(<expression>)

<numnber >

<NUMBER>

| | = <BASE> <NUMBER>

| | = <SI ZE> <BASE> <NUVMBER>

<NUMBER>

A nunber can have any of the follow ng characters:

<S| ZE>
e 1b

<SIZE>
Any number of the following digits: 0123456789

<concatenation>
= { <expression> <,<expression>>*}

<multiple_concatenation>
= { <expression> { <expression> <,<expression>>*} }

<function_call>
== <name_of_function> (<expression> <,<expression>>*)

<expressi on> |

0123456789abcdef xzABCDEFXZ

Verilog Syntax
Syntax

<nane_of function>
11 = <| DENTI FI ER>

<identifier>
Anidentifier isany sequence of letters, digits, and the underscore character (_), wherethefirst character isa

letter or underscore. Uppercase and lowercase | etters are treated as different characters. |dentifiers can be any
size and all characters are significant. Escaped identifiers start with the backslash character (\) and end with a
space. The leading backslash character (\) is not part of the identifier. Use escaped identifiers to include any
printable ASCII charactersin an identifier.

<del ay>
= # <NUMBER>

<identifier>

(<expression> <, <expression>>*)

Lexical Conventions

Thelexical conventions used by FPGA Express are nearly identical to those
of the Verilog language. Thetypes of lexical tokens used by FPGA Express
are described in the following subsections:

» White Space
 Comments

* Numbers

* Identifiers

* Operators

* Macro Substitutions

* include Directive

» Simulation Directives
 Verilog System Functions

White Space
White space separates words in the input description, and can contain
spaces, tabs, new lines, and form feeds. You can place white space
anywhere in the description. FPAXpress ignores white space.
Comments

You can enter comments anywhere in a Verilog description in two forms:

Verilog Syntax 9-9
Lexical Conventions

» Beginning with two backslashek/ .

FPGAEXxpressignores all text between these characters and the end of the
current line.

» Beginning with the two characters* and ending with*/ .

FPGAEXxpressignores all text between these characters, so you can
continue comments over more than one line.

Note: You cannot nest comments.

Numbers

You can declare numbers in several different radices and bit widths. A
radix is the base number on which a numbering system is built. For
example, the binary numbering system has a radix of 2, octal has a radix of
8, and decimal has a radix of 10.

You can use these three number formats:

1. A simple decimal number that is a sequence of digits between 0 and 9. All
constants declared in this way are assumed to be 32-bit numbers.

2. A number that specifies the bit width, as well as the radix. These numbers
are exactly the same as the previous format, except they are preceded by a
decimal number that specifies the bit width.

3. A number followed by a two-character sequence prefix that specifies the
number’s size and radix. The radix determines which symbols you can
include in the number. Constants declared this way are assumed to be
32-bit numbers. Any of these numbers can include underscorgsThe
underscores improve readability and do not affect the value of the number.
Table 9-1summarizes the available radices and valid characters for the
number.

9-10 Verilog Syntax
Lexical Conventions

Table9-1 Verilog Radices

Name
binary

octal
decimal
hexadecimal

Character Prefix Valid Characters
b 01xXzZ_"7?
o] 0-7xXzzZ_?
'd 0-9_
h 09afA-FxXzz_ *?

Example 9-1shows some valid number declarations.

Example 9-1 Valid Verilog Number Declarations

391 [/ 32-bit deci mal nunber
'h3al3 /I 32-bit hexadecimal number

10’'01567 /I 10-bit octal number

3'b010 /I 3-bit binary number

4'd9 /I 4-bit decimal number
40’hFF_FFFF_FFFF /I 40-bit hexadecimal number
2’bxx /I 2-bits don't care

3'bzzz /I 3-bits high-impedance

Identifiers

Identifiers are user-defined words for variables, function names, module
names, and instance names. | dentifiers can be composed of letters, digits,
and the underscore character (). Thefirst character of an identifier cannot
be a number. Identifiers can be any length. Identifiers are case-sensitive
and all characters are significant.

An identifier that contains special characters, begin with numbers, or have
the same name as a keyword can be specified as an escaped identifier. An
escaped identifier starts with the backslash character (\), followed by a
sequence of characters, followed by white space.

Some escaped identifiers are shown in Example 9-2.

Example 9-2 Sample Escaped Identifiers

\a+b \3state
\module \(a&b)|c

Verilog Syntax
Lexical Conventions

9-11

The Verilog language supports the concept of hierarchical names, which
can be used to access variables of submodules directly from a higher-level
module. Hierarchical names are partially supported by FPGA Express.

Operators

Operators are one-character or two-character sequences that perform
operations on variables. Some examples of operatorsare +, ~*, <=, and
>>, Operators are described in detail in Chapter 4, “Expressions.”

Macro Substitutions

Macro substitution assigns a string of text to a macro variable. The string of
text is inserted into the code where the macro is encountered. The definition
begins with the back quote charactey, followed by the keyword

define , followed by the name of the macro variable. All text from the

macro variable until the end of the line is assigned to the macro variable.

Y ou can declare and use macro variables anywhere in the description. The
definitions can carry across several filesthat are read into FPGA Express at
the same time. To make a macro substitution, type a back quotation mark
(*) followed by the macro variable name.

Some sample macro variable declarations are shown in Example 9-3.

Example 9-3 Macro Variable Declarations

‘define highbits 31:29
‘define bitlist {first, second, third}
wire [31:0] bus;

‘bitlist = bus[*highbits];

include Construct

The include construct in Verilog is similar to the #include directivein C.
Y ou can use this construct to include Verilog code, such astype
declarations and functions, from one module into another. Example 9-4
shows an application of the include construct.

9-12 Verilog Syntax
Lexical Conventions

Example 9-4 Including aFile Within aFile

Contents of filel.v

‘define WORDSIZE 8

function [WORDSIZE-1:0] fastadder;
éndfunction

Contents of secondfile

module secondfile (in1,in2,0out)
‘include “filel.v”

wire [WORDSIZE-1:0] temp;
assign temp = fastadder (inl,in2);

endmodule

Included files can include other files, up to 24 levels of nesting. Y ou cannot
use the include construct recursively. If the file to be included is not in the
current directory, you must specify either the full or relative pathname.

Simulation Directives

Smulation directives (not to be confused with FPGA Express directives
described in Chapter 7, “FPG&xpress Directives”) refer to special
commands that affect the operation of the Verilog HDL Simulator. You can

include these directives in your design description, because ER@#Ass
parses and ignores them.

‘accelerate

‘celldefine
‘default_nettype
‘endcelldefine
‘endprotect
‘expand_vectornets
‘noaccelerate
‘noexpand_vectornets
‘noremove_netnames
‘nounconnected_drive
‘protect
‘remove_netnames
‘resetall'timescale
‘unconnected_drive

Verilog Syntax 9-13
Lexical Conventions

Verilog System Functions

Verilog system functions are implemented by the Verilog HDL Simulators
to generate input or output during simulation. Their names start with a
dollar sign ($). These functions are parsed and ignored by FPGA Express.

Verilog Keywords

Verilog uses keywords to interpret an input file. Y ou cannot use these
words as user variable names unless you use an escaped identifier. For
more information, see the section “Identifiers,” earlier in this chapter.

al ways and assi gn begi n
buf bufifO bufifl case
casex casez cnos deassi gn
defaul t def par am di sabl e el se
end endcase endf uncti on endnodul e
endprimtive endt abl e endt ask event
for force forever fork
function hi ghz0 hi ghz1 if
initial i nout i nput i nt eger
join | arge medi um nmodul e
nand negedge nnos nor

not notifoO notifl or

out put par anet er pnos posedge
primtive pul | down pul I up pul 10
pul | 1 r cnos reg rel ease
r epeat r nnos r pnos rtran
rtranifo rtranifl scal ar ed smal |

st rong0 strongl suppl y0 suppl yl
suppl y1 tabl e t ask time
tran trani fO tranifl tri
triand trior trireg trio
tril vect ored wai t wand
weakO weak1l whi | e wre
wor xnor xor

Unsupported Verilog Language Constructs

The following Verilog constructs are not supported by FHEX@ress.
« Unsupported definitions and declarations
» Unsupported statements
« Unsupported operators

9-14 Verilog Syntax
Verilog Keywords

» Unsupported gate-level constructs
» Unsupported miscellaneous constructs

Constructs added to the Verilog Simulator in versions after Verilog 1.6
might not be supported.

If you use an unsupported construct in a Verilog description, FPGA
Express issues a syntax error such as

event is not supported

Unsupported Definitions and Declarations

The following Verilog definitions and declarations are not supported by
FPGAEXpress.

* primitive definition

* timedeclaration

* event declaration

e triand, trior, tril, tri0, andtrireg net types
« Ranges and arrays for integers

Unsupported Statements

The following Verilog statements are not supported by FE®#ess.
« defparam statement
* initial statement
* repeat statement
« delay control
* event control
* wait statement
« fork statement
 deassign statement
« force statement
* release statement

» Assignment statement with a variable used as a bit-select on the left side of
the equal sign

Verilog Syntax 9-15
Unsupported Verilog Language Constructs

9-16

Unsupported Operators

The following Verilog operators are not supported by FPGA Express.
» Case equality and inequality operators£ and ! ==)
« Division and modulus operators for variables

Unsupported Gate-Level Constructs

The following Verilog gate-level constructs are not supported by FPGA
Express.

* NMOS, PMOS, CMAS, FNMOS, rpmos, rcmos, pullup, pulldown, tranifo, tranifl,
rtran, rtranifO, andrtranifl gate types

Unsupported Miscellaneous Constructs

The following Verilog miscellaneous constructs are not supported by
FPGAEXpress.

» Hierarchical names within a module
« ‘ifdef, ‘endif and ‘else compiler directives

Verilog Syntax

Unsupported Verilog Language Constructs

Symbols

I (logicd NOT operator), 4-6

& (reduction AND operator), 4-8

&& (logicd AND operator), 4-6

Il synopsysfull_case, 7-4

I synopsysparalld_case, 7-3
circuitry synthesized for, 7-3

Il synopsystrandate off, 7-2

Il synopsystrandate _on, 7-2

>> (right shift operator), 4-8

?: (conditiond operator), 4-9

 (reduction XOR operator), 4-8

"~ (reduction XNOR operator), 4-8

{} (concatenation operator), 4-10

| (reduction OR operator), 4-8

| (logica OR operator), 4-6

~& (reduction NAND operator), 4-8

~ (reduction XNOR operator), 4-8

~| (reduction NOR operator), 4-8

A

awayshblock, 5-24

clocks, 5-25

edge syntax, 9-4

event gecification, 5-26

event-expresson, 5-24, 5-25

grouping triggers, 5-24

inmodules, 3-5

negedgein, 5-26

posedgein, 5-26

syntax, 9-4
AND logica operator (& &), 4-6
AND reduction operator (&), 4-8
and, connection list, 3-15
gpparently sequentid condructs, 5-1
arays

unsupported for integer, 9-15
assign, 3-11

|eft Sde bit-sdlect, unsupported, 9-15
asynch _set_reset, 6-3
asynch set reset locd_dll, 6-4
asynchronous preload, 5-25
asyncronous preload, 5-26
attributes

gynthesis off, 6-6

gynthesis on, 6-6

B

begin, 5-3
begin-end, 5-10
begin-end pair, 5-3
bidirectiond port, 3-10
binary numbers, 9-10
binary operators, 4-2, 9-8
bit-sdect, 4-13
bit-width

expression, 4-14

in module ingtantiation, 3-12

prefix for numbers, 9-10

specifying in numbers, 9-10
block

beginin, 5-10

endin, 5-10

named, 5-10

sequentid, 5-10

datements, 5-10

syntax, 9-7

variablesin named, 5-11

C

cdl
function, 5-3
case
avoiding latch and regiger inference, 5-14
case-item, 5-14
circuitry synthesized, 7-3
default, 5-14
lachinference, 5-14, 7-5
multiple expressionsin, 5-14
regigter inference, 5-14
statement, 5-13
Case Satements
full case, 5-14
pardle case, 5-15
case-item, 5-14, 5-16, 5-18
syntax, 9-7
casx
caseitem, 5-16
datement, 5-16
casez
case-item, 5-18
statement, 5-18
charge drength, syntax, 9-5
cmos
unsupported, 9-16
combinational
equivaent of gpparently sequentia
condructs, 5-2
combinational logic, 5-1
goparently sequentia condtructs, 5-2
infunctional descriptions, 2-3
comments
HDL Compiler directives, 7-1
lexicd conventions, 9-9
component implication
registers, 6-1
three-state, 6-34
concatenation
in procedurd assgnment, 5-8
operand, 3-3,4-14
operator, 4-14
syntax, 9-8
concatenation operator ({}), 4-10
number of operands, 4-2
repetition multiplier, 4-10
unsized congtants, 4-10

conditional operator

nested, 4-9

number of operands, 4-2
conditional operator (?.), 4-9
conditionally assgned varigble

reading, 5-13
connection ligt, 3-12

terminals, 3-12
condant

in number operands, 4-12

Szed, 4-12

unsized, 4-12, 9-10
congant-vaued expression

definition, 4-1

in range specifications, 3-6

represented in parameters, 3-6

synthesized circuitry, 4-2
construct

unsupported, 9-14
context-determined operands, 4-14
continuous assignment, 2-2

drive strengthiin, 3-11

driving awire, 3-7

in awire declaration, 3-11

in function declarations, 5-3

inmodules, 3-5

|eft Side bit-select, unsupported, 9-15

left sdeof, 3-11

right Sdeof, 3-11

syntax, 9-4

D

dataassgnments, 3-5
datadeclarations, 3-5
deassign
unsupported, 9-15
decima numbers, 9-10
declarations
parameter, 5-6
regiger, 5-5
unsupported, 9-15
decrementing loop, 5-19
default, 5-14
defing, 9-12
definitions
register inference, 6-1
unsupported, 9-15
defparam
unsupported, 9-15
dday
control, unsupported, 9-15
options, gate-levd, 3-15
syntax, 9-9
deay vaue, 3-8
description Style, 2-6
Design Compiler
restructuring, 1-3
synthesisand optimization, 1-3
designflow, 1-4

FPGA Express HDL Reference Manual

IN-2

design methodology, 2-6
directive, smulation, 9-13
diseble, 5-22
in named block, 5-22
divison operator (/)
divison by avariable, unsupported, 9-16
dot operator (.), 3-4
drive strength
in acontinuous assignment, 3-11
gyntax, 9-5

E

edge
syntax, 9-4
de 511
end, 5-3
endfunction
keyword, 5-3
escaped identifier, 9-11
event
awaysblock, 5-25
Specification
in dways blocks, 5-26
unsupported, 9-15
event-expression
awayshblock, 5-24
examples
three-state component
registered input, 6-39
expressons
bit-width, 4-14
context determined, 4-14
definition, 4-1
legd, 4-1
< f-determined, 4-14
syntax, 9-7

F

fdling edge, 5-25
flip-flop
edge-triggered, implying, 5-24
inference, 6-17
trandating fromverson 1.2, 8-1
flip-flops, 6-1
for
duplicating statements, 5-20
nested, 5-19
range expression, 5-19
for loops, 5-19
begin statement, 5-19
end statement, 5-19
force
unsupported, 9-15
fork
unsupported, 9-15
full case, 5-14
full_case, 7-4
function

declaration
continuous assignments, 5-3

ignored, 9-14
keyword, 5-3
local variables, 5-6
outputs, 5-4
range specification, 5-3
syntax, 9-3

functioncdl, 5-3
operand, 4-2, 4-13
syntax, 9-8

function declaration
syntax, 9-4

function definition
inmodules, 3-5

function name
syntax, 9-4, 9-9

function statement
begin-end blocks, 5-10
Case datements, 5-13
caex, 5-16
casez datements, 5-18
disable statement, 5-22
for loop, 5-19
forever, 5-21
if...else gatement, 5-11
procedura assignment, 5-7
whileloap, 5-20

function statements
Supported, 5-7

functiona description, 1-5, 2-3
combinationa logicin, 2-3
congtruction and use, 5-1
mixing with structural descriptions, 2-4
sequentid logicin, 2-3

G

gate

connecting to inout, 3-10

ingance name, syntax, 9-6

ingance, syntax, 9-6

ingantiation, syntax, 9-5
gateingtantiation

inmodules, 3-5
gaetypes, 9-5

unsupported, 9-16
gate-level congructs, 2-3
gate-leve modeling, 3-15

dday options, 3-15

ingtance names, 3-15
globa variable

integer, 5-7

H

hardware description languages, 1-1
HDL

definition, 1-1
HDL Compiler directive

circuitry synthesized for pardle_case, 7-3
trandate_on, 7-2

HDL Compiler directives
full_cese, 7-4
full_case used with pardld_case, 7-5
parald_case, 7-3
parallel_case used with full _case, 7-5
trandate_off, 7-2

HDL Compiler for Verilog, 1-1

hexadecima numbers, 9-10

hierarchica boundaries, 2-2

hierarchica congructs, 2-3

hierarchica names, 9-16
not supported, 9-12

high impedance state, 6-34

identifier, 9-11
ecaped, 9-11
lower-case sengitivity, 9-9
gyntax, 9-9
upper-case sendtivity, 9-9
if, 5-11
ignored functions, 9-14
implying regigters, 6-1
include construct
example, 9-12
incrementing loop, 5-19
inference report
description, 6-2, 6-34
infiniteloops, 5-21
initial
unsupported, 9-15
inout
connecting to gate, 3-10
connecting to module, 3-10
declaration, 3-5
declaration, syntax, 9-4
datement, 3-10
wire, 3-10
input
declaration, 3-5
ports, 3-10
range specifications, 5-4
sgnd, 54
statement, 3-10
Sructurd datatype, 3-6
wire, 3-10
input declaration
gyntax, 9-4
input statement, 3-5, 5-4
ingtance names
in gate-level modding, 3-15
integer
declaration, 5-6
declaration, syntax, 9-4
in procedura assgnment, 5-8
range specification unsupported, 9-15
integer arrays

FPGA Express HDL Reference Manuall

unsupported, 9-15
integer variable

globd, 5-7
internd design format, 1-2

K
keywords, 9-14

L

language congtructs, 2-6
latchinference
avoiding, 7-4, 7-5
locd variables, 6-9
latches, 6-1
least-significant bit, 3-6
|eft shift operator (, 4-8
lexicd conventions, 9-9
local variable, 5-6
logic
combinationd, 5-1
multipath branch, 5-13, 5-16, 5-18
logical AND operator (& &), 4-6
logical NOT operator (1), 4-6
logical OR operator (|)), 4-6
loop
decrementing, 5-19
incrementing, 5-19
Isb (least Sgnificant bit), 3-6

M

macro substitution, 9-12

macro variable, 9-12

memory condiruct, 5-5
two-dimensiond array, 5-5

modeling
gate-levd, 3-15

module, 3-2, 3-5
connecting to inout, 3-10
connection list, 3-12
congtructs, 3-5
instance name, syntax, 9-6
instance, syntax, 9-6
ingtantiation, 3-12
ingtantiation, syntax, 9-6
name, syntax, 9-3, 9-6
syntax, 9-3
terminds, 3-12

module definition
in gtructural descriptions, 2-3

module ingantiation, 3-12
bit-widths, 3-12
ingructural descriptions, 2-3
name-based, 3-13
named notation, 3-13
position-based, 3-13
postitiona notetion, 3-13

modulus operator (%)

for avariable, unsupported, 9-16
mogt-significant bit, 3-6
msb (most significant bit), 3-6
multi-line comment, 7-1
multipath branch, 5-13, 5-16, 5-18
multipath branches, 5-16
multiplexer

creating with case and parallel_case, 7-3

N

named block
dissbleusedin, 5-22
syntax, 9-7
variablesin, 5-11
named block congtruct, 5-10
named notation, 3-13
NAND reduction operator (~&), 4-8
negative edge, 5-25
negedge, 5-25, 5-26
net types, 9-4
netlist connection
in gtructural descriptions, 2-3
nmos
unsupported, 9-16
NOR reduction operator (~[), 4-8
NOT logica operator (1), 4-6
number, 4-12
binary, 9-10
decima, 9-10
formats, 9-10
hexadecimd, 9-10
octd, 9-10
operand in expressions, 4-12
szed, 4-12
specifying bit-width, 9-10
syntax, 9-8
unsized, 4-12

O

octal numbers, 9-10

onehot 9gnds, 7-3

operand, 4-1, 4-12
bit-sdect, 4-13
concatenation, 3-3, 4-14
congants, 4-12
congtant-valued, 4-4
context-determined, 4-14
functioncdl, 4-2, 4-13
inexpressions, 4-12
number, 4-12
part-sdect, 4-13
regigter, 4-12
df-determined, 4-14
variable, 4-3
wire, 4-12

operator, 4-1, 9-12
aithmetic, 4-4
binary, 4-2,9-8

cae equdity (===), unsupported, 9-16
caeinequality (!==), unsupported, 9-16
concaenation ({}), 4-2,4-10, 4-14
conditiond (?:), 4-2, 4-9
definition, 4-2
divison by avariable, unsupported, 9-16
dot (), 34
left shift (, 4-8
lexical conventions, 9-12
logicd and (& &), 4-6
logicd not (1), 4-6
logicd or (||), 4-6
modulus of avariable, unsupported, 9-16
reduction AND (&), 4-8
reduction NAND (~&), 4-8
reduction NOR(~)), 4-8
reduction OR (]), 4-8
reduction XNOR(~"), 4-8
reduction XOR (%), 4-8
relaiond, 4-4
right shift (>>), 4-8
supported, list, 4-3
unary, 4-2,9-7
unsupported, 9-16
OR logicd operator ()), 4-6
OR reduction operator (|), 4-8
output
assigning to afunction'sname, 5-4
declaration, 3-5, 5-4
declaration, syntax, 9-4
of functions, 5-4
port, 3-10
reg, 3-10
returning multiple, 5-4
statement, 3-5, 3-10
wire, 3-10

P

pardle case, 5-15
pardld_case, 7-3

circuitry synthesized for, 7-3
parameter

declaration, 3-5, 5-6

declaration, syntax, 9-4

local variables, 5-6

name, 3-6

range, 3-6

szed, 3-6

variables, 5-6
parameterized design, 3-13
part-sdect, 4-13

operand, 4-13
performance congraints, 2-6
pmos

unsupported, 9-16
port

dot operator, 3-4

explicit ingtantiation, 3-13

explicitly renaming, 3-4

FPGA Express HDL Reference Manual

IN-3

IN—4

implicit ingtantiation, 3-13
implicit instantiation of, 3-4
input, 3-10
output, 3-10
port expression, 3-3
port ligt, 3-3
port ligt, syntax, 9-3
port name, syntax, 9-3
renaming insde module, 3-4
syntax, 9-3
Port Declarations, 3-10
port expression, 3-3
bit-sdect, 3-3
concatenation, 3-3
identifier, 3-3, 3-4
part-sdect, 3-3
syntax, 9-3
port ligt, 3-3
posedge, 5-25, 5-26
positiona notation, 3-13
postive edge, 5-25
preload, 5-25, 5-26
primitive
unsupported, 9-15
priority encoder, 7-3
procedurd assgnment, 9-15
concatenation in, 5-8
integer, 5-8
left side, 5-7
regiger, 57
right Sde, 5-7
Satement, 5-7
pulldown
unsupported, 9-16
pullup
unsupported, 9-16

R

radices, 9-10
range
congtant-va ued expressions, 3-6
expressonin for loops, 5-19
specification, 3-6
specification in function declarations, 5-3
specificationininputs, 5-4
specification unsupported for integers, 9-15
syntax, 9-5
range specification, 5-3
rcmos
unsupported, 9-16
reading conditionally assgned, 5-13
reduction operator
AND (&),4-8
NAND (~&), 4-8
NOR (~]), 4-8
OR()), 48
XNOR (*~or), 4-8
XOR (M), 4-8
reg,, seeaso regiser

register

declaration, 5-5

declaration, syntax, 9-4

definition, 6-1

holding sate information, 5-5

in procedurd assgnments, 5-7

operand, 4-12

output, 3-10
register inference, 2-7, 6-1

expressons, 6-17

D lach, 6-8

definition, 6-1

signd edge, 6-17

SRlach, 6-5

templates, 6-1

wait statement, 6-17
relationd operator, 4-4
release

unsupported, 9-15
repest

unsupported, 9-15
right shift operator (>>), 4-8
risng edge, 5-25
rnmos

unsupported, 9-16
rpmos

unsupported, 9-16
rtran

unsupported, 9-16
rtranifO

unsupported, 9-16
rtranifl

unsupported, 9-16

S

sequentia
block, 5-10
sequentid logic, 2-3
infunctional descriptions, 2-3
shift operator
left (, 4-8
right (>>), 4-8
sgnds
edge detection, 6-17
smulation, 1-5
placein the design process, 1-5
test vectors, 1-5
smulation directives, 9-13
sizesyntax, 9-8
dateinformation
holding with aregister, 5-5
satements, 3-5
unsupported, 9-15
structurd datatypes, 3-6
structurd description, 1-5, 2-2
mixing with functiona descriptions, 2-4
structura descriptions, 2-2
synch_set_resdt, 6-4
synch_set reset locd, 6-4

synch st reset locd_all, 6-4
syntax, 9-1

Verilog, 9-1
synthesispalicy, 2-6
system functions, Verilog, 9-14

T

task congtruct, 5-23
task statements

in modules, 3-5
termina

gyntax, 9-6
terminds, 3-12
test vectors

smulation, 1-5
three-state

registered input, 6-39
three-dtete gate, 6-38, 6-39
three-gtate inference, 6-34
time

unsupported, 9-15
tranifO

unsupported, 9-16
tranifl

unsupported, 9-16
trandate off, 7-2
trandate on, 7-2
trandation, 7-2

restart, 7-2

uspend, 7-2
tri0

unsupported, 9-15
tril

unsupported, 9-15
triand

unsupported, 9-15
triggers, 5-24
trior

unsupported, 9-15
trireg

unsupported, 9-15

U

unary operator, 4-2
unary operators, 9-7
unassigned variables, 5-13
underscore, 9-9
in numbers, 9-10
unsupported
definitions and declarations, 9-15
operators, 9-16
satements, 9-15
Verilog congtructs, 9-14

Vv

vaiable
in named blocks, 5-11

FPGA Express HDL Reference Manuall

locd in parameters, 5-6
operand, 4-3
variables
registering, 6-32
verification, of description implementation, 1-5
Verilog condructs
unsupported, 9-14
Verilog hardware descriptions, 1-2
Verilog HDL description, 1-1
Verilog keywords, 9-14
Verilog syntax, 9-1
Verilog sysem function, 9-14
VHDL
register inference, 2-7
synthesispalicy
description style, 2-1
three-gtate components, 6-34

w

wait
unsupported, 9-15
wait statement
credting regigters, 6-17
white pace, lexicd convention, 9-9
wire, 4-12
continuous assignment, 3-11
declaration, 3-5
driving with a continuous assgnment, 3-7
high impedance, 3-7
inout, 3-10
input, 3-10
operand, 4-12
output, 3-10
sructurd datatype, 3-6
undriven, 3-7

X

XNOR reduction operator (*~or ~), 4-8
xnor, connection ligt, 3-15
XOR reduction operator (%), 4-8

Z

z
undriven wire, 3-7

FPGA Express HDL Reference Manual IN-5

	FPGA Express HDL Reference Manual
	FPGA Express with Verilog HDL
	Hardware Description Languages
	The FPGA Express Design Process
	Using FPGA Express to Compile a Verilog HDL Design...
	Design Methodology

	Description Styles
	Design Hierarchy
	Structural Descriptions
	Functional Descriptions
	Mixing Structural and Functional Descriptions
	Design Methodology
	Description Style
	Language Constructs

	Design Constraints
	Register Selection
	Asynchronous Designs

	Structural Descriptions
	Modules
	macromodule Constructs
	Port Definitions
	Port Names

	Module Statements and Constructs
	Structural Data Types
	parameter Definitions
	wire Data Types
	wand Data Types
	wor Data Types
	tri Data Types
	supply0 / supply1 Data Types
	reg Data Types

	Port Declarations
	input Declarations
	output Declarations
	inout Declarations

	Continuous Assignment

	Module Instantiations
	Named and Positional Notation
	Parameterized Designs
	Gate�Level Modeling
	Three�State Buffer Instantiation

	Expressions
	Constant�Valued Expressions
	Operators
	Arithmetic Operators
	Relational Operators
	Equality Operators
	Handling Comparisons to X or Z
	Logical Operators
	Bit�Wise Operators
	Reduction Operators
	Shift Operators
	Conditional Operators
	Concatenation Operator
	Operator Precedence

	Operands
	Numbers
	Wires and Registers
	Bit�Selects
	Part�Selects

	Function Calls
	Concatenation of Operands

	Expression Bit Widths

	Functional Descriptions
	Using Sequential Constructs
	function Declarations
	input Declarations
	Function Output
	reg Declarations
	Memory Declarations
	parameter Declarations
	integer Declarations

	Function Statements
	Procedural Assignments
	RTL Assignments
	begin . . . end Block Statements
	if . . . else Statements
	Conditional Assignments
	case Statements
	Full Case and Parallel Case
	casex Statements
	casez Statements
	for Loops
	while Loops
	forever Loops
	disable Statements

	task Statements
	always Blocks
	Incomplete Event Specification

	Register and Three-State Inference
	Register Inference
	Reporting Register Inference
	Controlling Register Inference
	Attributes that Control Register Inference

	Inferring Latches
	Inferring SR Latches
	Inferring D Latches

	Inferring Flip-Flops
	Inferring D Flip-Flops
	Understanding the Limitations of D Flip-Flop Infer...

	Three-State Inference
	Reporting Three-State Inference
	Controlling Three-State Inference
	Inferring Three-State Drivers
	Simple Three-State Driver
	Registered Three-State Drivers

	Understanding the Limitations of Three-State Infer...

	FPGA Express Directives
	Notation for FPGA Express Directives
	translate_off and translate_on Directives
	parallel_case Directive
	full_case Directive
	Component Implication

	Flip�Flops
	Translating Flip�flops

	Verilog Syntax
	Syntax
	BNF Syntax Formalism
	BNF Syntax

	Lexical Conventions
	White Space
	Comments
	Numbers
	Identifiers
	Operators
	Macro Substitutions
	include Construct
	Simulation Directives
	Verilog System Functions

	Verilog Keywords
	Unsupported Verilog Language Constructs
	Unsupported Definitions and Declarations
	Unsupported Statements
	Unsupported Operators
	Unsupported Gate�Level Constructs
	Unsupported Miscellaneous Constructs

	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

