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FPGA Express with Verilog HDL
FPGA Express translates and optimizes a Verilog HDL description into an 
internal gate-level equivalent, then compiles this representation to produce 
an optimized architecture-specific design in a given FPGA technology.

This chapter introduces the main concepts and capabilities of FPGA 
Express in the following sections:

n Hardware Description Languages

n FPGA Express and the design process

n Design methodology

Hardware Description Languages

Hardware description languages (HDLs) describe the architecture and 
behavior of discrete electronic systems.  Modern HDLs and their associated 
simulators are very powerful tools for integrated circuit designers.

A typical HDL supports a mixed-level description in which gate and netlist 
constructs are used with functional descriptions. This mixed-level 
capability enables you to describe system architectures at a very high level 
of abstraction, then incrementally refine a design’s detailed gate-level 
implementation.
FPGA Express with Verilog HDL 1–1
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HDL descriptions play an important role in modern design methodology for 
three main reasons:

n Design functionality can be verified early in the design process. A design 
written as an HDL description can be simulated immediately. Design 
simulation at this higher level, before implementation at the gate-level, 
allows you to evaluate architectural and design decisions.

n FPGA Express provides Verilog compilation and logic synthesis, allowing 
you to automatically convert an HDL description to a technology-specific 
implementation in a target FPGA technology. This step eliminates the 
former technology-specific design bottleneck, the majority of circuit design 
time, and the errors introduced when you hand translate an HDL 
specification to gates.

With FPGA Express logic optimization, you can automatically transform a 
synthesized design into a smaller or faster circuit. FPGA Express provides 
both logic synthesis and optimization. For further information, refer to the 
FPGA Express online help.

n HDL descriptions provide technology-independent documentation of a 
design and its functionality. An HDL description is more easily read and 
understood than a netlist or schematic description. Because the initial HDL 
design description is technology-independent, you can use it again to 
generate the design in a different technology, without having to translate 
from the original technology. 

The FPGA Express Design Process

FPGA Express translates Verilog language hardware descriptions to a 
Synopsys internal design format. The design can then be optimized and 
mapped to a specific FPGA technology library by FPGA Express, as shown 
in Figure 1-1.
FPGA Express with Verilog HDL
The FPGA Express Design Process
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Figure 1-1 FPGA Express Design Process 

FPGA Express supports a majority of the Verilog constructs. For 
exceptions, see Chapter 9, “Verilog Syntax.”

Using FPGA Express to Compile a Verilog HDL Design

When a Verilog design is read into FPGA Express, it is converted to an 
internal database format so FPGA Express can synthesize and optimize the
design. When FPGA Express optimizes a design, it may restructure part o
all the design. You control the degree of restructuring. Options include

n Fully preserving a design’s hierarchy

n Allowing full modules to be moved up or down in the hierarchy

n Allowing certain modules to be combined with others

n Compressing the entire design into one module (called flattening the 
design) if it is beneficial

The following section describes the design process that uses FPGA Express 
with a Verilog HDL simulator.

Verilog Description

FPGA ExpressFPGA Technology Library

Optimized
Technology-Specific

Netlist 
FPGA Express with Verilog HDL 1–3
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Design Methodology

Figure 1-2 shows a typical design process that uses FPGA Express and a 
Verilog HDL simulator. Each step of this design model is described in 
detail.

Figure 1-2 Design Flow
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Theses are the steps in the design flow in Figure 1-2.

1. Write a design description in the Verilog language. This description can be 
a combination of structural and functional elements (as shown in Chapter 2, 
“Description Styles“). This description is used with both FPGA Express 
and a Verilog simulator.

2. Provide Verilog-language test drivers for the Verilog HDL simulator. Fo
information on writing these drivers, see the appropriate simulator man
The drivers supply test vectors for simulation and gather output data.

3. Simulate the design by using a Verilog HDL simulator. Verify that the 
description is correct.

4. Use FPGA Express to synthesize and optimize the Verilog design 
description into a gate-level netlist. FPGA Express generates optimized 
netlists to satisfy timing constraints for a targeted FPGA architecture.

5. Use your FPGA development system to place and route the FPGA net
Then, generate a Verilog netlist for post-place and route simulation. Th
development system includes simulation models and interfaces require
the design flow.

6. Simulate the technology-specific version of the design with the Verilog
simulator. You can use the original Verilog simulation drivers from Step
because module and port definitions are preserved through the transla
and optimization processes.

7. Compare the output of the gate-level simulation (Step 6) with the outpu
the original Verilog description simulation (Step 3) to verify that the 
implementation is correct.
FPGA Express with Verilog HDL 1–5
Design Methodology



1–6
 FPGA Express with Verilog HDL
Design Methodology



Description Styles
The style of your initial Verilog description has a major effect on the 
characteristics of the resulting gate-level design synthesized by FPGA 
Express. The organization and style of a Verilog description determines the 
basic architecture of your design. Because FPGA Express automates most 
of the logic-level decisions required in your design, you can concentrate on 
architectural tradeoffs.

You can use FPGA Express to make some of the high-level architectural 
decisions. Certain Verilog constructs are well suited to synthesis. To make 
the decisions and use the constructs, you need to become familiar with the 
following concepts:

• Design hierarchy

• Structural descriptions

• Functional descriptions

• Mixing structural and functional descriptions

• Design constraints

• Register selection

• Asynchronous designs
Description Styles 2–1
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Design Hierarchy

FPGA Express maintains the hierarchical boundaries you define when you 
use structural Verilog. These boundaries have two major effects: 

• Each module specified in your HDL description is synthesized separate
and maintained as a distinct design. The constraints for the design are
maintained, and each module can be optimized separately in FPGA 
Express. 

• Module instantiations within HDL descriptions are maintained during 
input. The instance name you assign to user-defined components is ca
through to the gate-level implementation. 

Chapter 3, “Structural Descriptions,” discusses modules and module 
instantiations.

Note: FPGA Express does not automatically maintain (create) the 
hierarchy of other nonstructural Verilog constructs such as blocks, loops, 
functions, and tasks. These elements of an HDL description are 
translated in the context of their design. After analyzing and 
implementing a design, you can use the Modules constraint table for the 
implementation to group the gates in a block, function, or task. Refer to 
the FPGA Express online help for further information.

The choice of hierarchical boundaries has a significant effect on the qu
of the synthesized design. Using FPGA Express, you can optimize a design
while preserving these hierarchical boundaries. However, FPGA Express 
only partially optimizes logic across hierarchical modules. Full 
optimization is possible across those parts of the design hierarchy that
collapsed in FPGA Express.

Structural Descriptions

The structural elements of a Verilog structural description consist of 
generic logic gates, library-specific components, and user-defined 
components connected by wires. In one way, a structural description ca
viewed as a simple netlist composed of nets that connect instantiations
gates. However, unlike a netlist, nets in the structural description can b
driven by an arbitrary expression that describes the value assigned to 
net. A statement that drives an arbitrary expression onto a net is called
continuous assignment. Continuous assignments are convenient links 
between pure netlist descriptions and functional descriptions. 
Description Styles
Design Hierarchy



or 

cribe 
ut, 

ly 
or 

re 
, 
al 
A Verilog structural description can define a range of hierarchical and 
gate-level constructs, including module definitions, module instantiations, 
and netlist connections. Refer to Chapter 3, “Structural Descriptions,” f
more information.

Functional Descriptions

The functional elements of a Verilog description consist of function 
declarations, task statements, and always blocks. These elements des
the function of the circuit but do not describe its physical makeup, layo
or choice of gates and components.

You can construct functional descriptions with the Verilog functional 
constructs described in Chapter 5, “Functional Descriptions.” These 
constructs can appear within functions or always blocks. Functions imp
only combinational logic always blocks can imply either combinational 
sequential logic.

Although many Verilog functional constructs appear sequential in natu
(for example, for loops and multiple assignments to the same variable)
these constructs describe combinational-logic networks. Other function
constructs imply sequential-logic networks. Latches and registers are 
inferred from these constructs. Refer to Chapter 6, “Register and 
Three-State Inference,” for details.
Description Styles 2–3
Functional Descriptions
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Mixing Structural and Functional Descriptions

When you use a functional description style in a design, the combinational 
portions of a design are typically described in Verilog functions, always 
blocks, and assignments. The complexity of the logic determines whether 
you use one or many functions. 

Example 2-1 shows how structural and functional description styles are 
mixed in a design specification. In Example 2–1, the function detect_lo
determines whether the input bit is a 0 or a 1. After this determination i
made, detect_logic sets ns to the next state of the machine. An always 
infers flip-flops to hold the state information between clock cycles.

Elements of a design can be specified directly as module instantiations
the structural level. For example, see the three-state buffer, t1, in Exam
2-1. (Note that three-state buffers can be inferred. For more information, 
refer to Chapter 6, “Register and Three-State Inference.”) You can also
this description style to identify the wires and ports that carry informatio
from one part of the design to another.
Description Styles
Mixing Structural and Functional Descriptions



Example 2-1 Mixed Structural and Functional Descriptions

// This finite state machine (Mealy type) reads one
// bit per clock cycle and detects three or more
// consecutive 1s.

module three_ones( signal, clock, detect, output_enable);
input signal, clock, output_enable;
output detect;

// Declare current state and next state variables.
reg [1:0] cs;
reg [1:0] ns;
wire ungated_detect;

// declare the symbolic names for states
parameter NO_ONES = 0, ONE_ONE = 1,
          TWO_ONES = 2, AT_LEAST_THREE_ONES = 3;

// ************* STRUCTURAL DESCRIPTION  ****************
// Instance of a three-state gate that enables output
three_state t1 (ungated_detect, output_enable, detect);

// **************I***  ALWAYS BLOCK  ********************
// always block infers flip-flops to hold the state of  
// the FSM.
always @ ( posedge clock ) begin
     cs = ns;
end

// ************* FUNCTIONAL DESCRIPTION  ****************
function detect_logic;
    input [1:0] cs; 
    input signal;

    begin
        detect_logic = 0;   // default value

        if ( signal == 0 )  // bit is zero
            ns = NO_ONES;
        else                // bit is one, increment state
            case (cs)
                NO_ONES: ns = ONE_ONE;
                ONE_ONE: ns = TWO_ONES;
                TWO_ONES, AT_LEAST_THREE_ONES:
                         begin
                             ns = AT_LEAST_THREE_ONES;
                             detect_logic = 1;
                         end
            endcase
    end
endfunction

// **************  assign STATEMENT  **************
assign ungated_detect = detect_logic( cs, signal );
endmodule
Description Styles 2–5
Mixing Structural and Functional Descriptions
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For a structural or functional HDL description to be synthesized, it must 
follow the Synopsys synthesis policy, which has three parts:

• Design methodology

• Description style

• Language constructs

Design Methodology

Design methodology refers to the synthesis design process described 
Chapter 1, “FPGA Express with Verilog HDL.”

Description Style

Use the HDL design and coding style that makes the best use of the 
synthesis process to obtain high-quality results from FPGA Express.

Language Constructs

The third component of the Verilog synthesis policy is the set of Verilog
constructs that describe your design, determine its architecture, and gi
consistently good results.

Synopsys has chosen HDL constructs that maximize coding flexibility 
while producing consistently good results. Although FPGA Express can 
read the entire Verilog language, a few HDL constructs cannot be 
synthesized. These constructs are unsupported because they cannot b
realized in logic. For example, you cannot use simulation time as a trig
because time is an element of the simulation process and cannot be 
realized. See Chapter 9, “Verilog Syntax,” for unsupported Verilog 
constructs.

Design Constraints

You can describe the performance constraints for a design module with
FPGA Express Implementation window. Refer to the FPGA Express online 
help for further information.
Description Styles
Design Constraints
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Register Selection

The placement of registers and the clocking scheme are important 
architectural decisions. There are two ways to define registers in your 
Verilog description. Each method has specific advantages.

Method 1. You can directly instantiate registers into a Verilog description, 
selecting from any element in your FPGA library. Clocking schemes can be 
arbitrarily complex. You can choose between a flip-flop and a latch-based 
architecture. The main disadvantages to this approach are

• The Verilog description is specific to a given technology because yo
choose structural elements from that technology library. However, y
can isolate the portion of your design with directly instantiated regist
as a separate component (module), then connect it to the rest of the
design.

• The description is more difficult to write. 

Method 2. You can use some Verilog constructs to direct FPGA Express to 
infer registers from the description. The advantages of this approach 
directly counter the disadvantages of the previous approach. With regis
inference, the Verilog description is much easier to write, and it is 
technology independent. This method allows FPGA Express to select the 
type of component inferred, based on constraints. Therefore, if a speci
component is necessary, instantiation should be used. Some types of 
registers and latches cannot be inferred.

See Chapter 6, “Register and Three-State Inference,” for a discussion 
latch and register inference.

Asynchronous Designs

You can use FPGA Express to construct asynchronous designs that use 
multiple clocks or gated clocks. Although these designs are logically 
(statically) correct, they might not simulate or operate correctly becaus
race conditions.
Description Styles 2–7
Register Selection
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Structural Descriptions
A Verilog circuit description can be one of two types: a structural 
description or a functional description, also referred to as a Register 
Transfer Level (RTL) description. A structural description defines the exact 
physical makeup of the circuit, detailing components and the connections 
between them. A functional or RTL description describes a circuit in terms 
of its registers and the combinational logic between the registers.   

This chapter describes the construction of structural descriptions in the 
following sections:

• Modules

• Macromodules

• Port definitions

• Module statements and constructs

• Module instantiations
Structural Descriptions 3–1
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Modules

The principal design entity in the Verilog language is a module. A module 
consists of the module name, its input and output description (port 
definition), a description of the functionality or implementation for the 
module (module statements and constructs), and named instantiations. 
Figure 3-1 illustrates the basic structural parts of a module.

Figure 3-1 Structural Parts of a Module 

Example 3-1 shows a simple module that implements a 2-input NAND gate 
by instantiating an AND gate and an INV gate. The first line of the module 
definition provides the name of the module and a list of ports. The second 
and third lines give the direction for all ports. (Ports are either input, output, 
or bidirectional.) A wire variable is created in the fourth line of the 
description. Next, the two components are instantiated; copies named 
instance1 and instance2 of the components AND and INV are created. 
These components are connected to the ports of the module and finally 
connected by using the variable and_out.

Example 3-1 Module Definition

module NAND(a,b,z); 
  input  a,b;     // Inputs to NAND gate 
  output z;       // Outputs from NAND gate 
  wire   and_out; // Output from AND gate 

  AND instance1(a,b,and_out); 
  INV instance2(and_out, z);
endmodule

Module

Module Name and 
Port List

Definitions:
Port, Wire, Register, 
Parameter, Integer, Function

Module Statements and 
Constructs

Module Instantiations
Structural Descriptions
Modules
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macromodule Constructs

The macromodule construct makes simulation more efficient by merging 
the macromodule definition with the definition of the calling (parent) 
module. However, FPGA Express treats the macromodule construct as a 
module construct. Whether you use module or macromodule the synthesis 
process, the hierarchy it creates, and the end result are the same. Example 
3-2 shows how to use the macromodule construct.

Example 3-2 macromodule Construct

macromodule adder (in1,in2,out1);
input [3:0] in1,in2;
output [4:0] out1;

assign out1 = in1 + in2;
endmodule

Note: When a macromodule is instantiated, a new level of hierarchy is 
created. You can ungroup this new level of hierarchy in the Modules 
constraint table for the implementation

Port Definitions

A port list consists of port expressions that describe the input and output 
interface for a module. Define the port list in parentheses after the module 
name, as shown below.

module name ( port_list ) ;

A port expression in a port list can be any of the following:

• An identifier

• A single bit selected from a bit vector declared within the module

• A group of bits selected from a bit vector declared within the module

• A concatenation of any of the above

Concatenation is the process of combining several single-bit or multiple-b
operands into one large bit vector. For more information on concatenat
see Chapter 4, “Expressions.”
Structural Descriptions 3–3
macromodule Constructs
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Each port in a port list must be declared explicitly as input, output, or 
bidirectional in the module with an input, output, or inout statement. (See 
“Port Declarations” later in this chapter.) For example, the module 
definition in Example 3-1 shows that module NAND has three ports, a,
and z, connected to 1-bit nets a, b, and z. These connections are decla
the input and output statements.

Port Names

Some port expressions are identifiers. If the port expression is an ident
the port name is the same as the identifier. A port expression is not an
identifier if the expression is a single bit or group of bits selected from a
vector of bits, or a concatenation of signals. In these cases, the port is 
unnamed unless you explicitly name it.

Example 3-3 shows some module definition fragments that illustrate th
use of port names. The ports for module ex1 are named a, b, and z, and are 
connected to nets a, b, and z, respectively. The first two ports of modu
ex2 are unnamed; the third port is named z. The ports are connected to
a[1], a[0], and z respectively. Module ex3 has two ports: the first port is 
unnamed and is connected to a concatenation of nets a and b; the sec
port, named z, is connected to net z. 

Example 3-3 Module Port Lists

module ex1( a, b, z ); 
input a, b; 
output z; 
endmodule 

module ex2( a[1], a[0], z ); 
input [1:0] a; 
output z; 
endmodule 

module ex3( {a,b}, z ); 
input a,b; 
output z; 
endmodule

You can rename a port by explicitly assigning a name to a port express
with the dot (.) operator. The module definition fragments in Example 3
show how to rename ports. The ports for module ex4 are explicitly nam
in_a, in_b, and out. These ports are connected to nets a, b, and z. Mod 
ex5 shows ports named i1, i0, and z connected to nets a[1], a[0], and z, 
respectively. The first port for module ex6 (the concatenation of nets a 
b) is named i.
Structural Descriptions
Port Definitions
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Example 3-4 Naming Ports in Modules

module ex4( .in_a(a), .in_b(b), .out(z) ); 
  input a, b; 
  output z; 
endmodule 

module ex5( .i1(a[1]), .i0(a[0]), z ); 
  input [1:0] a; 
  output z; 
endmodule 

module ex6( .i({a,b}), z ); 
  input a,b; 
  output z; 
endmodule

Module Statements and Constructs

FPGA Express recognizes the following Verilog statements and constructs 
when they are used in a Verilog module:

• parameter declarations

• wire, wand, wor, tri, supply0, and supply1 declarations

• reg declarations

• input declarations 

• output declarations

• inout declarations

• Continuous assignments 

• Module instantiations

• Gate instantiations

• Function definitions

• always blocks

• task statements

Data declarations and assignments are described in this section. Modu
and gate instantiations are described later in this chapter. Function 
definitions, task statements, and always blocks are described in Chapt
“Functional Descriptions.”
Structural Descriptions 3–5
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Structural Data Types

Verilog structural data types include wire, wand, wor, tri, supply0, and 
supply1. Although parameter does not fall into the category of structural 
data types, it is presented here because it is used with structural data types.

You can define an optional range for all the data types presented in this 
section. The range provides a means for creating a bit vector. The syntax 
for a range specification is

[msb : lsb]

Expressions for msb (most significant bit) and lsb (least significant bit) 
must be non-negative constant-valued expressions. Constant-valued 
expressions are composed only of constants, Verilog parameters, and 
operators.

parameter Definitions
Verilog parameters allow you to customize each instantiation of a module. 
By setting different values for the parameter when you instantiate the 
module, you can cause different logic to be constructed. For more 
information, see “Building Parameterized Designs,” later in this chapte

A parameter definition represents constant values symbolically. The 
definition for a parameter consists of the parameter name and the valu
assigned to it. The value can be any constant-valued expression of inte
or Boolean type, but not of type real. If you do not set the size of the 
parameter with a range definition or a sized constant, the parameter is
unsized and defaults to a 32-bit quantity. Refer to Chapter 4, Expressio
for information about the format of constants.

You can use a parameter wherever a number is allowed, and you can d
a parameter anywhere within a module definition. However, the Verilog
language requires that you define the parameter before you use it.

Example 3-5 shows two parameter declarations. Parameters TRUE an
FALSE are unsized, and have values of 1 and 0, respectively. Parameters 
S0, S1, S2, and S3 have values of 3, 1, 0, and 2 respectively, and are s
as 2-bit quantities.

Example 3-5 parameter Declarations

parameter TRUE=1, FALSE=0;
parameter [1:0] S0=3, S1=1, S2=0, S3=2;
Structural Descriptions
Module Statements and Constructs
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wire Data Types
A wire data type in a Verilog description represents the physical wires in a 
circuit. A wire connects gate-level instantiations and module instantiations. 
The Verilog language allows you to read a wire value from within a 
function or a begin...end block, but you cannot assign a wire value from 
within a function or a begin...end block. (An always block is a specific type 
of begin...end block).

A wire does not store its value. It must be driven in one of two ways:

• By connecting the wire to the output of a gate or module

• By assigning a value to the wire in a continuous assignment

In the Verilog language, an undriven wire defaults to a value of Z (high
impedance). However, FPGA Express either leaves undriven wires 
unconnected or connects some undriven wires to a constraint value, 
depending on the requirements of the vendor place and route tool. Whe
undriven wire is connected to a constant value, FPGA Express issues a 
warning for the corresponding implementation. Multiple connections or
assignments to a wire short the wires together.

In Example 3-6, two wire data types are declared. a is a single-bit wire, 
while b is a 3-bit vector of wires. Its most significant bit (msb) has an ind
of 2 and its least significant bit (lsb) has an index of 0.

Example 3-6 wire Declarations

wire a; 
wire [2:0] b;

You can assign a delay value in a wire declaration, and you can use th
Verilog keywords scalared and vectored for simulation. FPGA Express 
accepts the syntax of these constructs, but they are ignored when the c
is synthesized.

Note: You can use delay information for modeling, but FPGA Express 
ignores this delay information. If the functionality of your circuit 
depends on the delay information, FPGA Express might create logic with 
behavior that does not agree with the behavior of the simulated circuit.

wand Data Types
The wand (wired AND) data type is a specific type of wire data type.

In Example 3-7, two variables drive the variable c. The value of c is 
determined by the logical AND of a and b.
Structural Descriptions 3–7
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Example 3-7 wand (wired AND) Data Types

module wand_test(a, b, c);
  input a, b; 
  output c; 

  wand c;

  assign c = a;
  assign c = b;
 endmodule

You can assign a delay value in a wand declaration, and you can use the 
Verilog keywords scalared and vectored for simulation. FPGA Express 
accepts the syntax of these constructs, but they are ignored when the circuit 
is synthesized.

wor Data Types
The wor (wired OR) data type is a specific type of wire data type.

In Example 3-8, two variables drive the variable c. The value of c is 
determined by the logical OR of a and b.

Example 3-8 wor (wired-OR) Data Types

module wor_test(a, b, c);
  input a, b; 
  output c; 

  wor c;

  assign c = a;
  assign c = b;
 endmodule

tri Data Types
The tri (three-state) data type is a specific type of wire data type. Only one 
of the variables that drive the tri data type can have a non-Z (high 
impedance) value. This single variable determines the value of the tri data 
type.

Note: FPGA Express does not enforce the above condition. You must 
ensure that no more than one variable driving a tri data type has a value 
other than Z.

In Example 3-9, three variables drive the variable out.
Structural Descriptions
Module Statements and Constructs



Example 3-9 tri (Three-State) Data Types

module tri_test (out, condition);
  input [1:0] conditon;
  output out; 

  reg a, b, c;
  tri out;

  always @ ( condition ) begin
    a = 1’bz;// set all variables to Z
    b = 1’bz;
    c = 1’bz;
     case ( condition )   // set only one variable to 
non-Z
      2’b00 : a = 1’b1;
      2’b01 : b = 1’b0;
      2’b10 : c = 1’b1;
    endcase
  end

  assign out = a;         // make the tri connection
  assign out = b;
  assign out = c;
endmodule

supply0 / supply1 Data Types
The supply0 and supply1 data types define wires tied to logic 0 (ground) 
and logic 1 (power). Using supply0 and supply1 is the same as declaring a 
wire and assigning a 0 or a 1 to it. In Example 3-10, power is tied to logic 1 
and gnd is tied to logic 0.

Example 3-10 supply0 and supply1 Constructs

supply0 gnd;
supply1 power;

reg Data Types
A reg represents a variable in Verilog. A reg can be a 1-bit quantity or a 
vector of bits. For a vector of bits, the range indicates the most significant 
bit (msb) and least significant bit (lsb) of the vector. Both bits must be 
non-negative constants, parameters, or constant-valued expressions. 
Example 3-11 shows some reg declarations.

Example 3-11 reg Declarations

reg x;// single bit
reg a,b,c;// 3 1-bit quantities
reg [7:0] q;// an 8-bit vector
Structural Descriptions 3–9
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Port Declarations

You must explicitly declare the direction (input, output, or bidirectional) of 
each port that appears in the port list of a port definition. Use the input, 
output, and inout statements, as described in the following sections.

input Declarations
All input ports of a module are declared with an input statement. An input 
is a type of wire and is governed by the syntax of wire. You can use a range 
specification to declare an input that is a vector of signals, as for input b in 
the following example. The input statements can appear in any order in the 
description but must be declared before they are used. For example:

input a;
input [2:0] b; 

output Declarations
All output ports of a module are declared with an output statement. Unless 
otherwise defined by a reg, wand, wor, or tri declaration, an output is a type 
of wire and is governed by the syntax of wire. An output statement can 
appear in any order in the description, but you must declare the output 
before you use it.

You can use a range specification to declare an output value that is a vector 
of signals. If you use a reg declaration for an output, the reg must have the 
same range as the vector of signals. For example:

output a;
output [2:0]b;
reg [2:0] b;

inout Declarations
You can declare bidirectional ports with the inout statement. An inout is a 
type of wire and is governed by the syntax of wire. FPGA Express allows 
you to connect only inout ports to module or gate instantiations. You must 
declare an inout before you use it. For example:

inout a;
inout [2:0]b;
Structural Descriptions
Module Statements and Constructs
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Continuous Assignment

If you want to drive a value onto a wire, wand, wor, or tri, use a continuous 
assignment to specify an expression for the wire value. You can specify a 
continuous assignment in two ways: 

• Use an explicit continuous assignment statement after the wire, wand, wo
or tri declaration.

• Specify the continuous assignment in the same line as the declaration 
wire.

Example 3-12 shows two equivalent methods for specifying a continuo
assignment for wire a.

Example 3-12 Two Equivalent Continuous Assignments

wire a;             // declare 
assign a = b & c;   // assign

wire a = b & c;     // declare and assign 

The left side of a continuous assignment can be

• A wire, wand, wor, or tri

• One or more bits selected from a vector

• A concatenation of any of these

The right side of the continuous assignment statement can be any supp
Verilog operator, or any arbitrary expression that uses previously decla
variables and functions. Note that you cannot assign a value to a reg in
continuous assignment.

Verilog allows you to assign drive strength for each continuous assignm
statement. FPGA Express accepts drive strength, but it does not affect th
synthesis of the circuit. Keep this in mind when you use drive strength 
your Verilog source.

Assignments are performed bit-wise, with the low bit on the right side 
assigned to the low bit on the left side. If the number of bits on the righ
side is greater than the number on the left side, the high-order bits on t
right side are discarded. If the number of bits on the left side is greater 
the number on the right side, operands on the right side are zero-exten
Structural Descriptions 3–11
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Module Instantiations

Module instantiations are copies of the logic that define component 
interconnections in a module.

module_name instance_name (terminal1, terminal2),...;

A module instantiation consists of the name of the module (module_name), 
followed by one or more instantiations. An instantiation consists of an 
instantiation name (instance_name) and a connection list. A connection list 
is a list of expressions called terminals, separated by commas. These 
terminals are connected to the ports of the instantiated module.

Terminals connected to input ports can be any arbitrary expression.   
Terminals connected to output and inout ports can be identifiers, single-bit 
or multiple-bit slices of an array, or a concatenation of these.   The bit 
widths for a terminal and its module port must be the same.

If you use an undeclared variable as a terminal, the terminal is implicitly 
declared as a scalar (1-bit) wire. After the variable is implicitly declared as 
a wire, it can appear wherever a wire is allowed.

Example 3-13 shows the declaration for the module SEQ with two 
instances (SEQ_1 and SEQ_2).

Example 3-13 Module Instantiations

module SEQ(BUS0,BUS1,OUT); // description of module SEQ
  input BUS0, BUS1; 
  output OUT; 
  ... 
endmodule 

module top( D0, D1, D2, D3, OUT0, OUT1 );
  input  D0, D1, D2, D3;
  output OUT0, OUT1;

  SEQ SEQ_1(D0,D1,OUT0), // instantiations of module SEQ
      SEQ_2(.OUT(OUT1),.BUS1(D3),.BUS0(D2));
endmodule
Structural Descriptions
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Named and Positional Notation

Module instantiations can use either named or positional notation to specify 
the terminal connections.

In name-based module instantiation, you explicitly designate which port is 
connected to each terminal in the list. Undesignated ports in the module are 
unconnected.

In position-based module instantiation, you list the terminals and specify 
connections to the module according to the terminal’s position in the lis
The first terminal in the connection list is connected to the first module 
port, the second terminal to the second module port, and so on. Omitte
terminals indicate that the corresponding port on the module is 
unconnected. 

In Example 3-13, SEQ_2 is instantiated with named notation, as follows:

• Signal OUT1 is connected to port OUT of the module SEQ.

• Signal D3 is connected to port BUS1.

• Signal D2 is connected to port BUS0

SEQ_1 is instantiated by using positional notation, as follows:   

• Signal D0 is connected to port BUS0 of module SEQ.

• Signal D1 is connected to port BUS1.

• Signal OUT0 is connected to port OUT.

Parameterized Designs

The Verilog language allows you to create parameterized designs by 
overriding parameter values in a module during instantiation. In Verilog
you can do this with the defparam statement or with the following synta

module_name #(parameter_value,parameter_value,...)instance_name (terminal_list)

FPGA Express does not support the defparam statement but does supp
the syntax above.

The module in Example 3-14 contains a parameter declaration.
Structural Descriptions 3–13
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Example 3-14 parameter Declaration in a Module

module foo (a,b,c);

parameter width = 8;

input [width-1:0] a,b;
output [width-1:0] c;

assign c = a & b;

endmodule

In Example 3-14, the default value of the parameter width is 8, unless you 
override the value when the module is instantiated. When you change the 
value, you build a different version of your design. This type of design is 
called a parameterized design.

FPGA Express reads parameterized designs as templates. These designs are 
stored in an intermediate format so that they can be built with different 
(nondefault) parameter values when they are instantiated.

One way to build a template into your design is by instantiating it in your 
Verilog code. Example 3-15 shows how to do this.

Example 3-15 Instantiating a Parameterized Design in Verilog Code

module param (a,b,c);

input [3:0] a,b;
output [3:0] c;

foo #(4) U1(a,b,c); // instantiate foo

endmodule

Example 3-15 instantiates the parameterized design, foo, which has one 
parameter that is assigned the value 4.

Because module foo is defined outside the scope of module param, errors 
such as port mismatches and invalid parameter assignments are not 
detected until an implementation is created. When FPGA Express links 
module param, it searches for template foo in memory. If foo is found, it is 
automatically built with the specified parameters. FPGA Express checks 
that foo has at least one parameter and three ports, and that the bit widths of 
the ports in foo match the bit-widths of ports a, b, and c. If template foo is 
not found, the link fails and the instance U1 is treated as a black box.
Structural Descriptions
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Gate-Level Modeling

Verilog provides a number of basic logic gates that enable modeling at the 
gate level. Gate-level modeling is a special case of positional notation for 
module instantiation that uses a set of predefined module names. FPGA 
Express supports the following gate types:

• and

• nand

• or 

• nor

• xor

• xnor

• buf

• not

• tran

Connection lists for instantiations of a gate-level model use positional 
notation. In the connection lists for and, nand, or, nor, xor, and xnor ga
the first terminal connects to the output of the gate, and the remaining 
terminals connect to the inputs of the gate. You can build arbitrarily wid
logic gates with as many inputs as you want. 

Connection lists for buf, not, and tran gates also use positional notation
You can have as many outputs as you want, followed by only one inpu
Each terminal in a gate-level instantiation can be a 1-bit expression or 
signal.

In gate-level modeling, instance names are optional. Drive strengths an
delays are allowed, but they are ignored by FPGA Express. Example 3-16 
shows two gate-level instantiations. 

Example 3-16 Gate-Level Instantiations

buf (buf_out,e); 
and and4(and_out,a,b,c,d); 

Note: Delay options for gate primitives are parsed but ignored by FPGA 
Express. Because FPGA Express ignores the delay information, it can 
create logic whose behavior does not agree with the simulated behavior of 
the circuit. See Chapter 6, “Register and Three-State Inference,” for 
more information.
Structural Descriptions 3–15
Module Instantiations



3–16

y 

 

Three-State Buffer Instantiation

FPGA Express supports the following gate types for instantiation of 
three-state gates:

• bufif0 (active-low enable line)

• bufif1 (active-high enable line)

• notif0 (active-low enable line; output inverted)

• notif1 (active-high enable line; output inverted)

Connection lists for bufif and notif gates use positional notation. Specif
the order of the terminals as follows:

• The first terminal connects to the output of the gate.

• The second terminal connects to the input of the gate.

• The third terminal connects to the control line.

Example 3-17 shows a three-state gate instantiation with an active high
enable and no inverted output.

Example 3-17 Three-State Gate Instantiation

module three_state (in1,out1,cntrl1);
input in1,cntrl1;
output out1;

bufif1 (out1,in1,cntrl1);

endmodule
Structural Descriptions
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In Verilog, expressions consist of a single operand or multiple operands 
separated by operators. Use expressions where a value is required in 
Verilog. 

This chapter explains how to build and use expressions using:

• Constant-valued expressions

• Operators

• Operands

• Expression bit widths

Constant-Valued Expressions

A constant-valued expression is an expression whose operands are ei
constants or parameters. FPGA Express determines the value of these 
expressions.

In Example 4-1, size-1 is a constant-valued expression. The expression (op 
== ADD) ? a+b : a-b is not a constant-valued expression because the v
depends on the variable op. If the value of op is 1, b is added to a; 
otherwise, b is subtracted from a.
Expressions 4–1
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Example 4-1 Valid Expressions

// all expressions are constant-valued, 
// except in the assign statement.
module add_or_subtract( a, b, op, s ); 
 // performs  s = a+b  if op is ADD 
 //           s = a-b  if op is not ADD 
parameter size=8; 
parameter ADD=1’b1; 

 input  op; 
 input  [size-1:0] a, b; 
 output [size-1:0] s;
 assign s = (op == ADD) ? a+b : a-b; // not a 
constant-
// valued expression
endmodule

The operators and operands used in an expression influence the way a 
design is synthesized. FPGA Express evaluates constant-valued 
expressions and does not synthesize circuitry to compute their value. If an 
expression contains constants, they are propagated to reduce the amount of 
circuitry required. 

Operators

Operators represent an operation to be performed on one or two operands to 
produce a new value. Most operators are either unary operators that apply 
to only one operand or binary operators that apply to two operands. Two 
exceptions are conditional operators, which take three operands and 
concatenation operators, which take any number of operands. 

The Verilog language operators supported by FPGA Express are listed in 
Table 4-1. A description of the operators and their order of precedence is 
given in the following sections.
Expressions
Operators



Table 4-1 Verilog Operators Supported by FPGA Express

In the following descriptions, the terms variable and variable operand refer 
to operands or expressions that are not constant-valued expressions. This 
group includes wires and registers, bit-selects and part-selects of wires and 
registers, function calls, and expressions that contain any of these elements.

Operator Type Operator Description

Arithmetic operators +   -   *   / arithmetic

% modulus

Relational operators >      >=      <      <= relational

Equality operators == logical equality

!  = logical inequality

Logical operators ! logical NOT

&& logical AND

|  | logical OR

Bit-wise operators ~ bit-wise NOT

& bit-wise AND

|  bit-wise OR

^ bit-wise XOR

^~  or ~^ bit-wise XNOR

Reduction operators & reduction AND

| reduction OR

~ & reduction NAND

~  | reduction NOR

^ reduction XOR

~^   or ^~ reduction XNOR

Shift operators << left shift

>> right shift

Conditional operator ? : conditional

Concatenation {  } concatenation
Expressions 4–3
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Arithmetic Operators

Arithmetic operators perform simple arithmetic on operands. The Verilog 
arithmetic operators are

• addition (+)

• subtraction (-)

• multiplication (*)

• division (/)

• modulus (%)

You can use the +, -, and * operators with any operand form (constants
variables). The + and - operators can be used as either unary or binary 
operators. FPGA Express requires that / and % operators have 
constant-valued operands.

Example 4-2 shows three forms of the addition operator. The circuitry b
for each addition operation is different because of the different operand
types. The first addition requires no logic, the second synthesizes an 
incrementer, and the third synthesizes an adder.

Example 4-2 Addition Operator

parameter size=8; 
wire [3:0] a,b,c,d,e; 

assign c = size + 2; // constant + constant
assign d = a + 1;    // variable + constant
assign e = a + b;    // variable + variable

Relational Operators

Relational operators compare two quantities and yield a 0 or 1 value. A
comparison evaluates to 1; a false comparison evaluates to 0. All 
comparisons assume unsigned quantities. The circuitry synthesized fo
relational operators is a bit-wise comparator whose size is based on th
sizes of the two operands.

The Verilog relational operators are

• less than  (<)

• less than or equal to (<=)

• greater than (>)

• greater than or equal to (>=)
Expressions
Operators
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Example 4-3 shows the use of a relational operator.

Example 4-3 Relational Operator

function [7:0] max( a, b ); 
input  [7:0] a,b; 
   if ( a >= b )  max = a; 
   else           max = b; 
endfunction 

Equality Operators

Equality operators generate a 0 if the expressions being compared are not 
equal and a 1 if the expressions are equal. Equality and inequality 
comparisons are performed bit-wise.

The Verilog equality operators are

• equality (==)  

• inequality (!=)

Example 4-4 shows the equality operator used to test for a JMP instruct
The output signal jump is set to 1 if the two high-order bits of instruction 
are equal to the value of parameter JMP; otherwise, jump is set to 0.

Example 4-4 Equality Operator

module is_jump_instruction ( instruction, jump );
   parameter JMP = 2’h3;

   input  [7:0] instruction; 
   output jump; 
   assign jump = (instruction[7:6] == JMP);

endmodule 

Handling Comparisons to X or Z

Comparisons to an X or a Z are always ignored.  If your code contains a 
comparison to an X or a Z, a warning message is displayed indicating that 
the comparison is always evaluated to false, which might cause simulation 
to disagree with synthesis.
Expressions 4–5
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Example 4-5 shows code from a file called test2.v. Variable B is always 
assigned to the value 1, because the comparison to X is ignored.

Example 4-5 Comparison to X Ignored

always begin
if (A == 1’bx)   // this is line 10
B = 0;
else
B = 1;
end

When FPGA Express reads this code, the following warning message is 
generated.

Warning:Comparisons to a “don’t care” are treated as 
always being false in routine test2 line 10 in file 
‘test2.v’. This may cause simulation to disagree with 
synthesis. (HDL-170)

For an alternate method of handling comparisons to X or Z, insert the 
// synopsys translate_off directive before the comparison and insert the 
// synopsys translate_on directive after the comparison.  Inserting these 
directives might cause simulation to disagree with synthesis.

Logical Operators

Logical operators generate a 1 or a 0, according to whether an expression 
evaluates to true (1) or false (0).  The Verilog logical operators are

• logical NOT (!)

• logical AND (&&)

• logical OR (||)

The logical NOT operator produces a value of 1 if its operand is zero a
value of 0 if its operand is nonzero.  The logical AND operator produce
value of 1 if both operands are nonzero.  The logical OR operator prod
a value of 1 if either operand is nonzero.

Example 4-6 shows some logical operators.
Expressions
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Example 4-6 Logical Operators

module is_valid_sub_inst(inst,mode,valid,unimp);

   parameter IMMEDIATE=2’b00, DIRECT=2’b01;
   parameter SUBA_imm=8’h80, SUBA_dir=8’h90,
             SUBB_imm=8’hc0, SUBB_dir=8’hd0;
   input  [7:0] inst;
   input  [1:0] mode;
   output valid, unimp;

   assign valid = (((mode == IMMEDIATE) && ( 
                 (inst == SUBA_imm) || 
                 (inst == SUBB_imm))) ||
                 ((mode == DIRECT) && ( 
                     (inst == SUBA_dir) || 
                     (inst == SUBB_dir)))); 

   assign unimp = !valid; 

endmodule 

Bit-Wise Operators

Bit-wise operators act on the operand bit by bit.  The Verilog bit-wise 
operators are

• unary negation (~)

• bit-wise AND (&)

• bit-wise OR (|)

• bit-wise XOR (^)

• bit-wise XNOR (^~ or ~^)

Example 4-7 shows some bit-wise operators.

Example 4-7 Bit-Wise Operators

module full_adder( a, b, cin, s, cout ); 
  input  a, b, cin; 
  output s, cout; 

  assign s    = a ^ b ^ cin; 
  assign cout = (a&b) | (cin & (a|b)); 
endmodule
Expressions 4–7
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Reduction Operators

Reduction operators take one operand and return a single bit.  For example, 
the reduction AND operator takes the AND value of all the bits of the 
operand and returns a 1-bit result.  The Verilog reduction operators are

• reduction AND (&)

• reduction OR (|)

• reduction NAND (~&)

• reduction NOR (~|)

• reduction XOR (^)

• reduction XNOR (^~ or ~^)

Example 4-8 shows the use of some reduction operators.

Example 4-8 Reduction Operators

module check_input ( in, parity, all_ones ); 
  input  [7:0] in; 
  output parity, all_ones; 

  assign parity   = ^ in; 
  assign all_ones = & in; 
endmodule 

Shift Operators

A shift operator takes two operands and shifts the value of the first ope
right or left by the number of bits given by the second operand.

The Verilog shift operators are

• shift left (<<) 

• shift right (>>) 

After the shift, vacated bits are filled with zeros. Shifting by a constant 
results in trivial circuitry (because only rewiring is required). Shifting by
variable causes a general shifter to be synthesized. Example 4-9 shows
a shift right operator is used to perform a division by 4.
Expressions
Operators



Example 4-9 Shift Operator 

module divide_by_4( dividend, quotient ); 
  input  [7:0] dividend; 
  output [7:0] quotient; 

  assign quotient = dividend >> 2; // shift right 2 bits
endmodule 

Conditional Operators

The conditional operator (? :) evaluates an expression and returns a value 
that is based on the truth of the expression. Example 4-10 shows how to use 
the conditional operator. If the expression (op == ADD) evaluates to true, 
the value a+b is assigned to result; otherwise, the value a-b is assigned to 
result.

Example 4-10 Conditional Operator

module add_or_subtract( a, b, op, result ); 

  parameter ADD=1’b0; 
  input  [7:0] a, b; 
  input  op; 
  output [7:0] result; 

    assign result = (op == ADD) ? a+b : a-b; 
endmodule 

You can nest conditional operators to produce an if . . . then construct.  
Example 4-11 shows the conditional operators used to evaluate the value of 
op successively and perform the correct operation.
Expressions 4–9
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Example 4-11 Nested Conditional Operator

module arithmetic( a, b, op, result ); 

  parameter ADD=3’h0,SUB=3’h1,AND=3’h2,
            OR=3’h3, XOR=3’h4; 

  input  [7:0] a,b; 
  input  [2:0] op; 
  output [7:0] result; 

  assign result = ((op == ADD) ? a+b : ( 
                   (op == SUB) ? a-b : ( 
                   (op == AND) ? a&b : ( 
                   (op ==  OR) ? a|b : ( 
                   (op == XOR) ? a^b : (a)))))); 
endmodule 

Concatenation Operator

Concatenation combines one or more expressions to form a larger vector. 
In the Verilog language, you indicate concatenation by listing all 
expressions to be concatenated, separated by commas, in curly braces ({}). 
Any expression except an unsized constant is allowed in a concatenation. 
For example, the concatenation {1’b1,1’b0,1’b0} yields the value 3’b10

You can also use a constant-valued repetition multiplier to repeat the 
concatenation of an expression. The concatenation {1’b1,1’b0,1’b0} can 
also be written as {1’b1,{2{1’b0}}} to yield 3’b100. The expression 
{2{ expr}}within the concatenation repeats expr two times.

Example 4-12 shows a concatenation that forms the value of a 
condition-code register.

Example 4-12 Concatenation Operator

output [7:0] ccr; 
wire  half_carry, interrupt, negative, zero, 
               overflow, carry;
... 
assign ccr = { 2’b00, half_carry, interrupt, 
               negative, zero, overflow, carry };

Example 4-13 shows an equivalent description for the concatenation.
Expressions
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Example 4-13 Concatenation Equivalent

output [7:0] ccr; 
... 
assign ccr[7] = 1’b0; 
assign ccr[6] = 1’b0; 
assign ccr[5] = half_carry; 
assign ccr[4] = interrupt; 
assign ccr[3] = negative; 
assign ccr[2] = zero; 
assign ccr[1] = overflow; 
assign ccr[0] = carry; 

Operator Precedence

Table 4-2 lists the precedence of all operators, from highest to lowest. All 
operators at the same level in the table are evaluated from left to right, 
except the conditional operator (?:), which is evaluated from right to left.

Table 4-2 Operator Precedence 

Operator Description

[   ] bit-select or part-select

(  ) parentheses

!      ~ logical and bit-wise negation

&      |      ~&      ~|     ^     ~^      ^~ reduction operators

 +      - unary arithmetic

{   } concatenation

*      /      % arithmetic

+      - arithmetic

<<          >> shift

>       >=          <    <= relational

==         != logical equality

& bit-wise AND

^       ^~       ~^ bit-wise XOR and XNOR

| bit-wise OR

& & logical AND

| | logical OR

? : conditional
Expressions 4–11
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Operands

The following kinds of operands can be used in an expression: 

• Numbers

• Wires and registers 

• Bit-selects 

• Part-selects 

• Function calls 

Each of these operands is explained in the following subsections.

Numbers

A number is either a constant value or a value specified as a parameter
expression size-1 in Example 4-1 illustrates how you can use both a 
parameter and a constant in an expression.

You can define constants as sized or unsized, in binary, octal, decimal
hexadecimal bases. The default size of an unsized constant is 32 bits. 
to Chapter 9, “Verilog Syntax,” for a discussion of the format for numbe

Wires and Registers

Variables that represent both wires and registers are allowed in an 
expression. (Wires are described in Chapter 3, “Structural Descriptions
Registers are described in Chapter 5, “Functional Descriptions.”) If the
variable is a multibit vector and you use only the name of the variable, 
entire vector is used in the expression. Bit-selects and part-selects allo
you to select single or multiple bits, respectively, from a vector. These 
described in the next two sections.

In the Verilog fragment shown in Example 4-14, a, b, and c are 8-bit 
vectors of wires. Because only the variable names appear in the expres
the entire vector of each wire is used in evaluating the expression.

Example 4-14 Wire Operands

wire [7:0] a,b,c; 
assign c = a & b; 
Expressions
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Bit-Selects
A bit-select is the selection of a single bit from a wire, register, or 
parameter vector. The value of the expression in brackets ([]) selects the bit 
you want from the vector. The selected bit must be within the declared 
range of the vector. Example 4-15 shows a simple example of a bit-select 
with an expression.

Example 4-15 Bit-Select Operands

wire [7:0] a,b,c; 
assign c[0] = a[0] & b[0];

Part-Selects
A part-select is the selection of a group of bits from a wire, register, or 
parameter vector. The part-select expression must be constant-valued in the 
Verilog language, unlike the bit-select operator. If a variable is declared 
with ascending indices or descending indices, the part-select (when applied 
to that variable) must be in the same order.

The expression in Example 4-14 can also be written (with descending 
indices) as shown in Example 4-16.

Example 4-16 Part-Select Operands

assign c[7:0] = a[7:0] & b[7:0]

Function Calls

Verilog allows you to call one function from inside an expression and use 
the return value from the called function as an operand. Functions in 
Verilog return a value consisting of one or more bits. The syntax of a 
function call is the function name followed by a comma-separated list of 
function inputs enclosed in parentheses. Example 4-17 shows the function 
call legal used in an expression.

Example 4-17 Function Call Used as an Operand

assign error = ! legal(in1, in2);

Functions are described in Chapter 5, “Functional Descriptions.“
Expressions 4–13
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Concatenation of Operands

Concatenation is the process of combining several single-bit or multiple-bit 
operands into one large bit vector. The use of the concatenation operators, a 
pair of braces ({}), is described earlier in this chapter.

Example 4-18 shows two 4-bit vectors (nibble1 and nibble2) that are joined 
to form an 8-bit vector that is assigned to an 8-bit wire vector (byte).

Example 4-18 Concatenation of Operands

wire [7:0] byte;
wire [3:0] nibble1, nibble2;
assign byte = {nibble1,nibble2};

Expression Bit Widths

The bit width of an expression depends on the widths of the operands and 
the types of operators in the expression.

Table 4-3 shows the bit width for each operand and operator. In the table, i, 
j, and k are expressions; L(i) is the bit width of expression i.

To preserve significant bits within an expression, Verilog fills in zeros for 
smaller-width operands. The rules for this zero-extension depend on the 
operand type. These rules are also listed in Table 4-3.

Verilog classifies expressions (and operands) as either self-determined or 
context-determined. A self-determined expression is one in which the width 
of the operands is determined solely by the expression itself. These operand 
widths are never extended.
Expressions
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Table 4-3 Expression Bit-Widths

Expression Bit Length Comments

unsized constant 32-bit self-determined

sized constant as specified self-determined

i + j        max(L(i),L(j)) context-determined

i - j        max(L(i),L(j)) context-determined

i * j        max(L(i),L(j)) context-determined

i / j       max(L(i),L(j)) context-determined

i % j       max(L(i),L(j)) context-determined

i & j        max(L(i),L(j)) context-determined

i | j        max(L(i),L(j)) context-determined

i ^ j            max(L(i),L(j)) context-determined

i ^~ j          max(L(i),L(j)) context-determined

~i          L(i) context-determined

i == j         1-bit self-determined

i !== j         1-bit self-determined

i && j        1-bit self-determined

i || j          1-bit self-determined

i > j           1-bit self-determined

i >= j           1-bit self-determined

i < j           1-bit self-determined

i <= j          1-bit self-determined

&i           1-bit self-determined

|i            1-bit self-determined

^i            1-bit self-determined

~&i            1-bit self-determined

~|i         1-bit self-determined

~^i           1-bit self-determined

i >> j             L(i) j is self-determined
Expressions 4–15
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Example 4-19 shows a self-determined expression that is a concatenation of 
variables with known widths.

Example 4-19 Self-Determined Expression

output [7:0] result;
wire   [3:0] temp;

assign temp = 4’b1111;
assign result = {temp,temp};

The concatenation has two operands. Each operand has a width of four bits 
and a value of 4’b1111. The resulting width of the concatenation is 8 b
which is the sum of the width of the operands. The value of the 
concatenation is 8’b11111111.

A context-determined expression is one in which the width of the 
expression depends on all operand widths in the expression. For exam
Verilog defines the resulting width of an addition as the greater of the 
widths of its two operands. The addition of two 8-bit quantities produces
8-bit value; however, if the result of the addition is assigned to a 9-bit 
quantity, the addition produces a 9-bit result. Because the addition oper
are context-determined, they are zero-extended to the width of the larg
quantity in the entire expression.

Example 4-20 shows context-determined expressions.

Example 4-20 Context-Determined Expressions

if ( ((1’b1 << 15) >> 15) == 1’b0 )
  // This expression is ALWAYS true.

if ( (((1’b1 << 15) >> 15) | 20’b0) == 1’b0 )
  // This expression is NEVER true.

{i{j}}        i*L(j) j is self-determined

i << j          L(i) j is self-determined

i ? j : k        Max(L(j),L(k)) j is self-determined

{i,...,j}         L(i)+...+L(j)  self-determined

{i {j,...,k}}               /*(L(j)+...+L(k))   self-determined

Expression Bit Length Comments
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The expression ((1’b1 << 15) >> 15) produces a 1-bit 0 value (1’b0). The 1 
is shifted off the left end of the vector, producing a value of 0. The right
shift has no additional effect. For a shift operator, the first operand (1’b1
context-dependent; the second operand (15) is self-determined.

The expression (((1’b1 << 15) >> 15) | 20’b0) produces a 20-bit 1 value 
(20’b1). 20’b1 has a 1 in the least significant bit position and 0s in the o
19 bit positions. Because the largest operand within the expression ha
width of 20, the first operand of the shift is zero-extended to a 20-bit va
The left shift of 15 does not drop the 1 value off the left end; the right s
brings the 1 value back to the right end, resulting in a 20-bit 1 value 
(20’b1).
Expressions 4–17
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A Verilog circuit description can be one of two types: a structural 
description or a functional description, also referred to as a Register 
Transfer Level (RTL) description. A structural description explains the 
exact physical makeup of the circuit, detailing components and the 
connections between them. A functional or RTL description describes a 
circuit in terms of its registers and the combinational logic between the 
registers.

This chapter describes the construction and use of functional descriptions in 
the following sections:

• Sequential constructs

• function declarations

• Function statements

• task statements

• always blocks

Using Sequential Constructs 

Although many Verilog constructs appear sequential in nature, they 
describe combinational circuitry. A simple description that appears to b
sequential is shown in Example 5-1.
Functional Descriptions 5–1
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Example 5-1 Sequential Statements

x = b; 
if (y)   

x = x + a; 

FPGA Express determines the combinational equivalent of this description. 
In fact, FPGA Express treats the statements in Example 5-1 the same way it 
treats the statements in Example 5-2

Example 5-2 Equivalent Combinational Description

if (y)   
x = b + a; 

else 
x = b; 

To describe combinational logic, you write a sequence of statements and 
operators to generate the output values you want. For example, suppose the 
addition operator (+) is not supported, and you want to create a 
combinational, ripple-carry adder. The easiest way to describe this circuit is 
as a cascade of full adders, as in Example 5-3. The example has eight full 
adders, with each adder following the one before. From this description, 
FPGA Express generates a fully combinational adder.

Example 5-3 Combinational Ripple-Carry Adder

function [7:0] adder;
input [7:0] a, b;
    reg c;
    integer i;
    begin
        c = 0; 
        for (i = 0; i <= 7; i = i + 1) begin 
            adder[i] = a[i] ^ b[i] ^ c;
            c = a[i] & b[i] | a[i] & c | b[i] & c;
        end
    end
endfunction
Functional Descriptions
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function Declarations

Verilog function declarations are one of the two primary methods for 
describing combinational logic. The other method is the always block, 
described later in this chapter. You must declare and use Verilog functions 
within a module. You can call functions from the structural part of a 
Verilog description by using them in a continuous assignment statement or 
as a terminal in a module instantiation. You can also call functions from 
other functions or from always blocks.

FPGA Express supports the following Verilog function declarations:

• input declarations

• reg declarations

• memory declarations

• parameter declarations

• integer declarations

Functions begin with the keyword function and end with the keyword 
endfunction. The width of the function’s return value (if any) and the na
of the function follow the function keyword, as shown in the syntax belo

function [range] name_of_function ;
            [func_declaration]*
            statement_or_null
endfunction

Defining the bit range of the return value is optional. Specify range insi
square brackets ([ ]). If you do not define range, a 1-bit quantity is retur
by default. The function’s output is set by assigning it to the function na
A function can contain one or more statements. If you use multiple 
statements, enclose the statements between a begin...end pair.

A simple function declaration is shown in Example 5-4.

Example 5-4 Simple Function Declaration

function [7:0] scramble; 
input [7:0] a; 
input [2:0] control; 
integer i; 
    begin 
        for (i = 0; i <= 7; i = i + 1) 
            scramble[i] = a[ i ^ control ]; 
    end 
endfunction 
Functional Descriptions 5–3
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Function statements supported by FPGA Express are discussed under 
“Function Statements” later in this chapter.

input Declarations 

Verilog input declarations specify the input signals for a function.

You must declare the inputs to a Verilog function immediately after you
declare the function name. The syntax of input declarations for a functio
the same as the syntax of input declarations for a module:

input [range] list_of_variables ;

The optional range specification declares an input as a vector of signal
Specify range inside square brackets ([ ]).

Note: The order in which you declare the inputs must match the order of 
the inputs in the function call.

Function Output 

The output from a function is assigned to the function name. A Verilog 
function has only one output, which can be a vector. For multiple outpu
from a function, use the concatenation operation to bundle several valu
into one return value. This single return value can then be unbundled by
caller. Example 5-5 shows how unbundling is done.

Example 5-5 Many Outputs from a Function

function [9:0] signed_add; 
input [7:0] a, b; 
    reg [7:0] sum; 
    reg carry, overflow; 

    begin 
        ... 
        signed_add = {carry, overflow, sum}; 
    end 
endfunction 
... 
assign {C, V, result_bus} = signed_add(busA, busB); 
Functional Descriptions
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The signed_add function bundles the values of carry, overflow, and sum 
into one value. This new value is returned in the assign statement following 
the function. The original values are then unbundled by the function that 
called the signed_add function.

reg Declarations 

A register represents a variable in Verilog. The syntax for a register 
declaration is

reg [range] list_of_register_variables ;

A reg declaration can be a single-bit quantity or a vector of bits. The range 
parameter specifies the most significant bit (msb) and least significant bit 
(lsb) of the vector enclosed in square brackets ([ ]). Both bits must be 
nonnegative constants, parameters, or constant-valued expressions. 
Example 5-6 shows some reg declarations.

Example 5-6 Register Declarations

reg x;              /* single bit */ 
reg a, b, c;        /* 3 single-bit quantities */ 
reg [7:0] q;        /* an 8-bit vector */ 

The Verilog language allows you to assign a value to a reg variable only 
within a function or an always block.

In the Verilog simulator, reg variables can hold state information. A reg 
variable can hold its value across separate calls to a function. In some cases, 
FPGA Express emulates this behavior by inserting flow-through latches. In 
other cases, this behavior is emulated without a latch. The concept of 
holding state is elaborated in Chapter 6, “Register and Three-State 
Inference.”

Memory Declarations

The memory declaration models a bank of registers. In Verilog, the 
memory declaration is actually a two-dimensional array of reg variables
Sample memory declarations are shown in Example 5-7.
Functional Descriptions 5–5
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Example 5-7 Memory Declarations

reg [7:0] byte_reg;
reg [7:0] mem_block [255:0];

In Example 5-7, byte_reg is an 8-bit register and mem_block is an array of 
256 registers, each of which is 8 bits wide. You can index the array of 
registers to access individual registers, but you cannot access individual 
bits of a register directly. Instead, you must copy the appropriate register 
into a temporary one-dimensional register. For example, to access the 
fourth bit of the eighth register in mem_block, enter

byte_reg = mem_block [7];
individual_bit = byte_reg [3];

parameter Declarations 

Parameter variables are local or global variables that hold values. The 
syntax for a parameter declaration is

parameter [range] identifier = expression,identifier = expression;

The range specification is optional.

You can declare parameter variables as local to a function. However, you 
cannot use a local variable outside of that function. Parameter declarations 
in a function are identical to parameter declarations in a module. (See 
Chapter 3, “Structural Descriptions,” for more information.) The functio
in Example 5-8 contains a parameter declaration.

Example 5-8 Parameter Declaration in a Function

function gte;
parameter width = 8;
input [width-1:0] a,b;
gte = (a >= b);

endfunction

integer Declarations

Integer variables are local or global variables that hold numeric values. T
syntax for an integer declaration is

integer identifier_list;
Functional Descriptions
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You can declare integer variables locally at the function level or globally at 
the module level. The default size for integer variables is 32 bits. FPGA 
Express determines bit widths, except in the case of a don’t care conditi
resulting from a compile.

Example 5-9 illustrates integer declarations.

Example 5-9 Integer Declarations

integer a;       /* single 32-bit integer */ 
integer b, c;    /* two integers */ 

Function Statements

The function statements supported by FPGA Express are

• Procedural assignments

• Register transfer level (RTL) assignments

• begin . . . end block statements

• if. . . else statements 

• case, casex, and casez statements 

• for loops

• while loops

• forever loops

• disable statements

Procedural Assignments 

Procedural assignments are assignment statements used inside a func
They are similar to the continuous assignment statements described in
Chapter 3, “Structural Descriptions,” except that the left side of a 
procedural assignment can contain only reg variables and integers. 
Assignment statements set the value of the left side to the current valu
the right side. The right side of the assignment can contain any arbitrar
expression of the data types described in Chapter 3, “Structural 
Descriptions,” including simple constants and variables.

The left side of the procedural assignment statement can contain only 
following data types: 

• reg variables
Functional Descriptions 5–7
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• Bit-selects of reg variables

• Part-selects of reg variables (must be constant-valued)

• Integers

• Concatenations of the above

Assignments are made bit-wise, with the low bit on the right side assig
to the low bit on the left side. If the number of bits on the right side is 
greater than the number on the left side, the high-order bits on the right
are discarded. If the number of bits on the left side is greater than the 
number on the right side, the right side bits are zero-extended. Multiple
procedural assignments are allowed.

Some examples of procedural assignments are shown in Example 5-1

Example 5-10 Procedural Assignments

sum = a + b; 
control[5] = (instruction == 8’h2e); 
{carry_in, a[7:0]} = 9’h 120; 

RTL Assignments

Procedural assignments in Verilog can be blocking in nature. For example, 
you can assign a delay of five time units with the following statement.

rega = #5 arg1 + arg2;

The expression arg1 + arg2 is evaluated, then execution is suspended for 
five time units before the assignment is performed and the next statement is 
processed. Execution of the next statement is blocked until the current 
statement’s execution is completed.

On the other hand, RTL assignments let you define nonblocking proced
assignments with timing controls. If you use a nonblocking RTL 
assignment statement instead of the procedural assignment, the sum i
computed immediately, but the assignment is done after the five time-u
delay.

rega <= #5 arg1 + arg2;

However, execution proceeds without waiting for the assignment to fini
FPGA Express ignores intra-assignment and interassignment delays; 
therefore, the RTL assignment behaves like the blocking procedural 
assignment in this case.
Functional Descriptions
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To illustrate the difference in behavior between RTL assignments and 
blocking procedural assignments, consider Example 5-11 and Example 
5-12, where there are multiple assignments.

Example 5-11 RTL Assignments

always @(posedge clk) begin
   regc <= data;
   regd <= regc;
end

Figure 5-1 Schematic of RTL Assignments 

Example 5-11 is a description of a serial register implemented with RTL 
assignments. The recently assigned value of regc, which is data, is assigned 
to regd as the schematic in Example 5-1 indicates. If blocking assignments 
are used as in Figure 5-2, a serial register is not synthesized because 
assignments are executed before proceeding. 

Example 5-12 Blocking Assignment

always @(posedge clk) begin
   rega = data;
   regb = rega;
end 
Functional Descriptions 5–9
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Figure 5-2 Schematic of Blocking Assignment 

The following restrictions apply to RTL assignments:

• You cannot use procedural assignments with blocking delays and RTL
assignments at the same time. The following example is not allowed.

reg b,c;

always begin
b <= #4a;// RTL assignment
c = #3b;// procedure assignment with 
// blocking delay

end

• Because FPGA Express ignores delay information, synthesis might not 
agree with simulation.

• If you first assign a value to a reg variable with a procedural assignmen
you cannot use an RTL assignment on that reg anywhere in the modul

• If you first assign a value to a reg variable with an RTL assignment, yo
cannot use a procedural assignment on that reg anywhere in the modu

begin . . . end Block Statements 

Block statements are a way of syntactically grouping several statemen
into a single statement.

In Verilog, sequential blocks are delimited by the keywords begin and end. 
These begin...end blocks are commonly used in conjunction with if, ca
and for statements to group several statements together. Functions an
always blocks that contain more than one statement require a begin...e
block to group the statements. Verilog also provides a construct called
named block, as shown in Example 5-13.
Functional Descriptions
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Example 5-13 Block Statement with a Named Block

begin : block_name 
   reg local_variable_1; 

integer local_variable_2; 
parameter local_variable_3;

    ... statements ...
end

In Verilog, no semicolon (;) follows the begin or end keywords.  You 
identify named blocks by following the begin keyword with a colon (:) and 
a block_name, as shown. Verilog syntax allows you to declare variables 
locally in a named block. You can include reg, integer, and parameter 
declarations within a named block but not in an unnamed block. Named 
blocks allow you to use the disable statement.

if . . . else Statements 

The if...else statements execute a block of statements according to the value 
of one or more expressions.

The syntax of if...else statements is

if ( expr )
     begin
     ... statements ...
     end
else 
     begin
     ... statements ...
     end

The if statement consists of the keyword if, followed by an expression 
enclosed in parentheses. The if statement is followed by a statement or 
block of statements enclosed with the begin and end keywords. If the value 
of the expression is nonzero, the expression is true and the statement block 
that follows is executed. If the value of the expression is zero, the 
expression is false, and the statement block that follows is not executed.

An optional else statement can follow an if statement. If the expression 
following the if keyword is false, the statement or block of statements 
following the else keyword is executed.

The if...else statements can cause registers to be synthesized. Registers are 
synthesized when you do not assign a value to the same reg variable in all 
branches of a conditional construct. Information on registers is provided in 
Chapter 6, “Register and Three-State Inference.”
Functional Descriptions 5–11
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FPGA Express synthesizes multiplexer logic (or similar select logic) from a 
single if statement. The conditional expression in an if statement is 
synthesized as a control signal to a multiplexer, which determines the 
appropriate path through the multiplexer. For example, the statements in 
Example 5-14 create multiplexer logic controlled by c and place either a or 
b in the variable x.

Example 5-14 if Statement that Synthesizes Multiplexer Logic

if (c)
x = a;

else
x = b;

Example 5-15 illustrates how if and else can be used to create an arbitrarily 
long if...else if...else structure.

Example 5-15 if . . . else if . . . else  Structure

if (instruction == ADD) 
    begin 
        carry_in = 0; 
        complement_arg = 0; 
    end 
else if (instruction == SUB) 
    begin 
        carry_in = 1; 
        complement_arg = 1; 
    end 
else 
    illegal_instruction = 1;

Example 5-16 shows how to use nested if and else statements.

Example 5-16 Nested if and else Statements

if (select[1]) 
    begin 
        if (select[0])  out = in[3]; 
        else out = in[2]; 
    end 
else 
    begin 
        if (select[0])  out = in[1]; 
        else  out = in[0]; 
    end 
Functional Descriptions
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Conditional Assignments

FPGA Express can synthesize a latch for a conditionally assigned variable. 
If a path exists that does not explicitly assign a value to a variable, the 
variable is conditionally assigned. See Chapter 6, “Register and Three-S
Inference,” for more information.

In Example 5-17, the variable value is conditionally driven. If c is not tru
value is not assigned and retains its previous value.

Example 5-17 Synthesizing a Latch for a Conditionally Driven Variable

always begin
if ( c ) begin
value = x;
end
Y = value; //causes a latch to be synthesized for

              //value
end

case Statements 

The case statement is similar in function to the if...else conditional 
statement. The case statement allows a multipath branch in logic that i
based on the value of an expression. One way to describe a multicycle
circuit is with a case statement (see Example 5-18). Another way is wit
multiple @ (clock-edge) statements, which are discussed later in this 
section.

The syntax for a case statement is shown below.

case ( expr )
     case_item1 : begin

     ... statements ...

     end
     case_item2 : begin

     ... statements ...

     end
     default : begin

     ... statements ...
     end
endcase
Functional Descriptions 5–13
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The case statement consists of the keyword case, followed by an expression 
in parentheses, followed by one or more case items (and associated 
statements to be executed), followed by the keyword endcase. A case item 
consists of an expression (usually a simple constant) or a list of expressions 
separated by commas, followed by a colon (:).

The expression following the case keyword is compared with each case 
item expression, one by one. When the expressions are equal, the condition 
evaluates to true. Multiple expressions separated by commas can be used in 
each case item. When multiple expressions are used, the condition is said to 
be true if any of the expressions in the case item match the expression 
following the case keyword.

The first case item that evaluates to true determines the path. All 
subsequent case items are ignored, even if they are true. If no case item is 
true, no action is taken. You can define a default case item with the 
expression default, which is used when no other case item is true.

An example of a case statement is shown in Example 5-18.

Example 5-18 case Statement

case (state) 
    IDLE: begin 
        if (start) 
            next_state = STEP1; 
        else 
            next_state = IDLE; 
    end 
    STEP1: begin 
        /* do first state processing here */ 
        next_state = STEP2; 
    end 
    STEP2: begin 
        /* do second state processing here */ 
        next_state = IDLE; 
    end 
endcase 

Full Case and Parallel Case

FPGA Express automatically determines whether a case statement is full or 
parallel. A case statement is referred to as full case if all possible branches 
are specified. If you do not specify all possible branches, but you know that 
one or more branches can never occur, you can declare a case statement as 
Functional Descriptions
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full case with the // synopsys full_case directive. Otherwise, FPGA Express 
synthesizes a latch. See Chapter 7, “FPGA Express Directives,” for more 
information about full_case directives.

FPGA Express synthesizes optimal logic for the control signals of a case
statement. If FPGA Express cannot statically determine that branches are
parallel, it synthesizes hardware that includes a priority encoder. If FPG
Express can determine that no cases overlap (parallel case), a multiplexer 
is synthesized, because a priority encoder is not necessary. You can a
declare a case statement as parallel case with the //synopsys parallel_
directive. Refer to Chapter 7, “FPGA Express Directives,” for information 
about parallel_case directives.

Example 5-19 does not result in either a latch or a priority encoder.

Example 5-19 A case Statement that Is Both Full and Parallel

input [1:0] a;
always @(a or w or x or y or z) begin

case (a)
2’b11:
    b = w ;
2’b10:
    b = x ;
2’b01: 
    b = y ;
2’b00:
    b = z ;
endcase

end

Example 5-20 shows a case statement that is missing branches for the cases 
2’b01 and 2’b10. Example 5-20 infers a latch for b.

Example 5-20 A case Statement that Is Parallel but Not Full

input [1:0] a;
always @(a or w or z) begin

case (a)
2’b11:
    b = w ;
2’b00:
    b = z ;
endcase

end

The case statement in Example 5-21 is not parallel or full because the input 
values of w and x cannot be determined. However, if you know that only 
one of the inputs equals 2’b11 at a given time, you can use the // syno
Functional Descriptions 5–15
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parallel_case directive to avoid synthesizing a priority encoder. If you 
know that either w or x always equals 2’b11 (a situation known as a 
one-branch tree), you can use the // synopsys full_case directive to avo
synthesizing a latch.

Example 5-21 A case Statement that Is Not Full or Parallel

always @( w or x) begin
case (2’b11)

w:
b = 10 ;
x:

    b = 01 ;
endcase

end

casex Statements    

The casex statement allows a multipath branch in logic according to the 
value of an expression, just like the case statement. The differences 
between the case statement and the casex statement are the keyword and the 
processing of the expressions.

The syntax for a casex statement is

casex ( expr )
     case_item1 : begin
     ... statements ...
     end
     case_item2 : begin
     ... statements ...
     end
     default : begin
     ... statements ...
     end
endcase

A case item can have expressions consisting of

• A simple constant

• A list of identifiers or expressions separated by commas, followed by a
colon (:)

• Concatenated, bit-selected, or part-selected expressions

• A constant containing z, x, or ?

When a z, x, or ? appears in a case-item expression, it means that the
corresponding bit of the casex expression is not compared. Example 5
shows a case item that includes an x.
Functional Descriptions
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Example 5-22 casex Statement with x

reg [3:0] cond;
casex (cond) 
    4’b100x: out = 1;
    default: out = 0;
endcase 

In Example 5-22, out is set to 1 if cond is equal to 4’b1000 or 4’b1001, 
because the last bit of cond is defined as x.

Example 5-23 shows a complicated section of code that can be simplif
with a casex statement that uses the ? value.

Example 5-23 Before Using casex with ?

if (cond[3]) out = 0;
else if (!cond[3] & cond[2] ) out = 1;
else if (!cond[3] & !cond[2] & cond[1] ) out = 2;
else if (!cond[3] & !cond[2] & !cond[1] & cond[0] ) out = 3;
else if (!cond[3] & !cond[2] & !cond[1] & !cond[0] ) out = 4;

Example 5-24 shows the simplified version of the same code.

Example 5-24 After Using casex with ?

casex (cond) 
 4’b1???: out = 0; 
  4’b01??: out = 1; 
  4’b001?: out = 2; 
  4’b0001: out = 3;

4’b0000: out = 4;
endcase 

?, z, and x bits are allowed in case item expressions, but  not  in casex 
expressions.  Example 5-25 shows casex in an illegal expression.

Example 5-25 Illegal casex Expression

express = 3’bxz?;
    ...
casex (express) /* illegal testing of an expression*/ 
    ...
endcase 
Functional Descriptions 5–17
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casez Statements       

The casez statement allows a multipath branch in logic according to the 
value of an expression, just like the case statement. The differences 
between the case statement and the casez statement are the keyword and the 
way the expressions are processed. The casez statement acts exactly the 
same as the casex statement, except that x is not allowed in case item 
expressions; only z and ? are accepted as special characters.

The syntax for a casez statement is

casez ( expr )
     case_item1 : begin
     ... statements ...
     end
     case_item2 : begin
     ... statements ...
     end
default : begin
     ... statements ...
     end
endcase

A case item can have expressions consisting of

• A simple constant

• A list of identifiers or expressions separated by commas, followed by a
colon (:)

• Concatenated, bit-selected, or part-selected expressions

• A constant containing a z or ?

• When a casez statement is evaluated, the value z in the case item expr
is ignored. An example of a casez statement with z in the case item is 
shown in Example 5-26.

Example 5-26 casez Statement with z

casez (what_is_it) 
  2’bz0: begin 
     /* accept anything with least significant bit zero */ 
     it_is = even;
  end 
  2’bz1: begin 
     /* accept anything with least significant bit one */ 
     it_is = odd; 
  end 
endcase 

? and z bits are allowed in case items, but  not  in casez expressions.  
Example 5-27 shows an illegal expression in a casez statement.
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Example 5-27 Illegal casez Expression

express = 1’bz;
    ...
casez (express) /* illegal testing of an expression*/ 
    ...
endcase 

for Loops 

The for loop repeatedly executes a single statement or block of statements. 
The repetitions are performed over a range determined by the range 
expressions assigned to an index. Two range expressions are used in each 
for loop: low_range and high_range. Note that in the syntax lines that 
follow, high_range is greater than or equal to low_range. FPGA Express 
recognizes both incrementing and decrementing loops. The statement to be 
duplicated is surrounded by begin and end statements.

Note: FPGA Express allows four syntax forms for a for loop. They are

for (index = low_range;index < high_range;index= index + step)
for (index = high_range;index > low_range;index= index - step)
for (index = low_range;index <= high_range;index= index + step)
for (index = high_range;index >= low_range;index= index - step)  

Example 5-28 shows a simple for loop.

Example 5-28 A Simple for Loop

for (i = 0; i <= 31; i = i + 1) begin 
    s[i] = a[i] ^ b[i] ^ carry; 
    carry = a[i] & b[i]  |  a[i] & carry  |
                            b[i] & carry; 
end 

Note that for loops can be nested, as shown in Example 5-29.
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Example 5-29 Nested for Loops

for (i = 6; i >= 0; i = i - 1) 
    for (j = 0; j <= i; j = j + 1) 
        if (value[j] > value[j+1]) begin 
            temp = value[j+1]; 
            value[j+1] = value[j]; 
            value[j] = temp; 
        end 

You can use for loops as duplicating statements.  Example 5-30 shows a for 
loop that is expanded into its longhand equivalent in Example 5-31.

Example 5-30 Example for Loop

for ( i=0; i < 8; i=i+1 ) 
    example[i] = a[i] & b[7-i]; 

Example 5-31 Expanded for Loop

example[0] = a[0] & b[7]; 
example[1] = a[1] & b[6]; 
example[2] = a[2] & b[5]; 
example[3] = a[3] & b[4]; 
example[4] = a[4] & b[3]; 
example[5] = a[5] & b[2]; 
example[6] = a[6] & b[1]; 
example[7] = a[7] & b[0]; 

while Loops

The while loop executes a statement until the controlling expression 
evaluates to false. A while loop creates a conditional branch that must be 
broken by one of the following statements to prevent combinational 
feedback

@ (posedge clock) or @ (negedge clock)

FPGA Express supports while loops, if you insert one of the following 
expressions in every path through the loop

@ (posedge clock) or @ (negedge clock)

Example 5-32 shows an unsupported while loop that has no event 
expression.
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Example 5-32 Unsupported while Loop

always
while (x < y)
x = x + z;

If you add @ (posedge clock) expressions after the while loop in Example 
5-32, you get the supported version shown inExample 5-33.

Example 5-33 Supported while Loop

always
begin @ (posedge clock)
while (x < y)
begin
@ (posedge clock);
x = x + z;
end

end;

forever Loops

Infinite loops in Verilog use the keyword forever. You must break up an 
infinite loop with an @ (posedge clock) or @ (negedge clock) expression to 
prevent combinational feedback, as shown in Example 5-34.

Example 5-34 Supported forever Loop

always
forever
begin
@ (posedge clock);
x = x + z;
end

You can use forever loops with a disable statement to implement 
synchronous resets for flip-flops. The disable statement is described in the 
next section. See Chapter 6, “Register and Three-State Inference,” for m
information on synchronous resets. 
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The style illustrated in Example 5-34 is not recommended because it is not 
testable. The synthesized state machine does not reset to a known state; 
therefore, it is impossible to create a test program for the state machine. 
Example 5-36 illustrates how a synchronous reset for the state machine can 
be synthesized. 

disable Statements

FPGA Express supports the disable statement when you use it in named 
blocks. When a disable statement is executed, it causes the named block to 
terminate. A comparator description that uses disable is shown in Example 
5-35.

Example 5-35 Comparator Using disable

begin : compare 
for (i = 7; i >= 0; i = i - 1) begin

    if (a[i] != b[i]) begin 
         greater_than = a[i]; 
         less_than = ~a[i]; 
         equal_to = 0; 
         /* comparison is done so stop looping */ 
         disable compare; 
      end 

end

/* If we get here a == b 
If the disable statement is executed, the next  

       three lines will not be executed */
   greater_than = 0; 
   less_than = 0; 
   equal_to = 1; 
end 

Note that Example 5-355 describes a combinational comparator. Although 
the description appears sequential, the generated logic runs in a single clock 
cycle.

You can also use a disable statement to implement a synchronous reset, as 
shown in Example 5-36.
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Example 5-36 Synchronous Reset of State Register Using disable in a forever Loop

always
forever
begin: reset_label
@ (posedge clock);
if (reset) disable reset_label;
z = a;

@ (posedge clock);
if (reset) disable reset_label;
z = b;
end

The disable statement in Example 5-36 causes the block reset_label to 
immediately terminate and return to the beginning of the block. Therefore, 
the first state in the loop is synthesized as the reset state. 

task Statements

In Verilog, the task statements are similar to functions except that task 
statements can have output and inout ports. You can use the task statement 
to structure your Verilog code so that a portion of code can be reused.

In Verilog, task statements can have timing controls, and they can take a 
nonzero time to return. However, FPGA Express ignores all timing 
controls, so synthesis might disagree with simulation if the timing controls 
are critical to the function of the circuit.

Example 5-37 shows how a task statement is used to define an adder 
function.
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Example 5-37 Using the task Statement

module task_example (a,b,c);
input [7:0] a,b;
output [7:0] c;
reg [7:0] c;

task adder;
input [7:0] a,b;
output [7:0] adder;
reg c;
integer i;

begin
c = 0;
for (i = 0; i <= 7; i = i+1) begin
adder[i] = a[i] ^ b[i] ^ c;
c = (a[i] & b[i]) | (a[i] & c) | (b[i] & c);
end
end

endtask
always
adder (a,b,c); // c is a reg

endmodule

Note: Only reg variables can receive output values from a task; wire 
variables cannot.

always Blocks

An always block can imply latches or flip-flops, or it can specify purely 
combinational logic. An always block can contain logic triggered in 
response to a change in a level or the rising or falling edge of a signal. The 
syntax of an always block is

always @ ( event-expression [or event-expression*] )    
begin
    ... statements ...
end

The event-expression declares the triggers or timing controls. The word or 
groups several triggers together. The Verilog language specifies that if 
triggers in the event-expression occur, the block is executed. Only one 
trigger in a group of triggers needs to occur for the block to be executed. 
However, FPGA Express ignores the event-expression unless it is a 
synchronous trigger that infers a register. Refer to Chapter 6, “Register a
Three-State Inference,” for details.

Example 5-38 is a simple example of an always block with triggers.
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Example 5-38 A Simple always Block

always @ ( a or b or c ) begin
    f = a & b & c
end

In Example 5-38, a, b, and c are asynchronous triggers. If any triggers 
change, the simulator resimulates the always block and recalculates the 
value of f.   FPGA Express ignores the triggers in this example because 
they are not synchronous. However, you must indicate all variables that are 
read in the always block as triggers. If you do not indicate all the variables 
as triggers, FPGA Express gives a warning message similar to the 
following.

Warning: Variable ‘foo’ is being read in block ‘bar’
declared on line 88 but does not occur in the
timing control of the block.

For a synchronous always block, FPGA Express does not require all 
variables to be listed.

An always block is triggered by any of the following types of 
event-expressions:

• The change in a specified value. For example:

always @ ( identifier ) begin
   ...  statements ...
end

In the example above, FPGA Express ignores the trigger.

• The rising edge of a clock.  For example:

always @ ( posedge event ) begin
   ... statements ...
end

• The falling edge of a clock.  For example:

always @ ( negedge event ) begin
   ... statements ...
end

• A clock or an asynchronous preload condition.  For example:

always @ ( posedge CLOCK or negedge reset ) begin
   if !reset begin
    ... statements ...
   end
   else begin
    ... statements ...
   end
end
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• An asynchronous preload that is based on two events joined by the woror.  
For example:

always @ ( posedge CLOCK or posedge event1 or 
           negedge event2 ) begin
    if ( event1 ) begin
     ... statements ...
    end
    else if ( !event2 ) begin
     ... statements ...
    end
    else begin
     ... statements ...
    end
end

When the event-expression does not contain posedge or negedge, 
combinational logic (no registers) is usually generated, although 
flow-through latches can be generated. 

Note: The statements @ (posedge clock) and @ (negedge clock) are not 
supported in functions or tasks.

Incomplete Event Specification

An always block can be misinterpreted if you do not list all signals enter
an always block in the event specification. Example 5-39 shows an 
incomplete event list.

Example 5-39 Incomplete Event List

always @(a or b) begin
   f = a & b & c;

end

FPGA Express builds a 3-input AND gate for the description in Example
5-39. However, when this description is simulated, f is not recalculated
when c changes, because c is not listed in the event-expression. The 
simulated behavior is not that of a 3-input AND gate.

The simulated behavior of the description in Example 5-40 is correct 
because it includes all signals in event-expression.
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Example 5-40 Complete Event List

always @(a or b or c) begin
    f = a & b & c;

end

In some cases, you cannot list all signals in the event specification. 
Example 5-41 illustrates this problem.

Example 5-41 Incomplete Event List for Asynchronous Preload Condition

always @ (posedge c or posedge p)
if (p)
z = d;
else
z = a;

In the logic synthesized for Example 5-41, if d changes while p is high, the 
change is reflected immediately in the output (z). However, when this 
description is simulated, z is not recalculated when d changes because d is 
not listed in the event specification. As a result, synthesis might not match 
simulation.

Asynchronous preloads can be correctly modeled only when you want 
changes in the load data to be immediately reflected in the output. In 
Example 5-41, data d must change to the preload value before preload 
condition p transits from low to high. If you attempt to read a value in an 
asynchronous preload, FPGA Express prints a warning similar to the one 
shown below.

Warning: Variable ‘d’ is being read asynchronously in
          routine reset line 21 in file 
          ‘/usr/tests/hdl/asyn.v’. This might cause
          simulation-synthesis mismatches.
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Register and Three-State Inference
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FPGA Express can infer registers (latches and flip-flops) and three-state 
cells. This chapter describes how to perform the following tasks when 
inferring these types of cells:

• Reporting the inference results

• Controlling the inference behavior

• Inferring the cells

Register Inference

Register inference allows you to use sequential logic in your designs a
keep your designs technology independent. A register is a simple, one
memory device, either a latch or a flip-flop. A latch is a level-sensitive 
memory device. A flip-flop is an edge-triggered memory device. 

The register inference capability can support coding styles other than th
described in this chapter. However, for best results

• Restrict each always block to a single type of memory-element inferenc
latch, latch with asynchronous set or reset, flip-flop, flip-flop with asyn-
chronous reset, or flip-flop with synchronous reset.

• Use the templates provided in the “Inferring Latches” and “Inferring 
Flip-Flops” sections later in this chapter.
Register and Three-State Inference 6–1
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Reporting Register Inference

FPGA Express generates an inference report that shows the information 
about the inferred devices. 

FPGA Express generates a general inference report when building a design 
and also provides the asynchronous set or reset, synchronous set or reset, 
and synchronous toggle conditions of each latch or flip-flop expressed in 
Boolean formulas. Example 6-1 shows the inference report for a JK 
flip-flop. The inference report appears on the Messages page of the output 
window for a pre-optimized chip.

Example 6-1  Inference Report for JK Flip-Flop

===============================================================================
|      Register Name       |   Type    | Width | Bus | AR | AS | SR | SS | ST |
===============================================================================
|          Q_reg           | Flip-flop |   1   |  -  | N  | N  | Y  | Y  | Y  |
===============================================================================
 
Q_reg
-----
    Sync-reset: J’ K
    Sync-set: J K’
    Sync-toggle: J K
    Sync-set and Sync-reset ==> Q: X

The inference report in Example 6-1 consists of two sections—the first
section contains tables of the inferenced registers and three-state devi
and the second section reports detailed register behavior. In the report

• Y indicates the flip-flop has a synchronous reset (SR) and a synchronou
(SS).

• N indicates the flip-flop does not have an asynchronous reset (AR), an
asynchronous set (AS), or a synchronous toggle (ST).

In the inference report (Example 6-1), the last section of the report lists
signals that control the synchronous reset and set conditions. In this 
example, register Q_reg synchronously resets when J is low (logic 0) an
is high (logic 1). The last line of the report indicates the register output 
value when both the set and reset are active:

zero (0)
Indicates that the reset has priority and the output goes to logic 0.

one (1)
Indicates that the set has priority and the output goes to logic 1.
Register and Three-State Inference
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X
Indicates that the output value is undefined.

The “Inferring Latches” and “Inferring Flip-Flops” sections provide 
inference reports for each register template. 

FPGA Express generates a warning message when it infers a latch. FPG
Express sends the warning in case the designer intended to describe 
combinational logic in a process but instead has inferred latches becau
signal was not assigned a value in all cases in the process. This is usef
verifying that a combinational design does not contain latches.

Controlling Register Inference

Use FPGA Express directives to direct FPGA Express to the type of 
sequential device you want inferred. FPGA Express directives give you 
control over individual signals.

Attributes that Control Register Inference
FPGA Express provides the following directives for controlling register 
inference:

n async_set_reset

When a signal has this directive set to true, FPGA Express looks for a 
branch that uses the signal as a condition. FPGA Express then checks to see
whether the branch contains an assignment to a constant value. If the 
branch does, the signal becomes an asynchronous reset or set.

Attach this directive to single-bit signals using the following syntax:

// synopsys async_set_reset ” signal_name_list”

n async_set_reset_local

FPGA Express treats listed signals in the specified block as if they have the 
async_set_reset directive set to true. 

Attach this directive to a block label using the following syntax:

/* synopsys async_set_reset_local block_label 
   ” signal_name_list” */
Register and Three-State Inference 6–3
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n async_set_reset_local_all

FPGA Express treats all signals in the specified blocks as if they have the 
async_set_reset directive set to true. 

Attach this directive to block labels using the following syntax:

/* synopsys async_set_reset_local_all 
   ” block_label_list” */

n sync_set_reset

When a signal has this directive set to true, FPGA Express checks the 
signal to determine whether it synchronously sets or resets a register in the 
design.

Attach this directive to single-bit signals using the following syntax:

//synopsys sync_set_reset ” signal_name_list”

n sync_set_reset_local

FPGA Express treats listed signals in the specified block as if they have the 
sync_set_reset directive set to true. 

Attach this directive to a block label using the following syntax:

/* synopsys sync_set_reset_local block_label 
   ” signal_name_list” */

n sync_set_reset_local_all

FPGA Express treats all signals in the specified blocks as if they have the 
sync_set_reset directive set to true. 

Attach this directive to block labels using the following syntax:

/* synopsys sync_set_reset_local_all 
   ” block_label_list” */

n one_cold

A one-cold implementation means that all signals in a group are active low 
and that only one signal can be active at a given time. The one_cold 
directive prevents FPGA Express from implementing priority encoding 
logic for the set and reset signals. 

Add a check to the Verilog code to ensure that the group of signals has a 
one-cold implementation. FPGA Express does not produce any logic to 
check this assertion.

Attach this directive to set or reset signals on sequential devices using the 
following syntax:

// synopsys one_cold ” signal_name_list”
Register and Three-State Inference
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n one_hot

A one-hot implementation means that all signals in a group are active high 
and that only one signal can be active at a given time. The one_cold 
directive prevents FPGA Express from implementing priority encoding 
logic for the set and reset signals.

Add a check to the Verilog code to ensure that the group of signals has a 
one-hot implementation. FPGA Express does not produce any logic to 
check this assertion.

Attach this directive to set or reset signals on sequential devices using the 
following syntax:

// synopsys one_hot ” signal_name_list”

The one_cold and one_hot directives cannot be used for FSM state vector 
encoding. For information about controlling state vector encoding, see 
“How to Specify Finite State Machines” in the FPGA Express online help. 

Inferring Latches

In simulation, a signal or variable holds its value until that output is 
reassigned. In hardware, a latch implements this holding-of-state 
capability. FPGA Express supports inference of the following types of 
latches:

• SR latch

• D latch

If the target technology does not contain latches of the proper type, 
optimization may not complete or it may build combinational feedback 
circuits to achieve the desired functionality.

Inferring SR Latches
Use SR latches with caution because they are difficult to test. If you de
to use SR latches, you must verify that the inputs are hazard-free (do n
glitch). FPGA Express does not ensure that the logic driving the inputs is
hazard-free.
Register and Three-State Inference 6–5
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Example 6-2 provides the Verilog code that implements the SR latch 
described in the truth table in Table 6-1. Because the output y is unstable 
when both inputs have a logic 0 value, you might want to include a check in 
the Verilog code to detect this condition during simulation. Synthesis does 
not support such checks, so you must put the synthesis_on and synthesis_
off directives around the check. See Chapter 7, “FPGA Express 
Directives,” for more information about FPGA Express directives. 
Example 6-2 includes the check and the synthesis_on and synthesis_o
directives. Example 6-3 shows the inference report generated by FPGA
Express.

Table 6-1 SR Latch Truth Table (Nand Type)

Example 6-2 SR Latch

module sr_latch (SET, RESET, Q);
  input SET, RESET;
  output Q;
  reg Q;

//synopsys async_set_reset ”SET, RESET”
always @(RESET or SET)
  if (~RESET)
    Q = 0;
  else if (~SET)
    Q = 1;
endmodule

set reset y

0 0 Not stable

0 1 1

1 0 0

1 1 y
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Example 6-3  Inference Report for an SR Latch

======================================================================
|   Register Name   |   Type    | Width | Bus | AR | AS | SR | SS | ST |
======================================================================
|       Q_reg       |   Latch   |   1   |  -  | Y  | Y  | -  | -  | -  |
======================================================================

y_reg
-----
    Async-reset: RESET’
    Async-set: SET’
    Async-set and Async-reset ==> Q: 1

Figure 6-1 SR Latch
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Inferring D Latches
When you do not specify the resulting value for a signal under all 
conditions, as in an incompletely specified if or case statement, FPGA 
Express infers a D latch.

For example, the if statement in Example 6-4 infers a D latch because there 
is no else clause. The Verilog code specifies a value for output Q only when 
input GATE has a logic 1 value. As a result output Q becomes a latched 
value.

Example 6-4 Latch Inference Using an if Statement

always @ (DATA or GATE) begin
  if (GATE) begin
    Q = DATA;
  end
end

The case statement in Example 6-5 infers D latches because the case 
statement does not provide assignments to decimal for values of I between 
10 and 15.

Example 6-5 Latch Inference Using a case Statement

always @(I) begin
  case(I)
    4’h0: decimal= 10’b0000000001;
    4’h1: decimal= 10’b0000000010;
    4’h2: decimal= 10’b0000000100;
    4’h3: decimal= 10’b0000001000;
    4’h4: decimal= 10’b0000010000;
    4’h5: decimal= 10’b0000100000;
    4’h6: decimal= 10’b0001000000;
    4’h7: decimal= 10’b0010000000;
    4’h8: decimal= 10’b0100000000;
    4’h9: decimal= 10’b1000000000;
  endcase
end
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To avoid latch inference, assign a value to the signal under all conditions. 
To avoid latch inference by the if statement in Example 6-4, modify the 
block as shown in Example 6-6 or Example 6-7. To avoid latch inference 
by the case statement in Example 6-5, add the following statement before 
the endcase statement:

default: decimal= 10’b0000000000;

Example 6-6 Avoiding Latch Inference 

always @ (DATA, GATE) begin
  Q = 0;
  if (GATE) 
    Q = DATA;
end

Example 6-7 Another Way to Avoid Latch Inference 

always @ (DATA, GATE) begin
  if (GATE) 
    Q = DATA;
  else 
    Q = 0;
end

Variables declared locally within a subprogram do not hold their value over 
time because every time a subprogram is called, its variables are 
reinitialized. Therefore, FPGA Express does not infer latches for variables 
declared in subprograms. In Example 6-8, FPGA Express does not infer a 
latch for output Q.

Example 6-8 Function: No Latch Inference

function MY_FUNC
  input DATA, GATE;
  reg STATE;

  begin
    if (GATE) begin
      STATE = DATA;
    end
    MY_FUNC = STATE;
  end
end function
. . .
Q = MY_FUNC(DATA, GATE);
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The following sections provide truth tables, code examples, and figures for 
these types of D latches:

• Simple D latch

• D latch with asynchronous set or reset

• D latch with asynchronous set and reset

Simple D Latch. When you infer a D latch, make sure that you can cont
the gate and data signals from the top-level design ports or through 
combinational logic. Controllable gate and data signals ensure that 
simulation can initialize the design.

Example 6-9 provides the Verilog template for a D latch. FPGA Express 
generates the verbose inference report shown in Example 6-10. Figure
shows the inferred latch.

Example 6-9 D Latch

module d_latch (GATE, DATA, Q);
  input GATE, DATA;
  output Q;
  reg Q;

always @(GATE or DATA)
  if (GATE)
    Q = DATA;

endmodule
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Example 6-10 Inference Report for a D Latch

===============================================================================
|      Register Name       |   Type    | Width | Bus | AR | AS | SR | SS | ST |
===============================================================================
|          Q_reg           |   Latch   |   1   |  -  | N  | N  | -  | -  | -  |
===============================================================================
 
Q_reg
-----
    reset/set: none

Figure 6-2 D Latch
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D Latch with Asynchronous Set or Reset. The templates in this section 
use the async_set_reset directive to direct FPGA Express to the 
asynchronous set or reset pins of the inferred latch.

Example 6-11 provides the Verilog template for a D latch with an 
asynchronous set. FPGA Express generates the verbose inference report 
shown in Example 6-12. Figure 6-3 shows the inferred latch.

Example 6-11 D Latch with Asynchronous Set

module d_latch_async_set (GATE, DATA, SET, Q);
  input GATE, DATA, SET;
  output Q;
  reg Q;

//synopsys async_set_reset ”SET”
always @(GATE or DATA or SET)
  if (~SET)
    Q = 1’b1;
  else if (GATE)
    Q = DATA;
endmodule

Example 6-12 Inference Report for a D Latch with Asynchronous Set

===============================================================================
|      Register Name       |   Type    | Width | Bus | AR | AS | SR | SS | ST |
===============================================================================
|          Q_reg           |   Latch   |   1   |  -  | N  | Y  | -  | -  | -  |
===============================================================================
 
Q_reg
-----
    Async-set: SET’
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Figure 6-3 D Latch with Asynchronous Set

Note: When the target technology library does not contain a latch with an 
asynchronous set, FPGA Express synthesizes the set logic using 
combinational logic.
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Example 6-13 provides the Verilog template for a D latch with an 
asynchronous reset. FPGA Express generates the verbose inference report 
shown in Example 6-14. Figure 6-4 shows the inferred latch.

Example 6-13 D Latch with Asynchronous Reset

module d_latch_async_reset (RESET, GATE, DATA, Q);
  input RESET, GATE, DATA;
  output Q;
  reg Q;

//synopsys async_set_reset ”RESET”
always @ (RESET or GATE or DATA)
  if (~RESET) 
    Q = 1’b0;
  else if (GATE) 
    Q = DATA;
endmodule 

Example 6-14 Inference Report for a D Latch with Asynchronous Reset

===============================================================================
|      Register Name       |   Type    | Width | Bus | AR | AS | SR | SS | ST |
===============================================================================
|          Q_reg           |   Latch   |   1   |  -  | Y  | N  | -  | -  | -  |
===============================================================================
 
Q_reg
-----
    Async-reset: RESET’

Figure 6-4 D Latch with Asynchronous Reset
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D Latch with Asynchronous Set and Reset. Example 6-15 provides the 
Verilog template for a D latch with an active low asynchronous set and 
reset. This template uses the async_set_reset_local directive to direct 
FPGA Express to the asynchronous signals in block infer. This template 
uses the one_cold directive to prevent priority encoding of the set and reset 
signals. For this template, if you do not specify the one_cold directive, the 
set signal has priority because it is used as the condition for the if clause. 
FPGA Express generates the verbose inference report shown in Example 
6-16. Figure 6-5 shows the inferred latch.

Example 6-15 D Latch with Asynchronous Set and Reset

module d_latch_async (GATE, DATA, RESET, SET, Q);
  input GATE, DATA, RESET, SET;
  output Q;
  reg Q;

// synopsys async_set_reset_local infer ”RESET, SET”
// synopsys one_cold ”RESET, SET”
always @ (GATE or DATA or RESET or SET)
begin : infer
  if (!SET) 
    Q = 1’b1;
  else if (!RESET) 
   Q = 1’b0;
   else if (GATE) 
    Q = DATA;
end

// synopsys translate_off
always @ (RESET or SET)
  if (RESET == 1’b0 & SET == 1’b0)
  $write (”ONE-COLD violation for RESET and SET.”);
// synopsys translate_on
endmodule 
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Example 6-16 Inference Report for a D Latch with Asynchronous Set and Reset

===============================================================================
|      Register Name       |   Type    | Width | Bus | AR | AS | SR | SS | ST |
===============================================================================
|          Q_reg           |   Latch   |   1   |  -  | Y  | Y  | -  | -  | -  |
===============================================================================
 
Q_reg
-----
    Async-reset: RESET’
    Async-set: SET’
    Async-set and Async-reset ==> Q: X

Figure 6-5 D Latch with Asynchronous Set and Reset
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Inferring Flip-Flops

FPGA Express can infer D flip-flops, JK flip-flops and toggle flip-flops. 
The following sections provide details about each of these flip-flop types.

Inferring D Flip-Flops
FPGA Express infers a D flip-flop whenever the sensitivity list of an 
always block includes an edge expression (a test for the rising or falling 
edge of a signal). Use the following syntax to describe a rising edge:

posedge SIGNAL

Use the following syntax to describe a falling edge:

negedge SIGNAL

When the sensitivity list of an always block contains an edge expression, 
FPGA Express creates flip-flops for all variables assigned values in the 
block. Example 6-17 shows the most common usage of an always block to 
infer a flip-flop.

Example 6-17 Using an always Block to Infer a Flip-Flop

always @(edge_expression)
begin
  assignment statements
end

Simple D Flip-Flop. When you infer a D flip-flop, make sure that you can 
control the clock and data signals from the top-level design ports or through 
combinational logic. Controllable clock and data signals ensure that 
simulation can initialize the design. If you cannot control the clock and data 
signals, you should infer a D flip-flop with asynchronous reset or set or 
with a synchronous reset or set.

When inferring a simple D flip-flop, the always block can contain only one 
edge expression. 

Example 6-18 provides the Verilog template for a positive-edge-triggered 
D flip-flop. FPGA Express generates the verbose inference report shown in 
Example 6-19. Figure 6-6 shows the inferred flip-flop.
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Example 6-18 Positive-Edge-Triggered D Flip-Flop

module dff_pos (DATA, CLK, Q);
  input DATA, CLK;
  output Q;
  reg Q;

always @(posedge CLK)
  Q = DATA;
endmodule

Example 6-19 Inference Report for a Positive-Edge-Triggered D Flip-Flop

===============================================================================
|      Register Name       |   Type    | Width | Bus | AR | AS | SR | SS | ST |
===============================================================================
|          Q_reg           | Flip-flop |   1   |  -  | N  | N  | N  | N  | N  |
===============================================================================
 
Q_reg
-----
    set/reset/toggle: none

Figure 6-6 Positive-Edge-Triggered D Flip-Flop
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Example 6-20 provides the Verilog template for a negative-edge-triggered 
D flip-flop. FPGA Express generates the verbose inference report shown in 
Example 6-21. Figure 6-7 shows the inferred flip-flop.

Example 6-20 Negative-Edge-Triggered D Flip-Flop

module dff_neg (DATA, CLK, Q);
  input DATA, CLK;
  output Q;
  reg Q;

always @(negedge CLK)
  Q = DATA;
endmodule

Example 6-21 Inference Report for a Negative-Edge-Triggered D Flip-Flop

===============================================================================
|      Register Name       |   Type    | Width | Bus | AR | AS | SR | SS | ST |
===============================================================================
|          Q_reg           | Flip-flop |   1   |  -  | N  | N  | N  | N  | N  |
===============================================================================
 
Q_reg
-----
    set/reset/toggle: none

Figure 6-7 Negative-Edge-Triggered D Flip-Flop
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D Flip-Flop with Asynchronous Set or Reset. When inferring a D 
flip-flop with an asynchronous set or reset, include edge expressions for the 
clock and the asynchronous signals in the sensitivity list of the always 
block. Specify the asynchronous conditions using if statements. Specify the 
branches for the asynchronous conditions before the branches for the 
synchronous conditions.

Example 6-22 provides the Verilog template for a D flip-flop with an 
active-low asynchronous set. FPGA Express generates the verbose 
inference report shown in Example 6-23. Figure 6-8 shows the inferred 
flip-flop.

Example 6-22 D Flip-Flop with Asynchronous Set

module dff_async_set (DATA, CLK, SET, Q);
  input DATA, CLK, SET;
  output Q;
  reg Q;

always @(posedge CLK or negedge SET)
  if (~SET)
    Q = 1’b1;
  else 
    Q = DATA;
endmodule

Example 6-23 Inference Report for a D Flip-Flop with Asynchronous Set

===============================================================================
|      Register Name       |   Type    | Width | Bus | AR | AS | SR | SS | ST |
===============================================================================
|          Q_reg           | Flip-flop |   1   |  -  | N  | Y  | N  | N  | N  |
===============================================================================
 
Q_reg
-----
    Async-set: SET’

Figure 6-8 D Flip-Flop with Asynchronous Set
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Example 6-24 provides the Verilog template for a D flip-flop with an 
active-high asynchronous reset. FPGA Express generates the verbose 
inference report shown in Example 6-25. Figure 6-9 shows the inferred 
flip-flop.

Example 6-24 D Flip-Flop with Asynchronous Reset

module dff_async_reset (DATA, CLK, RESET, Q);
  input DATA, CLK, RESET;
  output Q;
  reg Q;

always @(posedge CLK or posedge RESET)
  if (RESET)
    Q = 1’b0;
  else
    Q = DATA;
endmodule

Example 6-25 Inference Report for a D Flip-Flop with Asynchronous Reset

===============================================================================
|      Register Name       |   Type    | Width | Bus | AR | AS | SR | SS | ST |
===============================================================================
|          Q_reg           | Flip-flop |   1   |  -  | Y  | N  | N  | N  | N  |
===============================================================================
 
Q_reg
-----
    Async-reset: RESET

Figure 6-9 D Flip-Flop with Asynchronous Reset
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D Flip-Flop with Asynchronous Set and Reset. Example 6-26 provides 
the Verilog template for a D flip-flop with active high asynchronous set and 
reset pins. The template uses the one_hot directive to prevent priority 
encoding of the set and reset signals. For this template, if you do not 
specify the one_hot directive, the reset signal has priority because it is used 
as the condition for the if clause. FPGA Express generates the verbose 
inference report shown in Example 6-27. Figure 6-10 shows the inferred 
flip-flop.

Example 6-26 D Flip-Flop with Asynchronous Set and Reset

module dff_async (RESET, SET, DATA, Q, CLK);
  input CLK;
  input RESET, SET, DATA;
  output Q;
  reg Q;

// synopsys one_hot ”RESET, SET”
always @(posedge CLK or posedge RESET or 
         posedge SET)
  if (RESET)
    Q= 1’b0;
  else if (SET)
    Q= 1’b1;
  else Q= DATA;

// synopsys translate_off
always @ (RESET or SET)
  if (RESET + SET > 1)
  $write (”ONE-HOT violation for RESET and SET.”);
// synopsys translate_on
endmodule 
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Example 6-27 Inference Report for a D Flip-Flop with Asynchronous Set and Reset

===============================================================================
|      Register Name       |   Type    | Width | Bus | AR | AS | SR | SS | ST |
===============================================================================
|          Q_reg           | Flip-flop |   1   |  -  | Y  | Y  | N  | N  | N  |
===============================================================================
 
Q_reg
-----
    Async-reset: RESET
    Async-set: SET
    Async-set and Async-reset ==> Q: X

Figure 6-10 D Flip-Flop with Asynchronous Set and Reset
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D Flip-Flop with Synchronous Set or Reset. The previous examples 
illustrate how to infer a D flip-flop with asynchronous controls—one wa
to initialize or control the state of a sequential device. You can also 
synchronously reset or set the flip-flop (see Example 6-28 and Exampl
6-30). The sync_set_reset directive directs FPGA Express to the 
synchronous controls of the sequential device.

When the target technology library does not have a D flip-flop with 
synchronous reset, FPGA Express infers a D flip-flop with synchronous 
reset logic as the input to the D pin of the flip-flop. If the reset (or set) lo
is not directly in front of the D pin of the flip-flop, initialization problems 
can occur during gate-level simulation of the design. 

Example 6-28 provides the Verilog template for a D flip-flop with 
synchronous set. FPGA Express generates the verbose inference report 
shown in Example 6-29. Figure 6-11 shows the inferred flip-flop.

Example 6-28 D Flip-Flop with Synchronous Set

module dff_sync_set (DATA, CLK, SET, Q);
  input DATA, CLK, SET;
  output Q;
  reg Q;

//synopsys sync_set_reset ”SET”
always @(posedge CLK)
  if (SET)
    Q = 1’b1;
  else 
    Q = DATA;
endmodule

Example 6-29 Inference Report for a D Flip-Flop with Synchronous Set

===============================================================================
|      Register Name       |   Type    | Width | Bus | AR | AS | SR | SS | ST |
===============================================================================
|          Q_reg           | Flip-flop |   1   |  -  | N  | N  | N  | Y  | N  |
===============================================================================
 
Q_reg
-----
    Sync-set: SET
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Figure 6-11 D Flip-Flop with Synchronous Set

Example 6-30 provides the Verilog template for a D flip-flop with 
synchronous reset. FPGA Express generates the verbose inference report 
shown in Example 6-31. Figure 6-12 shows the inferred flip-flop.

Example 6-30 D Flip-Flop with Synchronous Reset

module dff_sync_reset (DATA, CLK, RESET, Q);
  input DATA, CLK, RESET;
  output Q;
  reg Q;

//synopsys sync_set_reset ”RESET”
always @(posedge CLK)
  if (~RESET)
    Q = 1’b0;
  else 
    Q = DATA;
endmodule

Example 6-31 Inference Report for a D Flip-Flop with Synchronous Reset

===============================================================================
|      Register Name       |   Type    | Width | Bus | AR | AS | SR | SS | ST |
===============================================================================
|          Q_reg           | Flip-flop |   1   |  -  | N  | N  | Y  | N  | N  |
===============================================================================
 
Q_reg
-----
    Sync-reset: RESET’
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Figure 6-12 D Flip-Flop with Synchronous Reset

D Flip-Flop with Synchronous and Asynchronous Load. D flip-flops 
can have asynchronous or synchronous controls. To infer a component with 
both synchronous and asynchronous controls, you must check the 
asynchronous conditions before you check the synchronous conditions.

Example 6-32 provides the Verilog template for a D flip-flop with 
synchronous load (called SLOAD) and an asynchronous load (called 
ALOAD). FPGA Express generates the verbose inference report shown in 
Example 6-33. Figure 6-13 shows the inferred flip-flop.

Example 6-32 D Flip-Flop with Synchronous and Asynchronous Load

module dff_a_s_load (ALOAD, SLOAD, ADATA, SDATA, CLK, 
                     Q);
  input ALOAD, ADATA, SLOAD, SDATA, CLK;
  output Q;
  reg Q;

always @ (posedge CLK or posedge ALOAD)
  if (ALOAD)
    Q= ADATA;
  else if (SLOAD)
    Q = SDATA;
endmodule 
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Example 6-33 Inference Report for a D Flip-Flop with Synchronous and Asynchronous Load

===============================================================================
|      Register Name       |   Type    | Width | Bus | AR | AS | SR | SS | ST |
===============================================================================
|          Q_reg           | Flip-flop |   1   |  -  | N  | N  | N  | N  | N  |
===============================================================================
 
Q_reg
-----
    set/reset/toggle: none

Figure 6-13 D Flip-Flop with Synchronous and Asynchronous Load
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Multiple Flip-Flops with Asynchronous and Synchronous Controls. If 
a signal is synchronous in one block but asynchronous in another block, use 
the sync_set_reset_local and async_set_reset_local directives to direct 
FPGA Express to the correct implementation.

In Example 6-34, block infer_sync uses the reset signal as a synchronous 
reset, while block infer_async uses the reset signal as an asynchronous 
reset. FPGA Express generates the verbose inference report shown in 
Example 6-35. Figure 6-14 shows the resulting design.

Example 6-34 Multiple Flip-Flops with Asynchronous and Synchronous Controls

module multi_attr (DATA1, DATA2, CLK, RESET, SLOAD, 
                   Q1, Q2);
  input DATA1, DATA2, CLK, RESET, SLOAD;
  output Q1, Q2;
  reg Q1, Q2;

//synopsys sync_set_reset_local infer_sync ”RESET”
always @(posedge CLK)
begin : infer_sync
  if (~RESET)
    Q1 = 1’b0;
  else if (SLOAD)
    Q1 = DATA1;   // note: else hold Q
end

//synopsys async_set_reset_local infer_async ”RESET”
always @(posedge CLK or negedge RESET)
begin: infer_async
  if (~RESET)
    Q2 = 1’b0;
  else if (SLOAD)
    Q2 = DATA2;
end
endmodule
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Example 6-35 Inference Reports for Example 6-34

===============================================================================
|      Register Name       |   Type    | Width | Bus | AR | AS | SR | SS | ST |
===============================================================================
|          Q1_reg          | Flip-flop |   1   |  -  | N  | N  | Y  | N  | N  |
===============================================================================
 
Q1_reg
------
    Sync-reset: RESET’

===============================================================================
|      Register Name       |   Type    | Width | Bus | AR | AS | SR | SS | ST |
===============================================================================
|          Q2_reg          | Flip-flop |   1   |  -  | Y  | N  | N  | N  | N  |
===============================================================================
 
Q2_reg
------
    Async-reset: RESET’

Figure 6-14 Multiple Flip-Flops with Asynchronous and Synchronous Controls
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Understanding the Limitations of D Flip-Flop Inference
If you use an if statement to infer D flip-flops, you must meet the following 
requirements:

n The signal in an edge expression cannot be an indexed expression.

The following always block is invalid because it uses an indexed 
expression:

always @(posedge clk[1])

FPGA Express generates the following message when you use an indexed 
expression in the always block:

Error: In an event expression with ’posedge’ and 
’negedge’ qualifiers, only simple identifiers are 
allowed %s. (VE-91)

n Set and reset conditions must be single-bit variables.

The following reset condition is invalid because it uses a bused variable:

always @(posedge clk and negedge reset_bus)
  if (!reset_bus[1])
  .
end

FPGA Express generates the following message when you use a bused 
variable in a set or reset condition:

Error: The expression for the reset condition of the 
’if’ statement in this ’always’ block can only be a 
simple identifier or its negation (%s). (VE-92)

n Set and reset conditions cannot use complex expressions.

The following reset condition is invalid because it uses a complex 
expression:

always @(posedge clk and negedge reset)
  if (reset == (1-1))
  .
end

FPGA Express generates the VE-92 message when you use a complex 
expression in a set or reset condition.
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n An if statement must occur at the top level of the always block.

The following example is invalid because the if statement does not occur at 
the top level:

always @(posedge clk or posedge reset) begin
  #1;
  if (reset)
  .
end

FPGA Express generates the following message when the if statement does 
not occur at the top level:

Error: The statements in this ’always’ block are 
outside the scope of the synthesis policy (%s). Only 
an ’if’ statement is allowed at the top level in this 
’always’ block. Please refer to the HDL Compiler 
reference manual for ways to infer flip-flops and 
latches from ’always’ blocks. (VE-93)

Minimizing Flip-Flop Count. An always block that contains a clock edge 
in the sensitivity list causes FPGA Express to infer a flip-flop for each 
variable assigned a value in that block. It might not be necessary to register 
all variables in the block. Make sure your HDL description builds only as 
many flip-flops as the design requires. 

The description in Example 6-36 builds six flip-flops, one for each variable 
assigned a value in the block (COUNT(2:0), AND_BITS, OR_BITS, and 
XOR_BITS). 

Example 6-36 Circuit with Six Implied Registers

module count (CLK, RESET, 
              AND_BITS, OR_BITS, XOR_BITS);
  input CLK, RESET;
  output AND_BITS, OR_BITS, XOR_BITS;
  reg AND_BITS, OR_BITS, XOR_BITS;

  reg [2:0] COUNT;

always @(posedge CLK) begin
  if (RESET)
    COUNT = 0;
  else
    COUNT = COUNT + 1;

  AND_BITS = & COUNT;
  OR_BITS = | COUNT;
  XOR_BITS = ^ COUNT;
end
endmodule
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In this design, the outputs AND_BITS, OR_BITS, and XOR_BITS depend 
solely on the value of variable COUNT. If the variable COUNT is 
registered, these three outputs do not need to be registered. 

To compute values synchronously and store them in flip-flops, set up an 
always block with a signal edge trigger. To let other values change 
asynchronously, make a separate always block with no signal edge trigger. 
Put the assignments you want clocked in the always block with the signal 
edge trigger, and the other assignments in the other always block. This 
technique is used for creating Mealy machines.

To avoid inferring extra registers, assign the outputs in an always block that 
does not have a clock edge in its condition expression. Example 6-37 shows 
a description with two always blocks, one with a clock edge condition and 
one without. Put the registered (synchronous) assignments into the block 
with the clock edge condition. Put the other (asynchronous) assignments in 
the other block. This description style lets you choose the variables that are 
registered and those that are not.

Example 6-37 Circuit with Three Implied Registers

module count (CLK, RESET, 
              AND_BITS, OR_BITS, XOR_BITS);
  input CLK, RESET;
  output AND_BITS, OR_BITS, XOR_BITS;
  reg AND_BITS, OR_BITS, XOR_BITS;

  reg [2:0] COUNT;

//synchronous block
always @(posedge CLK) begin
  if (RESET)
    COUNT = 0;
  else
    COUNT = COUNT + 1;
end

//asynchronous block
always @(COUNT) begin
  AND_BITS = & COUNT;
  OR_BITS = | COUNT;
  XOR_BITS = ^ COUNT;
end
endmodule

The technique of separating combinational logic from registered or 
sequential logic is useful when describing finite-state machines.
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Correlating with Simulation Results. Using delay specifications with 
registered values can cause the simulation to behave differently from the 
logic synthesized by FPGA Express. For example, the description in 
Example 6-38 contains delay information that causes FPGA Express to 
synthesize a circuit that behaves unexpectedly (the post-synthesis 
simulation results do not match pre-synthesis simulation results).

Example 6-38 Delays in Registers

module flip_flop (D, CLK, Q);
  input D, CLK;
  output Q;
  .
endmodule

module top (A, C, D, CLK);
  .
  reg B;

always @ (A or C or D or CLK)
begin
  B <= #100 A;
  flip_flop F1(A, CLK, C);
  flip_flop F2(B, CLK, D);
end
endmodule

In Example 6-38, B changes 100 nanoseconds after A changes. If the clock 
period is less than 100 nanoseconds, output D is one or more clock cycles 
behind output C during simulation of the design. However, because FPGA 
Express ignores the delay information, A and B change values at the same 
time, and so do C and D. This behavior is not the same as in the 
post-synthesis simulation.

When using delay information in your designs, make sure that the delays do 
not affect registered values. In general, you can safely include delay 
information in your description if it does not change the value that gets 
clocked into a flip-flop.
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Three-State Inference

FPGA Express infers a three-state driver when you assign the value of z to 
a variable. The z value represents the high-impedance state. FPGA Express 
infers one three-state driver per block. You can assign high-impedance 
values to single-bit or bused variables.

Reporting Three-State Inference

FPGA Express can generate an inference report that shows the information 
about the inferred devices. 

Example 6-39 shows a three-state inference report. 

Example 6-39 Three-State Inference Report

===============================================================================
|       Three-state Device Name        |                 Type                 |
===============================================================================
|               OUT1_tri               |          Three-state Buffer          |
===============================================================================

The first column of the report indicates the name of the inferred three-state 
device. The second column of the report indicates the type of three-state 
device that FPGA Express inferred.

Controlling Three-State Inference

FPGA Express always infers a three-state driver when you assign the value 
of z to a variable. FPGA Express does not provide any means of controlling 
the inference.

Inferring Three-State Drivers

This section contains Verilog examples that infer the following types of 
three-state drivers:

• Simple three-state drivers

• Registered three-state drivers
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Simple Three-State Driver
This section provides a template for a simple three-state driver. In addition, 
this section provides examples of how allocating high-impedance 
assignments to different blocks affects three-state inference.

Example 6-40 provides the Verilog template for a simple three-state driver. 
FPGA Express generates the inference report shown in Example 6-41. 
Figure 6-15 shows the inferred three-state driver.

Example 6-40 Simple Three-State Driver

module three_state (ENABLE, IN1, OUT1);
  input IN1, ENABLE;
  output OUT1;
  reg OUT1;

always @(ENABLE or IN1) begin
  if (ENABLE)
    OUT1 = IN1;
  else
    OUT1 = 1’bz;  //assigns high-impedance state
end
endmodule

Example 6-41 Inference Report for Simple Three-State Driver

===============================================================================
|       Three-state Device Name        |                 Type                 |
===============================================================================
|               OUT1_tri               |          Three-state Buffer          |
===============================================================================

Figure 6-15 Three-State Driver
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Example 6-42 provides an example of placing all high-impedance 
assignments in a single block. In this case the data is gated and FPGA 
Express infers a single three-state driver (Example 6-43 shows the 
inference report). Example 6-44 provides an example of placing each 
high-impedance assignment in separate blocks. In this case, FPGA Express 
infers multiple three-state drivers (Example 6-45 shows the inference 
report).

Example 6-42 Inferring One Three-State Driver from a Single Process

module three_state (A, B, SELA, SELB, T);
  input  A, B, SELA, SELB;
  output T;
  reg T;

always @(SELA or SELB or A or B) begin
  T = 1’bz;
  if (SELA)
    T = A;
  if (SELB)
    T = B;
end
endmodule

Example 6-43 Single Process Inference Report

===============================================================================
|       Three-state Device Name        |                 Type                 |
===============================================================================
|                T_tri                 |          Three-state Buffer          |
===============================================================================

Figure 6-16 Inferring One Three-State Driver
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Example 6-44 Inferring Two Three-State Drivers

module three_state (A, B, SELA, SELB, T);
  input  A, B, SELA, SELB;
  output T;
  reg T;

always @(SELA or A)
  if (SELA)
    T = A;
  else 
    T = 1’bz;

always @(SELB or B)
  if (SELB)
    T = B;
  else 
    T = 1’bz;
endmodule

Example 6-45 Inference Report for Two Three-State Drivers

===============================================================================
|       Three-state Device Name        |                 Type                 |
===============================================================================
|                T_tri                 |          Three-state Buffer          |
===============================================================================

===============================================================================
|       Three-state Device Name        |                 Type                 |
===============================================================================
|                T_tri2                |          Three-state Buffer          |
===============================================================================

Figure 6-17 Inferring Two Three-State Drivers
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Registered Three-State Drivers
When a variable is registered in the same block in which it is three-stated, 
FPGA Express also registers the enable pin of the three-state gate. Example 
6-46 shows an example of this type of code and Example 6-47 shows the 
inference report. Figure 6-18 shows the schematic generated by the code. 

Example 6-46 Three-State Driver with Registered Enable

module ff_3state (DATA, CLK, THREE_STATE, OUT1);
  input DATA, CLK, THREE_STATE;
  output OUT1;
  reg OUT1;

always @ (posedge CLK) begin
  if (THREE_STATE)
    OUT1 = 1’bz;
  else
    OUT1 = DATA;
end
endmodule

Example 6-47 Inference Report for Three-State Driver with Registered Enable

===============================================================================
|       Three-state Device Name        |                 Type                 |
===============================================================================
|               OUT1_tri               |          Three-state Buffer          |
|         OUT1_tri_enable_reg          |         Flip-flop (width 1)          |
===============================================================================

Figure 6-18 Three-State Driver with Registered Enable
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In Example 6-46 the three-state gate has a register on its enable pin. 
Example 6-48 uses two blocks to instantiate a three-state gate with a 
flip-flop only on the input. Example 6-49 shows the inference report. 
Figure 6-19 shows the schematic generated by the code. 

Example 6-48 Three-State Driver without Registered Enable

module ff_3state (DATA, CLK, THREE_STATE, OUT1);
  input DATA, CLK, THREE_STATE;
  output OUT1;
  reg OUT1;

  reg TEMP;

always @(posedge CLK)
  TEMP = DATA;

always @(THREE_STATE or TEMP)
  if (THREE_STATE)
    OUT1 = TEMP;
  else
    OUT1 = 1’bz;
endmodule

Example 6-49 Inference Report for Three-State Driver without Registered Enable

===============================================================================
|       Three-state Device Name        |                 Type                 |
===============================================================================
|               OUT1_tri               |          Three-state Buffer          |
===============================================================================

Figure 6-19 Three-State Driver without Registered Enable 
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Understanding the Limitations of Three-State Inference

You can use the Z value in the following ways:

• Variable assignment

• Function call argument

• Return value

You cannot use the Z value in an expression, except for comparison to
Be careful when using expressions that compare to the Z value. FPGA
Express always evaluates these expressions to false and the pre- and 
post-synthesis simulation results might differ. For this reason, FPGA 
Express issues a warning when it synthesizes such comparisons.

 Example 6-50 shows an incorrect use of the Z value. Example 6-51 sh
a correct use of the Z value.

Example 6-50 Incorrect Use of the Z Value in an Expression

OUT_VAL = (1’bz && IN_VAL);

Example 6-51 Correct Use of the Z Value in an Expression

if (IN_VAL == 1’bz) then
Register and Three-State Inference
Three-State Inference



FPGA Express Directives
in a 

st 
e 
FPGA Express translates a Verilog description to a Synopsys internal 
format. Specific aspects of this process can be controlled by special FPGA 
Express directives in the Verilog source code. These directives are treated 
as comments by Verilog simulators and do not affect simulation.

This chapter describes FPGA Express directives and their effect on 
translation in the following sections:

• Notation for HDL Compiler Directives

• translate_off and translate_on Directives    

• parallel_case Directive

• Full_case Directive 

• Component Implication 

Notation for FPGA Express Directives

The special comments that make up FPGA Express directives begin, like 
all Verilog comments, with the characters // or /*. The // characters beg
comment that fits on one line (most FPGA Express directives fit on one 
line). If you use the /* characters to begin a multiline comment, you mu
end the comment with */. You do not need to use the /* characters at th
beginning of each line, only at the beginning of the first line. The word 
FPGA Express Directives 7–1
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synopsys (all lowercase) following the comment characters tells FPGA 
Express to treat the text following the word synopsys as a compiler 
directive.

Note: You cannot use // synopsys in a regular comment. In addition, the 
compiler displays a syntax error if Verilog code is in a 
// synopsys directive.

translate_off and translate_on Directives

The // synopsys translate_off and // synopsys translate_on directives tell 
FPGA Express to suspend translation of the source code and restart 
translation at a later point. Use these directives when your Verilog source 
code contains commands specific to simulation that are not accepted by 
FPGA Express.

You turn translation off with

// synopsys translate_off

or 

/* synopsys translate_off */

You turn translation back on with

// synopsys translate_on

or 

/* synopsys translate_on */

At the beginning of each Verilog file, translation is enabled. Subsequently, 
you can use the translate_off and translate_on directives anywhere in the 
text. These directives must be used in pairs. Each translate_off directive 
must appear before its corresponding translate_on directive. Example 7-1 
shows a simulation driver protected by a translate_off directive.
FPGA Express Directives
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Example 7-1 // synopsys translate_on and // synopsys translate_off Directives

module trivial (a, b, f);
input a,b;
output f;
    assign f = a & b;

    // synopsys translate_off
    initial $monitor (a, b, f);
    // synopsys translate_on
endmodule

/* synopsys translate_off */
module driver;
    reg [1:0] value_in;
    integer i;

    trivial triv1(value_in[1], value_in[0]);

    initial begin
        for (i = 0; i < 4; i = i + 1)
            #10 value_in = i;
    end
endmodule
/* synopsys translate_on */

parallel_case Directive

The // synopsys parallel_case directive affects the way logic is generated 
for the case statement. As explained in Chapter 5, “Functional 
Descriptions,” a case statement generates the logic for a priority encod
Under certain circumstances, you might not want to build a priority enco
to handle a case statement. You can use the parallel_case directive to
FPGA Express to generate multiplexer logic instead.

The syntax for the parallel_case directive is

// synopsys parallel_case

or

/* synopsys parallel_case */

In Example 7-2 the states of a state machine are encoded as one hot signals. 
If the case statement in the example were implemented as a priority 
encoder, the generated logic would be more complex than necessary.
FPGA Express Directives 7–3
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Example 7-2 // synopsys parallel_case Directives

reg [3:0] current_state, next_state;
parameter state1 = 4’b0001, state2 = 4’b0010,
state3 = 4’b0100, state4 = 4’b1000;

case (1)//synopsys parallel_case

    current_state[0] : next_state = state2;
    current_state[1] : next_state = state3;
    current_state[2] : next_state = state4;
    current_state[3] : next_state = state1;

endcase

Use the parallel_case directive immediately after the case expression, as 
shown. This directive makes all case-item evaluations in parallel. All case 
items that evaluate to true are executed (not just the first one, which might 
give you unexpected results.)

In general, use parallel_case when you know that only one case item is 
executed. If only one case item is executed, the logic generated from a 
parallel_case directive performs the same function as the circuit when it is 
simulated. If two case items are executed, and you have used the parallel_
case directive, the generated logic is not the same as the simulated 
description.

full_case Directive

The // synopsys full_case directive asserts that all possible clauses of a case 
statement have been covered and that no default clause is necessary. This 
directive has two uses: it avoids the need for default logic, and it can avoid 
latch inference from a case statement by asserting that all necessary 
conditions are covered by the given branches of the case statement. As 
explained in Chapter 5,”Functional Descriptions,” a latch can be inferre
whenever a variable is not assigned a value under all conditions.

The syntax for the full_case directive is

// synopsys full_case

or

/* synopsys full_case */
FPGA Express Directives
full_case Directive
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If the case statement contains a default clause, FPGA Express assumes that 
all conditions are covered. If there is no default clause, and you do not want 
latches to be created, use the full_case directive to indicate that all 
necessary conditions are described in the case statement.

Example 7-3 shows two uses of the full_case directive. Note that the 
parallel_case and full_case directives can be combined in one comment.

Example 7-3 // synopsys full_case Directives

reg [1:0] in, out;
reg [3:0] current_state, next_state;
parameter state1 = 4’b0001, state2 = 4’b0010,
          state3 = 4’b0100, state4 = 4’b1000;

case (in) // synopsys full_case 
    0: out = 2;
    1: out = 3;
    2: out = 0;
endcase

case (1)  // synopsys parallel_case full_case
    current_state[0] : next_state = state2;
    current_state[1] : next_state = state3;
    current_state[2] : next_state = state4;
    current_state[3] : next_state = state1;
endcase

In the first case statement, the condition in == 3 is not covered. You can 
either use a default clause to cover all other conditions, or use the full_case 
directive (as in this example) to indicate that other branch conditions do not 
occur. If you cover all possible conditions explicitly, FPGA Express 
recognizes the case statement as full case, so the full_case directive is not 
necessary.

The second case statement in Example 7-3 does not cover all 16 possible 
branch conditions. For example, current_state == 4’b0101 is not cover
The parallel_case directive is used in this example because only one o
four case items can evaluate to true and be executed.

Although you can use the full_case directive to avoid creating latches, 
using this directive does not guarantee that latches will not be built. Yo
must still assign a value to each variable used in the case statement in
branches of the case statement. Example 7-4 illustrates a situation wh
the full_case directive prevents a latch from being inferred for variable 
but not for variable a.
FPGA Express Directives 7–5
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Example 7-4 Latches and // synopsys full_case

reg a, b;
reg [1:0] c;
case (c)   // synopsys full_case
    0: begin a = 1; b = 0; end
    1: begin a = 0; b = 0; end
    2: begin a = 1; b = 1; end
    3: b = 1;                 // a is not assigned here
endcase

In general, use the full_case directive when you know that all possible 
branches of the case statement have been enumerated or at least all 
branches that can occur. If all branches that can occur are enumerated, the 
logic generated from the case statement performs the same function as the 
simulated circuit. If a case condition is not fully enumerated, the generated 
logic and the simulation are not the same.

Note: You do not need the full_case directive if you have a default branch 
or you enumerate all possible branches in a case statement because 
FPGA Express assumes that the case statement is full_case. 

Component Implication

In Verilog, you cannot instantiate modules in behavioral code. To include 
an embedded netlist in your behavioral code, use the directives // synopsys 
map_to_module and // synopsys return_port_name for FPGA Express to 
recognize the netlist as a function being implemented by another module. 
When this subprogram is invoked in the behavioral code, the module is 
instantiated.

The first directive, // synopsys map_to_module, flags a function for 
implementation as a distinct component. The syntax is

// synopsys map_to_module modulename
FPGA Express Directives
Component Implication



The second directive identifies a return port, because functions in Verilog 
do not have output ports. A return port name must be identified to 
instantiate the function as a component. The syntax is

// synopsys return_port_name portname

Note: Remember that if you add a map_to_module directive to a function, 
the contents of the function are parsed and ignored and the indicated 
module is instantiated. You must ensure that the functionality of the 
module instantiated in this way and the function it replaces are the same; 
otherwise, pre-synthesis and post-synthesis simulation do not match.

Example 7-5 illustrates the map_to_module and return_port_name 
directives.

Example 7-5 Component Implication

module mux_inst (a, b, c, d, e);
input a, b, c, d;
output e;
function mux_func;
// synopsys map_to_module mux_module
// synopsys return_port_name mux_ret
input in1, in2, cntrl;
/* 
** the contents of this function are ignored for
** synthesis, but the behavior of this function
** must match the behavior of mux_module for
** simulation purposes
*/
begin
if (cntrl) mux_func = in1;
else mux_func = in2;
end

endfunction

assign e = a & mux_func (b, c, d); // this function 
call
// actually instantiates component (module) mux_
module   

endmodule

module mux_module (in1, in2, cntrl, mux_ret);
input in1, in2, cntrl;
output mux_ret;

and and2_0 (wire1, in1, cntrl);
not not1 (not_cntrl, cntrl);
and and2_1 (wire2, in2, not_cntrl);
or or2 (mux_ret, wire1, wire2);

endmodule
FPGA Express Directives 7–7
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This chapter is for FPGA Express users whose current design descriptions 
include hand-instantiated flip-flops. It explains how to translate these 
flip-flops to always blocks that can be used with FPGA Express. Read this 
chapter after you have read Chapter 5, “Functional Descriptions.”

Some of the benefits of translating your hand-instantiated flip-flops to 
always blocks are

• Clearer code. The logic of the new module definitions is easier to 
understand.

• Continued compatibility. The new design descriptions can use the 
expanded capabilities of future versions of FPGA Express.

• Technology independence. Any FPGA library can be used as the targe
synthesis of a Verilog description.

• Multiple-bit values. Such values can be registered with a single statem
rather than with multiple flip-flop instantiations.

Translating Flip-flops

The first step in translating a flip-flop to the always syntax is to be sure 
you understand the function of the module. Next, determine what parts
the module description provide the flip-flop behavior. 
Flip-Flops 8–1
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Example 8-1 shows a simple module that uses three manually inserted 
flip-flops.

Example 8-1 Existing Module

module simple ( d, e, f, load, clk, zero );
  input d, e, f, load, clk;
  output zero;
  reg new_a, new_b, new_c;

function zilch ;
  input load, a, b, c;

begin  
  if ( load ) begin
    new_a = d;
    new_b = e;
    new_c = f;
  end
  else begin 
    new_a = a;
    new_b = b;
    new_c = c;
  end

  if ( a==0 & b==0 & c==0 )
    zilch=1;
  else
    zilch=0;
  end

endfunction 
 
FD1S a_reg ( new_a, clk, a, );
FD1S b_reg ( new_b, clk, b, );
FD1S c_reg ( new_c, clk, c, );

assign zero = zilch ( load, a, b, c );
endmodule

This module evaluates the three state variables, a, b, and c, to determine 
whether all the values are 0. Additional input signals are load, which forces 
a synchronous reset, and clk, which is the module’s clock. The 
functionality of the module is described in the function zilch. The input 
values are latched in the flip-flop described in the three statements 
beginning with dFF (a D-type edge-triggered flip-flop). A final assign 
statement assigns the returned value of the function zilch to the output 

Example 8-1 generates the schematic shown in Figure 8-1.
Flip-Flops
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Figure 8-1 Schematic from Example 8-1

To translate this description, find the combinational logic and determine the 
triggering events. In this case, the function zilch creates combinational 
logic.

Example 8-2 Existing Module Logic

function zilch ;
input load, a, b, c;

if ( load ) begin
new_a = d;
new_b = e;
new_c = f;

end
else begin 

new_a = a;
new_b = b;
new_c = c;

end
if ( a==0 & b==0 & c==0 )

zilch=1;
else

zilch=0;
endfunction 

In Example 8-2, the values of a, b, c, d, e, f, and load are the triggers 
(signals that are read). You can rewrite this description as an always block 
with triggers, as shown in Example 8-3.

a_reg

b_reg

c_reg

zero

e

f

d
load

clk
Flip-Flops 8–3
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Example 8-3 New Module Logic

always @ ( a or b or c or d or e or f or load ) begin
 if ( load ) begin
    new_a = d;
    new_b = e;
    new_c = f;
 end
 else begin
    new_a = a;
    new_b = b;
    new_c = c;
 end
   
 if ( a==0 & b==0 & c==0 )
   zero=1;
 else
   zero=0;
end

The next step is to build an always block that replaces the flip-flop 
instantiations—the three statements that begin with dFF.

Example 8-4 Existing Flip-flop Instantiations

dFF a_reg ( new_a, clk, a );
dFF b_reg ( new_b, clk, b );
dFF c_reg ( new_c, clk, c );

Use the clock signal, clk, as the event-expression of the new always bl
as shown.

Example 8-5 First Line of the New always Block 

always @ ( posedge clk ) begin

Put the values and the registers in the body of the always block. The Q
output values in the old module (a, b, and c) become the assigned valu
the new version. The clock from the old version is specified in the 
event-expression of the new always block. The D input values in the old 
module (new_a, new_b, and new_c) become the values read by the ne
version, as shown in Example 8-6.
Flip-Flops
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Example 8-6 New Clocked always Block 

always @ ( posedge clk ) begin
a = new_a ;
b = new_b ;
c = new_c ;
end

Now, label the input and output signals in the module. Look at the variable 
declarations and determine which of the wires and functions serve the 
flip-flop and which serve the logic of the module.

Example 8-7 Existing Inputs and Outputs

module simple ( d, e, f, load, clk, zero );
input d, e, f, load, clk;
output zero;
reg new_a, new_b, new_c;

In this case, as in most cases, the module’s inputs and outputs remain
same. However, you must change the wire values to reg values. Declar
output zero twice; once as the output and once as a reg, so it can be u
the always block. Make the former function variables a, b, and c into re
variables, because they are now assigned within the second always bl
Example 8-8 shows the new input and output declarations.

Example 8-8 New Input and Output Declarations

module new_simple ( d, e, f, load, clk, zero );
input d, e, f, load, clk;
output zero; 
reg zero;
reg a, b, c;
reg new_a, new_b, new_c;

Example 8-9 shows the complete new module with always blocks.
Flip-Flops 8–5
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Example 8-9 Translated Module Using always Blocks

module new_simple ( d, e, f, load, clk, zero );
input d, e, f, load, clk;
output zero; 
reg zero;
reg a, b, c;
reg new_a, new_b, new_c;

always @ ( a or b or c or d or e or f or load ) begin
if ( load ) begin
new_a = d;
new_b = e;
new_c = f;
end
else begin
new_a = a;
new_b = b;
new_c = c;
end

   
if ( a==0 & b==0 & c==0 )
zero=1;
else
zero=0;

end

always @ ( posedge clk ) begin
a = new_a ;
b = new_b ;
c = new_c ;

end
endmodule
Flip-Flops
Translating Flip-flops



Verilog Syntax
This chapter contains a syntax description of the Verilog language as 
supported by FPGA Express. This chapter covers the following topics:

• Syntax

• Lexical Conventions

• Verilog Keywords

• Unsupported Verilog Language Constructs

Syntax

This section presents the syntax of the supported Verilog language in 
Backus Naur Form (BNF), and presents the syntax formalism.

Note: The BNF syntax convention used in this section differs from the 
Synopsys syntax convention used elsewhere in this manual.

BNF Syntax Formalism

White space separates lexical tokens.
Verilog Syntax 9–1
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name is a keyword.

<name> is a syntax construct definition.

<name> is a syntax construct item.

<name>? is an optional item.

<name>* is zero, one, or more items.

<name>+ is one or more items.

<port> <,<port>>* is a comma-separated list of items.

::= gives a syntax definition to an item.

||= refers to an alternative syntax construct.
Verilog Syntax
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BNF Syntax

<source_text> 
::= <description>*

<description> 
::= <module>

<module>
::= module <name_of_module> <list_of_ports>? ;

<module_item>*
endmodule

<name_of_module> 
::= <IDENTIFIER>

<list_of_ports> 
::= ( <port> <,<port>>* )
||= ( )

<port>
::= <port_expression>?
||= . <name_of_port> ( <port_expression>? )

<port_expression>
::= <port_reference>
||= { <port_reference> <, <port_reference>>* }

<port_reference>
::= <name_of_variable>
||= <name_of_variable> [ <expression> ]
||= <name_of_variable> [ <expression> : <expression> ]

<name_of_port>
::= <IDENTIFIER>

<name_of_variable>
::= <IDENTIFIER>

<module_item>
::= <parameter_declaration>
||= <input_declaration>
||= <output_declaration>
||= <inout_declaration>
||= <net_declaration>
||= <reg_declaration>
||= <integer_declaration>
||= <gate_instantiation>
||= <module_instantiation>
||= <continuous_assign>
||= <function>

<function>
::= function <range>? <name_of_function> ;

<func_declaration>*
<statement_or_null>

endfunction
Verilog Syntax 9–3
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<name_of_function>
::= <IDENTIFIER>

<func_declaration>
::= <parameter_declaration>
||= <input_declaration>
||= <reg_declaration>
||= <integer_declaration>

<always>
::= always @ ( <identifier> or <identifier> )
||= always @ ( posedge <identifier> )
||= always @ ( negedge <identifier> )
||= always @ ( <egde> or <edge> or ... )

<edge>
::= posedge <identifier>
||= negedge <identifier>

<parameter_declaration>
::= parameter <range>? <list_of_assignments> ;

<input_declaration>
::= input <range>? <list_of_variables> ;

<output_declaration>
::= output <range>? <list_of_variables> ;

<inout_declaration>
::= inout <range>? <list_of_variables> ;

<net_declaration>
::= <NETTYPE> <charge_strength>? <expandrange>? <delay>? 

<list_of_variables> ;
||= <NETTYPE><drive_strength>? <expandrange>? <delay>? 

<list_of_assignments> ;

<NETTYPE>
::= wire
||= wor
||= wand
||= tri

<expandrange>
::= <range>
||= scalared <range>
||= vectored <range>

<reg_declaration>
::= reg <range>? <list_of_register_variables> ;

<integer_declaration>
::= integer <list_of_integer_variables> ;

<continuous_assign>
::= assign <drive_strength>? <delay>? <list_of_assignments>;

<list_of_variables>
::= <name_of_variable> <, <name_of_variable>>*
Verilog Syntax
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<name_of_variable>
::= <IDENTIFIER>

<list_of_register_variables>
::= <register_variable> <, <register_variable>>*

<register_variable>
::= <IDENTIFIER>

<list_of_integer_variables>
::= <integer_variable> <, <integer_variable>>*

<integer_variable>
::= <IDENTIFIER>

<charge_strength>
::= ( small )
||= ( medium )
||= ( large )

<drive_strength>
::= ( <STRENGTH0> , <STRENGTH1> )
||= ( <STRENGHT1> , <STRENGTH0> )

<STRENGTH0>
::= supply0
||= strong0
||= pull0
||= weak0
||= highz0

<STRENGTH1>
::= supply1
||= strong1
||= pull1
||= weak1
||= highz1

<range>
::= [ <expression> : <expression> ]

<list_of_assignments>

::= <assignment> <, <assignment>>*
<gate_instantiation>

::= <GATETYPE> <drive_strength>? <delay>? <gate_instance> 
<, <gate_instance>>* ;

<GATETYPE>
::= and
||= nand
||= or
||= nor
||= xor
||= xnor
||= buf
||= not
Verilog Syntax 9–5
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<gate_instance>
::= <name_of_gate_instance>? ( <terminal> <, <terminal>>* )

<name_of_gate_instance>
::= <IDENTIFIER>

<terminal>
::= <identifier>
||= <expression>

<module_instantiation>
::= <name_of_module> <parameter_value_assignment>? <module_instance> 

<, <module_instance>>* ;

<name_of_module>
::= <IDENTIFIER>

<parameter_value_assignment>
::= #( <expression> <,<expression>>*)

<module_instance>
::= <name_of_module_instance> ( <list_of_module_terminals>? )

<name_of_module_instance>
::= <IDENTIFIER>

<list_of_module_terminals>
::= <module_terminal>? <,<module_terminal>>*
||= <named_port_connection> <,<named_port_connection>>*

<module_terminal>
::= <identifier>
||= <expression>

<named_port_connection>
::= . IDENTIFIER ( <identifier> )
||= . IDENTIFIER ( <expression> )

<statement>
::= <assignment>
||= if ( <expression> )

<statement_or_null>
||= if ( <expression> )

<statement_or_null>
else

<statement_or_null>
||= case ( <expression> )

<case_item>+
endcase

||= casex ( <expression> )
<case_item>+

endcase
||= casez ( <expression> )

<case_item>+
endcase

||= for ( <assignment> ; <expression> ; <assignment> )
<statement>

||= <seq_block>
||= disable <IDENTIFIER> ;
Verilog Syntax
Syntax



||= forever <statement>
||= while ( <expression> ) <statement>

<statement_or_null>
::= statement
||= ;

<assignment>
::= <lvalue> = <expression>

<case_item>
::= <expression> <,<expression>>* : <statement_or_null>
||= default : <statement_or_null>
||= default <statement_or_null>

<seq_block>
::= begin

<statement>*
end

||= begin : <name_of_block>
<block_declaration>*
<statement>*

end

<name_of_block>
::= <IDENTIFIER>

<block_declaration>
::= <parameter_declaration>
||= <reg_declaration>
||= <integer_declaration>

<lvalue>
::= <IDENTIFIER>
||= <IDENTIFIER> [ <expression> ]
||= <concatenation>

<expression>
::= <primary>
||= <UNARY_OPERATOR> <primary>
||= <expression> <BINARY_OPERATOR>
||= <expression> ? <expression> : <expression>

<UNARY_OPERATOR>
::= !
||= ~
||= &
||= ~&
||= |
||= ~|
||= ^
||= ~^
||= -
||= +
Verilog Syntax 9–7
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<BINARY_OPERATOR>
::=  +
||=  -
||=  *
||=  /
||=  %
||=  ==
||=  !=
||=  &&
||=  ||
||=  <
||=  <=
||=  >
||=  >=
||=  &
||=  |
||=  <<
||=  >>

<primary>
::= <number>
||= <identifier>
||= <identifier> [ <expression> ]
||= <identifier> [ <expression> : <expression> ]
||= <concatenation>
||= <multiple_concatenation>
||= <function_call>
||= ( <expression> )

<number>
::= <NUMBER>
||= <BASE> <NUMBER>
||= <SIZE> <BASE> <NUMBER>

<NUMBER>
A number can have any of the following characters:  0123456789abcdefxzABCDEFXZ

<SIZE>
::= ’b
||= ’B
||= ’o
||= ’O
||= ’d
||= ’D
||= ’h
||= ’H

<SIZE>
Any number of the following digits:  0123456789

<concatenation>
::= { <expression> <,<expression>>* }

<multiple_concatenation>
::= { <expression> { <expression> <,<expression>>* } }

<function_call>
::= <name_of_function> ( <expression> <,<expression>>*)
Verilog Syntax
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<name_of_function>
::= <IDENTIFIER>

<identifier>
An identifier is any sequence of letters, digits, and the underscore character ( _ ), where the first character is a 
letter or underscore. Uppercase and lowercase letters are treated as different characters. Identifiers can be any 
size and all characters are significant. Escaped identifiers start with the backslash character (\) and end with a 
space. The leading backslash character (\) is not part of the identifier. Use escaped identifiers to include any 
printable ASCII characters in an identifier. 

<delay>
::= # <NUMBER>
||= # <identifier>
||= # ( <expression> <,<expression>>* )

Lexical Conventions

The lexical conventions used by FPGA Express are nearly identical to those 
of the Verilog language. The types of lexical tokens used by FPGA Express 
are described in the following subsections: 

• White Space

• Comments

• Numbers

• Identifiers

• Operators

• Macro Substitutions

• include Directive

• Simulation Directives

• Verilog System Functions

White Space

White space separates words in the input description, and can contain
spaces, tabs, new lines, and form feeds. You can place white space 
anywhere in the description. FPGA Express ignores white space.

Comments

You can enter comments anywhere in a Verilog description in two form
Verilog Syntax 9–9
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• Beginning with two backslashes //.

FPGA Express ignores all text between these characters and the end of
current line. 

• Beginning with the two characters /* and ending with */. 

FPGA Express ignores all text between these characters, so you can 
continue comments over more than one line.    

Note: You cannot nest comments.

Numbers

You can declare numbers in several different radices and bit widths. A
radix is the base number on which a numbering system is built. For 
example, the binary numbering system has a radix of 2, octal has a rad
8, and decimal has a radix of 10.

You can use these three number formats:

1. A simple decimal number that is a sequence of digits between 0 and 9
constants declared in this way are assumed to be 32-bit numbers. 

2. A number that specifies the bit width, as well as the radix. These numb
are exactly the same as the previous format, except they are preceded
decimal number that specifies the bit width.

3. A number followed by a two-character sequence prefix that specifies th
number’s size and radix. The radix determines which symbols you can
include in the number. Constants declared this way are assumed to be
32-bit numbers. Any of these numbers can include underscores ( _ ). The 
underscores improve readability and do not affect the value of the num
Table 9-1summarizes the available radices and valid characters for the
number.
Verilog Syntax
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Table 9-1 Verilog Radices

Example 9-1shows some valid number declarations.

Example 9-1 Valid Verilog Number Declarations

391               //  32-bit decimal number
’h3a13            //  32-bit hexadecimal number
10’o1567          //  10-bit octal number
3’b010            //  3-bit binary number
4’d9              //  4-bit decimal number
40’hFF_FFFF_FFFF  //  40-bit hexadecimal number
2’bxx             //  2-bits don’t care
3’bzzz            //  3-bits high-impedance

Identifiers

Identifiers are user-defined words for variables, function names, module 
names, and instance names. Identifiers can be composed of letters, digits, 
and the underscore character ( _ ). The first character of an identifier cannot 
be a number. Identifiers can be any length.   Identifiers are case-sensitive 
and all characters are significant.

An identifier that contains special characters, begin with numbers, or have 
the same name as a keyword can be specified as an escaped identifier. An 
escaped identifier starts with the backslash character (\), followed by a 
sequence of characters, followed by white space. 

Some escaped identifiers are shown in Example 9-2.

Example 9-2 Sample Escaped Identifiers

\a+b                   \3state
\module                \(a&b)|c

Name Character Prefix Valid Characters

binary ’b 0 1 x X z Z _ ?

octal ’o 0–7 x X z Z _ ?

decimal ’d 0–9 _

hexadecimal ’h 0–9 a–f A–F x X z Z _ ?
Verilog Syntax 9–11
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The Verilog language supports the concept of hierarchical names, which 
can be used to access variables of submodules directly from a higher-level 
module. Hierarchical names are partially supported by FPGA Express.

Operators

Operators are one-character or two-character sequences that perform 
operations on variables. Some examples of operators are +, ~^, <=, and 
>>.   Operators are described in detail in Chapter 4, “Expressions.”

Macro Substitutions

Macro substitution assigns a string of text to a macro variable. The string
text is inserted into the code where the macro is encountered. The defin
begins with the back quote character (‘ ), followed by the keyword 
define , followed by the name of the macro variable. All text from the 
macro variable until the end of the line is assigned to the macro variable.

You can declare and use macro variables anywhere in the description. The 
definitions can carry across several files that are read into FPGA Express at 
the same time. To make a macro substitution, type a back quotation mark 
(‘ ) followed by the macro variable name.

Some sample macro variable declarations are shown in Example 9-3.

Example 9-3 Macro Variable Declarations

‘define highbits      31:29
‘define bitlist       {first, second, third}
wire [31:0] bus;

‘bitlist = bus[‘highbits];

include Construct

The include construct in Verilog is similar to the #include directive in C. 
You can use this construct to include Verilog code, such as type 
declarations and functions, from one module into another. Example 9-4 
shows an application of the include construct.
Verilog Syntax
Lexical Conventions



an 
Example 9-4 Including a File Within a File

Contents of file1.v

‘define WORDSIZE 8
function [WORDSIZE-1:0] fastadder;
.
.
endfunction

Contents of secondfile

module secondfile (in1,in2,out)
‘include “file1.v”
wire [WORDSIZE-1:0] temp;
assign temp = fastadder (in1,in2);
.
.
endmodule

Included files can include other files, up to 24 levels of nesting. You cannot 
use the include construct recursively. If the file to be included is not in the 
current directory, you must specify either the full or relative pathname.

Simulation Directives

Simulation directives (not to be confused with FPGA Express directives 
described in Chapter 7, “FPGA Express Directives”) refer to special 
commands that affect the operation of the Verilog HDL Simulator. You c
include these directives in your design description, because FPGA Express 
parses and ignores them.

‘accelerate
‘celldefine
‘default_nettype
‘endcelldefine
‘endprotect
‘expand_vectornets
‘noaccelerate
‘noexpand_vectornets
‘noremove_netnames
‘nounconnected_drive
‘protect
‘remove_netnames
‘resetall‘timescale
‘unconnected_drive
Verilog Syntax 9–13
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Verilog System Functions

Verilog system functions are implemented by the Verilog HDL Simulators 
to generate input or output during simulation. Their names start with a 
dollar sign ($). These functions are parsed and ignored by FPGA Express.

Verilog Keywords

Verilog uses keywords to interpret an input file. You cannot use these 
words as user variable names unless you use an escaped identifier. For 
more information, see the section “Identifiers,” earlier in this chapter.

always and assign begin
buf bufif0 bufif1 case
casex casez cmos deassign
default defparam disable else
end endcase endfunction endmodule
endprimitive endtable endtask event
for force forever fork
function highz0 highz1 if
initial inout input integer
join large medium module
nand negedge nmos nor
not notif0 notif1 or
output parameter pmos posedge
primitive pulldown pullup pull0
pull1 rcmos reg release
repeat rnmos rpmos rtran
rtranif0 rtranif1 scalared small
strong0 strong1 supply0 supply1
supply1 table task time
tran tranif0 tranif1 tri
triand trior trireg tri0
tri1 vectored wait wand
weak0 weak1 while wire
wor xnor xor

Unsupported Verilog Language Constructs

The following Verilog constructs are not supported by FPGA Express. 

• Unsupported definitions and declarations

• Unsupported statements

• Unsupported operators
Verilog Syntax
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• Unsupported gate-level constructs

• Unsupported miscellaneous constructs

Constructs added to the Verilog Simulator in versions after Verilog 1.6 
might not be supported.

If you use an unsupported construct in a Verilog description, FPGA 
Express issues a syntax error such as

event is not supported

Unsupported Definitions and Declarations

The following Verilog definitions and declarations are not supported by
FPGA Express. 

• primitive definition

• time declaration

• event declaration

• triand, trior, tri1, tri0, and trireg net types

• Ranges and arrays for integers

Unsupported Statements

The following Verilog statements are not supported by FPGA Express. 

• defparam statement

• initial statement

• repeat statement

• delay control

• event control

• wait statement

• fork statement

• deassign statement

• force statement

• release statement

• Assignment statement with a variable used as a bit-select on the left si
the equal sign
Verilog Syntax 9–15
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Unsupported Operators

The following Verilog operators are not supported by FPGA Express. 

• Case equality and inequality operators (=== and !==)

• Division and modulus operators for variables

Unsupported Gate-Level Constructs

The following Verilog gate-level constructs are not supported by FPGA
Express. 

• nmos, pmos, cmos, rnmos, rpmos, rcmos, pullup, pulldown, tranif0, tranif1, 
rtran, rtranif0, and rtranif1 gate types

Unsupported Miscellaneous Constructs

The following Verilog miscellaneous constructs are not supported by 
FPGA Express. 

• Hierarchical names within a module

• ‘ifdef, ‘endif and ‘else compiler directives
Verilog Syntax
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! (logical NOT operator), 4-6
& (reduction AND operator), 4-8
&& (logical AND operator), 4-6
// synopsys full_case, 7-4
// synopsys parallel_case, 7-3

circuitry synthesized for, 7-3
// synopsys translate_off, 7-2
// synopsys translate_on, 7-2
>> (right shift operator), 4-8
? : (conditional operator), 4-9
^ (reduction XOR operator), 4-8
^~ (reduction XNOR operator), 4-8
{} (concatenation operator), 4-10
| (reduction OR operator), 4-8
|| (logical OR operator), 4-6
~& (reduction NAND operator), 4-8
~^ (reduction XNOR operator), 4-8
~| (reduction NOR operator), 4-8

A
always block, 5-24

clocks, 5-25
edge syntax, 9-4
event specification, 5-26
event-expression, 5-24, 5-25
grouping triggers, 5-24
in modules, 3-5
negedge in, 5-26
posedge in, 5-26
syntax, 9-4

AND logical operator (&&), 4-6
AND reduction operator (&), 4-8
and, connection list, 3-15
apparently sequential constructs, 5-1
arrays

unsupported for integer, 9-15
assign, 3-11

left side bit-select, unsupported, 9-15
asynch_set_reset, 6-3
asynch_set_reset_local_all, 6-4
asynchronous preload, 5-25
asyncronous preload, 5-26
attributes

synthesis_off, 6-6
synthesis_on, 6-6

B
begin, 5-3
begin-end, 5-10
begin-end pair, 5-3
bidirectional port, 3-10
binary numbers, 9-10
binary operators, 4-2, 9-8
bit-select, 4-13
bit-width

expression, 4-14

in module instantiation, 3-12
prefix for numbers, 9-10
specifying in numbers, 9-10

block
begin in, 5-10
end in, 5-10
named, 5-10
sequential, 5-10
statements, 5-10
syntax, 9-7
variables in named, 5-11

C
call

function, 5-3
case

avoiding latch and register inference, 5-14
case-item, 5-14
circuitry synthesized, 7-3
default, 5-14
latch inference, 5-14, 7-5
multiple expressions in, 5-14
register inference, 5-14
statement, 5-13

case statements
full case, 5-14
parallel case, 5-15

case-item, 5-14, 5-16, 5-18
syntax, 9-7

casex
case-item, 5-16
statement, 5-16

casez
case-item, 5-18
statement, 5-18

charge strength, syntax, 9-5
cmos

unsupported, 9-16
combinational

equivalent of apparently sequential 
constructs, 5-2

combinational logic, 5-1
apparently sequential constructs, 5-2
in functional descriptions, 2-3

comments
HDL Compiler directives, 7-1
lexical conventions, 9-9

component implication
registers, 6-1
three-state, 6-34

concatenation
in procedural assignment, 5-8
operand, 3-3, 4-14
operator, 4-14
syntax, 9-8

concatenation operator ({}), 4-10
number of operands, 4-2
repetition multiplier, 4-10
unsized constants, 4-10

conditional operator
nested, 4-9
number of operands, 4-2

conditional operator (?:), 4-9
conditionally assigned variable

reading, 5-13
connection list, 3-12

terminals, 3-12
constant

in number operands, 4-12
sized, 4-12
unsized, 4-12, 9-10

constant-valued expression
definition, 4-1
in range specifications, 3-6
represented in parameters, 3-6
synthesized circuitry, 4-2

construct
unsupported, 9-14

context-determined operands, 4-14
continuous assignment, 2-2

drive strength in, 3-11
driving a wire, 3-7
in a wire declaration, 3-11
in function declarations, 5-3
in modules, 3-5
left side bit-select, unsupported, 9-15
left side of, 3-11
right side of, 3-11
syntax, 9-4

D
data assignments, 3-5
data declarations, 3-5
deassign

unsupported, 9-15
decimal numbers, 9-10
declarations

parameter, 5-6
register, 5-5
unsupported, 9-15

decrementing loop, 5-19
default, 5-14
define, 9-12
definitions

register inference, 6-1
unsupported, 9-15

defparam
unsupported, 9-15

delay
control, unsupported, 9-15
options, gate-level, 3-15
syntax, 9-9

delay value, 3-8
description style, 2-6
Design Compiler

restructuring, 1-3
synthesis and optimization, 1-3

design flow, 1-4
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design methodology, 2-6
directive, simulation, 9-13
disable, 5-22

in named block, 5-22
division operator (/)

division by a variable, unsupported, 9-16
dot operator (.), 3-4
drive strength

in a continuous assignment, 3-11
syntax, 9-5

E
edge

syntax, 9-4
else, 5-11
end, 5-3
endfunction

keyword, 5-3
escaped identifier, 9-11
event

always block, 5-25
specification

in always blocks, 5-26
unsupported, 9-15

event-expression
always block, 5-24

examples
three-state component

registered input, 6-39
expressions

bit-width, 4-14
context determined, 4-14
definition, 4-1
legal, 4-1
self-determined, 4-14
syntax, 9-7

F
falling edge, 5-25
flip-flop

edge-triggered, implying, 5-24
inference, 6-17
translating from version 1.2, 8-1

flip-flops, 6-1
for

duplicating statements, 5-20
nested, 5-19
range expression, 5-19

for loops, 5-19
begin statement, 5-19
end statement, 5-19

force
unsupported, 9-15

fork
unsupported, 9-15

full case, 5-14
full_case, 7-4
function

declaration
continuous assignments, 5-3

ignored, 9-14
keyword, 5-3
local variables, 5-6
outputs, 5-4
range specification, 5-3
syntax, 9-3

function call, 5-3
operand, 4-2, 4-13
syntax, 9-8

function declaration
syntax, 9-4

function definition
in modules, 3-5

function name
syntax, 9-4, 9-9

function statement
begin-end blocks, 5-10
case statements, 5-13
casex, 5-16
casez statements, 5-18
disable statement, 5-22
for loop, 5-19
forever, 5-21
if...else statement, 5-11
procedural assignment, 5-7
while loop, 5-20

function statements
supported, 5-7

functional description, 1-5, 2-3
combinational logic in, 2-3
construction and use, 5-1
mixing with structural descriptions, 2-4
sequential logic in, 2-3

G
gate

connecting to inout, 3-10
instance name, syntax, 9-6
instance, syntax, 9-6
instantiation, syntax, 9-5

gate instantiation
in modules, 3-5

gate types, 9-5
unsupported, 9-16

gate-level constructs, 2-3
gate-level modeling, 3-15

delay options, 3-15
instance names, 3-15

global variable
integer, 5-7

H
hardware description languages, 1-1
HDL

definition, 1-1
HDL Compiler directive

circuitry synthesized for parallel_case, 7-3
translate_on, 7-2

HDL Compiler directives
full_case, 7-4
full_case used with parallel_case, 7-5
parallel_case, 7-3
parallel_case used with full_case, 7-5
translate_off, 7-2

HDL Compiler for Verilog, 1-1
hexadecimal numbers, 9-10
hierarchical boundaries, 2-2
hierarchical constructs, 2-3
hierarchical names, 9-16

not supported, 9-12
high impedance state, 6-34

I
identifier, 9-11

escaped, 9-11
lower-case sensitivity, 9-9
syntax, 9-9
upper-case sensitivity, 9-9

if, 5-11
ignored functions, 9-14
implying registers, 6-1
include construct

example, 9-12
incrementing loop, 5-19
inference report

description, 6-2, 6-34
infinite loops, 5-21
initial

unsupported, 9-15
inout

connecting to gate, 3-10
connecting to module, 3-10
declaration, 3-5
declaration, syntax, 9-4
statement, 3-10
wire, 3-10

input
declaration, 3-5
ports, 3-10
range specifications, 5-4
signal, 5-4
statement, 3-10
structural data type, 3-6
wire, 3-10

input declaration
syntax, 9-4

input statement, 3-5, 5-4
instance names

in gate-level modeling, 3-15
integer

declaration, 5-6
declaration, syntax, 9-4
in procedural assignment, 5-8
range specification unsupported, 9-15

integer arrays
FPGA Express HDL Reference Manuall



unsupported, 9-15
integer variable

global, 5-7
internal design format, 1-2

K
keywords, 9-14

L
language constructs, 2-6
latch inference

avoiding, 7-4, 7-5
local variables, 6-9

latches, 6-1
least-significant bit, 3-6
left shift operator (, 4-8
lexical conventions, 9-9
local variable, 5-6
logic

combinational, 5-1
multipath branch, 5-13, 5-16, 5-18

logical AND operator (&&), 4-6
logical NOT operator (!), 4-6
logical OR operator (||), 4-6
loop

decrementing, 5-19
incrementing, 5-19

lsb (least significant bit), 3-6

M
macro substitution, 9-12
macro variable, 9-12
memory construct, 5-5

two-dimensional array, 5-5
modeling

gate-level, 3-15
module, 3-2, 3-5

connecting to inout, 3-10
connection list, 3-12
constructs, 3-5
instance name, syntax, 9-6
instance, syntax, 9-6
instantiation, 3-12
instantiation, syntax, 9-6
name, syntax, 9-3, 9-6
syntax, 9-3
terminals, 3-12

module definition
in structural descriptions, 2-3

module instantiation, 3-12
bit-widths, 3-12
in structural descriptions, 2-3
name-based, 3-13
named notation, 3-13
position-based, 3-13
postitional notation, 3-13

modulus operator (%)

for a variable, unsupported, 9-16
most-significant bit, 3-6
msb (most significant bit), 3-6
multi-line comment, 7-1
multipath branch, 5-13, 5-16, 5-18
multipath branches, 5-16
multiplexer

creating with case and parallel_case, 7-3

N
named block

disable used in, 5-22
syntax, 9-7
variables in, 5-11

named block construct, 5-10
named notation, 3-13
NAND reduction operator (~&), 4-8
negative edge, 5-25
negedge, 5-25, 5-26
net types, 9-4
netlist connection

in structural descriptions, 2-3
nmos

unsupported, 9-16
NOR reduction operator (~|), 4-8
NOT logical operator (!), 4-6
number, 4-12

binary, 9-10
decimal, 9-10
formats, 9-10
hexadecimal, 9-10
octal, 9-10
operand in expressions, 4-12
sized, 4-12
specifying bit-width, 9-10
syntax, 9-8
unsized, 4-12

O
octal numbers, 9-10
one hot signals, 7-3
operand, 4-1, 4-12

bit-select, 4-13
concatenation, 3-3, 4-14
constants, 4-12
constant-valued, 4-4
context-determined, 4-14
function call, 4-2, 4-13
in expressions, 4-12
number, 4-12
part-select, 4-13
register, 4-12
self-determined, 4-14
variable, 4-3
wire, 4-12

operator, 4-1, 9-12
arithmetic, 4-4
binary, 4-2, 9-8

case equality (===), unsupported, 9-16
case inequality (!==), unsupported, 9-16
concatenation ({}), 4-2, 4-10, 4-14
conditional (? :), 4-2, 4-9
definition, 4-2
division by a variable, unsupported, 9-16
dot (.), 3-4
left shift (, 4-8
lexical conventions, 9-12
logical and (&&), 4-6
logical not (!), 4-6
logical or (||), 4-6
modulus of a variable, unsupported, 9-16
reduction AND (&), 4-8
reduction NAND (~&), 4-8
reduction NOR(~|), 4-8
reduction OR (|), 4-8
reduction XNOR(~^), 4-8
reduction XOR (^), 4-8
relational, 4-4
right shift (>>), 4-8
supported, list, 4-3
unary, 4-2, 9-7
unsupported, 9-16

OR logical operator (||), 4-6
OR reduction operator (|), 4-8
output

assigning to a function’s name, 5-4
declaration, 3-5, 5-4
declaration, syntax, 9-4
of functions, 5-4
port, 3-10
reg, 3-10
returning multiple, 5-4
statement, 3-5, 3-10
wire, 3-10

P
parallel case, 5-15
parallel_case, 7-3

circuitry synthesized for, 7-3
parameter

declaration, 3-5, 5-6
declaration, syntax, 9-4
local variables, 5-6
name, 3-6
range, 3-6
sized, 3-6
variables, 5-6

parameterized design, 3-13
part-select, 4-13

operand, 4-13
performance constraints, 2-6
pmos

unsupported, 9-16
port

dot operator, 3-4
explicit instantiation, 3-13
explicitly renaming, 3-4
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implicit instantiation, 3-13
implicit instantiation of, 3-4
input, 3-10
output, 3-10
port expression, 3-3
port list, 3-3
port list, syntax, 9-3
port name, syntax, 9-3
renaming inside module, 3-4
syntax, 9-3

Port Declarations, 3-10
port expression, 3-3

bit-select, 3-3
concatenation, 3-3
identifier, 3-3, 3-4
part-select, 3-3
syntax, 9-3

port list, 3-3
posedge, 5-25, 5-26
positional notation, 3-13
positive edge, 5-25
preload, 5-25, 5-26
primitive

unsupported, 9-15
priority encoder, 7-3
procedural assignment, 9-15

concatenation in, 5-8
integer, 5-8
left side, 5-7
register, 5-7
right side, 5-7
statement, 5-7

pulldown
unsupported, 9-16

pullup
unsupported, 9-16

R
radices, 9-10
range

constant-valued expressions, 3-6
expression in for loops, 5-19
specification, 3-6
specification in function declarations, 5-3
specification in inputs, 5-4
specification unsupported for integers, 9-15
syntax, 9-5

range specification, 5-3
rcmos

unsupported, 9-16
reading conditionally assigned, 5-13
reduction operator

AND (&), 4-8
NAND (~&), 4-8
NOR (~|), 4-8
OR (|), 4-8
XNOR (^~ or ~^), 4-8
XOR (^), 4-8

reg,, see also register

register
declaration, 5-5
declaration, syntax, 9-4
definition, 6-1
holding state information, 5-5
in procedural assignments, 5-7
operand, 4-12
output, 3-10

register inference, 2-7, 6-1
 expressions, 6-17
D latch, 6-8
definition, 6-1
signal edge, 6-17
SR latch, 6-5
templates, 6-1
wait statement, 6-17

relational operator, 4-4
release

unsupported, 9-15
repeat

unsupported, 9-15
right shift operator (>>), 4-8
rising edge, 5-25
rnmos

unsupported, 9-16
rpmos

unsupported, 9-16
rtran

unsupported, 9-16
rtranif0

unsupported, 9-16
rtranif1

unsupported, 9-16

S
sequential

block, 5-10
sequential logic, 2-3

in functional descriptions, 2-3
shift operator

left (, 4-8
right (>>), 4-8

signals
edge detection, 6-17

simulation, 1-5
place in the design process, 1-5
test vectors, 1-5

simulation directives, 9-13
size syntax, 9-8
state information

holding with a register, 5-5
statements, 3-5

unsupported, 9-15
structural data types, 3-6
structural description, 1-5, 2-2

mixing with functional descriptions, 2-4
structural descriptions, 2-2
synch_set_reset, 6-4
synch_set_reset_local, 6-4

synch_set_reset_local_all, 6-4
syntax, 9-1

Verilog, 9-1
synthesis policy, 2-6
system functions, Verilog, 9-14

T
task construct, 5-23
task statements

in modules, 3-5
terminal

syntax, 9-6
terminals, 3-12
test vectors

simulation, 1-5
three-state

registered input, 6-39
three-state gate, 6-38, 6-39
three-state inference, 6-34
time

unsupported, 9-15
tranif0

unsupported, 9-16
tranif1

unsupported, 9-16
translate_off, 7-2
translate_on, 7-2
translation, 7-2

restart, 7-2
suspend, 7-2

tri0
unsupported, 9-15

tri1
unsupported, 9-15

triand
unsupported, 9-15

triggers, 5-24
trior

unsupported, 9-15
trireg

unsupported, 9-15

U
unary operator, 4-2
unary operators, 9-7
unassigned variables, 5-13
underscore, 9-9

in numbers, 9-10
unsupported

definitions and declarations, 9-15
operators, 9-16
statements, 9-15
Verilog constructs, 9-14

V
variable

in named blocks, 5-11
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local in parameters, 5-6
operand, 4-3

variables
registering, 6-32

verification, of description implementation, 1-5
Verilog constructs

unsupported, 9-14
Verilog hardware descriptions, 1-2
Verilog HDL description, 1-1
Verilog keywords, 9-14
Verilog syntax, 9-1
Verilog system function, 9-14
VHDL

register inference, 2-7
synthesis policy

description style, 2-1
three-state components, 6-34

W
wait

unsupported, 9-15
wait statement

creating registers, 6-17
white space, lexical convention, 9-9
wire, 4-12

continuous assignment, 3-11
declaration, 3-5
driving with a continuous assignment, 3-7
high impedance, 3-7
inout, 3-10
input, 3-10
operand, 4-12
output, 3-10
structural data type, 3-6
undriven, 3-7

X
XNOR reduction operator (^~ or ~^), 4-8
xnor, connection list, 3-15
XOR reduction operator (^), 4-8

Z
z

undriven wire, 3-7
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