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About This Manual

This manual describes the Verilog portion of Synopsys FPGA 
Compiler II / FPGA Express application, part of the Synopsys suite 
of synthesis tools. FPGA Compiler II / FPGA Express reads an RTL 
Verilog HDL model of a discrete electronic system and synthesizes 
this description into a gate-level netlist. 

FPGA Compiler II / FPGA Express supports v1.6 of the Verilog 
language. Deviations from the definition of the Verilog language are 
explicitly noted. Constructs added in versions subsequent to Verilog 
1.6 might not be supported. Aspects of the Verilog language that are 
not supported are listed in Appendix B. 

Audience

This manual is written for logic designers and electronic engineers 
who are familiar with Synopsys synthesis products. Knowledge of the 
Verilog language is required, and knowledge of a high-level 
programming language is helpful.
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Other Sources of Information

The resources in the following sections provide additional information:

• Related Publications

• SolvNET Online Help

• Customer Support

Related Publications

These Synopsys documents supply additional information:

• FPGA Compiler II / FPGA Express Getting Started Manual

• Design Compiler Command-Line Interface Guide

• Design Compiler Reference Manual: Constraints and Timing

• Design Compiler Reference Manual: Optimization and Timing 
Analysis

• Design Compiler Tutorial

• Design Compiler User Guide

• DesignWare Developer Guide

• VSS User Guide

Man Pages

You can view man pages from fc2_shell / fe_shell environment. From 
the shell prompt, enter:
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fc2_shell> help command_name

or

fe_shell> help command_name

SolvNET Online Help 

SOLV-IT! is the Synopsys electronic knowledge base. It contains 
information about Synopsys and its tools and is updated daily.

Access SOLV-IT! through e-mail or through the World Wide Web 
(WWW). For more information about SOLV-IT!, send e-mail to

solvitfb@synopsys.com

or view the Synopsys Web page at

http://www.synopsys.com

Customer Support

If you have problems, questions, or suggestions, contact the 
Synopsys Technical Support Center in one of the following ways:

• Send e-mail to

support_center@synopsys.com

• Call (650) 584-4200 outside the continental United States or call 
(800) 245-8005 inside the continental United States, from 7 a.m. 
to 5:30 p.m. Pacific time, Monday through Friday.

• Send a fax to (650) 584-2539.
v



Conventions

The following conventions are used in Synopsys documentation.

Convention Description
courier Indicates command syntax.

In command syntax and examples, shows 
system prompts, text from files, error 
messages, and reports printed by the 
system.

courier italic Indicates a user specification, such as 
object_name

courier bold In command syntax and examples, indicates 
user input (text the user types verbatim).

[  ] Denotes optional parameters, such as pin1 
[pin2, . . pinN]

| Indicates a choice among alternatives, such 
as 

low | medium | high

This example indicates that you can enter 
one of three possible values for an option: 
low, medium, or high.

_ Connects two terms that are read as a single 
term by the system. For example, 
design_space.

(Ctrl-c) Indicates a keyboard combination, such as 
holding down the Ctrl key and pressing c.

\ Indicates a continuation of a command line.
/ Indicates levels of directory structure.
Edit > Copy Shows a menu selection. Edit is the menu 

name and Copy is the item on the menu.
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1
FPGA Compiler II / FPGA Express with 
Verilog HDL 1

FPGA Compiler II / FPGA Express translates and optimizes Verilog 
HDL descriptions into an internal gate-level equivalent, and then 
compiles this representation to produce optimized gate-level designs 
in a given FPGA technology.

This chapter introduces the main concepts and capabilities of FPGA 
Compiler II / FPGA Express in the following sections:

• Hardware Description Languages

• FPGA Compiler II / FPGA Express and the Design Process

• Using FPGA Compiler II / FPGA Express to Compile a Verilog 
HDL Design

• Design Methodology
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Hardware Description Languages

Hardware description languages (HDLs) describe the architecture 
and behavior of discrete electronic systems. Modern HDLs and their 
associated simulators are very powerful tools for integrated circuit 
designers.

A typical HDL supports a mixed-level description in which gate and 
netlist constructs are used with functional descriptions. This mixed-
level capability enables you to describe system architectures at a very 
high level of abstraction and then incrementally refine a design’s 
detailed gate-level implementation.

HDL descriptions play an important role in modern design 
methodology, for three main reasons:

• Design functionality can be verified early in the design process. 
A design written as an HDL description can be simulated 
immediately. Design simulation at this higher level, before 
implementation at the gate level, allows you to evaluate 
architectural and design decisions.

• FPGA Compiler II / FPGA Express provides Verilog compilation 
and logic synthesis, allowing you to automatically convert an HDL 
description to a gate-level implementation in a target FPGA 
technology. This step eliminates the former technology-specific 
design bottleneck, the majority of circuit design time, and the 
errors that occur when you hand-translate an HDL specification 
to gates.
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With FPGA Compiler II / FPGA Express logic optimization, you 
can automatically transform a synthesized design into a smaller 
or faster circuit. FPGA Compiler II / FPGA Express provides both 
logic synthesis and optimization. For further information, refer to 
FPGA Compiler II / FPGA Express online help.

• HDL descriptions provide technology-independent 
documentation of a design and its functionality. An HDL 
description is easier to read and understand than a netlist or a 
schematic description. Because the initial HDL design description 
is technology-independent, you can reuse it to generate the 
design in a different technology, without having to translate from 
the original technology. 
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FPGA Compiler II / FPGA Express  and the Design 
Process

FPGA Compiler II / FPGA Express translates hardware descriptions 
in Verilog to a Synopsys internal design format. The design can then 
be optimized and mapped to a specific FPGA technology library by 
FPGA Compiler II / FPGA Express, as Figure 1-1 shows.

Figure 1-1 FPGA Compiler II / FPGA Express Design Process

FPGA Compiler II / FPGA Express supports a majority of the Verilog 
constructs. (For exceptions, see “Unsupported Verilog Language 
Constructs” on page B-20.)

Verilog 
Description

FPGA Compiler II /

Optimized
Technology-Specific

Netlist

FPGA Technology Library FPGA Express
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Using FPGA Compiler II / FPGA Express  to Compile a 
Verilog HDL Design

When a Verilog design is read into FPGA Compiler II / FPGA Express, 
it is converted to an internal database format so FPGA Compiler II / 
FPGA Express can synthesize and optimize the design. When FPGA 
Compiler II / FPGA Express optimizes a design, it may restructure 
part or all of the design. You control the degree of restructuring. 
Options include:

• Fully preserving a design’s hierarchy

• Allowing certain modules to be combined with others

• Compressing the entire design into one module (called flattening 
the design), if that is beneficial

The following section describes the design process that uses FPGA 
Compiler II / FPGA Express with a Verilog HDL Simulator.
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Design Methodology

Figure 1-2 shows a typical design process that uses FPGA Compiler 
II / FPGA Express and a Verilog HDL Simulator.

Figure 1-2 Design Flow
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The steps in the design flow shown in Figure 1-2 are:

1. Write a design description in the Verilog language. This 
description can be a combination of structural and functional 
elements (as shown in Chapter 2, "Description Styles”). This 
description is for use with both Synopsys FPGA Compiler II / 
FPGA Express and a Verilog simulator.

2. Provide Verilog-language test drivers for the Verilog HDL 
simulator. For information on writing these drivers, see the 
appropriate simulator manual. The drivers supply test vectors for 
simulation and gather output data.

3. Simulate the design by using a Verilog HDL simulator. Verify that 
the description is correct.

4. Use FPGA Compiler II / FPGA Express to synthesize and optimize 
the Verilog description into a gate-level design. FPGA Compiler 
II / FPGA Express generates optimized netlists to satisfy timing 
constraints for a targeted FPGA architecture.

5. Use your FPGA development system to place and route the FPGA 
netlist. Then generate a Verilog netlist for post-place-and-route 
simulation. The development system includes simulation models 
and interfaces required for the design flow.

6. Simulate the technology-specific version of the design with the 
Verilog simulator. You can use the original Verilog simulation 
drivers from step 3 because module and port definitions are 
preserved through the translation and optimization processes.

7. Compare the output of the gate-level simulation (step 6) with the 
output of the original Verilog description simulation (step 3) to 
verify that the implementation is correct.
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2
Description Styles 2

A Verilog circuit description can be one of two types: structural or 
functional. A structural description explains the physical makeup of 
the circuit, detailing gates and the connections between them. A 
functional description, also referred to as an RTL (Register Transfer 
Level) description, describes what the circuit does.

This chapter covers the following topics:

• Design Hierarchy

• Structural Descriptions

• Functional Descriptions

• Mixing Structural and Functional Descriptions

• Register Selection

• Asynchronous Designs
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Design Hierarchy

Synopsys FPGA Compiler II / FPGA Express maintains the 
hierarchical boundaries you define when you use structural Verilog. 
These boundaries have two major effects: 

• Constraints can be specified on a per-module basis. For example, 
this allows some modules to be optimized for area while others 
are optimized for speed. 

• Module instantiations within HDL descriptions are maintained 
during input. The instance name you assign to user-defined 
components is carried through to the gate-level implementation. 

Chapter 3, "Structural Descriptions”, discusses modules and module 
instantiations.

Note:
FPGA Compiler II / FPGA Express does not automatically 
maintain (create) the hierarchy of other, nonstructural Verilog 
constructs such as blocks, loops, functions, and tasks. These 
elements of an HDL description are translated in the context of 
their design. 

The choice of hierarchical boundaries has a significant effect on the 
quality of the synthesized design. Using FPGA Compiler II / FPGA 
Express, you can optimize a design while preserving these 
hierarchical boundaries. However, FPGA Compiler II / FPGA Express 
only partially optimizes logic across hierarchical modules. Full 
optimization is possible across those parts of the design hierarchy 
that are collapsed in FPGA Compiler II / FPGA Express.
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Structural Descriptions

The structural elements of a Verilog structural description are generic 
logic gates, library-specific components, and user-defined 
components connected by wires. In one way, a structural description 
can be viewed as a simple netlist composed of nets that connect 
instantiations of gates. However, unlike in a netlist, nets in the 
structural description can be driven by an arbitrary expression that 
describes the value assigned to the net. A statement that drives an 
arbitrary expression onto a net is called a continuous assignment. 
Continuous assignments are convenient links between pure netlist 
descriptions and functional descriptions. 

A Verilog structural description can define a range of hierarchical and 
gate-level constructs, including module definitions, module 
instantiations, and netlist connections. Refer to Chapter 3, "Structural 
Descriptions”, for more information.

Functional Descriptions

The functional elements of a Verilog description are function 
declarations, task statements, and always blocks. These elements 
describe the function of the circuit but do not describe its physical 
makeup or layout. The choice of gates and components is left entirely 
to FPGA Compiler II / FPGA Express.

You can construct functional descriptions with the Verilog functional 
constructs described in Chapter 5, "Functional Descriptions”. These 
constructs can appear within functions or always blocks. Functions 
imply only combinational logic; always blocks can imply either 
combinational or sequential logic.
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Although many Verilog functional constructs (for example, for loops 
and multiple assignments to the same variable) appear sequential in 
nature, they describe combinational-logic networks. Other functional 
constructs imply sequential-logic networks. Latches and registers are 
inferred from these constructs. Refer to Chapter 6, "Register and 
Three-State Inference” for details.

Mixing Structural and Functional Descriptions

When you use a functional description style in a design, you typically 
describe the combinational portions of the design in Verilog functions, 
always blocks, and assignments. The complexity of the logic 
determines whether you use one or many functions. 

Example 2-1 shows how structural and functional description styles 
are mixed in a design specification. In Example 2-1, the function 
detect_logic determines whether the input bit is a 0 or a 1. After 
making this determination, detect_logic sets ns to the next state of 
the machine. An always block infers flip-flops to hold the state 
information between clock cycles.

You can specify elements of a design directly as module instantiations 
at the structural level. For example, see the three-state buffer t1 in 
Example 2-1. (Note that three-states can be inferred. For more 
information, refer to “Three-State Inference” on page 6-51.) You can 
also use this description style to identify the wires and ports that carry 
information from one part of the design to another.
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Example 2-1 Mixed Structural and Functional Descriptions
// This finite-state machine (Mealy type) reads one bit per
// clock cycle and detects three or more consecutive 1s.
module three_ones( signal, clock, detect, output_enable );
input signal, clock, output_enable;
output detect;

// Declare current state and next state variables.
reg [1:0] cs;
reg [1:0] ns;
wire ungated_detect;

// declare the symbolic names for states
parameter NO_ONES = 0, ONE_ONE = 1,
          TWO_ONES = 2, AT_LEAST_THREE_ONES = 3;

// ************* STRUCTURAL DESCRIPTION ****************
// Instance of a three-state gate that enables output
three_state t1 (ungated_detect, output_enable, detect);

// ******************* ALWAYS BLOCK ********************
// always block infers flip-flops to hold the state of 
// the FSM.
always @ ( posedge clock ) begin
     cs <= ns;
end

// ************* FUNCTIONAL DESCRIPTION ****************
function detect_logic;
    input [1:0] cs; 
    input signal;
    begin
        detect_logic = 0;    //default value
        if ( signal == 0 )   //bit is zero
            ns = NO_ONES;
        else                 //bit is one, increment state
            case (cs)
                NO_ONES: ns = ONE_ONE;
                ONE_ONE: ns = TWO_ONES;
                TWO_ONES, AT_LEAST_THREE_ONES:
                         begin
                             ns = AT_LEAST_THREE_ONES;
                             detect_logic = 1;
                         end
            endcase
    end
endfunction
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// ************** assign STATEMENT **************
assign ungated_detect = detect_logic( cs, signal );
endmodule

For a structural or functional HDL description to be synthesized, it 
must follow the Synopsys synthesis policy, which has three parts:

• Design Methodology

• Description Style

• Language Constructs

Design Methodology

Design methodology refers to the synthesis design process that uses 
FPGA Compiler II / FPGA Express and Verilog HDL Simulator. This 
process is described in Chapter 1, "FPGA Compiler II / FPGA Express 
with Verilog HDL”. 

Description Style

Use the HDL design and coding style that makes the best use of the 
synthesis process to obtain high-quality results from FPGA Compiler 
II / FPGA Express. See Chapter 7, "Writing Circuit Descriptions”, for 
guidelines.

Language Constructs

The third component of the Verilog synthesis policy is the set of Verilog 
constructs that describe your design, determine its architecture, and 
give consistently good results.
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Synopsys uses HDL constructs that maximize coding flexibility while 
producing consistently good results. Although FPGA Compiler II / 
FPGA Express can read the entire Verilog language, a few HDL 
constructs cannot be synthesized. These constructs are unsupported 
because they cannot be realized in logic. For example, you cannot 
use simulation time as a trigger because time is an element of the 
simulation process and cannot be realized. “Unsupported Verilog 
Language Constructs” on page B-20 lists these constructs.

Register Selection

The clocking scheme and the placement of registers are important 
architectural factors. There are two ways to define registers in your 
Verilog description. Each method has specific advantages.

• You can directly instantiate registers into a Verilog description, 
selecting from any element in your FPGA library. 

Clocking schemes can be arbitrarily complex. You can choose 
between a flip-flop and a latch-based architecture. The main 
disadvantages to this approach are that

- The Verilog description is specific to a given technology, 
because you choose structural elements from that technology 
library. However, you can isolate the portion of your design with 
directly instantiated registers as a separate component 
(module), and then connect it to the rest of the design.

- The description is more difficult to write. 
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• You can use some Verilog constructs to direct FPGA Compiler II 
/ FPGA Express to infer registers from the description. 

The advantages to this approach directly counter the 
disadvantages of the previous approach. With register inference, 
the Verilog description is much easier to write and is technology-
independent. This method allows FPGA Compiler II / FPGA 
Express to select the type of component inferred, based on 
constraints. Therefore, if a specific component is necessary, use 
instantiation. Some types of registers and latches cannot be 
inferred.

See “Register Inference” on page 6-1 for a discussion of latch and 
register inference.

Asynchronous Designs

You can use FPGA Compiler II / FPGA Express to construct 
asynchronous designs that use multiple or gated clocks. However, 
although these designs are logically and statically correct, they may 
not simulate or operate correctly because of race conditions.

“Synthesis Issues” on page 7-31 describes how to write Verilog 
descriptions of asynchronous designs.
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Structural Descriptions 3

A Verilog structural description defines a connection of components 
that form a physical circuit. This chapter details the construction of 
structural descriptions, in the following major sections:

• Modules

• Macromodules

• Port Definitions

• Module Statements and Constructs

• Module Instantiations
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Modules

The principal design entity in the Verilog language is the module. A 
module consists of the module name, its input and output description 
(port definition), a description of the functionality or implementation 
for the module (module statements and constructs), and named 
instantiations. Figure 3-1 illustrates the basic structural parts of a 
module.

Figure 3-1 Structural Parts of a Module

Example 3-1 shows a simple module that implements a 2-input NAND 
gate by instantiating an AND gate and an INV gate. The first line of 
the module definition gives the name of the module and a list of ports. 
The second and third lines give the direction for all ports. (Ports are 
either inputs, outputs, or bidirectionals.) 

Module

Definitions:
Port, Wire, Register,
Parameter, Integer,
Function

 Module Statements
and Constructs

Module Instantiations

Module Name
and Port List
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The fourth line of the description creates a wire variable. The next 
two lines instantiate the two components, creating copies named 
instance1 and instance2 of the components AND and INV. These 
components connect to the ports of the module and are finally 
connected by use of the variable and_out.

Example 3-1 Module Definition

module NAND(a,b,z); 
input a,b;     //Inputs to NAND gate 
output z;       //Outputs from NAND gate 
wire and_out; //Output from AND gate 

AND instance1(a,b,and_out); 
INV instance2(and_out, z);

endmodule

Macromodules

The macromodule construct makes simulation more efficient, by 
merging the macromodule definition with the definition of the calling 
(parent) module. However, FPGA Compiler II / FPGA Express treats 
the macromodule construct as a module construct. Whether you use 
module or macromodule, the synthesis process, the hierarchy 
synthesis creates, and its result are the same. Example 3-2 shows 
how to use the macromodule construct.

Example 3-2 Macromodule Construct

macromodule adder (in1,in2,out1);
input [3:0] in1,in2;
output [4:0] out1;

assign out1 = in1 + in2;
endmodule
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Note:
When FPGA Compiler II / FPGA Express instantiates a 
macromodule, a new level of hierarchy is created. 

Port Definitions

A port list consists of port expressions that describe the input and 
output interfaces for a module. Define the port list in parentheses after 
the module name, as shown here:

module name (  port_list );

A port expression in a port list can be any of the following:

• An identifier

• A single bit selected from a bit vector declared within the module

• A group of bits selected from a bit vector declared within the 
module

• A concatenation of any of the above

Concatenation is the process of combining several single-bit or 
multiple-bit operands into one large bit vector. For more information, 
see “Concatenation Operators” on page 4-13.

Declare each port in a port list as input, output, or bidirectional in the 
module by use of an input, output, or inout statement. (See “Port 
Declarations” on page 3-14.) For example, the module definition in 
Example 3-1 on page 3-3 shows that module NAND has three ports: 
a, b, and z, connected to 1-bit nets a, b, and z. Declare these 
connections in the input and output statements.
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Port Names

Some port expressions are identifiers. If the port expression is an 
identifier, the port name is the same as the identifier. A port expression 
is not an identifier if the expression is a single bit, a group of bits 
selected from a vector of bits, or a concatenation of signals. In these 
cases, the port is unnamed unless you explicitly name it.

Example 3-3 shows some module definition fragments that illustrate 
the use of port names. The ports for module ex1, named a, b, and z, 
are connected to nets a, b, and z, respectively. The first two ports of 
module ex2 are unnamed; the third port is named z. The ports are 
connected to nets a[1], a[0], and z, respectively. Module ex3 has two 
ports: the first port, unnamed, is connected to a concatenation of nets 
a and b; the second port, named z, is connected to net z. 

Example 3-3 Module Port Lists

module ex1( a, b, z ); 
input a, b; 
output z; 

endmodule 

module ex2( a[1], a[0], z ); 
input [1:0] a; 
output z; 

endmodule 

module ex3( {a,b}, z ); 
input a,b; 
output z; 

endmodule
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Renaming Ports

You can rename a port by explicitly assigning a name to a port 
expression by using the dot (.) operator. The module definition 
fragments in Example 3-4 show how to rename ports. The ports for 
module ex4 are explicitly named in_a, in_b, and out and are 
connected to nets a, b, and z. Module ex5 shows ports named i1, i0, 
and z connected to nets a[1], a[0], and z, respectively. The first port 
for module ex6 (the concatenation of nets a and b) is named i.

Example 3-4 Renaming Ports in Modules

module ex4( .in_a(a), .in_b(b), .out(z) ); 
input a, b; 
output z; 

endmodule 

module ex5( .i1(a[1]), .i0(a[0]), z ); 
input [1:0] a; 
output z; 

endmodule 

module ex6( .i({a,b}), z ); 
input a,b; 
output z; 

endmodule
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Module Statements and Constructs

FPGA Compiler II / FPGA Express recognizes the following Verilog 
statements and constructs when they are used in a Verilog module:

• parameter declarations

• wire, wand, wor, tri, supply0, and supply1 declarations

• reg declarations

• input declarations 

• output declarations

• inout declarations

• Continuous assignments 

• Module instantiations

• Gate instantiations

• Function definitions

• always blocks

• task statements

Data declarations and assignments are described in this section. 
Module and gate instantiations are described in “Module 
Instantiations” on page 3-17. Function definitions, always blocks, and 
task statements are described in Chapter 5, "Functional 
Descriptions”.
3-7

Structural Descriptions



Structural Data Types

Verilog structural data types include wire, wand, wor, tri, supply0, and 
supply1. Although parameter does not fall into the category of 
structural data types, it is presented here because it is used with 
structural data types.

You can define an optional range for all the data types presented in 
this section. The range provides a means for creating a bit vector. 
The syntax for a range specification is

[ msb : lsb ]

Expressions for most significant bit (msb) and least significant bit (lsb) 
must be nonnegative constant-valued expressions. Constant-valued 
expressions are composed only of constants, Verilog parameters, 
and operators.

parameter

Verilog parameters allow you to customize each instantiation of a 
module. By setting different values for the parameter when you 
instantiate the module, you can cause constructions of different logic. 
For more information, see “Parameterized Designs” on page 3-19.

A parameter represents constant values symbolically. The definition 
for a parameter consists of the parameter name and the value 
assigned to it. The value can be any constant-valued integer or 
Boolean expression. If you do not set the size of the parameter with 
a range definition or a sized constant, the parameter is unsized and 
defaults to a 32-bit quantity. Refer to “Constant-Valued Expressions” 
on page 4-2 for a discussion of constant formats.
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You can use a parameter wherever a number is allowed, except when 
declaring the number of bits in an assignment statement, which will 
generate a syntax error as shown in Example 3-5.

Example 3-5 parameter Declaration Syntax Error

parameter size = 4;
assign out = in ? 4’b0000 : size’b0101; // syntax error

You can define a parameter anywhere within a module definition. 
However, the Verilog language requires that you define the parameter 
before you use it.

Example 3-6 shows two parameter declarations. Parameters true and 
false are unsized and have values of 1 and 0, respectively. Parameters 
S0, S1, S2, and S3 have values of 3, 1, 0, and 2, respectively, and 
are stored as 2-bit quantities.

Example 3-6 parameter Declarations

parameter TRUE=1, FALSE=0;
parameter [1:0] S0=3, S1=1, S2=0, S3=2;

wire

A wire data type in a Verilog description represents the physical wires 
in a circuit. A wire connects gate-level instantiations and module 
instantiations. The Verilog language allows you to read a value from 
a wire from within a function or a begin...end block, but you cannot 
assign a value to a wire within a function or a begin...end block. (An 
always block is a specific type of begin...end block.)

A wire does not store its value. It must be driven in one of two ways:
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• By connecting the wire to the output of a gate or module

• By assigning a value to the wire in a continuous assignment

In the Verilog language, an undriven wire defaults to a value of Z (high 
impedance). However, FPGA Compiler II / FPGA Express leaves 
undriven wires unconnected. Multiple connections or assignments to 
a wire simply short the wires together.

In Example 3-7, two wires are declared: a is a single-bit wire, and b 
is a 3-bit vector of wires. Its most significant bit (msb) has an index 
of 2, and its least significant bit (lsb) has an index of 0.

Example 3-7 wire Declarations

wire a; 
wire [2:0] b;

You can assign a delay value in a wire declaration, and you can use 
the Verilog keywords scalared and vectored for simulation. FPGA 
Compiler II / FPGA Express accepts the syntax of these constructs, 
but they are ignored when the circuit is synthesized.

Note:
You can use delay information for modeling, but FPGA Compiler 
II / FPGA Express ignores delay information. If the functionality 
of your circuit depends on the delay information, FPGA Compiler 
II / FPGA Express might create logic whose behavior does not 
agree with the behavior of the simulated circuit.

wand

The wand (wired-AND) data type is a specific type of wire.

In Example 3-8, two variables drive the variable c. The value of c is 
determined by the logical AND of a and b.
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Example 3-8 wand (wired-AND)

module wand_test(a, b, c);
input a, b; 
output c; 

wand c;

assign c = a;
assign c = b;

endmodule

You can assign a delay value in a wand declaration, and you can use 
the Verilog keywords scalared and vectored for simulation. FPGA 
Compiler II / FPGA Express accepts the syntax of these constructs, 
but ignores the constructs during synthesis of the circuit.

wor

The wor (wired-OR) data type is a specific type of wire.

In Example 3-9, two variables drive the variable c. The value of c is 
determined by the logical OR of a and b.

Example 3-9 wor (wired-OR)

module wor_test(a, b, c);
input a, b; 
output c; 

wor c;

assign c = a;
assign c = b;

endmodule
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tri

The tri (three-state) data type is a specific type of wire. All variables 
that drive the tri must have a value of Z (high-impedance), except 
one. This single variable determines the value of the tri.

Note:
FPGA Compiler II / FPGA Express does not enforce the previous 
condition. You must ensure that no more than one variable driving 
a tri has a value other than Z.

In Example 3-10, three variables drive the variable out.

Example 3-10 tri (Three-State)
module tri_test (out, condition);

input [1:0] condition;
output out; 

reg a, b, c;
tri out;

always @ ( condition ) begin
a = 1’bz;             //set all variables to Z
b = 1’bz;
c = 1’bz;

case ( condition ) //set only one variable to non-Z
2’b00 : a = 1’b1;
2’b01 : b = 1’b0;
2’b10 : c = 1’b1;

endcase
end

assign out = a;         //make the tri connection
assign out = b;
assign out = c;

endmodule
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supply0 and supply1

The supply0 and supply1 data types define wires tied to logic 0 
(ground) and logic 1 (power). Using supply0 and supply1 is the same 
as declaring a wire and assigning a 0 or a 1 to it. In Example 3-11, 
power is tied to logic 1 and gnd (ground) is tied to logic 0.

Example 3-11 supply0 and supply1 Constructs

supply0 gnd;
supply1 power;

reg

A reg represents a variable in Verilog. A reg can be a 1-bit quantity 
or a vector of bits. For a vector of bits, the range indicates the most 
significant bit and least significant bit of the vector. Both must be 
nonnegative constants, parameters, or constant-valued expressions. 
Example 3-12 shows some reg declarations.

Example 3-12 reg Declarations

reg x; //single bit
reg a,b,c; //3 1-bit quantities
reg [7:0] q; //an 8-bit vector
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Port Declarations

You must explicitly declare the direction (input, output, or bidirectional) 
of each port that appears in the port list of a port definition. Use the 
input, output, and inout statements, as described in the following 
sections.

input

You declare all input ports of a module with an input statement. An 
input is a type of wire and is governed by the syntax of wire. You can 
use a range specification to declare an input that is a vector of signals, 
as in the case of input b in the following example. The input statements 
can appear in any order in the description, but you must declare them 
before using them. For example,

input a;
input [2:0] b; 

output

You declare all output ports of a module with an output statement. 
Unless otherwise defined by a reg, wand, wor, or tri declaration, an 
output is a type of wire and is governed by the syntax of wire. An 
output statement can appear in any order in the description, but you 
must declare the statement before you use it.

You can use a range specification to declare an output that is a vector 
of signals. If you use a reg declaration for an output, the reg must 
have the same range as the vector of signals. For example,

output a;
output [2:0] b;
reg [2:0] b;
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inout

You can declare bidirectional ports with the inout statement. An inout 
is a type of wire and is governed by the syntax of wire. FPGA Compiler 
II / FPGA Express allows you to connect only inout ports to module 
or gate instantiations. You must declare an inout before you use it. 
For example,

inout a;
inout [2:0] b;

Continuous Assignment

If you want to drive a value onto a wire, wand, wor, or tri, use a 
continuous assignment to specify an expression for the wire value. 
You can specify a continuous assignment in two ways: 

• Use an explicit continuous assignment statement after the wire, 
wand, wor, or tri declaration.

• Specify the continuous assignment in the same line as the 
declaration for a wire.

Example 3-13 shows two equivalent methods for specifying a 
continuous assignment for wire a.

Example 3-13 Two Equivalent Continuous Assignments

wire a;             //declare 
assign a = b & c;   //assign
wire a = b & c;     //declare and assign 
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The left side of a continuous assignment can be

• A wire, wand, wor, or tri

• One or more bits selected from a vector

• A concatenation of any of these

The right side of the continuous assignment statement can be any 
supported Verilog operator or any arbitrary expression that uses 
previously declared variables and functions. You cannot assign a 
value to a reg in a continuous assignment.

Verilog allows you to assign drive strength for each continuous 
assignment statement. FPGA Compiler II / FPGA Express accepts 
drive strength, but it does not affect the synthesis of the circuit. Keep 
this in mind when you use drive strength in your Verilog source.

Assignments are done bitwise, with the low bit on the right side 
assigned to the low bit on the left side. If the number of bits on the 
right side is greater than the number on the left side, the high-order 
bits on the right side are discarded. If the number of bits on the left 
side is greater than the number on the right side, operands on the 
right side are zero-extended. 
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Module Instantiations

Module instantiations are copies of the logic in a module that define 
component interconnections.

module_name instance_name1  ( terminal, terminal, ... ),
            instance_name2  ( terminal, terminal, ... );

A module instantiation consists of the name of the module 
(module_name) followed by one or more instantiations. An 
instantiation consists of an instantiation name (instance_name) and 
a connection list. A connection list is a list of expressions called 
terminals, separated by commas. These terminals are connected to 
the ports of the instantiated module. Module instantiations have this 
syntax:

( terminal1 , terminal2 , ...),
( terminal1 , terminal2 , ...);

Terminals connected to input ports can be any arbitrary expression. 
Terminals connected to output and inout ports can be identifiers, 
single- or multiple-bit slices of an array, or a concatenation of these. 
The bit-widths for a terminal and its module port must be the same.

If you use an undeclared variable as a terminal, the terminal is 
implicitly declared as a scalar (1-bit) wire. After the variable is implicitly 
declared as a wire, it can appear wherever a wire is allowed.

Example 3-14 shows the declaration for the module SEQ with two 
instantiations (SEQ_1 and SEQ_2).
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Example 3-14 Module Instantiations

module SEQ(BUS0,BUS1,OUT); //description of module SEQ
input BUS0, BUS1; 
output OUT; 
... 

endmodule 

module top( D0, D1, D2, D3, OUT0, OUT1 );
input D0, D1, D2, D3;
output OUT0, OUT1;

SEQ SEQ_1(D0,D1,OUT0),  //instantiations of module SEQ
SEQ_2(.OUT(OUT1),.BUS1(D3),.BUS0(D2));

endmodule

Named and Positional Notation

Module instantiations can use either named or positional notation to 
specify the terminal connections.

In name-based module instantiation, you explicitly designate which 
port is connected to each terminal in the list. Undesignated ports in 
the module are unconnected.

In position-based module instantiation, you list the terminals and 
specify connections to the module according to each terminal’s 
position in the list. The first terminal in the connection list is connected 
to the first module port, the second terminal to the second module 
port, and so on. Omitted terminals indicate that the corresponding 
port on the module is unconnected. 
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In Example 3-14, SEQ_2 is instantiated by the use of named notation, 
as follows:

• Signal OUT1 is connected to port OUT of the module SEQ.

• Signal D3 is connected to port BUS1.

• Signal D2 is connected to port BUS0.

SEQ_1 is instantiated by the use of positional notation, as follows:

• Signal D0 is connected to port BUS0 of module SEQ.

• Signal D1 is connected to port BUS1.

• Signal OUT0 is connected to port OUT.

Parameterized Designs

The Verilog language allows you to create parameterized designs by 
overriding parameter values in a module during instantiation. You can 
do this with the defparam statement or with the following syntax:

module_name  #( parameter_value , parameter_value ,...)
instance_name  ( terminal_list )

FPGA Compiler II / FPGA Express does not support the defparam 
statement but does support the previous syntax.

The module in Example 3-15 contains a parameter declaration.
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Example 3-15 parameter Declaration in a Module

module foo (a,b,c);

parameter width = 8;

input [width-1:0] a,b;
output [width-1:0] c;

assign c = a & b;

endmodule

In Example 3-15, the default value of the parameter width is 8, unless 
you override the value when the module is instantiated. When you 
change the value, you build a different version of your design. This 
type of design is called a parameterized design.

FPGA Compiler II / FPGA Express automatically manages templates 
and parameters. Some errors due to parameter or port size mismatch 
are detected when an implementation is created, not when the Verilog 
is read. 

Gate-Level Modeling

Verilog provides several basic logic gates that enable modeling at the 
gate level. Gate-level modeling is a special case of positional notation 
for module instantiation that uses a set of predefined module names. 
FPGA Compiler II / FPGA Express supports the following gate types:

• and

• nand

• or 

• nor
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• xor

• xnor

• buf

• not

• tran

Connection lists for instantiations of a gate-level model use positional 
notation. In the connection lists for and, nand, or, nor, xor, and xnor 
gates, the first terminal connects to the output of the gate and the 
remaining terminals connect to the inputs of the gate. You can build 
arbitrarily wide logic gates with as many inputs as you want. 

Connection lists for buf, not, and tran gates also use positional 
notation. You can have as many outputs as you want, followed by only 
one input. Each terminal in a gate-level instantiation can be a 1-bit 
expression or signal.

In gate-level modeling, instance names are optional. Drive strengths 
and delays are allowed, but they FPGA Compiler II / FPGA Express 
ignores them. Example 3-16 shows two gate-level instantiations. 

Example 3-16 Gate-Level Instantiations

buf (buf_out,e); 
and and4(and_out,a,b,c,d); 

Note:
FPGA Compiler II / FPGA Express parses but ignores delay 
options for gate primitives. Because FPGA Compiler II / FPGA 
Express ignores the delay information, it can create logic whose 
behavior does not agree with the simulated behavior of the circuit. 
See “D Flip-Flop With Asynchronous Set or Reset” on page 6-24.
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Three-State Buffer Instantiation

FPGA Compiler II / FPGA Express supports the following gate types 
for instantiation of three-state gates:

• bufif0 (active-low enable line)

• bufif1 (active-high enable line)

• notif0 (active-low enable line, output inverted)

• notif1 (active-high enable line, output inverted)

Connection lists for bufif and notif gates use positional notation. 
Specify the order of the terminals as follows:

• The first terminal connects to the output of the gate.

• The second terminal connects to the input of the gate.

• The third terminal connects to the control line.

Example 3-17 shows a three-state gate instantiation with an active-
high enable and no inverted output.

Example 3-17 Three-State Gate Instantiation

module three_state (in1,out1,cntrl1);
input in1,cntrl1;
output out1;

bufif1 (out1,in1,cntrl1);

endmodule
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4
Expressions 4

In Verilog, expressions consist of a single operand or multiple 
operands separated by operators. Use expressions where a value is 
required in Verilog. 

This chapter explains how to build and use expressions using

• Constant-Valued Expressions

• Operators

• Operands

• Expression Bit-Widths
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Constant-Valued Expressions

A constant-valued expression is an expression whose operands are 
either constants or parameters. FPGA Compiler II / FPGA Express 
determines the value of these expressions.

In Example 4-1, size-1 is a constant-valued expression. The 
expression (op == ADD) ? a + b : a – b is not a constant-valued 
expression, because the value depends on the variable op. If the value 
of op is 1, b is added to a; otherwise, b is subtracted from a.

Example 4-1 Valid Expressions

// all expressions are constant-valued, 
// except in the assign statement.
module add_or_subtract( a, b, op, s ); 
// performs  s = a+b  if op is ADD 
// performs  s = a-b  if op is not ADD 

parameter size=8; 
parameter ADD=1’b1; 

input  op; 
input  [size-1:0] a, b; 
output [size-1:0] s;
assign s = (op == ADD) ? a+b : a-b;//not a constant-

      //valued expression
endmodule

The operators and operands in an expression influence the way a 
design is synthesized. FPGA Compiler II / FPGA Express evaluates 
constant-valued expressions and does not synthesize circuitry to 
compute their value. If an expression contains constants, they are 
propagated to reduce the amount of circuitry required. FPGA 
Compiler II / FPGA Express does synthesize circuitry for an 
expression that contains variables, however.
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Operators

Operators identify the operation to be performed on their operands 
to produce a new value. Most operators are either unary operators, 
which apply to only one operand, or binary operators, which apply to 
two operands. Two exceptions are conditional operators, which take 
three operands, and concatenation operators, which take any number 
of operands.

The Verilog language operators supported by FPGA Compiler II / 
FPGA Express are listed in Table 4-1. A description of the operators 
and their order of precedence appears in the following sections.

Table 4-1 Verilog Operators Supported by FPGA Compiler II / FPGA Express

Operator Type Operator Description

Arithmetic Operators +   –   *   /
%

Arithmetic
Modules

Relational Operators >
>=
<
<=

Relational

Equality Operators ==
!=

Logical equality
Logical inequality

Logical Operators !
&& 
||

Logical NOT
Logical AND
Logical OR

Bitwise Operators ~
&
| 
^
^~          ~^

Bitwise NOT
Bitwise AND
Bitwise OR
Bitwise XOR
Bitwise XNOR

Reduction Operators &
|
~&
~|
^
~^          ^~

Reduction AND
Reduction OR
Reduction NAND
Reduction NOR
Reduction XOR
Reduction XNOR
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In the following descriptions, the terms variable and variable operand 
refer to operands or expressions that are not constant-valued 
expressions. This group includes wires and registers, bit-selects and 
part-selects of wires and registers, function calls, and expressions 
that contain any of these elements.

Arithmetic Operators

Arithmetic operators perform simple arithmetic on operands. The 
Verilog arithmetic operators are

• Addition (+)

• Subtraction (–)

• Multiplication (*)

• Division (/)

• Modules (%)

You can use the +, –, and * operators with any operand form 
(constants or variables). The + and – operators can be used as either 
unary or binary operators. FPGA Compiler II / FPGA Express requires 
that the / and % operators have constant-valued operands.

Shift Operators << 
>>

Shift left
Shift right

Conditional Operator ? : Conditions

Concatenation Operator { } Concatenation

Table 4-1 Verilog Operators Supported by FPGA Compiler II / FPGA Express(Continued)

Operator Type Operator Description
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Example 4-2 shows three forms of the addition operator. The circuitry 
built for each addition operation is different, because of the different 
operand types. The first addition requires no logic, the second 
synthesizes an incrementer, and the third synthesizes an adder.

Example 4-2 Addition Operator

parameter size=8; 
wire [3:0] a,b,c,d,e; 

assign c = size + 2; //constant + constant
assign d = a + 1;    //variable + constant
assign e = a + b;    //variable + variable

Relational Operators

Relational operators compare two quantities and yield a 0 or 1 value. 
A true comparison evaluates to 1; a false comparison evaluates to 0. 
All comparisons assume unsigned quantities. The circuitry 
synthesized for relational operators is a bitwise comparator whose 
size is based on the sizes of the two operands. 

The Verilog relational operators are 

• Less than (<) 

• Less than or equal to (<=) 

• Greater than (>) 

• Greater than or equal to (>=) 

Example 4-3 shows the use of a relational operator.
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Example 4-3 Relational Operator

function [7:0] max( a, b  );
input  [7:0] a,b;

if ( a >= b )  max = a;
else           max = b;

endfunction

Equality Operators

Equality operators generate a 0 if the expressions being compared 
are not equal and a 1 if the expressions are equal. Equality and 
inequality comparisons are performed by bit.

The Verilog equality operators are

• Equality (==) 

• Inequality (!=)

Example 4-4 shows the equality operator testing for a JMP instruction. 
The output signal jump is set to 1 if the two high-order bits of 
instruction are equal to the value of parameter JMP; otherwise, jump 
is set to 0.

Example 4-4 Equality Operator

module is_jump_instruction (instruction, jump);
parameter JMP = 2’h3;

input  [7:0] instruction; 
output jump; 
assign jump = (instruction[7:6] == JMP);

endmodule
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Handling Comparisons to X or Z

FPGA Compiler II / FPGA Express always ignores comparisons to 
an X or a Z. If your code contains a comparison to an X or a Z, a 
warning message displays, indicating that the comparison is always 
evaluated to false, which might cause simulation to disagree with 
synthesis.

Example 4-5 shows code from a file called test2.v. FPGA Compiler II 
/ FPGA Express always assigns the variable B to the value 1, because 
the comparison to X is ignored.

Example 4-5 Comparison to X Ignored

always begin
if (A == 1’bx)   //this is line 10

B = 0;
else

B = 1;
end

When FPGA Compiler II / FPGA Express reads this code, it generates 
the following warning message:

Warning: Comparisons to a "don’t care" are treated as always 
being false in routine test2 line 10 in file ’test2.v’. This 
may cause simulation to disagree with synthesis. (HDL-170)

For an alternative method of handling comparisons to X or Z, use the 
translate_off and translate_on directives to comment out the condition 
and its first branch (the true clause) so that only the else branch goes 
through synthesis.
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Logical Operators

Logical operators generate a 1 or a 0, according to whether an 
expression evaluates to true (1) or false (0). The Verilog logical 
operators are

• Logical NOT (!)

• Logical AND (&&)

• Logical OR (||)

The logical NOT operator produces a value of 1 if its operand is zero 
and a value of 0 if its operand is nonzero. The logical AND operator 
produces a value of 1 if both operands are nonzero. The logical OR 
operator produces a value of 1 if either operand is nonzero.

Example 4-6 shows some logical operators.

Example 4-6 Logical Operators

module is_valid_sub_inst(inst,mode,valid,unimp);

parameterIMMEDIATE=2’b00, DIRECT=2’b01;
parameterSUBA_imm=8’h80, SUBA_dir=8’h90,

SUBB_imm=8’hc0, SUBB_dir=8’hd0;
input [7:0] inst;
input [1:0] mode;
output valid, unimp;

assign valid = (((mode == IMMEDIATE) && (
(inst == SUBA_imm) || 
(inst == SUBB_imm))) ||
((mode == DIRECT) && (

(inst == SUBA_dir) || 
(inst == SUBB_dir)))); 

assign unimp = !valid; 
endmodule
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Bitwise Operators

Bitwise operators act on the operand bit by bit. The Verilog bitwise 
operators are 

• Unary negation (~)

• Binary AND (&)

• Binary OR (|)

• Binary XOR (^)

• Binary XNOR (^~ or ~^)

Example 4-7 shows some bitwise operators.

Example 4-7 Bitwise Operators

module full_adder( a, b, cin, s, cout ); 
input  a, b, cin; 
output s, cout; 

assign s    = a ^ b ^ cin; 
assign cout = (a&b) | (cin & (a|b)); 

endmodule
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Reduction Operators

Reduction operators take one operand and return a single bit. For 
example, the reduction AND operator takes the AND value of all the 
bits of the operand and returns a 1-bit result. The Verilog reduction 
operators are

• Reduction AND (&)

• Reduction OR (|)

• Reduction NAND(~&)

• Reduction NOR (~|)

• Reduction XOR (^)

• Reduction NXOR (^~ or ~^)

Example 4-8 shows the use of some reduction operators.

Example 4-8 Reduction Operators

module check_input ( in, parity, all_ones ); 
input  [7:0] in; 
output parity, all_ones; 

assign parity   = ^ in; 
assign all_ones = & in; 

endmodule
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Shift Operators

A shift operator takes two operands and shifts the value of the first 
operand right or left by the number of bits given by the second 
operand.

The Verilog shift operators are

• Shift left (<<) 

• Shift right (>>) 

After the shift, vacated bits fill with zeros. Shifting by a constant results 
in minor circuitry modification (because only rewiring is required). 
Shifting by a variable causes a general shifter to be synthesized. 
Example 4-9 shows use of a shift-right operator to perform division 
by 4.

Example 4-9 Shift Operator

module divide_by_4( dividend, quotient ); 
input  [7:0] dividend; 
output [7:0] quotient; 

assign quotient = dividend >> 2; //shift right 2 bits
endmodule
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Conditional Operator

The conditional operator (? :) evaluates an expression and returns a 
value that is based on the truth of the expression. 

Example 4-10 shows how to use the conditional operator. If the 
expression (op == ADD) evaluates to true, the value a + b is assigned 
to result; otherwise, the value a – b is assigned to result.

Example 4-10 Conditional Operator

module add_or_subtract( a, b, op, result ); 

parameter ADD=1’b0; 
input  [7:0] a, b; 
input  op; 
output [7:0] result; 

assign result = (op == ADD) ? a+b : a-b; 
endmodule 

You can nest conditional operators to produce an if...then construct. 
Example 4-11 shows the conditional operators used to evaluate the 
value of op successively and perform the correct operation.
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Example 4-11 Nested Conditional Operator

module arithmetic( a, b, op, result ); 

parameterADD=3’h0,SUB=3’h1,AND=3’h2,
OR=3’h3, XOR=3’h4; 

input  [7:0] a,b; 
input  [2:0] op; 
output [7:0] result; 

assign result = ((op == ADD) ? a+b : ( 
   (op == SUB) ? a-b : (
   (op == AND) ? a&b : (
   (op ==  OR) ? a|b : (
   (op == XOR) ? a^b : (a)))))); 

endmodule

Concatenation Operators

Concatenation combines one or more expressions to form a larger 
vector. In the Verilog language, you indicate concatenation by listing 
all expressions to be concatenated, separated by commas, in curly 
braces ({}). Any expression, except an unsized constant, is allowed 
in a concatenation. For example, the concatenation {1’b1,1’b0,1’b0} 
yields the value 3’b100.

You can also use a constant-valued repetition multiplier to repeat the 
concatenation of an expression. The concatenation {1’b1,1’b0,1’b0} 
can also be written as {1’b1,{2{1’b0}}} to yield 3’b100. The expression 
{2{expr}} within the concatenation repeats expr two times.

Example 4-12 shows a concatenation that forms the value of a 
condition-code register.
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Example 4-12 Concatenation Operator

output [7:0] ccr; 
wire half_carry, interrupt, negative, zero, overflow, carry;
... 
assign ccr = { 2’b00, half_carry, interrupt, 
               negative, zero, overflow, carry };

Example 4-13 shows an equivalent description for the concatenation.

Example 4-13 Concatenation Equivalent

output [7:0] ccr; 
... 
assign ccr[7] = 1’b0; 
assign ccr[6] = 1’b0; 
assign ccr[5] = half_carry; 
assign ccr[4] = interrupt; 
assign ccr[3] = negative; 
assign ccr[2] = zero; 
assign ccr[1] = overflow; 
assign ccr[0] = carry;
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Operator Precedence

Table 4-2 lists the precedence of all operators, from highest to lowest. 
All operators at the same level in the table are evaluated from left to 
right, except the conditional operator (?:), which is evaluated from 
right to left. 

Table 4-2 Operator Precedence

Operator Description

[   ] Bit-select or part-select

(  ) Parentheses

!  ~ Logical and bitwise negation

&   |   ~&   ~|   ^   ~^ ^~ Reduction operators

 + – Unary arithmetic

{   } Concatenation

*   /   % Arithmetic

+   - Arithmetic

<<       >> Shift

>   >=   <   <= Relational

==      != Logical equality and inequality

& Bitwise AND

^    ^~    ~^ Bitwise XOR and XNOR

| Bitwise OR

&& Logical AND

|| Logical OR

? : Conditional
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Operands

You can use the following kinds of operands in an expression: 

• Numbers

• Wires and registers 

- Bit-selects 

- Part-selects 

• Function calls 

The following sections explain each of these operands.

Numbers

A number is either a constant value or a value specified as a 
parameter. The expression size-1 in Example 4-1 on page 4-2 
illustrates how you can use both a parameter and a constant in an 
expression.

You can define constants as sized or unsized, in binary, octal, decimal, 
or hexadecimal bases. The default size of an unsized constant is 32 
bits. Refer to “Numbers” on page B-13 for a discussion of the number 
format.
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Wires and Registers

Variables that represent wires as well as registers are allowed in an 
expression. If the variable is a multiple-bit vector and you use only 
the name of the variable, the entire vector is used in the expression. 
Bit-selects and part-selects allow you to select single or multiple bits, 
respectively, from a vector. These are described in the next two 
sections. 

Wires are described in “Module Statements and Constructs” on 
page 3-7, and registers are described in “Function Declarations” on 
page 5-3.

In the Verilog fragment shown in Example 4-14, a, b, and c are 8-bit 
vectors of wires. Because only the variable names appear in the 
expression, the entire vector of each wire is used in evaluation of the 
expression.

Example 4-14 Wire Operands

wire [7:0] a,b,c; 
assign c = a & b;
 

Bit-Selects

A bit-select is the selection of a single bit from a wire, register, or 
parameter vector. The value of the expression in brackets ([ ]) selects 
the bit you want from the vector. The selected bit must be within the 
declared range of the vector. Example 4-15 shows a simple example 
of a bit-select with an expression.

Example 4-15 Bit-Select Operands

wire [7:0] a,b,c; 
assign c[0] = a[0] & b[0];
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Part-Selects

A part-select is the selection of a group of bits from a wire, register, 
or parameter vector. The part-select expression must be constant-
valued in the Verilog language, unlike the bit-select operator. If a 
variable is declared with ascending or descending indexes, the part-
select (when applied to that variable) must be in the same order.

You can also write the expression in Example 4-14 with part-select, 
as shown in Example 4-16.

Example 4-16 Part-Select Operands

assign c[7:0] = a[7:0] & b[7:0]

Function Calls

Verilog allows you to call one function from inside an expression and 
use the return value from the called function as an operand. Functions 
in Verilog return a value consisting of 1 or more bits. The syntax of a 
function call is the function name followed by a comma-separated list 
of function inputs enclosed in parentheses. Example 4-17 uses the 
function call legal in an expression.

Example 4-17 Function Call Used as an Operand

assign error = ! legal(in1, in2);

Functions are described in “Function Declarations” on page 5-3.
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Concatenation of Operands

Concatenation is the process of combining several single- or multiple-
bit operands into one large bit vector. The use of the concatenation 
operator, a pair of braces ({}), is described in “Concatenation 
Operators” on page 4-13.

Example 4-18 shows two 4-bit vectors (nibble1 and nibble2) that are 
joined to form an 8-bit vector that is assigned to an 8-bit wire vector 
(byte).

Example 4-18 Concatenation of Operands

wire [7:0] byte;
wire [3:0] nibble1, nibble2;
assign byte = {nibble1,nibble2};

Expression Bit-Widths

The bit-width of an expression depends on the widths of the operands 
and the types of operators in the expression.

Table 4-3 shows the bit-width for each operand and operator. In the 
table, i, j, and k are expressions; L(i) is the bit-width of expression i.

To preserve significant bits within an expression, Verilog fills in zeros 
for smaller-width operands. The rules for this zero extension depend 
on the operand type. These rules appear in Table 4-3.

Verilog classifies expressions (and operands) as either self-
determined or context-determined. A self-determined expression is 
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one in which the width of the operands is determined solely by the 
expression itself. These operand widths are never extended.

Table 4-3 Expression Bit-Widths

Expression Bit Length Comments

unsized constant 32 bits Self-determined

sized constant as specified Self-determined

i + j max(L(i),L(j)) Context-determined

i – j max(L(i),L(j)) Context-determined

i * j max(L(i),L(j)) Context-determined

i / j max(L(i),L(j)) Context-determined

i % j max(L(i),L(j)) Context-determined

i & j max(L(i),L(j)) Context-determined

i | j max(L(i),L(j)) Context-determined

i ^ j max(L(i),L(j)) Context-determined

i ^~ j max(L(i),L(j)) Context-determined

~i L(i) Context-determined

i == j 1 bit Self-determined

i !== j 1 bit Self-determined

i && j 1 bit Self-determined

i || j 1 bit Self-determined

i > j 1 bit Self-determined

i >= j 1 bit Self-determined

i < j 1 bit Self-determined

i <= j 1 bit Self-determined

&i 1 bit Self-determined

|i 1 bit Self-determined

^i 1 bit Self-determined

~&i 1 bit Self-determined

~|i 1 bit Self-determined

~^i 1 bit Self-determined

i >> j L(i) j is self-determined

{i{j}} i*L(j) j is self-determined

i << j L(i) j is self-determined

{i,...,j} L(i)+...+L(j) Self-determined

{i {j,...,k}} i*(L(j)+...+L(k))   Self-determined
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Example 4-19 shows a self-determined expression that is a 
concatenation of variables with known widths.

Example 4-19 Self-Determined Expression

output [7:0] result;
wire   [3:0] temp;

assign temp = 4’b1111;
assign result = {temp,temp};

The concatenation has two operands. Each operand has a width of 
4 bits and a value of 4’b1111. The resulting width of the concatenation 
is 8 bits, which is the sum of the width of the operands. The value of 
the concatenation is 8’b11111111.

A context-determined expression is one in which the width of the 
expression depends on all the operand widths in the expression. For 
example, Verilog defines the resulting width of an addition as the 
greater of the widths of its two operands. The addition of two 8-bit 
quantities produces an 8-bit value; however, if the result of the addition 
is assigned to a 9-bit quantity, the addition produces a 9-bit result. 
Because the addition operands are context-determined, they are 
zero-extended to the width of the largest quantity in the entire 
expression.

Example 4-20 shows some context-determined expressions.

Example 4-20 Context-Determined Expressions

if ( ((1’b1 << 15) >> 15) == 1’b0 )
 //This expression is ALWAYS true.

i ? j : k Max(L(j),L(k)) i is self-determined

Table 4-3 Expression Bit-Widths(Continued)

Expression Bit Length Comments
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if ( (((1’b1 << 15) >> 15) | 20’b0) == 1’b0 )
//This expression is NEVER true.

The expression ((1’b1 << 15) >> 15) produces a 1-bit 0 value (1’b0). 
The 1 is shifted off the left end of the vector, producing a value of 0. 
The right shift has no additional effect. For a shift operator, the first 
operand (1’b1) is context-dependent; the second operand (15) is self-
determined.

The expression (((1’b1 << 15) >> 15) | 20’b0) produces a 20-bit 1 
value (20’b1). 20’b1 has a 1 in the least significant bit position and 0s 
in the other 19 bit positions. Because the largest operand in the 
expression has a width of 20, the first operand of the shift is zero-
extended to a 20-bit value. The left shift of 15 does not drop the 1 
value off the left end; the right shift brings the 1 value back to the right 
end, resulting in a 20-bit 1 value (20’b1).
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5
Functional Descriptions 5

A Verilog functional description defines a circuit in terms of what it 
does.

This chapter describes the construction and use of functional 
descriptions in the following major sections:

• Sequential Constructs

• Function Declarations

• Function Statements

• task Statements

• always Blocks
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Sequential Constructs

Although many Verilog constructs appear sequential in nature, they 
describe combinational circuitry. A simple description that appears to 
be sequential is shown in Example 5-1.

Example 5-1 Sequential Statements

x = b; 
if (y)   

x = x + a; 

FPGA Compiler II / FPGA Express determines the combinational 
equivalent of this description. In fact, it treats the statements in 
Example 5-1 exactly as it treats the statements in Example 5-2.

Example 5-2 Equivalent Combinational Description

if (y)   
x = b + a; 

else 
x = b; 

To describe combinational logic, you write a sequence of statements 
and operators to generate the outputs you want. For example, 
suppose the addition operator (+) is not supported and you want to 
create a combinational ripple carry adder. The easiest way to describe 
this circuit is as a cascade of full adders, as in Example 5-3. The 
example has eight full adders, with each adder following the one 
before. From this description, FPGA Compiler II / FPGA Express 
generates a fully combinational adder.
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Example 5-3 Combinational Ripple Carry Adder

function [7:0] adder;
input [7:0] a, b;

reg c;
integer i;
begin

c = 0; 
for (i = 0; i <= 7; i = i + 1) begin 

adder[i] = a[i] ^ b[i] ^ c;
c = a[i] & b[i] | a[i] & c | b[i] & c;

end
end

endfunction

Function Declarations

Using a function declaration is one of three methods for describing 
combinational logic. The other two methods are the always block, 
described in “always Blocks” on page 5-34, and the continuous 
assignment, described in “Continuous Assignment” on page 3-15. 
You must declare and use Verilog functions within a module. You can 
call functions from the structural part of a Verilog description by using 
them in a continuous assignment statement or as a terminal in a 
module instantiation. You can also call functions from other functions 
or from always blocks.

FPGA Compiler II / FPGA Express supports the following Verilog 
function declarations:

• Input declarations

• Output from a function

• Register declarations
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• Memory declarations

• Parameter declarations

• Integer declarations

Functions begin with the keyword function and end with the keyword 
endfunction. The width of the function’s return value (if any) and the 
name of the function follow the function keyword, as the following 
syntax shows.

function [ range ] name_of_function  ;
[ func_declaration ]
statement_or_null

endfunction

Defining the bit range of the return value is optional. Specify the range 
inside square brackets ([ ]). If you do not define the range, a function 
returns a 1-bit quantity by default. You set the function’s output by 
assigning it to the function name. A function can contain one or more 
statements. If you use multiple statements, enclose the statements 
inside a begin...end pair. 

A simple function declaration is shown in Example 5-4.

Example 5-4 Simple Function Declaration

function [7:0] scramble; 
input [7:0] a; 
input [2:0] control; 
integer i; 

begin 
for (i = 0; i <= 7; i = i + 1) 

scramble[i] = a[ i ^ control ]; 
end 

endfunction 
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Function statements FPGA Compiler II / FPGA Express supports are 
discussed in “Function Statements” on page 5-9.

Input Declarations

The input declarations specify the input signals for a function. You 
must declare the inputs to a Verilog function immediately after you 
declare the function name. The syntax of input declarations for a 
function is the same as the syntax of input declarations for a module:

input [ range ] list_of_variables  ;

The optional range specification declares an input as a vector of 
signals. Specify range inside square brackets ([ ]).

Note:
The order in which you declare the inputs must match the order 
of the inputs in the function call.

Output From a Function

The output from a function is assigned to the function name. A Verilog 
function has only one output, which can be a vector. For multiple 
outputs from a function, use the concatenation operation to bundle 
several values into one return value. This single return value can then 
be unbundled by the caller. Example 5-5 shows how unbundling is 
done.
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Example 5-5 Many Outputs From a Function

function [9:0] signed_add; 
input [7:0] a, b; 
    reg [7:0] sum; 
    reg carry, overflow; 

    begin 
        ... 
        signed_add = {carry, overflow, sum}; 
    end 
endfunction 
... 
assign {C, V, result_bus} = signed_add(busA, busB);

The signed_add function bundles the values of carry, overflow, and 
sum into one value. This new value is returned in the assign statement 
following the function. The original values are then unbundled by the 
function that called the signed_add function.

Register Declarations

A register represents a variable in Verilog. The syntax for a register 
declaration is

reg [ range ] list_of_register_variables  ;

A reg can be a single-bit quantity or a vector of bits. The range 
specifies the most significant bit (msb) and the least significant bit 
(lsb) of the vector enclosed in square brackets ([ ]). Both bits must be 
nonnegative constants, parameters, or constant-valued expressions. 
Example 5-6 shows some reg declarations.
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Example 5-6 Register Declarations

reg x;              //single bit
reg a, b, c;        //3 single-bit quantities 
reg [7:0] q;        //an 8-bit vector

The Verilog language allows you to assign a value to a reg variable 
only within a function or an always block.

In the Verilog simulator, reg variables can hold state information. A 
reg can hold its value across separate calls to a function. In some 
cases, FPGA Compiler II / FPGA Express emulates this behavior by 
inserting flow-through latches. In other cases, it emulates this 
behavior without a latch. The concept of holding state is elaborated 
on in “Inferring Latches” on page 6-7.

Memory  Declarations

The memory declaration models a bank of registers or memory. In 
Verilog, the memory declaration is a two-dimensional array of reg 
variables. Sample memory declarations are shown in Example 5-7.

Example 5-7 Memory Declarations

reg [7:0] byte_reg;
reg [7:0] mem_block [255:0];
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In Example 5-7, byte_reg is an 8-bit register and mem_block is an 
array of 256 registers, each of which is 8 bits wide. You can index the 
array of registers to access individual registers, but you cannot access 
individual bits of a register directly. Instead, you must copy the 
appropriate register into a temporary one-dimensional register. For 
example, to access the fourth bit of the eighth register in mem_block, 
enter

byte_reg = mem_block [7];
individual_bit = byte_reg [3];

Parameter Declarations

Parameter variables are local or global variables that hold values. The 
syntax for a parameter declaration is

parameter [ range ] identifier  = expression,
identifier  = expression ;

The range specification is optional.

You can declare parameter variables as being local to a function. 
However, you cannot use a local variable outside that function. 
Parameter declarations in a function are identical to parameter 
declarations in a module. The function in Example 5-8 contains a 
parameter declaration.

Example 5-8 Parameter Declaration in a Function

function gte;
parameter width = 8;
input [width-1:0] a,b;
gte = (a >= b);

endfunction
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Integer Declarations

Integer variables are local or global variables that hold numeric 
values. The syntax for an integer declaration is

integer identifier_list;

You can declare integer variables locally at the function level or 
globally at the module level. The default size for integers is 32 bits. 
FPGA Compiler II / FPGA Express determines bit-widths, except in 
the case of a don’t care condition resulting during compile.

Example 5-9 illustrates integer declarations.

Example 5-9 Integer Declarations

integer a;        //single 32-bit integer 
integer b, c;     //two integers

Function Statements

The function statements FPGA Compiler II / FPGA Express supports 
are

• Procedural assignments

• RTL assignments

• begin...end block statements

• if...else statements 

• case, casex, and casez statements 
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• for loops

• while loops

• forever loops

• disable statements

Procedural Assignments

Procedural assignments are assignment statements used inside a 
function. They are similar to the continuous assignment statements 
described in “Continuous Assignment” on page 3-15, except that the 
left side of a procedural assignment can contain only reg variables 
and integers. Assignment statements set the value of the left side to 
the current value of the right side. The right side of the assignment 
can contain any arbitrary expression of the data types described in 
“Structural Data Types” on page 3-8, including simple constants and 
variables.

The left side of the procedural assignment statement can contain only 
the following data types: 

• reg variables

• Bit-selects of reg variables

• Part-selects of reg variables (must be constant-valued)

• Integers

• Concatenations of the previous data types
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FPGA Compiler II / FPGA Express assigns the low bit on the right 
side to the low bit on the left side. If the number of bits on the right 
side is greater than the number on the left side, the high-order bits 
on the right side are discarded. If the number of bits on the left side 
is greater than the number on the right side, the right-side bits are 
zero-extended. FPGA Compiler II / FPGA Express allows multiple 
procedural assignments.

Some examples of procedural assignments are shown in 
Example 5-10.

Example 5-10 Procedural Assignments

sum = a + b; 
control[5] = (instruction == 8’h2e);
{carry_in, a[7:0]} = 9’h 120; 

RTL Assignments

FPGA Compiler II / FPGA Express handles variables driven by an 
RTL (nonblocking) assignment differently than those driven by a 
procedural (blocking) assignment.

In procedural assignments, a value passed along from variable A to 
variable B to variable C results in all three variables having the same 
value in every clock cycle. In the netlist, procedural assignments are 
indicated when the input net of one flip-flop is connected to the input 
net of another flip-flop. Both flip-flops input the same value in the same 
clock cycle.
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In RTL assignments, however, values are passed on in the next clock 
cycle. Assignment from variable A to variable B occurs after one clock 
cycle, if variable A has been a previous target of an RTL assignment. 
Assignment from variable B to variable C always takes place after 
one clock cycle, because B is the target when RTL assigns variable 
A’s value to B. In the netlist, an RTL assignment shows flip-flop B 
receiving its input from the output net of flip-flop A. It takes one clock 
cycle for the value held by flip-flop A to propagate to flip-flop B.

A variable can follow only one assignment method and therefore 
cannot be the target of RTL as well as procedural assignments.

Example 5-11 is a description of a serial register implemented with 
RTL assignments. Figure 5-1 shows the resulting schematic for 
Example 5-11. 

Example 5-11 RTL Nonblocking Assignments

module rtl (clk, data, regc, regd);
input data, clk;
output regc, regd;

reg regc, regd;

always @(posedge clk) 
begin

regc <= data;
regd <= regc;

end
endmodule
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Figure 5-1 Schematic of RTL Nonblocking Assignments

If you use a procedural assignment, as in Example 5-12, FPGA 
Compiler II / FPGA Express does not synthesize a serial register. 
Therefore, the recently assigned value of rega, which is data, is 
assigned to regb, as the schematic in Figure 5-2 indicates.

Example 5-12 Blocking Assignment

module rtl (clk, data, rega, regb);
input data, clk;
output rega, regb;

reg rega, regb;

always @(posedge clk) 
begin

rega = data;
regb = rega;

end 
endmodule
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Figure 5-2 Schematic of Blocking Assignment

begin...end Block Statements

Using block statements is a way of syntactically grouping several 
statements into a single statement. 

In Verilog, sequential blocks are delimited by the keywords begin and 
end. These begin...end pairs are commonly used in conjunction with 
if, case, and for statements to group several statements. Functions 
and always blocks that contain more than one statement require a 
begin...end pair to group the statements. Verilog also provides a 
construct called a named block, as in Example 5-13.

Example 5-13 Block Statement With a Named Block

begin : block_name  
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   reg local_variable_1 ; 
integer local_variable_2 ; 
parameter local_variable_3 ;

    ... statements  ...
end

In Verilog, no semicolon (;) follows the begin or end keywords. You 
identify named blocks by following the begin with a colon (:) and a 
block_name, as shown. Verilog syntax allows you to declare variables 
locally in a named block. You can include reg, integer, and parameter 
declarations within a named block but not in an unnamed block. 
Named blocks allow you to use the disable statement.

if...else Statements

The if ... else statements execute a block of statements according to 
the value of one or more expressions. 

The syntax of if...else statements is

if ( e xpr  )
     begin
     ... statements ...
     end
else 
     begin
     ... statements ...
     end
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The if statement consists of the keyword if followed by an expression 
in parentheses. The if statement is followed by a statement or block 
of statements enclosed by begin and end. If the value of the 
expression is nonzero, the expression is true and the statement block 
that follows is executed. If the value of the expression is zero, the 
expression is false and the statement block that follows is not 
executed.

An optional else statement can follow an if statement. If the expression 
following if is false, the statement or block of statements following else 
is executed.

The if...else statements can cause synthesis of registers. Registers 
are synthesized when you do not assign a value to the same reg in 
all branches of a conditional construct. Information on registers is in 
“Register Inference” on page 6-1.

FPGA Compiler II / FPGA Express synthesizes multiplexer logic (or 
similar select logic) from a single if statement. The conditional 
expression in an if statement is synthesized as a control signal to a 
multiplexer, which determines the appropriate path through the 
multiplexer. For example, the statements in Example 5-14 create 
multiplexer logic controlled by c and place either a or b in the variable 
x.

Example 5-14 if Statement That Synthesizes Multiplexer Logic

if (c)
x = a;

else
x = b;

Example 5-15 illustrates how if and else can be used to create an 
arbitrarily long if...else if...else structure.
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Example 5-15 if...else if...else Structure

if (instruction == ADD) 
    begin 
        carry_in = 0; 
        complement_arg = 0; 
    end 
else if (instruction == SUB) 
    begin 
        carry_in = 1; 
        complement_arg = 1; 
    end 
else 
    illegal_instruction = 1; 

Example 5-16 shows how to use nested if and else statements.

Example 5-16 Nested if and else Statements

if (select[1]) 
    begin 
        if (select[0]) out = in[3]; 
        else out = in[2]; 
    end 
else 
    begin 
        if (select[0]) out = in[1]; 
        else out = in[0]; 
    end
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Conditional Assignments

FPGA Compiler II / FPGA Express can synthesize a latch for a 
conditionally assigned variable. A variable is conditionally assigned 
if there is a path that does not explicitly assign a value to that variable. 
See “Understanding the Limitations of D Latch Inference” on 
page 6-19 for more information.

In Example 5-17, the variable value is conditionally driven. If c is not 
true, value is not assigned and retains its previous value.

Example 5-17 Synthesizing a Latch for a Conditionally Driven Variable

always begin
  if ( c ) begin
    value = x;
  end
  y = value; //causes a latch to be synthesized for value
end

case Statements

The case statement is similar in function to the if...else conditional 
statement. The case statement allows a multipath branch in logic that 
is based on the value of an expression. One way to describe a 
multicycle circuit is with a case statement (see Example 5-18). 
Another way is with multiple @ (clock edge) statements, which are 
discussed in the subsequent sections on loops. 
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The syntax for a case statement is

case ( expr )
     case_item1 : begin

     ... statements ...

     end
     case_item2 : begin

     ... statements ...

     end
     default: begin

     ... statements ...
     end
endcase

The case statement consists of the keyword case, followed by an 
expression in parentheses, followed by one or more case items (and 
associated statements to be executed), followed by the keyword 
endcase. A case item consists of an expression (usually a simple 
constant) or a list of expressions separated by commas, followed by 
a colon (:).

The expression following the case keyword is compared with each 
case item expression, one by one. When the expressions are equal, 
the condition evaluates to true. Multiple expressions separated by 
commas can be used in each case item. When multiple expressions 
are used, the condition is said to be true if any of the expressions in 
the case item match the expression following the case keyword.
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The first case item that evaluates to true determines the path. All 
subsequent case items are ignored, even if they are true. If no case 
item is true, no action is taken. You can define a default case item 
with the expression default, which is used when no other case item 
is true.

An example of a case statement is shown in Example 5-18.

Example 5-18 case Statement

case (state) 
    IDLE: begin 
        if (start) 
            next_state = STEP1; 
        else 
            next_state = IDLE; 
    end 
    STEP1: begin 
        //do first state processing here 
        next_state = STEP2; 
    end 
    STEP2: begin 
        //do second state processing here
        next_state = IDLE; 
    end 
endcase
 

Full Case and Parallel Case

FPGA Compiler II / FPGA Express automatically determines whether 
a case statement is full or parallel. A case statement is full if all 
possible branches are specified. If you do not specify all possible 
branches but you know that one or more branches can never occur, 
you can declare a case statement as full-case with the // synopsys 
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full_case directive. Otherwise, FPGA Compiler II / FPGA Express 
synthesizes a latch. See “parallel_case Directive” on page 8-4 and 
“full_case Directive” on page 8-5 for more information.

FPGA Compiler II / FPGA Express synthesizes optimal logic for the 
control signals of a case statement. If FPGA Compiler II / FPGA 
Express cannot statically determine that branches are parallel, it 
synthesizes hardware that includes a priority encoder. If FPGA 
Compiler II / FPGA Express can determine that no cases overlap 
(parallel case), it synthesizes a multiplexer, because a priority 
encoder is not necessary. You can also declare a case statement as 
parallel case with the //synopsys parallel_case directive. Refer to 
“parallel_case Directive” on page 8-4. Example 5-19 does not result 
in either a latch or a priority encoder.

Example 5-19 A case Statement That Is Both Full and Parallel

input [1:0] a;
always @(a or w or x or y or z) begin

case (a)
2’b11:
    b = w ;
2’b10:
    b = x ;
2’b01: 
    b = y ;
2’b00:
    b = z ;

endcase
end

Example 5-20 shows a case statement that is missing branches for 
the cases 2’b01 and 2’b10. Example 5-20 infers a latch for b.
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Example 5-20 A case Statement That Is Parallel but Not Full

input [1:0] a;
always @(a or w or z) begin

case (a)
2’b11:
    b = w ;
2’00:
    b = z ;

endcase
end

The case statement in Example 5-21 is not parallel or full because 
the values of inputs w and x cannot be determined. However, if you 
know that only one of the inputs equals 2’b11 at a given time, you can 
use the // synopsys parallel_case directive to avoid synthesizing a 
priority encoder. If you know that either w or x always equals 2’b11 
(a situation known as a one-branch tree), you can use the // synopsys 
full_case directive to avoid synthesizing a latch.

Example 5-21 A case Statement That Is Not Full or Parallel

always @(w or x) begin
case (2’b11)

w:
    b = 10 ;
x:
    b = 01 ;

endcase
end

casex Statements

The casex statement allows a multipath branch in logic, according to 
the value of an expression, just as the case statement does. The 
differences between the case statement and the casex statement are 
the keyword and the processing of the expressions. 
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The syntax for a casex statement is

casex ( expr )
     case_item1 : begin
     ... statements ...
     end
     case_item2 : begin
     ... statements ...
     end
     default: begin
     ... statements ...
     end
endcase

A case item can have expressions consisting of

• A simple constant

• A list of identifiers or expressions separated by commas, followed 
by a colon (: )

• Concatenated, bit-selected, or part-selected expressions

• A constant containing z, x, or ?

When a z, x, or ? appears in a case item, it means that the 
corresponding bit of the casex expression is not compared. Example 
5-22 shows a case item that includes an x.

Example 5-22 casex Statement With x

reg [3:0] cond;
casex (cond) 
    4’b100x: out = 1;
    default: out = 0;
endcase 

In Example 5-22, out is set to 1 if cond is equal to 4’b1000 or 4’b1001, 
because the last bit of cond is defined as x.
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Example 5-23 shows a complicated section of code that can be 
simplified with a casex statement that uses the ? value.

Example 5-23 Before Using casex With ?
if (cond[3]) out = 0;
else if (!cond[3] & cond[2] ) out = 1;
else if (!cond[3] & !cond[2] & cond[1] ) out = 2;
else if (!cond[3] & !cond[2] & !cond[1] & cond[0] ) out = 3;
else if (!cond[3] & !cond[2] & !cond[1] & !cond[0] ) out = 4;

Example 5-24 shows the simplified version of the same code.

Example 5-24 After Using casex With ?

casex (cond) 
4’b1???: out = 0; 
4’b01??: out = 1; 
4’b001?: out = 2; 
4’b0001: out = 3;
4’b0000: out = 4;

endcase 

FPGA Compiler II / FPGA Express allows ?, z, and x bits in case items 
but not in casex expressions. Example 5-25 shows an invalid casex 
expression.

Example 5-25 Invalid casex Expression

express = 3’bxz?;
    ...
casex (express) //illegal testing of an expression
    ...
endcase 
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casez Statements

The casez statement allows a multipath branch in logic according to 
the value of an expression, just like the case statement. The 
differences between the case statement and the casez statement are 
the keyword and the way the expressions are processed. The casez 
statement acts exactly the same as casex, except that x is not allowed 
in case items; only z and ? are accepted as special characters.

The syntax for a casez statement is

casez ( expr )
     case_item1 : begin
     ... statements ...
     end
     case_item2 : begin
     ... statements ...
     end
     default: begin
     ... statements ...
     end
endcase
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A case item can have expressions consisting of

• A simple constant

• A list of identifiers or expressions separated by commas, followed 
by a colon (:)

• Concatenated, bit-selected, or part-selected expressions

• A constant containing z or ?

When a casez statement is evaluated, the value z in the case item is 
ignored. An example of a casez statement with z in the case item is 
shown in Example 5-26.

Example 5-26 casez Statement With z

casez (what_is_it) 
  2’bz0: begin 
      //accept anything with least significant bit zero 
     it_is = even;
  end 
  2’bz1: begin 
      //accept anything with least significant bit one
     it_is = odd; 
  end 
endcase 

FPGA Compiler II / FPGA Express allows ? and z bits in case items 
but not in casez expressions. Example 5-27 shows an invalid 
expression in a casez statement.

Example 5-27 Invalid casez Expression

express = 1’bz;
    ...
casez (express)  //illegal testing of an expression
    ...
endcase
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for Loops

The for loop repeatedly executes a single statement or block of 
statements. The repetitions are performed over a range determined 
by the range expressions assigned to an index. Two range 
expressions appear in each for loop: low_range and high_range. In 
the syntax lines that follow, high_range is greater than or equal to 
low_range. FPGA Compiler II / FPGA Express recognizes 
incrementing as well as decrementing loops. The statement to be 
duplicated is surrounded by begin and end statements.

Note:
FPGA Compiler II / FPGA Express allows four syntax forms for a 
for loop. They are

for (index = low_range ;index < high_range ;index = index + step)
for (index = high_range ;index > low_range ;index = index - step)
for (index = low_range ;index <= high_range ;index = index + step)
for (index = high_range ;index >= low_range ;index = index - step) 

Example 5-28 shows a simple for loop.

Example 5-28 A Simple for Loop

for (i = 0; i <= 31; i = i + 1) begin 
    s[i] = a[i] ^ b[i] ^ carry; 
    carry = a[i] & b[i]  |  a[i] & carry  |
                            b[i] & carry; 
end 

The for loops can be nested, as shown in Example 5-29.
5-27

Functional Descriptions



Example 5-29 Nested for Loops

for (i = 6; i >= 0; i = i - 1) 
    for (j = 0; j <= i; j = j + 1) 
        if (value[j] > value[j+1]) begin 
            temp = value[j+1]; 
            value[j+1] = value[j]; 
            value[j] = temp; 
        end 

You can use for loops as duplicating statements. Example 5-30 shows 
a for loop that is expanded into its longhand equivalent in Example 
5-31.

Example 5-30 Example for Loop

for ( i=0; i < 8; i=i+1 ) 
    example[i] = a[i] & b[7-i]; 

Example 5-31 Expanded for Loop

example[0] = a[0] & b[7]; 
example[1] = a[1] & b[6]; 
example[2] = a[2] & b[5]; 
example[3] = a[3] & b[4]; 
example[4] = a[4] & b[3]; 
example[5] = a[5] & b[2]; 
example[6] = a[6] & b[1]; 
example[7] = a[7] & b[0]; 
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while  Loops

The while loop executes a statement until the controlling expression 
evaluates to false. A while loop creates a conditional branch that must 
be broken by one of the following statements to prevent combinational 
feedback.

@ (posedge clock)

or 

@ (negedge clock)

FPGA Compiler II / FPGA Express supports while loops if you insert 
one of these expressions in every path through the loop:

@ (posedge clock)

or 

@ (negedge clock)

Example 5-32 shows an unsupported while loop that has no event 
expression.

Example 5-32 Unsupported while Loop

always
while (x < y)

x = x + z;

If you add @ (posedge clock) expressions after the while loop in 
Example 5-32, you get the supported version shown in Example 5-33.
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Example 5-33 Supported while Loop

always
begin @ (posedge clock)

while (x < y)
begin

@ (posedge clock);
x = x + z;

end
end;

forever Loops

Infinite loops in Verilog use the keyword forever. You must break up 
an infinite loop with an @ (posedge clock) or @ (negedge clock) 
expression to prevent combinational feedback, as shown in Example 
5-34.

Example 5-34 Supported forever Loop

always
forever
begin

@ (posedge clock);
x = x + z;

end

You can use forever loops with a disable statement to implement 
synchronous resets for flip-flops. The disable statement is described 
in the next section. See “Register Inference” on page 6-1 for more 
information on synchronous resets. 

Using the style illustrated in Example 5-34 is not a good idea, because 
you cannot test it. The synthesized state machine does not reset to 
a known state; therefore, it is impossible to create a test program for 
it. Example 5-36 illustrates how a synchronous reset for the state 
machine can be synthesized. 
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disable Statements

FPGA Compiler II / FPGA Express supports the disable statement 
when you use it in named blocks. When a disable statement is 
executed, it causes the named block to terminate. A comparator 
description that uses disable is shown in Example 5-35. 

Example 5-35 Comparator Using disable

begin : compare 
for (i = 7; i >= 0; i = i - 1) begin

    if (a[i] != b[i]) begin 
         greater_than = a[i]; 
         less_than = ~a[i]; 
         equal_to = 0; 
         //comparison is done so stop looping
         disable compare; 
      end 

end

// If we get here a == b 
// If the disable statement is executed, the next three 
// lines will not be executed
   greater_than = 0; 
   less_than = 0; 
   equal_to = 1; 
end 

Example 5-35 describes a combinational comparator. Although the 
description appears sequential, the generated logic runs in a single 
clock cycle.

You can also use a disable statement to implement a synchronous 
reset, as shown in Example 5-36.
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Example 5-36 Synchronous Reset of State Register Using disable in a 
forever Loop

always
forever
begin: Block

@ (posedge clk)
if (Reset)

begin
z <= 1’b0;
disable Block;

end
z <= a;

end

The disable statement in Example 5-36 causes the block reset_label 
to terminate immediately and return to the beginning of the block. 

task Statements

In Verilog, task statements are similar to functions, but task 
statements can have output and inout ports. You can use the task 
statement to structure your Verilog code so that a portion of code is 
reusable.

In Verilog, tasks can have timing controls and can take a nonzero time 
to return. However, FPGA Compiler II / FPGA Express ignores all 
timing controls, so synthesis might disagree with simulation if timing 
controls are critical to the function of the circuit.
5-32

Functional Descriptions



Example 5-37 shows how a task statement is used to define an adder 
function.

Example 5-37 Using the task Statement

module task_example (a,b,c);
input [7:0] a,b;
output [7:0] c;
reg [7:0] c;

task adder;
input [7:0] a,b;
output [7:0] adder;
reg c;
integer i;

begin
c = 0;
for (i = 0; i <= 7; i = i+1) begin

adder[i] = a[i] ^ b[i] ^ c;
c = (a[i] & b[i]) | (a[i] & c) | (b[i] & c);

end
end

endtask
always

adder (a,b,c);  //c is a reg

endmodule

Note:
Only reg variables can receive output values from a task; wire 
variables cannot.
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always Blocks

An always block can imply latches or flip-flops, or it can specify purely 
combinational logic. An always block can contain logic triggered in 
response to a change in a level or the rising or falling edge of a signal. 
The syntax of an always block is

always @ ( event-expression  [or event-expression *] )    begin
    ... statements  ...
end

Event Expression

The event expression declares the triggers or timing controls. The 
word or groups several triggers. The Verilog language specifies that 
if triggers in the event expression occur, the block is executed. Only 
one trigger in a group of triggers needs to occur for the block to be 
executed. However, FPGA Compiler II / FPGA Express ignores the 
event expression unless it is a synchronous trigger that infers a 
register. Refer to Chapter 6, "Register and Three-State Inference”, 
for details.

Example 5-38 shows a simple example of an always block with 
triggers.

Example 5-38 A Simple always Block

always @ ( a or b or c ) begin
    f = a & b & c
end
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In Example 5-38, a, b, and c are asynchronous triggers. If any triggers 
change, the simulator resimulates the always block and recalculates 
the value of f. FPGA Compiler II / FPGA Express ignores the triggers 
in this example because they are not synchronous. However, you 
must indicate all variables that are read in the always block as triggers. 
If you do not indicate all the variables as triggers, FPGA Compiler II 
/ FPGA Express gives a warning message similar to the following:

Warning: Variable ’foo’ is being read in block ’bar’ declared 
on line 88 but does not occur in the timing control of the 
block.

For a synchronous always block, FPGA Compiler II / FPGA Express 
does not require listing of all variables.

Any of the following types of event expressions can trigger an always 
block:

• A change in a specified value. For example,

always @ ( identifier  ) begin
   ...  statements  ...
end

In the previous example, FPGA Compiler II / FPGA Express 
ignores the trigger.

• The rising edge of a clock. For example,

always @ ( posedge event  ) begin
   ... statements  ...
end

• The falling edge of a clock. For example,

always @ ( negedge event  ) begin
   ... statements  ...
end
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• A clock or an asynchronous preload condition. For example,

always @ ( posedge CLOCK or negedge reset  ) begin
   if ! reset begin
    ... statements .. .
   end
   else begin
    ... statements ...
   end
end

• An asynchronous preload that is based on two events joined by 
the word or. For example,

always @ ( posedge CLOCK or posedge event1  or 
           negedge event2  ) begin
    if ( event1  ) begin
     ... statements ...
    end
    else if ( ! event2  ) begin
     ... statements ...
    end
    else begin
     ... statements ...
    end
end

When the event expression does not contain posedge or negedge, 
combinational logic (no registers) is usually generated, although flow-
through latches can be generated.

Note:
The statements @ (posedge clock) and @ (negedge clock) are 
not supported in functions or tasks.
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Incomplete Event Specification

You risk misinterpretation of an always block if you do not list all the 
signals entering an always block in the event specification. Example 
5-39 shows an incomplete event list.

Example 5-39 Incomplete Event List

always @(a or b) begin
   f = a & b & c;
end

FPGA Compiler II / FPGA Express builds a 3-input AND gate for the 
description in Example 5-39, but in simulation of this description, f is 
not recalculated when c changes, because c is not listed in the event 
expression. The simulated behavior is not that of a 3-input AND gate. 

The simulated behavior of the description in Example 5-40 is correct, 
because it includes all the signals in the event expression.

Example 5-40 Complete Event List

always @(a or b or c) begin
   f = a & b & c;
end

In some cases, you cannot list all the signals in the event specification. 
Example 5-41 illustrates this problem.

Example 5-41 Incomplete Event List for Asynchronous Preload

always @ (posedge c or posedge p)
if (p)

z = d;
else

z = a;
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In the logic synthesized for Example 5-41, if d changes while p is high, 
the change is reflected immediately in the output, z. However, when 
this description is simulated, z is not recalculated when d changes, 
because d is not listed in the event specification. As a result, synthesis 
might not match simulation.

Asynchronous preloads can be correctly modeled in FPGA Compiler 
II / FPGA Express only when you want changes in the load data to 
be reflected immediately in the output. In Example 5-41, data d must 
change to the preload value before preload condition p transits from 
low to high. If you attempt to read a value in an asynchronous preload, 
FPGA Compiler II / FPGA Express prints a warning similar to the 
following:

Warning:Variable ’d’ is being read asynchronously in routine 
reset line 21 in file ’/usr/tests/hdl/asyn.v’. This may cause 
simulation-synthesis mismatches.
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6
Register and Three-State Inference 6

FPGA Compiler II / FPGA Express can infer registers (latches and 
flip-flops) and three-state cells. This chapter explains inference 
behavior and results, in the following sections:

• Register Inference

• Three-State Inference

Register Inference

Register inference allows you to use sequential logic in your designs 
and keep your designs technology-independent. A register is a 
simple, 1-bit memory device, either a latch or a flip-flop. A latch is a 
level-sensitive memory device. A flip-flop is an edge-triggered 
memory device. 
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The register inference capability can support coding styles other than 
those described in this chapter. However, for best results,

• Restrict each always block to a single type of memory-element 
inferencing: latch, latch with asynchronous set or reset, flip-flop, 
flip-flop with asynchronous reset, or flip-flop with synchronous 
reset.

• Use the templates provided in “Inferring Latches” on page 6-7 and 
“Inferring Flip-Flops” on page 6-21

The Inference Report

FPGA Compiler II / FPGA Express generates a general inference 
report when building a design. It provides the asynchronous set or 
reset, synchronous set or reset, and synchronous toggle conditions 
of each latch or flip-flop, expressed as Boolean formulas. Example 
6-1 shows an inference report for a JK flip-flop.

Example 6-1 Inference Report for a JK Flip-Flop

Q_reg
Sync-reset: J’ K
Sync-set: J K’
Sync-toggle: J K
Sync-set and Sync-reset ==> Q: X

Register Name Type Width Bus MB AR AS SR SS ST

Q_reg Flip-flop 1 - - N N Y Y N
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In the inference reports in Example 6-1:

• Y indicates that the flip-flop has a synchronous reset (SR) and a 
synchronous set (SS)

• N indicates that the flip-flop does not have an asynchronous reset 
(AR), an asynchronous set (AS), or a synchronous toggle (ST)

In the inference report (Example 6-1), the last part of the report lists 
the objects that control the synchronous reset and set conditions. In 
this example, a synchronous reset occurs when J is low (logic 0) and 
K is high (logic 1). The last line of the report indicates the register 
output value when both set and reset are active:

zero (0)
Indicates that the reset has priority and that the output goes to 
logic 0.

one (1)
Indicates that the set has priority and that the output goes to 
logic 1.

X
Indicates that there is no priority and that the output is unstable.

“Inferring Latches” on page 6-7 and “Inferring Flip-Flops” on 
page 6-21 provide inference reports for each register template. After 
you input a Verilog description, check the inference report to verify 
the information.
6-3

Register and Three-State Inference



Latch Inference Warnings

FPGA Compiler II / FPGA Express generates a warning message 
when it infers a latch. This is useful for verifying that a combinational 
design does not contain memory components. 

Controlling Register Inference

Use directives to direct the type of sequential device you want inferred. 
The default is to implement the type of latch described in the HDL 
code. These attributes override this behavior. 

Attributes That Control Register Inference

FPGA Compiler II / FPGA Express provides the following directives 
for controlling register inference:

async_set_reset
When a signal has this directive set to true, FPGA Compiler II / 
FPGA Express searches for a branch that uses the signal as a 
condition. FPGA Compiler II / FPGA Express then checks whether 
the branch contains an assignment to a constant value. If the 
branch does, the signal becomes an asynchronous reset or set.

Attach this directive to single-bit signals, using the following 
syntax:

// synopsys async_set_reset ” signal_name_list ”

async_set_reset_local
FPGA Compiler II / FPGA Express treats listed signals in the 
specified block as if they have the async_set_reset directive set 
to true. 
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Attach this directive to a block label, using the following syntax:

/* synopsys async_set_reset_local block_label 
   ” signal_name_list ” */

async_set_reset_local_all
FPGA Compiler II / FPGA Express treats all signals in the 
specified blocks as if they have the async_set_reset directive set 
to true. 

Attach this directive to block labels, using the following syntax:

/* synopsys async_set_reset_local_all 
   ” block_label_list ” */

sync_set_reset
When a signal has this directive set to true, FPGA Compiler II / 
FPGA Express checks the signal to determine whether it 
synchronously sets or resets a register in the design.

Attach this directive to single-bit signals, using the following 
syntax:

//synopsys sync_set_reset ” signal_name_list ”

sync_set_reset_local
FPGA Compiler II / FPGA Express treats listed signals, in the 
specified block as if they have the sync_set_reset directive set to 
true. 

Attach this directive to a block label, using the following syntax:

/* synopsys sync_set_reset_local block_label 
   ” signal_name_list ” */

sync_set_reset_local_all
FPGA Compiler II / FPGA Express treats all signals in the 
specified blocks as if they have the sync_set_reset directive set 
to true. 
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Attach this directive to block labels, using the following syntax:

/* synopsys sync_set_reset_local_all 
   ” block_label_list ” */

one_cold
A one-cold implementation means that all signals in a group are 
active low and that only one signal can be active at a given time. 
The one_cold directive prevents FPGA Compiler II / FPGA 
Express from implementing priority encoding logic for the set and 
reset signals. 

Add a check to the Verilog code to ensure that the group of signals 
has a one-cold implementation. FPGA Compiler II / FPGA 
Express does not produce any logic to check this assertion.

Attach this directive to set or reset signals on sequential devices, 
using the following syntax:

// synopsys one_cold ” signal_name_list ”

one_hot
A one-hot implementation means that all signals in a group are 
active-high and that only one signal can be active at a given time. 
The one_hot directive prevents FPGA Compiler II / FPGA Express 
from implementing priority encoding logic for the set and reset 
signals.

Add a check to the Verilog code to ensure that the group of signals 
has a one-hot implementation. FPGA Compiler II / FPGA Express 
does not produce any logic to check this assertion.

Attach this directive to set or reset signals on sequential devices, 
using the following syntax:

// synopsys one_hot ” signal_name_list ”
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Inferring Latches

In simulation, a signal or variable holds its value until that output is 
reassigned. In hardware, a latch implements this holding-of-state 
capability. FPGA Compiler II / FPGA Express supports inference of 
the following types of latches:

• SR latch

• D latch

• Master-slave latch

The following sections provide details about each of these latch types.

Inferring SR Latches

Use SR latches with caution, because they are difficult to test. If you 
decide to use SR latches, verify that the inputs are hazard-free (that 
they do not glitch). During synthesis, FPGA Compiler II / FPGA 
Express does not ensure that the logic driving the inputs is hazard-
free.

Example 6-2 shows the Verilog code that implements the inferred SR 
latch shown in Figure 6-1 on page 6-9 and described in Table 6-1. 
Because the output y is unstable when both inputs have a logic 0 
value, you might want to include a check in the Verilog code to detect 
this condition during simulation. 

Synthesis does not support such checks, so you must put the 
translate_off and translate_on directives around the check. See 
“translate_off and translate_on Directives” on page 8-2 for more 
information about special comments in the Verilog source code. 
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Example 6-3 shows the inference report FPGA Compiler II / FPGA 
Express generates. 

Example 6-2 SR Latch

module sr_latch (SET, RESET, Q);
  input SET, RESET;
  output Q;
  reg Q;

//synopsys async_set_reset ”SET, RESET”
always @(RESET or SET)
  if (~RESET)
    Q = 0;
  else if (~SET)
    Q = 1;
endmodule

Example 6-3 Inference Report for an SR Latch

y_reg
Async-reset: RESET’
Async-set: SET’
Async-set and Async-reset ==> Q: 1

Table 6-1 SR Latch Truth Table (Nand Type)

set reset y

0 0 Not stable

0 1 1

1 0 0

1 1 y

Register Name Type Width Bus MB AR AS SR SS ST

Q_reg Latch 1 - - Y Y - - -
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Figure 6-1 SR Latch

Inferring D Latches

When you do not specify the resulting value for an output under all 
conditions, as in an incompletely specified if or case statement, FPGA 
Compiler II / FPGA Express infers a D latch.

For example, the if statement in Example 6-4 infers a D latch because 
there is no else clause. The Verilog code specifies a value for output 
Q only when input enable has a logic 1 value. As a result, output Q 
becomes a latched value.
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Example 6-4 Latch Inference Using an if Statement

always @ (DATA or GATE) begin
  if (GATE) begin
    Q = DATA;
  end
end

The case statement in Example 6-5 infers D latches because the case 
statement does not provide assignments to decimal for values of I 
between 10 and 15.

Example 6-5 Latch Inference Using a case Statement

always @(I) begin
  case(I)
    4’h0: decimal= 10’b0000000001;
    4’h1: decimal= 10’b0000000010;
    4’h2: decimal= 10’b0000000100;
    4’h3: decimal= 10’b0000001000;
    4’h4: decimal= 10’b0000010000;
    4’h5: decimal= 10’b0000100000;
    4’h6: decimal= 10’b0001000000;
    4’h7: decimal= 10’b0010000000;
    4’h8: decimal= 10’b0100000000;
    4’h9: decimal= 10’b1000000000;
  endcase
end

To avoid latch inference, assign a value to the signal under all 
conditions. To avoid latch inference by the if statement in Example 
6-4, modify the block as shown in Example 6-6 or Example 6-7. To 
avoid latch inference by the case statement in Example 6-5, add the 
following statement before the endcase statement:

default: decimal= 10’b0000000000;
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Example 6-6 Avoiding Latch Inference

always @ (DATA, GATE) begin
  Q = 0;
  if (GATE) 
    Q = DATA;
end

Example 6-7 Another Way to Avoid Latch Inference

always @ (DATA, GATE) begin
  if (GATE) 
    Q = DATA;
  else 
    Q = 0;
end

Variables declared locally within a subprogram do not hold their value 
over time because every time a subprogram is called, its variables 
are reinitialized. Therefore, FPGA Compiler II / FPGA Express does 
not infer latches for variables declared in subprograms. In Example 
6-8, FPGA Compiler II / FPGA Express does not infer a latch for output 
Q.

Example 6-8 Function: No Latch Inference

function MY_FUNC
  input DATA, GATE;
  reg STATE;

  begin
    if (GATE) begin
      STATE = DATA;
    end
    MY_FUNC = STATE;
  end
end function
. . .
Q = MY_FUNC(DATA, GATE);
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The following sections provide truth tables, code examples, and 
figures for these types of D latches:

• Simple D Latch

• D Latch With Asynchronous Set or Reset

• D Latch With Asynchronous Set and Reset

Simple D Latch

When you infer a D latch, make sure you can control the gate and 
data signals from the top-level design ports or through combinational 
logic. Controllable gate and data signals ensure that simulation can 
initialize the design.

Example 6-9 provides the Verilog template for a D latch. FPGA 
Compiler II / FPGA Express generates the inference report shown in 
Example 6-10. Figure 6-2 shows the inferred latch.

Example 6-9 D Latch

module d_latch (GATE, DATA, Q);
  input GATE, DATA;
  output Q;
  reg Q;

always @(GATE or DATA)
  if (GATE)
    Q = DATA;

endmodule
6-12
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Example 6-10 Inference Report for a D Latch

Q_reg
reset/set: none

Figure 6-2 D Latch

Register Name Type Width Bus MB AR AS SR SS ST

Q_reg Latch 1 - - N N - - -
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D Latch With Asynchronous Set or Reset

The templates in this section use the async_set_reset directive to 
direct FPGA Compiler II / FPGA Express to the asynchronous set or 
reset pins of the inferred latch.

Example 6-11 provides the Verilog template for a D latch with an 
asynchronous set. FPGA Compiler II / FPGA Express generates the 
inference report shown in Example 6-12. Figure 6-3 shows the 
inferred latch.

Example 6-11 D Latch With Asynchronous Set

module d_latch_async_set (GATE, DATA, SET, Q);
  input GATE, DATA, SET;
  output Q;
  reg Q;

//synopsys async_set_reset ”SET”
always @(GATE or DATA or SET)
  if (~SET)
    Q = 1’b1;
  else if (GATE)
    Q = DATA;
endmodule

Example 6-12 Inference Report for D Latch With Asynchronous Set

Q_reg
Async-set: SET’

Register Name Type Width Bus MB AR AS SR SS ST

Q_reg Latch 1 - - N Y - - -
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Figure 6-3 D Latch With Asynchronous Set

Note:
Because the target technology library does not contain a latch 
with an asynchronous set, FPGA Compiler II / FPGA Express 
synthesizes the set logic by using combinational logic.

Example 6-13 provides the Verilog template for a D latch with an 
asynchronous reset. FPGA Compiler II / FPGA Express generates 
the inference report shown in Example 6-14. Figure 6-4 shows the 
inferred latch.
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Example 6-13 D Latch With Asynchronous Reset

module d_latch_async_reset (RESET, GATE, DATA, Q);
  input RESET, GATE, DATA;
  output Q;
  reg Q;

//synopsys async_set_reset ”RESET”
always @ (RESET or GATE or DATA)
  if (~RESET) 
    Q = 1’b0;
  else if (GATE) 
    Q = DATA;
endmodule 

Example 6-14 Inference Report for D Latch With Asynchronous Reset

Q_reg
Async-reset: RESET’

Figure 6-4 D Latch With Asynchronous Reset

Register Name Type Width Bus MB AR AS SR SS ST

Q_reg Latch 1 - - Y N - - -
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D Latch With Asynchronous Set and Reset

Example 6-15 provides the Verilog template for a D latch with an 
active-low asynchronous set and reset. This template uses the 
async_set_reset_local directive to direct FPGA Compiler II / FPGA 
Express to the asynchronous signals in block infer. This template uses 
the one_cold directive to prevent priority encoding of the set and reset 
signals. 

For this template, if you do not specify the one_cold directive, the set 
signal has priority, because it serves as the condition for the if clause. 
FPGA Compiler II / FPGA Express generates the inference report 
shown in Example 6-16. Figure 6-5 shows the inferred latch.

Example 6-15 D Latch With Asynchronous Set and Reset

module d_latch_async (GATE, DATA, RESET, SET, Q);
  input GATE, DATA, RESET, SET;
  output Q;
  reg Q;

// synopsys async_set_reset_local infer ”RESET, SET”
// synopsys one_cold ”RESET, SET”
always @ (GATE or DATA or RESET or SET)
begin : infer
  if (!SET) 
    Q = 1’b1;
  else if (!RESET) 
   Q = 1’b0;
   else if (GATE) 
    Q = DATA;
end

// synopsys translate_off
always @ (RESET or SET)
  if (RESET == 1’b0 & SET == 1’b0)
  $write (”ONE-COLD violation for RESET and SET.”);
// synopsys translate_on
endmodule 
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Example 6-16 Inference Report for D Latch With Asynchronous Set and 
Reset

Q_reg
Async-reset: RESET’
Async-set: SET’
Async-set and Async-reset ==> Q: X

Figure 6-5 D Latch With Asynchronous Set and Reset

Register Name Type Width Bus MB AR AS SR SS ST

Q_reg Latch 1 - - Y Y - - -
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Understanding the Limitations of D Latch Inference

A variable must always have a value before it is read. As a result, a 
conditionally assigned variable cannot be read after the if statement 
in which it is assigned. A conditionally assigned variable is assigned 
a new value under some, but not all, conditions. Example 6-17 shows 
an invalid use of the conditionally assigned variable VALUE.

Example 6-17 Invalid Use of a Conditionally Assigned Variable

begin

  if ( condition ) then
    VALUE <= X;

  Y <= VALUE; // Invalid read of variable VALUE
end
  

Inferring Master-Slave Latches

You can infer two-phase systems by using D latches. Example 6-18 
shows a simple two-phase system with clocks MCK and SCK. Figure 
6-6 shows the inferred latches.
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Example 6-18 Two-Phase Clocks

module latch_verilog (DATA, MCK, SCK, Q);
  input DATA, MCK, SCK;
  output Q;
  reg Q;

  reg TEMP;

always @(DATA or MCK)
  if (MCK) 
    TEMP = DATA;

always @(TEMP or SCK)
  if (SCK)
    Q = TEMP;
endmodule

Figure 6-6 Two-Phase Clocks
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Inferring Flip-Flops

FPGA Compiler II / FPGA Express can infer D flip-flops, JK flip-flops, 
and toggle flip-flops. The following sections provide details about each 
of these flip-flop types.

Many FPGA devices have a dedicated set/reset hardware resource 
that should be used. For this reason, you should infer asynchronous 
set/reset signals for all flip-flops in the design. FPGA Compiler II / 
FPGA Express will then use the global set/reset lines. 

Inferring D Flip-Flops

FPGA Compiler II / FPGA Express infers a D flip-flop whenever the 
sensitivity list of an always block includes an edge expression (a test 
for the rising or falling edge of a signal). Use the following syntax to 
describe a rising edge:

posedge SIGNAL

Use the following syntax to describe a falling edge:

negedge SIGNAL

When the sensitivity list of an always block contains an edge 
expression, FPGA Compiler II / FPGA Express creates flip-flops for 
all the variables that are assigned values in the block. Example 6-19 
shows the most common use of an always block to infer a flip-flop.

Example 6-19 Using an always Block to Infer a Flip-Flop

always @( edge )
begin
  .
end
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Simple D Flip-Flop

When you infer a D flip-flop, make sure you can control the clock and 
data signals from the top-level design ports or through combinational 
logic. Controllable clock and data signals ensure that simulation can 
initialize the design. If you cannot control the clock and data signals, 
infer a D flip-flop with an asynchronous reset or set or with a 
synchronous reset or set.

When you are inferring a simple D flip-flop, the always block can 
contain only one edge expression. 

Example 6-20 provides the Verilog template for a positive edge-
triggered D flip-flop. FPGA Compiler II / FPGA Express generates the 
inference report shown in Example 6-21. Figure 6-7 shows the 
inferred flip-flop.

Example 6-20 Positive Edge-Triggered D Flip-Flop

module dff_pos (DATA, CLK, Q);
  input DATA, CLK;
  output Q;
  reg Q;

always @(posedge CLK)
  Q = DATA;
endmodule

Example 6-21 Inference Report for a Positive Edge-Triggered D Flip-Flop

Q_reg
set/reset/toggle: none

Register Name Type Width Bus MB AR AS SR SS ST

Q_reg Flip-flop 1 - - N N N N N
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Figure 6-7 Positive Edge-Triggered D Flip-Flop

Example 6-22 provides the Verilog template for a negative edge-
triggered D flip-flop. FPGA Compiler II / FPGA Express generates the 
inference report shown in Example 6-23. Figure 6-8 shows the 
inferred flip-flop.

Example 6-22 Negative Edge-Triggered D Flip-Flop

module dff_neg (DATA, CLK, Q);
  input DATA, CLK;
  output Q;
  reg Q;

always @(negedge CLK)
  Q = DATA;
endmodule

Example 6-23 Inference Report for a Negative Edge-Triggered D Flip-Flop

Q_reg
set/reset/toggle: none

Register Name Type Width Bus MB AR AS SR SS ST

Q_reg Flip-flop 1 - - N N N N N
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Figure 6-8 Negative Edge-Triggered D Flip-Flop

D Flip-Flop With Asynchronous Set or Reset

When inferring a D flip-flop with an asynchronous set or reset, include 
edge expressions for the clock and the asynchronous signals in the 
sensitivity list of the always block. Specify the asynchronous 
conditions by using if statements. Specify the branches for the 
asynchronous conditions before the branches for the synchronous 
conditions. Example 6-24 provides the Verilog template for a D flip-
flop with an asynchronous set. FPGA Compiler II / FPGA Express 
generates the inference report shown in Example 6-25. Figure 6-9 
shows the inferred flip-flop.

Example 6-24 D Flip-Flop With Asynchronous Set

module dff_async_set (DATA, CLK, SET, Q);
  input DATA, CLK, SET;
  output Q;
  reg Q;

always @(posedge CLK or negedge SET)
  if (~SET)
    Q = 1’b1;
  else 
    Q = DATA;
endmodule
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Example 6-25 Inference Report for a D Flip-Flop With Asynchronous Set

Q_reg
Async-set: SET’

Figure 6-9 D Flip-Flop With Asynchronous Set

Example 6-26 provides the Verilog template for a D flip-flop with an 
asynchronous reset. FPGA Compiler II / FPGA Express generates 
the inference report shown in Example 6-27. Figure 6-10 shows the 
inferred flip-flop.

Register Name Type Width Bus MB AR AS SR SS ST

Q_reg Flip-flop 1 - - N Y N N N
6-25

Register and Three-State Inference



Example 6-26 D Flip-Flop With Asynchronous Reset

module dff_async_reset (DATA, CLK, RESET, Q);
  input DATA, CLK, RESET;
  output Q;
  reg Q;

always @(posedge CLK or posedge RESET)
  if (RESET)
    Q = 1’b0;
  else
    Q = DATA;
endmodule

Example 6-27 Inference Report for a D Flip-Flop With Asynchronous Reset

Q_reg
Async-reset: RESET

Figure 6-10 D Flip-Flop With Asynchronous Reset

Register Name Type Width Bus MB AR AS SR SS ST

Q_reg Flip-flop 1 - - Y N N N N
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D Flip-Flop With Asynchronous Set and Reset

Example 6-28 provides the Verilog template for a D flip-flop with active 
high asynchronous set and reset pins. The template uses the one_hot 
directive to prevent priority encoding of the set and reset signals. For 
this template, if you do not specify the one_hot directive, the reset 
signal has priority, because it is used as the condition for the if clause. 
FPGA Compiler II / FPGA Express generates the inference report 
shown in Example 6-29. Figure 6-11 shows the inferred flip-flop.

Note:
Most FPGA architectures donot have a register with an 
asynchronous set and asynchronous reset cell available. For this 
reason, you should avoid this construct.

Example 6-28 D Flip-Flop With Asynchronous Set and Reset

module dff_async (RESET, SET, DATA, Q, CLK);
  input CLK;
  input RESET, SET, DATA;
  output Q;
  reg Q;

// synopsys one_hot ”RESET, SET”
always @(posedge CLK or posedge RESET or 
         posedge SET)
  if (RESET)
    Q= 1’b0;
  else if (SET)
    Q= 1’b1;
  else Q= DATA;

// synopsys translate_off
always @ (RESET or SET)
  if (RESET + SET > 1)
  $write (”ONE-HOT violation for RESET and SET.”);
// synopsys translate_on
endmodule 
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Example 6-29 Inference Report for a D Flip-Flop With Asynchronous Set 
and Reset 

Q_reg
Async-reset: RESET
Async-set: SET
Async-set and Async-reset ==> Q: X

Figure 6-11 D Flip-Flop With Asynchronous Set and Reset

Register Name Type Width Bus MB AR AS SR SS ST

Q_reg Flip-flop 1 - - Y Y N N N
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D Flip-Flop With Synchronous Set or Reset

The previous examples illustrate how to infer a D flip-flop with 
asynchronous controls—one way to initialize or control the state of a 
sequential device. You can also synchronously reset or set a flip-flop 
(see Example 6-30 and Example 6-32). The sync_set_reset directive 
directs FPGA Compiler II / FPGA Express to the synchronous controls 
of the sequential device.

When the target technology library does not have a D flip-flop with 
synchronous reset, FPGA Compiler II / FPGA Express infers a D flip-
flop with synchronous reset logic as the input to the D pin of the flip-
flop. If the reset (or set) logic is not directly in front of the D pin of the 
flip-flop, initialization problems can occur during gate-level simulation 
of the design. 

Example 6-30 provides the Verilog template for a D flip-flop with 
synchronous set. FPGA Compiler II / FPGA Express generates the 
inference report shown in Example 6-31. Figure 6-12 shows the 
inferred flip-flop.

Example 6-30 D Flip-Flop With Synchronous Set

module dff_sync_set (DATA, CLK, SET, Q);
  input DATA, CLK, SET;
  output Q;
  reg Q;

//synopsys sync_set_reset ”SET”
always @(posedge CLK)
  if (SET)
    Q = 1’b1;
  else 
    Q = DATA;
endmodule
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Example 6-31 Inference Report for a D Flip-Flop With Synchronous Set

Q_reg
Sync-set: SET

Figure 6-12 D Flip-Flop With Synchronous Set

Example 6-32 provides the Verilog template for a D flip-flop with 
synchronous reset. FPGA Compiler II / FPGA Express generates the 
inference report shown in Example 6-33. Figure 6-13 shows the 
inferred flip-flop.

Register Name Type Width Bus MB AR AS SR SS ST

Q_reg Flip-flop 1 - - N N N Y N
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Example 6-32 D Flip-Flop With Synchronous Reset

module dff_sync_reset (DATA, CLK, RESET, Q);
  input DATA, CLK, RESET;
  output Q;
  reg Q;

//synopsys sync_set_reset ”RESET”
always @(posedge CLK)
  if (~RESET)
    Q = 1’b0;
  else 
    Q = DATA;
endmodule

Example 6-33 Inference Report for a D Flip-Flop With Synchronous Reset

Q_reg
Sync-reset: RESET’

Figure 6-13 D Flip-Flop With Synchronous Reset

Register Name Type Width Bus MB AR AS SR SS ST

Q_reg Flip-flop 1 - - N N Y N N
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D Flip-Flop With Synchronous and Asynchronous Load

D flip-flops can have asynchronous or synchronous controls. To infer 
a component with synchronous as well as asynchronous controls, 
you must check the asynchronous conditions before you check the 
synchronous conditions.

Example 6-34 provides the Verilog template for a D flip-flop with a 
synchronous load (called SLOAD) and an asynchronous load (called 
ALOAD). FPGA Compiler II / FPGA Express generates the inference 
report shown in Example 6-35. Figure 6-14 shows the inferred flip-
flop.

Example 6-34 D Flip-Flop With Synchronous and Asynchronous Load

module dff_a_s_load (ALOAD, SLOAD, ADATA, SDATA, CLK, Q);
  input ALOAD, ADATA, SLOAD, SDATA, CLK;
  output Q;
  reg Q;

always @ (posedge CLK or posedge ALOAD)
  if (ALOAD)
    Q= ADATA;
  else if (SLOAD)
    Q = SDATA;
endmodule 

Example 6-35 Inference Report for a D Flip-Flop With Synchronous and 
Asynchronous Load

Q_reg
set/reset/toggle: none

Register Name Type Width Bus MB AR AS SR SS ST

Q_reg Flip-flop 1 - - N N N N N
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Figure 6-14 D Flip-Flop With Synchronous and Asynchronous Load

Multiple Flip-Flops With Asynchronous and Synchronous 
Controls

If a signal is synchronous in one block but asynchronous in another 
block, use the sync_set_reset_local and async_set_reset_local 
directives to direct FPGA Compiler II / FPGA Express to the correct 
implementation.

In Example 6-36, block infer_sync uses the reset signal as a 
synchronous reset and block infer_async uses the reset signal as an 
asynchronous reset. FPGA Compiler II / FPGA Express generates 
the inference reports shown in Example 6-37. Figure 6-15 shows the 
resulting design.
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Example 6-36 Multiple Flip-Flops With Asynchronous and Synchronous 
Controls

module multi_attr (DATA1, DATA2, CLK, RESET, SLOAD, 
                   Q1, Q2);
  input DATA1, DATA2, CLK, RESET, SLOAD;
  output Q1, Q2;
  reg Q1, Q2;

//synopsys sync_set_reset_local infer_sync ”RESET”
always @(posedge CLK)
begin : infer_sync
  if (~RESET)
    Q1 = 1’b0;
  else if (SLOAD)
    Q1 = DATA1;
end

//synopsys async_set_reset_local infer_async ”RESET”
always @(posedge CLK or negedge RESET)
begin: infer_async
  if (~RESET)
    Q2 = 1’b0;
  else if (SLOAD)
    Q2 = DATA2;
end
endmodule

Example 6-37 Inference Reports for Multiple Flip-Flops With Asynchronous 
and Synchronous Controls

Q1_reg

Sync-reset: RESET’

Q2_reg
Async-reset: RESET’

Register Name Type Width Bus MB AR AS SR SS ST

Q1_reg Flip-flop 1 - - N N Y N N

Register Name Type Width Bus MB AR AS SR SS ST

Q2_reg Flip-flop 1 - - Y N N N N
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Figure 6-15 Multiple Flip-Flops With Asynchronous and Synchronous 
Controls

Understanding the Limitations of D Flip-Flop Inference

If you use an if statement to infer D flip-flops, your design must meet 
the following requirements:

• The signal in an edge expression cannot be an indexed 
expression.

The following always block is invalid, because it uses an indexed 
expression:

always @(posedge clk[1])

FPGA Compiler II / FPGA Express generates the following 
message when you use an indexed expression in the always 
block:

Error: In an event expression with ’posedge’ and ’negedge’ 
qualifiers, only simple identifiers are allowed %s.
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(VE-91)

• Set and reset conditions must be single-bit variables.

The following reset condition is invalid, because it uses a bused 
variable:

always @(posedge clk and negedge reset_bus)
  if (!reset_bus[1])
  .
end

FPGA Compiler II / FPGA Express generates the following 
message when you use a bused variable in a set or reset 
condition:

Error: The expression for the reset condition of the ’if’ 
statement in this ’always’ block can only be a simple 
identifier or its negation (%s). (VE-92)

• Set and reset conditions cannot use complex expressions.

The following reset condition is invalid, because it uses a complex 
expression:

always @(posedge clk and negedge reset)
  if (reset == (1-1))
  .
end

FPGA Compiler II / FPGA Express generates the VE-92 message 
when you use a complex expression in a set or reset condition.

• An if statement must occur at the top level of the always block.

The following example is invalid, because the if statement does 
not occur at the top level:
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always @(posedge clk or posedge reset) begin
  #1;
  if (reset)
  .
end

FPGA Compiler II / FPGA Express generates the following 
message when the if statement does not occur at the top level:

Error: The statements in this ’always’ block are outside 
the scope of the synthesis policy (%s). Only an ’if’ 
statement is allowed at the top level in this ’always’ 
block. Please refer to the HDL Compiler reference manual 
for ways to infer flip-flops and latches from ’always’ 
blocks. (VE-93)

Inferring JK Flip-Flops

When you infer a JK flip-flop, make sure you can control the J, K, and 
clock signals from the top-level design ports to ensure that simulation 
can initialize the design.The following sections provide code 
examples, inference reports, and figures for these types of JK flip-
flops:

• JK flip-flop

• JK flip-flop with asynchronous set and reset

JK Flip-Flop

Example 6-38 provides the Verilog code that implements the JK flip-
flop described in Table 6-2. 

In the JK flip-flop, the J and K signals act as active-high synchronous 
set and reset. Use the sync_set_reset directive to indicate that the J 
and K signals are the synchronous set and reset for the design. 
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Example 6-39 shows the inference report generated by FPGA 
Compiler II / FPGA Express. Figure 6-16 shows the inferred flip-flop.

Table 6-2 Truth Table for JK Flip-Flop

Example 6-38 JK Flip-Flop

module JK(J, K, CLK, Q);
  input J, K;
  input CLK;
  output Q;
  reg Q;

// synopsys sync_set_reset ”J, K”
always @ (posedge CLK)
  case ({J, K})
    2’b01 : Q = 0;
    2’b10 : Q = 1;
    2’b11 : Q = ~Q;
  endcase
endmodule 

Example 6-39 Inference Report for JK Flip-Flop

Q_reg
Sync-reset: J’ K
Sync-set: J K’
Sync-toggle: J K
Sync-set and Sync-reset ==> Q: X

J K CLK Qn+1

0 0 Rising Qn

0 1 Rising 0

1 0 Rising 1

1 1 Rising QnB

X X Falling Qn

Register Name Type Width Bus MB AR AS SR SS ST

Q_reg Flip-flop 1 - - N N Y Y Y
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Figure 6-16 JK Flip-Flop

JK Flip-Flop With Asynchronous Set and Reset

Example 6-40 provides the Verilog template for a JK flip-flop with 
asynchronous set and reset. Use the sync_set_reset directive to 
indicate the JK function. Use the one_hot directive to prevent priority 
encoding of the J and K signals.

FPGA Compiler II / FPGA Express generates the inference report 
shown in Example 6-41. Figure 6-17 shows the inferred flip-flop.
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Example 6-40 JK Flip-Flop With Asynchronous Set and Reset

module jk_async_sr (RESET, SET, J, K, CLK, Q);
  input RESET, SET, J, K, CLK;
  output Q;
  reg Q;

// synopsys sync_set_reset ”J, K”
// synopsys one_hot ”RESET, SET”
always @ (posedge CLK or posedge RESET or 
          posedge SET)
  if (RESET)
    Q=1’b0;
  else if (SET)
    Q=1’b1;
  else
    case ({J, K})
      2’b01 : Q = 0;
      2’b10 : Q = 1;
      2’b11 : Q = ~Q;
    endcase

//synopsys translate_off
always @(RESET or SET)
  if (RESET + SET > 1)
    $write (”ONE-HOT violation for RESET and SET.”);
// synopsys translate_on
endmodule
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Example 6-41 Inference Report for JK Flip-Flop With Asynchronous Set and 
Reset

Q_reg
    Async-reset: RESET
    Async-set: SET
    Sync-reset: J’ K
    Sync-set: J K’
    Sync-toggle: J K
    Async-set and Async-reset ==> Q: X
    Sync-set and Sync-reset ==> Q: X

Figure 6-17 JK Flip-Flop With Asynchronous Set and Reset

Inferring Toggle Flip-Flops

To infer toggle flip-flops, follow the coding style in the following 
examples. 

Register Name Type Width Bus MB AR AS SR SS ST

Q_reg Flip-flop 1 - - Y Y Y Y Y
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You must include asynchronous controls in the toggle flip-flop 
description. Without them, you cannot initialize toggle flip-flops to a 
known state.

This section describes toggle flip-flops with an asynchronous set or 
reset and toggle flip-flops with an enable and an asynchronous reset.

Toggle Flip-Flop With Asynchronous Set or Reset

Example 6-42 shows the template for a toggle flip-flop with 
asynchronous set. FPGA Compiler II / FPGA Express generates the 
inference report shown in Example 6-43. Figure 6-18 shows the flip-
flop.

Example 6-42 Toggle Flip-Flop With Asynchronous Set

module t_async_set (SET, CLK, Q);
  input SET, CLK;
  output Q;
  reg Q;

always @ (posedge CLK or posedge SET)
  if (SET) 
    Q = 1;
   else 
    Q = ~Q;
endmodule

Example 6-43 Inference Report for a Toggle Flip-Flop With Asynchronous 
Set

TMP_Q_reg
Async-set: SET
Sync-toggle: true

Register Name Type Width Bus MB AR AS SR SS ST

TMP_Q_reg Flip-flop 1 - - N Y N N Y
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Figure 6-18 Toggle Flip-Flop With Asynchronous Set

Example 6-44 provides the Verilog template for a toggle flip-flop with 
asynchronous reset. Example 6-45 shows the inference report. 
Figure 6-19 shows the inferred flip-flop.

Example 6-44 Toggle Flip-Flop With Asynchronous Reset

module t_async_reset (RESET, CLK, Q);
  input RESET, CLK;
  output Q;
  reg Q;

always @ (posedge CLK or posedge RESET)
  if (RESET) 
    Q = 0;
  else 
    Q = ~Q;
endmodule
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Example 6-45 Inference Report: Toggle Flip-Flop With Asynchronous Reset

TMP_Q_reg
Async-reset: RESET
    Sync-toggle: true

Figure 6-19 Toggle Flip-Flop With Asynchronous Reset

Toggle Flip-Flops With Enable and Asynchronous Reset

Example 6-46 provides the Verilog template for a toggle flip-flop with 
an enable and an asynchronous reset. The flip-flop toggles only when 
the enable (TOGGLE signal) has a logic 1 value. FPGA Compiler II / 
FPGA Express generates the inference report shown in Example 
6-47. Figure 6-20 shows the inferred flip-flop.

Register Name Type Width Bus MB AR AS SR SS ST

TMP_Q_reg Flip-flop 1 - - Y N N N Y
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Example 6-46 Toggle Flip-Flop With Enable and Asynchronous Reset

module t_async_en_r (RESET, TOGGLE, CLK, Q);
  input RESET, TOGGLE, CLK;
  output Q;
  reg Q;
always @ (posedge CLK or posedge RESET)
begin : infer
  if (RESET) 
    Q = 0;
  else if (TOGGLE)
    Q = ~Q;
end 
endmodule 

Example 6-47 Inference Report: Toggle Flip-Flop With Enable and 
Asynchronous Reset

TMP_Q_reg
Async-reset: RESET
Sync-toggle: TOGGLE

Register Name Type Width Bus MB AR AS SR SS ST

TMP_Q_reg Flip-flop 1 - - Y N N N Y
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Figure 6-20 Toggle Flip-Flop With Enable and Asynchronous Reset

Getting the Best Results

This section provides tips for improving the results you achieve during 
flip-flop inference. Topics include

• Minimizing flip-flop count

• Correlating synthesis results with simulation results

Minimizing Flip-Flop Count

An always block that contains a clock edge in the sensitivity list causes 
FPGA Compiler II / FPGA Express to infer a flip-flop for each variable 
assigned a value in that block. It might not be necessary to register 
all variables in the block. Make sure your HDL description builds only 
as many flip-flops as the design requires. 
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The description in Example 6-48 builds six flip-flops, one for each 
variable assigned a value in the block (COUNT(2:0), AND_BITS, 
OR_BITS, and XOR_BITS).

Example 6-48 Circuit With Six Implied Registers

module count (CLK, RESET, AND_BITS, OR_BITS, XOR_BITS);
  input CLK, RESET;
  output AND_BITS, OR_BITS, XOR_BITS;
  reg AND_BITS, OR_BITS, XOR_BITS;

  reg [2:0] COUNT;

always @(posedge CLK) begin
  if (RESET)
    COUNT = 0;
  else
    COUNT = COUNT + 1;

  AND_BITS = & COUNT;
  OR_BITS = | COUNT;
  XOR_BITS = ^ COUNT;
end
endmodule

In this design, the outputs—AND_BITS, OR_BITS, and XOR_BITS— 

depend solely on the value of the variable COUNT. If the variable 
COUNT is registered, these three outputs do not need to be 
registered. 

To compute values synchronously and store them in flip-flops, set up 
an always block with a signal edge trigger. To let other values change 
asynchronously, make a separate always block with no signal edge 
trigger. Put the assignments you want clocked in the always block 
with the signal edge trigger, and put the other assignments in the 
other always block. You use this technique for creating Mealy 
machines.
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To avoid inferring extra registers, assign the outputs in an always block 
that does not have a clock edge in its condition expression. Example 
6-49 shows a description with two always blocks, one with a clock 
edge condition and one without. Put the registered (synchronous) 
assignments into the block with the clock edge condition. Put the other 
(asynchronous) assignments in the other block. This description style 
lets you choose the variables that are registered and those that are 
not.

Example 6-49 Circuit With Three Implied Registers

module count (CLK, RESET, 
              AND_BITS, OR_BITS, XOR_BITS);
  input CLK, RESET;
  output AND_BITS, OR_BITS, XOR_BITS;
  reg AND_BITS, OR_BITS, XOR_BITS;

  reg [2:0] COUNT;

//synchronous block
always @(posedge CLK) begin
  if (RESET)
    COUNT = 0;
  else
    COUNT = COUNT + 1;
end
//asynchronous block
always @(COUNT) begin
  AND_BITS = & COUNT;
  OR_BITS = | COUNT;
  XOR_BITS = ^ COUNT;
end
endmodule

The technique of separating combinational logic from registered or 
sequential logic is useful for describing state machines. See the 
following examples in Appendix A:
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• “Count Zeros—Combinational Version” on page A-2

• “Count Zeros—Sequential Version” on page A-5

• “Drink Machine—State Machine Version” on page A-7

• “Drink Machine—Count Nickels Version” on page A-10

• “Carry-Lookahead Adder” on page A-12

Correlating With Simulation Results

Using delay specifications with registered values can cause the 
simulation to behave differently from the logic FPGA Compiler II / 
FPGA Express synthesizes. For example, the description in Example 
6-50 contains delay information that causes FPGA Compiler II / FPGA 
Express to synthesize a circuit that behaves unexpectedly (the post-
synthesis simulation results do not match the pre-synthesis 
simulation results).

Example 6-50 Delays in Registers

module flip_flop (D, CLK, Q);
input D, CLK;
output Q;
.

endmodule

module top (A, C, D, CLK);
.
reg B;

always @ (A or C or D or CLK)
begin

B <= #100 A;
flip_flop F1(A, CLK, C);
flip_flop F2(B, CLK, D);

end
endmodule
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In Example 6-50, B changes 100 nanoseconds after A changes. If 
the clock period is less than 100 nanoseconds, output D is one or 
more clock cycles behind output C during simulation of the design. 
However, because FPGA Compiler II / FPGA Express ignores the 
delay information, A and B change values at the same time, and so 
do C and D. This behavior is not the same as in the post-synthesis 
simulation.

When using delay information in your designs, make sure that the 
delays do not affect registered values. In general, you can safely 
include delay information in your description if it does not change the 
value that gets clocked into a flip-flop.

Understanding Limitations of Register Inference

FPGA Compiler II / FPGA Express cannot infer the following 
components. You must instantiate these components in your Verilog 
description.

• Flip-flops and latches with three-state outputs

• Flip-flops with bidirectional pins

• Flip-flips with multiple clock inputs

• Multiport latches

• Register banks

Note:
Although you can instantiate flip-flops with bidirectional pins, 
FPGA Compiler II / FPGA Express interprets these cells as black 
boxes.
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Three-State Inference

FPGA Compiler II / FPGA Express infers a three-state driver when 
you assign the value of z to a variable. The z value represents the 
high-impedance state. FPGA Compiler II / FPGA Express infers one 
three-state driver per block. You can assign high-impedance values 
to single-bit or bused variables.

Reporting Three-State Inference

FPGA Compiler II / FPGA Express generates an inference report that 
shows information about the inferred devices. Example 6-51 shows 
a three-state inference report. 

Example 6-51 Three-State Inference Report

The first column of the report indicates the name of the inferred three-
state device. The second column indicates the type of three-state 
device FPGA Compiler II / FPGA Express inferred. The third column 
indicates whether the three-state device has multiple bits.

Controlling Three-State Inference

FPGA Compiler II / FPGA Express always infers a three-state driver 
when you assign the value of z to a variable. FPGA Compiler II / FPGA 
Express does not provide any means of controlling the inference.

Three-State Device Name Type MB

OUT1_tri Three-State Buffer N
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Inferring Three-State Drivers

This section contains Verilog examples that infer the following types 
of three-state drivers:

• Simple three-state drivers

• Registered three-state drivers

Simple Three-State Driver

This section provides a template for a simple three-state driver. In 
addition, it provides examples of how allocating high-impedance 
assignments to different blocks affects three-state inference.

Example 6-52 provides the Verilog template for a simple three-state 
driver. FPGA Compiler II / FPGA Express generates the inference 
report shown in Example 6-53. Figure 6-21 shows the inferred three-
state driver.

Example 6-52 Simple Three-State Driver

module three_state (ENABLE, IN1, OUT1);
  input IN1, ENABLE;
  output OUT1;
  reg OUT1;

always @(ENABLE or IN1) begin
  if (ENABLE)
    OUT1 = IN1;
  else
    OUT1 = 1’bz;  //assigns high-impedance state
end
endmodule
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Example 6-53 Inference Report for Simple Three-State Driver

Figure 6-21 Schematic of Simple Three-State Driver

Example 6-54 provides an example of placing all high-impedance 
assignments in a single block. In this case, the data is gated and 
FPGA Compiler II / FPGA Express infers a single three-state driver. 
Example 6-55 shows the inference report. Figure 6-22 shows the 
schematic the code generates.

Three-State Device Name Type MB

OUT1_tri Three-State Buffer N
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Example 6-54 Inferring One Three-State Driver From a Single Block

module three_state (A, B, SELA, SELB, T);
  input  A, B, SELA, SELB;
  output T;
  reg T;

always @(SELA or SELB or A or B) begin
  T = 1’bz;
  if (SELA)
    T = A;
  if (SELB)
    T = B;
end
endmodule

Example 6-55 Single Block Inference Report

Three-State Device Name Type MB

T_tri Three-State Buffer N
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Figure 6-22 One Three-State Driver Inferred From a Single Block

Example 6-56 provides an example of placing each high-impedance 
assignment in a separate block. In this case, FPGA Compiler II / FPGA 
Express infers multiple three-state drivers. Example 6-57 shows the 
inference report. Figure 6-23 shows the schematic the code 
generates.

TRI
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Example 6-56 Inferring Three-State Drivers From Separate Blocks

module three_state (A, B, SELA, SELB, T);
  input  A, B, SELA, SELB;
  output T;
  reg T;

always @(SELA or A)
  if (SELA)
    T = A;
  else 
    T = 1’bz;

always @(SELB or B)
  if (SELB)
    T = B;
  else 
    T = 1’bz;
endmodule

Example 6-57 Inference Report for Two Three-State Drivers

Three-State Device Name Type MB

T_tri Three-State Buffer N

Three-State Device Name Type MB

T_tri2 Three-State Buffer N
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Figure 6-23 Two Three-State Drivers Inferred From Separate Blocks

Registered Three-State Drivers

When a variable is registered in the same block in which it is three-
stated, FPGA Compiler II / FPGA Express also registers the enable 
pin of the three-state gate. Example 6-58 shows an example of this 
type of code. Example 6-59 shows the inference report. Figure 6-24 
shows the schematic generated by the code. 

Example 6-58 Three-State Driver With Registered Enable

module ff_3state (DATA, CLK, THREE_STATE, OUT1);
  input DATA, CLK, THREE_STATE;
  output OUT1;
  reg OUT1;

always @ (posedge CLK) begin
  if (THREE_STATE)
    OUT1 = 1’bz;
  else
    OUT1 = DATA;
end
endmodule
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Example 6-59 Inference Report for Three-State Driver With Registered 
Enable

Figure 6-24 Three-State Driver With Registered Enable

In Figure 6-24, the three-state gate has a register on its enable pin. 
Example 6-60 uses two blocks to instantiate a three-state gate, with 
a flip-flop only on the input. Example 6-61 shows the inference report. 
Figure 6-25 shows the schematic the code generates. 

Three-state Device Name Type MB

OUT1_tri
OUT1_tr_enable_reg

Three-State Buffer
Flip-flop (width 1)

N
N
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Example 6-60 Three-State Driver Without Registered Enable

module ff_3state (DATA, CLK, THREE_STATE, OUT1);
  input DATA, CLK, THREE_STATE;
  output OUT1;
  reg OUT1;

  reg TEMP;

always @(posedge CLK)
  TEMP = DATA;

always @(THREE_STATE or TEMP)
  if (THREE_STATE)
    OUT1 = TEMP;
  else
    OUT1 = 1’bz;
endmodule

Example 6-61 Inference Report for Three-State Driver Without Registered 
Enable

Three-State Device Name Type MB

OUT1_tri Three-State Buffer N
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Figure 6-25 Three-State Driver Without Registered Enable

Understanding the Limitations of Three-State Inference

You can use the z value in the following ways:

• Variable assignment

• Function call argument

• Return value

You cannot use the z value in an expression, except for comparison 
with z. Be careful when using expressions that compare with the z 
value. FPGA Compiler II / FPGA Express always evaluates these 
expressions to false, and the pre-synthesis and post-synthesis 
simulation results might differ. For this reason, FPGA Compiler II / 
FPGA Express issues a warning when it synthesizes such 
comparisons.

This is an example of incorrect use of the z value in an expression:

OUT_VAL = (1’bz && IN_VAL);
6-60

Register and Three-State Inference



This is an example of correct use of the z value in an expression:

if (IN_VAL == 1’bz) then
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7
Writing Circuit Descriptions 7

You can write many logically equivalent descriptions in Verilog to 
describe a circuit design. However, some descriptions are more 
efficient than others in terms of the synthesized circuit’s area and 
speed. The way you write your Verilog source code can affect 
synthesis.

This chapter describes how to write a Verilog description to ensure 
an efficient implementation. Topics include

• How Statements Are Mapped to Logic

• Don’t Care Inference

• Propagating Constants

• Synthesis Issues

• Designing for Overall Efficiency
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Here are some general guidelines for writing efficient circuit 
descriptions:

• Restructure a design that makes repeated use of several large 
components, to minimize the number of instantiations.

• In a design that needs some, but not all, of its variables or signals 
stored during operation, minimize the number of latches or flip-
flops required.

• Consider collapsing hierarchy for more-efficient synthesis.

How Statements Are Mapped to Logic

Verilog descriptions are mapped to logic by the creation of blocks of 
combinational circuits and storage elements. A statement or an 
operator in a Verilog function can represent a block of combinational 
logic or, in some cases, a latch or register.

The description fragment shown in Example 7-1 represents four logic 
blocks:

• A comparator that compares the value of b with 10

• An adder that has a and b as inputs

• An adder that has a and 10 as inputs

• A multiplexer (implied by the if statement) that controls the final 
value of y
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Example 7-1 Four Logic Blocks

if (b < 10)   
    y = a + b; 
else 
    y = a + 10; 

The logic blocks created by FPGA Compiler II / FPGA Express are 
custom-built for their environment. That is, if a and b are 4-bit 
quantities, a 4-bit adder is built. If a and b are 9-bit quantities, a 9-bit 
adder is built. Because FPGA Compiler II / FPGA Express 
incorporates a large set of these customized logic blocks, it can 
translate most Verilog statements and operators.

Design Structure

FPGA Compiler II / FPGA Express provides significant control over 
the preoptimization structure, or organization of components, in your 
design. Whether or not your design structure is preserved after 
optimization depends on the options you select. FPGA Compiler II / 
FPGA Express automatically chooses the best structure for your 
design. You can view the preoptimized structure in the schematic 
window and then correlate it back to the original HDL source code.

You control structure by the way you order assignment statements 
and the way you use variables. Each Verilog assignment statement 
implies a piece of logic. The following examples illustrate two possible 
descriptions of an adder’s carry chain. Example 7-2 results in a ripple 
carry implementation, as in Figure 7-1. Example 7-3 has more 
structure (gates), because the HDL source includes temporary 
registers, and it results in a carry-lookahead implementation, as in 
Figure 7-2.
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Example 7-2 Ripple Carry Chain

// a is the addend
// b is the augend
// c is the carry
// cin is the carry in
c0 = (a0 & b0) |
     (a0 | b0) & cin;
c1 = (a1 & b1) |
     (a1 | b1) & c0;

Figure 7-1 Ripple Carry Chain Implementation

Example 7-3 Carry-Lookahead Chain

// p’s are propagate
// g’s are generate
p0 = a0 | b0;
g0 = a0 & b0;
p1 = a1 | b1;
g1 = a1 & b1;
c0 = g0 | p0 & cin;
c1 = g1 | p1 & g0 |
         p1 & p0 & cin;

a0 cin a1 b1b0

c0 c1
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Figure 7-2 Carry-Lookahead Chain Implementation

You can also use parentheses to control the structure of complex 
components in a design. FPGA Compiler II / FPGA Express uses 
parentheses to define logic groupings. Example 7-4 and Example 7-5 
illustrate two groupings of adders. The circuit diagrams show how 
grouping the logic affects the way the circuit is synthesized. When 
Example 7-4 is parsed, (a + b) is grouped together by default, then c 
and d are added one at a time.

a0 b0

c1c0

cin
a1 b1
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Example 7-4 4-Input Adder

z = a + b + c + d;

Example 7-5 4-Input Adder With Parentheses

z = (a + b) + (c + d);

Note:
Manual or automatic resource sharing can also affect the structure 
of a design.

   +

   +

   +

 a  b
 c  d

 z

   +

   +

 z

   +

a  b c  d
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Using Design Knowledge

In many circumstances, you can improve the quality of synthesized 
circuits by better describing your high-level knowledge of a circuit. 
FPGA Compiler II / FPGA Express cannot always derive details of a 
circuit architecture. Any additional architectural information you can 
provide to FPGA Compiler II / FPGA Express can result in a more 
efficient circuit. 

Optimizing Arithmetic Expressions

FPGA Compiler II / FPGA Express uses the properties of arithmetic 
operators (such as the associative and commutative properties of 
addition) to rearrange an expression so that it results in an optimized 
implementation. You can also use arithmetic properties to control the 
choice of implementation for an expression. Three forms of arithmetic 
optimization are discussed in this section: 

• Arranging Expression Trees for Minimum Delay

• Sharing Common Subexpressions

Arranging Expression Trees for Minimum Delay

If your goal is to speed up your design, arithmetic optimization can 
minimize the delay through an expression tree by rearranging the 
sequence of the operations. Consider the statement in Example 7-6.
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Example 7-6 Simple Arithmetic Expression

Z <= A + B + C + D;

The parser performs each addition in order, as though parentheses 
were placed as shown, and constructs the expression tree shown in 
Figure 7-3:

Z <= ((A + B) + C) + D);

Figure 7-3 Default Expression Tree

Considering Signal Arrival Times

If all signals arrive at the same time, the critical path can be reduced 
to two adders.

Z <= (A + B) + (C + D);

The parser evaluates the expressions in parentheses first and 
constructs a balanced adder tree, as shown in Figure 7-4.

A B

C

D

Z
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Figure 7-4 Balanced Adder Tree (Same Arrival Times for All Signals) 

Suppose signals B, C, and D arrive at the same time and signal A 
arrives last. The expression tree that produces the minimum delay is 
shown in Figure 7-5.

Figure 7-5 Expression Tree With Minimum Delay (Signal A Arrives Last)

Using Parentheses

You can use parentheses in expressions to exercise more control over 
the way expression trees are constructed. Parentheses are regarded 
as user directives that force an expression tree to use the groupings 
inside the parentheses. The expression tree cannot be rearranged to 
violate these groupings. 

A B C D

Z

A

B C

D

Z
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To illustrate the effect of parentheses on the construction of an 
expression tree, consider Example 7-7.

Example 7-7 Parentheses in an Arithmetic Expression

Q <= ((A + (B + C)) + D + E) + F;

The parentheses in the expression in Example 7-7 define the following 
subexpressions, whose numbers correspond to those in Figure 7-6:

1 (B + C)
2 (A + (B + C))
3 ((A + (B + C)) + D + E)

These subexpressions must be preserved in the expression tree. The 
default expression tree for Example 7-7 is shown in Figure 7-6.

Figure 7-6 Expression Tree With Subexpressions Dictated by Parentheses

A

B C

D

Q

E

F

1

3

2
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Considering Overflow Characteristics

When FPGA Compiler II / FPGA Express performs arithmetic 
optimization, it considers how to handle the overflow from carry bits 
during addition. The optimized structure of an expression tree is 
affected by the bit-widths you declare for storing intermediate results. 
For example, suppose you write an expression that adds two 4-bit 
numbers and stores the result in a 4-bit register. If the result of the 
addition overflows the 4-bit output, the most significant bits are 
truncated. Example 7-8 shows how FPGA Compiler II / FPGA 
Express handles overflow characteristics.

Example 7-8 Adding Numbers of Different Bit-Widths

t <= a + b;  // a and b are 4-bit numbers
z <= t + c;  // c is a 6-bit number

In Example 7-8, three variables are added (a + b + c). A temporary 
variable, t, holds the intermediate result of a + b. Suppose t is declared 
as a 4-bit variable so the overflow bits from the addition of a + b are 
truncated. The parser determines the default structure of the 
expression tree, which is shown in Figure 7-7.

Figure 7-7 Default Expression Tree With 4-Bit Temporary Variable

a[4] b[4]

c[6]

z[6]

t[4]
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Now suppose the addition is performed without a temporary variable 
(z = a + b + c). FPGA Compiler II / FPGA Express determines that 
five bits are needed to store the intermediate result of the addition, 
so no overflow condition exists. The results of the final addition might 
be different from the first case, where a 4-bit temporary variable is 
declared that truncates the result of the intermediate addition. 
Therefore, these two expression trees do not always yield the same 
result. The expression tree for the second case is shown in Figure 7-8.

Figure 7-8 Expression Tree With 5-Bit Intermediate Result

Sharing Common Subexpressions

Subexpressions consist of two or more variables in an expression. If 
the same subexpression appears in more than one equation, you 
might want to share these operations to reduce the area of your circuit. 
You can force common subexpressions to be shared by declaring a 
temporary variable to store the subexpression, then use the 
temporary variable wherever you want to repeat the subexpression. 
Example 7-9 shows a group of simple additions that use the common 
subexpression (a + b).

a[4] b[4]

c[6]

z[6]

[5]
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Example 7-9 Simple Additions With a Common Subexpression

temp <= a + b;
x <= temp;
y <= temp + c;

Instead of manually forcing common subexpressions to be shared, 
you can let FPGA Compiler II / FPGA Express automatically 
determine whether sharing common subexpressions improves your 
circuit. You do not need to declare a temporary variable to hold the 
common subexpression in this case.

In some cases, sharing common subexpressions results in more 
adders being built. Consider Example 7-10, where A + B is a common 
subexpression.

Example 7-10 Sharing Common Subexpressions

if cond1
Y <= A + B;

else
Y <= C + D;

end;
if cond2

Z <= E + F;
else

Z <= A + B;
end;

If the common subexpression A + B is shared, three adders are 
needed to implement this section of code:

(A + B)
(C + D)
(E + F)
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If the common subexpression is not shared, only two adders are 
needed: one to implement the additions A + B and C + D and one to 
implement the additions E + F and A + B.

FPGA Compiler II / FPGA Express analyzes common subexpressions 
during the resource sharing phase of the compile command and 
considers area costs and timing characteristics. To turn off the sharing 
of common subexpressions for the current design, use the constraint 
manager.

The FPGA Compiler II / FPGA Express parser does not identify 
common subexpressions unless you use parentheses or write them 
in the same order. For example, the two equations in Example 7-11 
use the common subexpression A + B.

Example 7-11 Unidentified Common Subexpressions

Y <= A + B + C;
Z <= D + A + B;

The parser does not recognize A + B as a common subexpression, 
because it parses the second equation as (D + A) + B. You can force 
the parser to recognize the common subexpression by rewriting the 
second assignment statement as

Z <= A + B + D;

or

Z <= D + (A + B);

Note:
You do not have to rewrite the assignment statement, because 
FPGA Compiler II / FPGA Express recognizes common 
subexpressions automatically.
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Using Operator Bit-Width Efficiently

You can improve circuits by using operators more carefully. In 
Example 7-12, the adder sums the 8-bit value of a with the lower 4 
bits of temp. Although temp is declared as an 8-bit value, the upper 
4 bits of temp are always 0, so only the lower 4 bits of temp are needed 
for the addition.

You can simplify the addition by changing temp to temp [3:0], as 
shown in Example 7-12. Now, instead of using eight full adders to 
perform the addition, four full adders are used for the lower 4 bits and 
four half adders are used for the upper 4 bits. This yields a significant 
savings in circuit area.

Example 7-12 More Efficient Use of Operators

module all (a,b,y);
input  [7:0] a,b;
output  [8:0] y;
function  [8:0] add_lt_10;
input  [7:0] a,b;
reg  [7:0] temp;

begin
if  (b < 10)

temp = b;
else

temp = 10;
add_lt_10 = a + temp [3:0]; // use [3:0] for temp

end
endfunction
assign y = add_lt_10(a,b);
endmodule
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Using State Information

When you build finite state machines, you can often specify a constant 
value of a signal in a particular state. You can write your Verilog 
description so that FPGA Compiler II / FPGA Express produces a 
more efficient circuit.

Example 7-13, shows the Verilog description of a simple finite state 
machine.

Example 7-13 A Simple Finite State Machine

module machine (x, clock, current_state, z);

input   x, clock;
output [1:0] current_state;
output  z;

reg [1:0]  current_state;
reg     z;   
/* Redeclared as reg so they can be assigned to in always 
statements. By default, ports are wires and cannot be 
assigned to in ’always’ 
*/
reg [1:0] next_state;
reg previous_z;

parameter [1:0] set0  = 0,
hold0 = 1,
set1  = 2;

always @ (x or current_state) begin
    case (current_state)       //synopsys full_case 

/* declared full_case to avoid extraneous latches */
set0:
    begin
    z = 0 ;       //set z to 0
    next_state = hold0;
    end
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hold0:
    begin
    z = previous_z;          //hold value of z
    if (x == 0)

next_state = hold0;
    else

next_state = set1;
    end
set1:
    begin
    z = 1;                   //set z to 1
    next_state = set0;
    end

    endcase
end
always @ (posedge clock) begin
    current_state = next_state;
    previous_z    = z;
end
endmodule

In the state hold0, the output z retains its value from the previous 
state. To synthesize this circuit, a flip-flop is inserted to hold the state 
previous_z. However, you can make some assertions about the value 
of z. In the state hold0, the value of z is always 0. This can be deduced 
from the fact that the state hold0 is entered only from the state set0, 
where z is always assigned the value 0.

Example 7-14 shows how the Verilog description can be changed to 
use this assertion, resulting in a simpler circuit (because the flip-flop 
for previous_z is not required). The changed line is shown in bold.
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Example 7-14 Better Implementation of a Finite State Machine

module machine (x, clock, current_state, z);

input   x, clock;
output [1:0]current_state;
output  z;

reg [1:0] current_state;
reg     z;   
/* Redeclared as reg so they can be assigned to in always 
statements. By default, ports are wires and cannot be 
assigned to in ’always’ 
*/
reg [1:0] next_state;

parameter [1:0] set0  = 0,
hold0 = 1,
set1  = 2;

always @ (x or current_state) begin
    case (current_state) //synopsys full_case 

/* declared full_case to avoid extraneous latches */
set0:
    begin
    z = 0 ; //set z to 0
    next_state = hold0;
    end
hold0:
    begin
    z = 0;    //hold z at 0
    if (x == 0)

next_state = hold0;
    else

next_state = set1;
    end
set1:
    begin
    z = 1;         //set z to 1
    next_state = set0;
    end

    endcase
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end
always @ (posedge clock) begin
    current_state = next_state;
end
endmodule

Describing State Machines

You can use an implicit state style or an explicit state style to describe 
a state machine. In the implicit state style, a clock edge (negedge or 
posedge) signals a transition in the circuit from one state to another. 
In the explicit state style, you use a constant declaration to assign a 
value to all states. Each state and its transition to the next state are 
defined under the case statement. Use the implicit state style to 
describe a single flow of control through a circuit (where each state 
in the state machine can be reached only from one other state). Use 
the explicit state style to describe operations such as synchronous 
resets.

Example 7-15 shows a description of a circuit that sums data over 
three clock cycles. The circuit has a single flow of control, so the 
implicit style is preferable.
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Example 7-15 Summing Three Cycles of Data in the Implicit State Style 
(Preferred)

module sum3 ( data, clk, total );
input [7:0] data;
input clk;
output [7:0] total;

reg total;

always
begin
 @ (posedge clk)
          total = data;
 @ (posedge clk)
          total = total + data;
 @ (posedge clk)
          total = total + data;
end
endmodule

Note:
With the implicit state style, you must use the same clock phase 
(either posedge or negedge) for each event expression. Implicit 
states can be updated only if they are controlled by a single clock 
phase. 

Example 7-16 shows a description of the same circuit in the explicit 
state style. This circuit description requires more lines of code than 
the previous example, although FPGA Compiler II / FPGA Express 
synthesizes the same circuit for both descriptions.
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Example 7-16 Summing Three Cycles of Data in the Explicit State Style (Not 
Advisable)

module sum3 ( data, clk, total );
input [7:0] data;
input clk;
output [7:0] total;

reg total;
reg [1:0] state;

parameter S0 = 0, S1 = 1, S2 = 2;

always @ (posedge clk)
begin
   case (state)
   S0: begin
          total = data;
          state = S1;
       end
   S1: begin
          total = total + data;
          state = S2;
       end
   default : begin
          total = total + data;
          state = S0;
       end
   endcase
end
endmodule

Example 7-17 shows a description of the same circuit with a 
synchronous reset added. This example is coded in the explicit state 
style. Notice that the reset operation is addressed once before the 
case statement.
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Example 7-17 Synchronous Reset—Explicit State Style (Preferred)

module SUM3 ( data, clk, total, reset );
input [7:0] data;
input clk, reset;
output [7:0] total;

reg total;
reg [1:0] state;

parameter S0 = 0, S1 = 1, S2 = 2;

always @ (posedge clk)
begin
   if (reset)
      state = S0;
   else
      case (state)
      S0: begin
             total = data;
             state = S1;
          end
      S1: begin
             total = total + data;
             state = S2;
          end
      default : begin
             total = total + data;
             state = S0;
          end
      endcase;
end
endmodule

Example 7-18 shows how to describe the same function in the implicit 
state style. This style is not as efficient for describing synchronous 
resets. In this case, the reset operation has to be addressed for every 
always @ statement.
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Example 7-18 Synchronous Reset—Implicit State Style (Not Advisable)

module SUM3 ( data, clk, total, reset );
input [7:0] data;
input clk, reset;
output [7:0] total;

reg total;

always
begin: reset_label

 @ (posedge clk)
if (reset)

begin
total = 8’b0;
disable reset_label;

end
else

total = data;

@ (posedge clk)
if (reset)

begin
total = 8’b0;
disable reset_label;

end
else

total = total + data;

@ (posedge clk)
if (reset)

begin
total = 8’b0;
disable reset_label;

end
else

total = total + data;
end

endmodule
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Minimizing Registers

In an always block that is triggered by a clock edge, every variable 
that has a value assigned has its value held in a flip-flop.

Organize your Verilog description so you build only as many registers 
as you need. Example 7-19 shows a description where extra registers 
are implied.

Example 7-19 Inefficient Circuit Description With Six Implied Registers

module count (clock, reset, and_bits, or_bits, xor_bits);
input clock, reset;
output and_bits, or_bits, xor_bits;
reg and_bits, or_bits, xor_bits;

reg [2:0] count;

always @(posedge clock) begin
if (reset)
    count = 3’60;
else
    count = count + 1;

and_bits = & count;
or_bits  = | count;
xor_bits = ^ count;

end
endmodule

This description implies the use of six flip-flops: three to hold the 
values of count and one each to hold and_bits, or_bits, and xor_bits. 
However, the values of the outputs and_bits, or_bits, and xor_bits 
depend solely on the values of count. Because count is registered, 
there is no reason to register the three outputs. The synthesized 
circuit is shown in Figure 7-9.
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Figure 7-9 Synthesized Circuit With Six Implied Registers

To avoid implying extra registers, you can assign the outputs from 
within an asynchronous always block. Example 7-20 shows the same 
logic described with two always blocks, one synchronous and one 
asynchronous, which separate registered or sequential logic from 
combinational logic. This technique is useful for describing finite state 
machines. Signal assignments in the synchronous always block are 
registered. Signal assignments in the asynchronous always block are 
not. Therefore, this version of the design uses three fewer flip-flops 
than the version in Example 7-19.
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Example 7-20 Circuit With Three Implied Registers

module count (clock, reset, and_bits, or_bits, xor_bits);
input clock, reset;
output and_bits, or_bits, xor_bits;
reg and_bits, or_bits, xor_bits;

reg [2:0] count;

always @(posedge clock) begin//synchronous
if (reset)

count = 3’b0;
else

count = count + 1;
end
always @(count) begin//asynchronous

and_bits = & count;
or_bits  = | count;
xor_bits = ^ count;

end
endmodule

The more efficient version of the circuit is shown in Figure 7-10.

Figure 7-10 Synthesized Circuit With Three Implied Registers
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Separating Sequential and Combinational Assignments

To compute values synchronously and store them in flip-flops, set up 
an always block with a signal edge trigger. To let other values change 
asynchronously, make a separate always block with no signal edge 
trigger. Put the assignments you want clocked in the always block 
with the signal edge trigger and the other assignments in the other 
always block. This technique is used for creating Mealy machines, 
such as the one in Example 7-21. Note that out changes 
asynchronously with in1 or in2.

Example 7-21 Mealy Machine
module mealy (in1, in2, clk, reset, out);

input in1, in2, clk, reset;
output out;
reg current_state, next_state, out;

always @(posedge clk or negedge reset) 
// state vector flip-flops (sequential)

if (!reset)
current_state = 1’b0;

else
current_state = next_state;

always @(in1 or in2 or current_state)
// output and state vector decode (combinational)

case (current_state)
0: begin

next_state = 1;
out = 1’b0;

   end
1: if (in1) begin

next_state = 1’b0;
out = in2;

end
else begin

next_state = 1’b1;
out = !in2;

end
endcase

endmodule
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The schematic for this circuit is shown in Figure 7-11.

Figure 7-11 Mealy Machine Schematic

Don’t Care Inference

You can greatly reduce circuit area by using don’t care values. To use 
a don’t care value in your design, create an enumerated type for the 
don’t care value.
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Don’t care values are best used as default assignments to variables. 
You can assign a don’t care value to a variable at the beginning of a 
module, in the default section of a case statement, or in the else 
section of an if statement.

Limitations of Using Don’t Care Values

In some cases, using don’t care values as default assignments can 
cause these problems:

• Don’t care values create a greater potential for mismatches 
between simulation and synthesis.

• Defaults for variables can hide mistakes in the Verilog code.

For example, you might assign a default don’t care value to VAR. 
If you later assign a value to VAR, expecting VAR to be a don’t 
care value, you might have overlooked an intervening condition 
under which VAR is assigned.

Therefore, when you assign a value to a variable (or signal) that 
contains a don’t care value, make sure that the variable (or signal) is 
really a don’t care value under those conditions. Note that assignment 
to an x is interpreted as a don’t care value.

Differences Between Simulation and Synthesis

Don’t care values are treated differently in simulation and in synthesis, 
and there can be a mismatch between the two. To a simulator, a don’t 
care is a distinct value, different from a one or a zero. In synthesis, 
however, a don’t care becomes a zero or a one (and hardware is built 
that treats the don’t care value as either a zero or a one). 
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Whenever a comparison is made with a variable whose value is don’t 
care, simulation and synthesis can differ. Therefore, the safest way 
to use don’t care values is to

• Assign don’t care values only to output ports

• Make sure that the design never reads output ports

These guidelines guarantee that when you simulate within the scope 
of the design, the only difference between simulation and synthesis 
occurs when the simulator indicates that an output is a don’t care 
value.

If you use don’t care values internally to a design, expressions FPGA 
Compiler II / FPGA Express compares to don’t care values (X) are 
synthesized as though values are not equal to X. 

For example,

if A = ’X’ then
...

is synthesized as

if FALSE then
...

If you use expressions comparing values with X, pre-synthesis and 
post-synthesis simulation results might not agree. For this reason, 
FPGA Compiler II / FPGA Express issues the following warning:

Warning: A partial don’t-care value was read in routine test 
line 24 in file ’test.v’  This may cause simulation to 
disagree with synthesis. (HDL-171)
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Propagating Constants

Constant propagation is the compile-time evaluation of expressions 
that contain constants. FPGA Compiler II / FPGA Express uses 
constant propagation to reduce the amount of hardware required to 
implement complex operators. Therefore, when you know that a 
variable is a constant, specify it as a constant. For example, a + 
operator with a constant of 1 as one of its arguments causes an 
incrementer, rather than a general adder, to be built. If both arguments 
of an operator are constants, no hardware is constructed, because 
FPGA Compiler II / FPGA Express can calculate the expression’s 
value and insert it directly into the circuit.

Comparators and shifters also benefit from constant propagation. 
When you shift a vector by a constant, the implementation requires 
only a reordering (rewiring) of bits, so no logic is needed.

Synthesis Issues

The next two sections describe feedback paths and latches that result 
from ambiguities in signal or variable assignments, and asynchronous 
behavior.
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Feedback Paths and Latches

Sometimes your Verilog source can imply combinational feedback 
paths or latches in synthesized logic. This happens when a signal or 
a variable in a combinational logic block (an always block without a 
posedge or negedge clock statement) is not fully specified. A variable 
or signal is fully specified when it is assigned under all possible 
conditions.

Synthesizing Asynchronous Designs

In a synchronous design, all registers use the same clock signal. That 
clock signal must be a primary input to the design. A synchronous 
design has no combinational feedback paths, one-shots, or delay 
lines. Synchronous designs perform the same function regardless of 
the clock rate, as long as the rate is slow enough to allow signals to 
propagate all the way through the combinational logic between 
registers.

Synopsys synthesis tools offer limited support for asynchronous 
designs. The most common way to produce asynchronous logic in 
Verilog is to use gated clocks on registers. If you use asynchronous 
design techniques, synthesis and simulation results might not agree. 
Because FPGA Compiler II / FPGA Express does not issue warning 
messages for asynchronous designs, you are responsible for 
verifying the correctness of your circuit.

The following examples show two approaches to the same counter 
design: Example 7-22 is synchronous, and Example 7-23 is 
asynchronous.
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Example 7-22 Fully Synchronous Counter Design

module COUNT (RESET, ENABLE, CLK, Z);

input RESET, ENABLE, CLK;
output [2:0] Z;
reg [2:0] Z;

always @ (posedge CLK) begin
if (RESET) begin

Z = 3’b0;
end else if (ENABLE == 1’b1) begin

if (Z == 3’d7) begin
Z = 3’b0;

end else begin
Z = Z + 3’b1;

end
end

end

endmodule

Example 7-23 Asynchronous Counter Design

module COUNT (RESET, ENABLE, CLK, Z);

input RESET, ENABLE, CLK;
output [2:0] Z;
reg [2:0] Z;
wire GATED_CLK = CLK & ENABLE;

always @ (posedge GATED_CLK or posedge RESET) begin
if (RESET) begin

Z = 3’b0;
end else begin

if (Z == 3’d7) begin
Z = 3’b0;

end else begin
Z = Z + 3’b1;

end
end

end
endmodule
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The asynchronous version of the design uses two asynchronous 
design techniques. The first technique is to enable the counter by 
ANDing the clock with the enable line. The second technique is to 
use an asynchronous reset. These techniques work if the proper 
timing relationships exist between the asynchronous control lines 
(ENABLE and RESET) and the clock (CLK) and if the control lines 
are glitch-free.

Some forms of asynchronous behavior are not supported. For 
example, you might expect the following circuit description of a one-
shot signal generator to generate three inverters (an inverting delay 
line) and a NAND gate.

X = A ~& (~(~(~ A)));

However, this circuit description is optimized to 

X = A ~& (~ A); then X = 1;

Designing for Overall Efficiency

The efficiency of a synthesized design depends primarily on how you 
describe its component structure. The next two sections explain how 
to describe random logic and how to share complex operators.
7-34

Writing Circuit Descriptions



Describing Random Logic

You can describe random logic with many different shorthand Verilog 
expressions. FPGA Compiler II / FPGA Express often generates the 
same optimized logic for equivalent expressions, so your description 
style for random logic does not affect the efficiency of the circuit. 
Example 7-24 shows four groups of statements that are equivalent. 
(Assume that a, b, and c are 4-bit variables.) FPGA Compiler II / FPGA 
Express creates the same optimized logic in all four cases.

Example 7-24 Equivalent Statements

c = a & b;

c[3:0] = a[3:0] & b[3:0]; 

c[3] = a[3] & b[3]; 
c[2] = a[2] & b[2]; 
c[1] = a[1] & b[1]; 
c[0] = a[0] & b[0]; 

for (i = 0; i <= 3; i = i + 1) 
    c[i] = a[i] & b[i];

Sharing Complex Operators

You can use automatic resource sharing to share most operators. 
However, some complex operators can be shared only if you rewrite 
your source description more efficiently. These operators are

• Noncomputable array index

• Function call

• Shifter
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Example 7-25 shows a circuit description that creates more functional 
units than necessary when automatic resource sharing is turned off.

Example 7-25 Inefficient Circuit Description With Two Array Indexes

module rs(a, i, j, c, y, z);

 input [7:0] a;
 input [2:0] i,j;
 input c;

 output y, z;
 reg y, z;

 always @(a or i or j or c) 
begin
z=0;
y=0;
if(c) 

begin
z = a[i]; 

 end 
else 

begin
y = a[j]; 
end

end
endmodule

The schematic for this code description is shown in Figure 7-12.
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Figure 7-12 Circuit Schematic With Two Array Indexes
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You can rewrite the circuit description in Example 7-25 so that it 
contains only one array index, as shown in Example 7-26.

Example 7-26 Efficient Circuit Description With One Array Index

module rs1(a, i, j, c, y, z);

input [7:0] a;
input [2:0] i,j;
input c;

output y, z;
reg y, z;

reg [3:0] index;
reg temp;

always @(a or i or j or c) begin
if(c) 

begin
index = i;
end 

else 
begin
index = j;
end

temp = a[index];

z=0;
y=0;
if(c) 

begin
z = temp;
end 

else 
begin
y = temp;
end

end

endmodule
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The circuit in Example 7-26 is more efficient than that in Example 
7-25, since it uses a temporary register, temp, to store the value 
evaluated in the if statement. The schematic is shown in Figure 7-13.

Figure 7-13 Circuit Schematic With One Array Index
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Consider resource sharing whenever you use a complex operation 
more than once. Complex operations include adders, multipliers, 
shifters (only when shifting by a variable amount), comparators, and 
most user-defined functions. 
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8
FPGA Compiler II / FPGA Express Directives8

Specific aspects of the synthesis process can be controlled by special 
comments in the Verilog source code called FPGA Compiler II / FPGA 
Express directives. Because these directives are just a special case 
of regular comments, they are ignored by the Verilog HDL Simulator 
and do not affect simulation. This chapter describes FPGA Compiler 
II / FPGA Express directives and their effect on translation, in the 
following sections:

• Notation for FPGA Compiler II / FPGA Express Directives

• translate_off and translate_on Directives

• parallel_case Directive

• full_case Directive

• state_vector Directive

• enum Directive
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• Component Implication

Notation for FPGA Compiler II / FPGA Express  Directives

The special comments that make up FPGA Compiler II / FPGA 
Express directives begin, like all other Verilog comments, with the 
characters //  or /* . The //  characters begin a comment that fits on 
one line (most FPGA Compiler II / FPGA Express directives do). If 
you use the /*  characters to begin a multiline comment, you must 
end the comment with */. You do not need to use the /* characters at 
the beginning of each line but only at the beginning of the first line.

Note:
You cannot use // synopsys in a regular comment. Also, the 
compiler displays a syntax error if Verilog code is in a // synopsys 
directive.

translate_off and translate_on Directives

When the // synopsys translate_off and // synopsys translate_on 
directives are present, FPGA Compiler II / FPGA Express suspends 
translation of the source code and restarts translation at a later point. 
Use these directives when your Verilog source code contains 
commands specific to simulation that FPGA Compiler II / FPGA 
Express does not accept.

You turn translation off by using either

// synopsys translate_off

/* synopsys translate_off */
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You turn translation back on by using either

// synopsys translate_on

/* synopsys translate_on */

At the beginning of each Verilog file, translation is enabled. After that, 
you can use the translate_off and translate_on directives anywhere 
in the text. These directives must be used in pairs. Each translate_off 
must appear before its corresponding translate_on. Example 8-1 
shows a simulation driver protected by a translate_off directive.

Example 8-1 // synopsys translate_on and // synopsys translate_off 
Directives

module trivial (a, b, f);
input a,b;
output f;
    assign f = a & b;
    // synopsys translate_off
    initial $monitor (a, b, f);
    // synopsys translate_on
endmodule

/* synopsys translate_off */
module driver;
    reg [1:0] value_in;
    integer i;
    trivial triv1(value_in[1], value_in[0]);
    initial begin
        for (i = 0; i < 4; i = i + 1)
            #10 value_in = i;
    end
endmodule
/* synopsys translate_on */
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parallel_case Directive

The // synopsys parallel_case directive affects the way logic is 
generated for the case statement. As presented in “Full Case and 
Parallel Case” on page 5-20, a case statement generates the logic 
for a priority encoder. Under certain circumstances, you might not 
want to build a priority encoder to handle a case statement. You can 
use the parallel_case directive to force FPGA Compiler II / FPGA 
Express to generate multiplexer logic instead.

The syntax for the parallel_case directive is

// synopsys parallel_case

or

/* synopsys parallel_case */

In Example 8-2, the states of a state machine are encoded as one 
hot signal. If the case statement were implemented as a priority 
encoder, the generated logic would be unnecessarily complex.

Example 8-2 // synopsys parallel_case Directives

reg [3:0] current_state, next_state;
parameter state1 = 4’b0001, state2 = 4’b0010,

state3 = 4’b0100, state4 = 4’b1000;

case (1)//synopsys parallel_case

    current_state[0] : next_state = state2;
    current_state[1] : next_state = state3;
    current_state[2] : next_state = state4;
    current_state[3] : next_state = state1;

endcase
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Use the parallel_case directive immediately after the case 
expression, as shown. This directive makes all case-item evaluations 
in parallel. All case items that evaluate to true are executed, not just 
the first, which could give you unexpected results.

In general, use parallel_case when you know that only one case item 
is executed. If only one case item is executed, the logic generated 
from a parallel_case directive performs the same function as the 
circuit when it is simulated. If two case items are executed and you 
have used the parallel_case directive, the generated logic is not the 
same as the simulated description.

full_case Directive

The // synopsys full_case directive asserts that all possible clauses 
of a case statement have been covered and that no default clause is 
necessary. This directive has two uses: It avoids the need for default 
logic, and it can avoid latch inference from a case statement by 
asserting that all necessary conditions are covered by the given 
branches of the case statement. As shown in “Full Case and Parallel 
Case” on page 5-20, a latch can be inferred whenever a variable is 
not assigned a value under all conditions.

The syntax for the full_case directive is eiher

// synopsys full_case

/* synopsys full_case */
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If the case statement contains a default clause, FPGA Compiler II / 
FPGA Express assumes that all conditions are covered. If there is no 
default clause and you do not want latches to be created, use the 
full_case directive to indicate that all necessary conditions are 
described in the case statement.

Example 8-3 shows two uses of full_case. The parallel_case and 
full_case directives can be combined in one comment.

Example 8-3 // synopsys full_case Directives

reg [1:0] in, out;
reg [3:0] current_state, next_state;
parameter state1 = 4’b0001, state2 = 4’b0010,
          state3 = 4’b0100, state4 = 4’b1000;

case (in) // synopsys full_case 
    0: out = 2;
    1: out = 3;
    2: out = 0;
endcase

case (1)  // synopsys parallel_case full_case
    current_state[0] : next_state = state2;
    current_state[1] : next_state = state3;
    current_state[2] : next_state = state4;
    current_state[3] : next_state = state1;
endcase

In the first case statement, the condition in == 3 is not covered. You 
can either use a default clause to cover all other conditions or use the 
full_case directive (as in Example 8-3) to indicate that other branch 
conditions do not occur. If you cover all possible conditions explicitly, 
FPGA Compiler II / FPGA Express recognizes the case statement as 
full-case, so the full_case directive is not necessary.
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The second case statement in Example 8-3 does not cover all 16 
possible branch conditions. For example, current_state == 4’b0101 
is not covered. The parallel_case directive is used in this example 
because only one of the four case items can evaluate to true and be 
executed.

Although you can use the full_case directive to avoid creating latches, 
using this directive does not guarantee that latches will not be built. 
You still must assign a value to each variable used in the case 
statement in all branches of the case statement. Example 8-4 
illustrates a situation in which the full_case directive prevents a latch 
from being inferred for variable b but not for variable a.

Example 8-4 Latches and // synopsys full_case

reg a, b;
reg [1:0] c;
case (c)   // synopsys full_case
    0: begin a = 1; b = 0; end
    1: begin a = 0; b = 0; end
    2: begin a = 1; b = 1; end
    3: b = 1;  // a is not assigned here
endcase

In general, use full_case when you know that all possible 
branches of the case statement have been enumerated, or at least 
all branches that can occur. If all branches that can occur are 
enumerated, the logic generated from the case statement 
performs the same function as the simulated circuit. If a case condition 
is not fully enumerated, the generated logic and the simulation are 
not the same.
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Note:
You do not need the full_case directive if you have a default branch 
or you enumerate all possible branches in a case statement, 
because FPGA Compiler II / FPGA Express assumes the case 
statement is full_case. 

state_vector Directive

The // synopsys state_vector directive labels a variable in a Verilog 
description as the state vector of an equivalent finite state machine.

The syntax for the state_vector directive is

// synopsys state_vector vector_name

or

/* synopsys state_vector vector_name  */

The vector_name variable is the name chosen as a state vector. This 
declaration allows Synopsys FPGA Compiler II / FPGA Express to 
extract the labeled state vector from the Verilog description. Used 
with the enum directive, described in the next section, the state_vector 
directive allows you to define the state vector of a finite state machine 
(and its encodings) from a Verilog description. Example 8-5 shows 
one way to use the state_vector directive.

Caution!
Do not define two state_vector directives in one module. Although 
FPGA Compiler II / FPGA Express does not issue an error 
message, it recognizes only the first state_vector directive and 
ignores the second.
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Example 8-5 // synopsys state_vector Example

reg [1:0] state, next_state;
//  synopsys state_vector state

always @ (state or in) begin
case (state) // synopsys full_case

0: begin
out = 3;
next_state = 1;
end

1: begin
out = 2;
next_state = 2;
end

2: begin
out = 1;
next_state = 3;
end

3: begin
out = 0
if (in)
next_state = 0;
else

next_state = 3;
endcase

end

always @ (posedge clock)
state = next_state;
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enum Directive

The // synopsys enum directive is designed for use with the Verilog 
parameter definition statement to specify state machine encodings. 
When a variable is marked as a state_vector (see “state_vector 
Directive” on page 8-8) and it is declared as an enum, the Synopsys 
FPGA Compiler II / FPGA Express uses the enum values and names 
for the states of an extracted state machine. 

The syntax of the enum directive is either

// synopsys enum enum_name

/* synopsys enum enum_name */

Example 8-6 shows the declaration of an enumeration of type colors 
that is 3 bits wide and has the enumeration literals red, green, blue, 
and cyan with the values shown.

Example 8-6 Enumeration of Type Colors

parameter [2:0] // synopsys enum colors
red = 3’b000, green = 3’b001, blue = 3’b010, cyan = 3’b011;

The enumeration must include a size (bit-width) specification. 
Example 8-7 shows an invalid enum declaration.

Example 8-7 Invalid enum Declaration

parameter /* synopsys enum colors */ 
red = 3’b000, green = 1;
// [2:0] required
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Example 8-8 shows a register, a wire, and an input port with the 
declared type of colors. In each of the following declarations, the array 
bounds must match those of the enumeration declaration. If you use 
different bounds, synthesis might not agree with simulation behavior.

Example 8-8 More enum Type Declarations

reg   [2:0]  /* synopsys enum colors */ counter;

wire  [2:0]  /* synopsys enum colors */ peri_bus;
input [2:0]  /* synopsys enum colors */ input_port;

Even though you declare a variable to be of type enum, it can still be 
assigned a bit value that is not one of the enumeration values in the 
definition. Example 8-9 relates to Example 8-8 and shows an invalid 
encoding for colors.

Example 8-9 Invalid Bit Value Encoding for Colors

counter = 3’b111;

Because 111 is not in the definition for colors, it is not a valid encoding. 
FPGA Compiler II / FPGA Express accepts this encoding, because 
it is valid Verilog code, but FPGA Compiler II / FPGA Express 
recognizes this assignment as an invalid encoding and ignores it.

You can use enumeration literals just like constants, as shown in 
Example 8-10.

Example 8-10 Enumeration Literals Used as Constants

if (input_port == blue)
    counter = red;

You can also use enumeration with the state_vector directive. 
Example 8-11 shows how the state_vector variable is tagged by use 
of enumeration.
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Example 8-11 Finite State Machine With // synopsys enum and // synopsys 
state_vector

// This finite-state machine (Mealy type) reads 1 bit
// per cycle and detects 3 or more consecutive 1s.

module enum2_V(signal, clock, detect);
input signal, clock;
output detect;
reg detect;

// Declare the symbolic names for states
parameter [1:0]//synopsys enum state_info
    NO_ONES = 2’h0,
    ONE_ONE = 2’h1,
    TWO_ONES = 2’h2,
    AT_LEAST_THREE_ONES = 2’h3;

// Declare current state and next state variables.
reg [1:0] /* synopsys enum state_info */   cs;
reg [1:0] /* synopsys enum state_info */   ns;

// synopsys state_vector cs

always @ (cs or signal)

    begin
        detect = 0;// default values
        if (signal == 0)
            ns = NO_ONES;
        else
            case (cs) // synopsys full_case
                NO_ONES: ns = ONE_ONE;
                ONE_ONE: ns = TWO_ONES;
                TWO_ONES, ns = AT_LEAST_THREE_ONES;
                AT_LEAST_THREE_ONES:
                    begin
                        ns = AT_LEAST_THREE_ONES;
                        detect = 1;
                    end
            endcase
    end
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always @ (posedge clock) begin
    cs = ns;
end
endmodule

Enumerated types are designed to be used as whole entities. This 
design allows FPGA Compiler II / FPGA Express to rebind the 
encodings of an enumerated type more easily. You cannot select a 
bit or a part from a variable that has been given an enumerated type. 
If you do, the overall behavior of your design changes when FPGA 
Compiler II / FPGA Express changes the original encoding. Example 
8-12 shows an unsupported bit-select.

Example 8-12 Unsupported Bit-Select From Enumerated Type

parameter [2:0] /* synopsys enum states */
s0 = 3’d0, s1 = 3’d1, s2 = 3’d2, s3 = 3’d3,
s4 = 3’d4, s5 = 3’d5, s6 = 3’d6, s7 = 3’d7;

reg [2:0] /* synopsys enum states */  state, next_state;

assign high_bit = state[2]; // not supported

Because you cannot access individual bits of an enumerated type, 
you cannot use component instantiation to hook up single-bit flip-flops 
or three-states. Example 8-13 shows an example of this type of 
unsupported bit-select.

Example 8-13 Unsupported Bit-Select (With Component Instantiation) From 
Enumerated Type

DFF ff0 ( next_state[0], clk, state[0] );
DFF ff1 ( next_state[1], clk, state[1] );
DFF ff2 ( next_state[2], clk, state[2] );
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To create flip-flops and three-states for enum values, you must imply 
them with the posedge construct or the literal z, as shown in Example 
8-14.

Example 8-14 Using Inference With Enumerated Types

parameter [2:0] /* synopsys enum states */
s0 = 3’d0, s1 = 3’d1, s2 = 3’d2, s3 = 3’d3,
s4 = 3’d4, s5 = 3’d5, s6 = 3’d6, s7 = 3’d7;

reg [2:0] /* synopsys enum states */ state, next_state;

parameter [1:0] /* synopsys enum outputs */
DONE = 2’d0, PROCESSING = 2’d1, IDLE = 2’d2;

reg [1:0] /* synopsys enum outputs */ out, triout;

always @ (posedge clk) state = next_state;
assign triout = trienable ? out : ’bz;

If you use the constructs shown in Example 8-14, you can change 
the enumeration encodings by changing the parameter and reg 
declarations, as shown in Example 8-15. You can also allow FPGA 
Compiler II / FPGA Express to change the encodings.

Example 8-15 Changing the Enumeration Encoding

parameter [3:0] /* synopsys enum states */
s0 = 4’d0, s1 = 4’d10, s2 = 4’d15, s3 = 4’d5,
s4 = 4’d2, s5 = 4’d4, s6 = 4’d6, s7 = 4’d8;

reg [3:0] /* synopsys enum states */ state, next_state;

parameter [1:0] /* synopsys enum outputs */
DONE = 2’d3, PROCESSING = 2’d1, IDLE = 2’d0;

reg [1:0] /* synopsys enum outputs */ out, triout;

always @ (posedge clk) state = next_state;
assign triout = trienable ? out : ’bz;
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If you must select individual bits of an enumerated type, you can 
declare a temporary variable of the same size as the enumerated 
type. Assign the enumerated type to the variable, then select 
individual bits of the temporary variable. Example 8-16 shows how 
this is done.

Example 8-16 Supported Bit-Select From Enumerated Type

parameter [2:0] /* synopsys enum states */
s0 = 3’d0, s1 = 3’d1, s2 = 3’d2, s3 = 3’d3,
s4 = 3’d4, s5 = 3’d5, s6 = 3’d6, s7 = 3’d7;

reg [2:0] /* synopsys enum states */ state, next_state;
wire [2:0] temporary;

assign temporary = state;
assign high_bit = temporary[2]; //supported

Note:
Selecting individual bits from an enumerated type is not 
recommended.

If you declare a port as a reg and as an enumerated type, you must 
declare the enumeration when you declare the port. Example 8-17 
shows the declaration of the enumeration.

Example 8-17 Enumerated Type Declaration for a Port

module good_example (a,b);

parameter [1:0] /* synopsys enum colors */
green = 2’b00, white = 2’b11;

input a;
output [1:0] /* synopsys enum colors */ b;
reg [1:0] b;
.
.
endmodule
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Example 8-18 shows the wrong way to declare a port as an 
enumerated type, because the enumerated type declaration appears 
with the reg declaration instead of with the output port declaration. 
This code does not export enumeration information to FPGA Compiler 
II / FPGA Express.

Example 8-18 Incorrect Enumerated Type Declaration for a Port

module bad_example (a,b);

parameter [1:0] /* synopsys enum colors */
green = 2’b00, white = 2’b11;

input a;
output [1:0] b;
reg [1:0] /* synopsys enum colors */ b;
.
.
endmodule

Component Implication

In Verilog, you cannot instantiate modules in behavioral code. To 
include an embedded netlist in your behavioral code, use the 
directives // synopsys map_to_module and // synopsys 
return_port_name for FPGA Compiler II / FPGA Express to recognize 
the netlist as a function being implemented by another module. When 
this subprogram is invoked in the behavioral code, FPGA Compiler II 
/ FPGA Express instantiates the module (see Example 8-19).

The first directive, // synopsys map_to_module, flags a function for 
implementation as a distinct component. The syntax is

// synopsys map_to_module modulename 
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The second directive identifies a return port (functions in Verilog do 
not have output ports). To instantiate the function as a component, 
the return port must have a name. The syntax is

// synopsys return_port_name portname

Note:
Remember that if you add a map_to_module directive to a 
function, the contents of the function are parsed and ignored 
whereas the indicated module is instantiated. Ensure that the 
functionality of the module instantiated in this way and the function 
it replaces are the same; otherwise, pre-synthesis and post-
synthesis simulation do not match.

Example 8-19 illustrates the map_to_module and return_port_name 
directives.

Example 8-19 Component Implication
module mux_inst (a, b, c, d, e);
input a, b, c, d;
output e;

function mux_func;
// synopsys map_to_module mux_module
// synopsys return_port_name mux_ret
input in1, in2, cntrl;

/* 
** the contents of this function are ignored for
** synthesis, but the behavior of this function
** must match the behavior of mux_module for
** simulation purposes
*/
begin
if (cntrl) mux_func = in1;
else mux_func = in2;
end

endfunction

assign e = a & mux_func (b, c, d); 
// this function call actually instantiates component (module) mux_module   
8-17

FPGA Compiler II / FPGA Express Directives



endmodule

module mux_module (in1, in2, cntrl, mux_ret);
input in1, in2, cntrl;
output mux_ret;

and and2_0 (wire1, in1, cntrl);
not not1 (not_cntrl, cntrl);
and and2_1 (wire2, in2, not_cntrl);
or or2 (mux_ret, wire1, wire2);

endmodule
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A
Examples A

This appendix presents examples that demonstrate basic concepts 
of Synopsys FPGA Compiler II / FPGA Express:

• Count Zeros—Combinational Version

• Count Zeros—Sequential Version

• Drink Machine—State Machine Version

• Drink Machine—Count Nickels Version 

• Carry-Lookahead Adder
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Count Zeros—Combinational Version

Using this circuit is one possible solution to a design problem. Given 
an 8-bit value, the circuit must determine two things:

• The presence of a value containing exactly one sequence of zeros

• The number of zeros in the sequence (if any)

The circuit must complete this computation in a single clock cycle. 
The input to the circuit is an 8-bit value, and the two outputs the circuit 
produces are the number of zeros found and an error indication.

A valid value contains only one series of zeros. If more than one series 
of zeros appears, the value is invalid. A value consisting of all ones 
is a valid value. If a value is invalid, the count of zeros is set to zero. 
For example, 

• The value 00000000 is valid, and the count is eight zeros.

• The value 11000111 is valid, and the count is three zeros.

• The value 00111110 is invalid.

A Verilog description and a schematic of the circuit are shown in 
Example A-1 and Figure A-1.
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Example A-1 Count Zeros—Combinational Version

module count_zeros(in, out, error);
   input  [7:0] in;
   output [3:0] out; 
   output error;
   function legal;
   input [7:0] x;
   reg seenZero, seenTrailing;
   integer i;
   begin : _legal_block
      legal = 1; seenZero = 0; seenTrailing = 0;
      for ( i=0; i <= 7; i=i+1 )
         if ( seenTrailing && (x[i] == 1’b0) ) begin
            legal = 0;
            disable _legal_block;
            end 
         else if ( seenZero && (x[i] == 1’b1) )
            seenTrailing = 1;
         else if ( x[i] == 1’b0 )
            seenZero = 1;
      end
   endfunction

   function [3:0] zeros;
   input [7:0] x;
   reg   [3:0] count;
   integer i;

   begin
      count = 0;
      for ( i=0; i <= 7; i=i+1 )
         if ( x[i] == 1’b0 ) count = count + 1;
         zeros = count;
      end
   endfunction
   wire is_legal = legal(in);
   assign error = ! is_legal;
   assign out   = is_legal ? zeros(in) : 1’b0;
endmodule
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Figure A-1 Count Zeros—Combinational Version Block Diagram

This example shows two Verilog functions: legal and zeros. The 
function legal determines if the value is valid. It returns a 1-bit value: 
either 1 for a valid value or 0 for an invalid value. The function zeros 
cycles through all bits of the value, counts the number of zeros, and 
returns the appropriate value. The two functions are controlled by 
continuous assignment statements at the bottom of the module 
definition. This example shows a combinational (parallel) approach 
to counting zeros; the next example shows a sequential (serial) 
approach.
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Count Zeros—Sequential Version

Example A-2 and Figure A-2 show a sequential (clocked) solution to 
the “count zeros” design problem. The circuit specification is slightly 
different from the specification in the combinational solution. The 
circuit now accepts the 8-bit string serially, 1 bit per clock cycle, using 
the data and clk inputs. The other two inputs are

• reset, which resets the circuit

• read, which causes the circuit to begin accepting data

The circuit’s three outputs are

• is_legal, which is true if the data is a valid value

• data_ready, which is true at the first invalid bit or when all 8 bits 
have been processed

• zeros, which is the number of zeros if is_legal is true

Example A-2 Count Zeros—Sequential Version
module count_zeros(data,reset,read,clk,zeros,is_legal,
                   data_ready);

    parameter TRUE=1, FALSE=0;

    input  data, reset, read, clk;
    output is_legal, data_ready;
    output [3:0] zeros; 
    reg  [3:0] zeros;

    reg is_legal, data_ready;
    reg seenZero, new_seenZero;
    reg seenTrailing, new_seenTrailing;
    reg new_is_legal;
    reg new_data_ready;
    reg [3:0] new_zeros;
    reg [2:0] bits_seen, new_bits_seen;
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always @ ( data or reset or read or is_legal
           or data_ready or seenTrailing or 
            seenZero or zeros or bits_seen ) begin
        if ( reset ) begin
            new_data_ready   = FALSE;
            new_is_legal     = TRUE;
            new_seenZero     = FALSE;
            new_seenTrailing = FALSE;
            new_zeros        = 0;
            new_bits_seen    = 0;
        end
        else begin
            new_is_legal     = is_legal;
            new_seenZero     = seenZero;
            new_seenTrailing = seenTrailing;
            new_zeros        = zeros;
            new_bits_seen    = bits_seen;
            new_data_ready   = data_ready;
             if ( read ) begin
               if ( seenTrailing  && (data == 0) )
                  begin
                  new_is_legal   = FALSE;
                  new_zeros      = 0;
                  new_data_ready = TRUE;
                  end 
               else if ( seenZero && (data == 1’b1) ) 
                  new_seenTrailing = TRUE;
               else if ( data == 1’b0 ) begin
                  new_seenZero = TRUE;
                  new_zeros = zeros + 1;
                  end

if ( bits_seen == 7 ) 
                  new_data_ready = TRUE;
               else                  
                  new_bits_seen = bits_seen+1;
            end
        end
    end
   
always @ ( posedge clk) begin
     zeros = new_zeros;
     bits_seen = new_bits_seen;
     seenZero = new_seenZero;
     seenTrailing = new_seenTrailing;
     is_legal = new_is_legal;
     data_ready = new_data_ready;
end
endmodule
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Figure A-2 Count Zeros—Sequential Version Block Diagram

Drink Machine—State Machine Version

The next design is a vending control unit for a soft drink vending 
machine. The circuit reads signals from a coin-input unit and sends 
outputs to a change-dispensing unit and a drink-dispensing unit. 

Input signals from the coin-input unit are nickel_in (nickel deposited), 
dime_in (dime deposited), and quarter_in (quarter deposited).

Outputs to the vending control unit are collect (collect coins), to the 
coin-input unit; nickel_out (nickel change) and dime_out (dime 
change), to the change-dispensing unit; and dispense (dispense 
drink), to the drink-dispensing unit. 

The price of a drink is 35 cents. The Verilog description for this design, 
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shown in Example A-3, uses a state machine description style. The 
description includes the state_vector directive, which enables FPGA 
Compiler II / FPGA Express to extract an equivalent state machine.

Example A-3 Drink Machine—State Machine Version
‘define vend_a_drink {D,dispense,collect} = {IDLE,2’b11}

module drink_machine(nickel_in, dime_in, quarter_in,
                     collect, nickel_out, dime_out,
                     dispense, reset, clk) ;
   parameter IDLE=0,FIVE=1,TEN=2,TWENTY_FIVE=3,
             FIFTEEN=4,THIRTY=5,TWENTY=6,OWE_DIME=7;

   input  nickel_in, dime_in, quarter_in, reset, clk;
   output collect, nickel_out, dime_out, dispense;

   reg collect, nickel_out, dime_out, dispense;
   reg [2:0] D, Q; /* state */
// synopsys state_vector Q
always @ ( nickel_in or dime_in or quarter_in or reset )
      begin
         nickel_out = 0;
         dime_out   = 0;
         dispense   = 0;
         collect    = 0;

         if ( reset ) D = IDLE;
         else begin
            D = Q;

            case ( Q )
            IDLE:     
               if (nickel_in)       D = FIVE;
               else if (dime_in)    D = TEN;
               else if (quarter_in) D = TWENTY_FIVE;
            FIVE:     
               if(nickel_in)        D = TEN;
               else if (dime_in)    D = FIFTEEN;
               else if (quarter_in) D = THIRTY;
            TEN:      
               if (nickel_in)       D = FIFTEEN;
               else if (dime_in)    D = TWENTY;
               else if (quarter_in) ‘vend_a_drink;
            TWENTY_FIVE: 
               if( nickel_in)       D = THIRTY;
               else if (dime_in)    ‘vend_a_drink;
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               else if (quarter_in) begin

                  ‘vend_a_drink; 
                   nickel_out = 1;
                   dime_out = 1;
               end

            FIFTEEN:  
               if (nickel_in)       D = TWENTY;
               else if (dime_in)    D = TWENTY_FIVE;
               else if (quarter_in) begin 
                   ‘vend_a_drink;
                   nickel_out = 1;
               end

            THIRTY:   
               if (nickel_in)       ‘vend_a_drink;
               else if (dime_in)    begin
                   ‘vend_a_drink;
                   nickel_out = 1;
               end
               else if (quarter_in) begin
                   ‘vend_a_drink;
                   dime_out = 1;
                   D = OWE_DIME;
               end

            TWENTY:   
               if (nickel_in)       D = TWENTY_FIVE;
               else if (dime_in)    D = THIRTY;
               else if (quarter_in) begin
                   ‘vend_a_drink;
                   dime_out = 1;
               end

            OWE_DIME: 
               begin
                   dime_out = 1;
                   D = IDLE;
               end
            endcase
    end
end

always @ (posedge clk ) begin
     Q = D;
end
endmodule
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Figure A-3 Drink Machine—State Machine Version Block Diagram

Drink Machine—Count Nickels Version

Example A-4 uses the same design parameters as Example A-4 with 
the same input and output signals. In this version, a counter counts 
the number of nickels deposited. This counter is incremented by one 
if the deposit is a nickel, by two if it’s a dime, and by five if it’s a quarter.

Example A-4 Drink Machine—Count Nickels Version
module drink_machine(nickel_in,dime_in,quarter_in,collect,
       nickel_out,dime_out,dispense,reset,clk);

input nickel_in, dime_in, quarter_in, reset, clk;
output nickel_out, dime_out, collect, dispense;

reg nickel_out, dime_out, dispense, collect;
reg [3:0] nickel_count, temp_nickel_count;
reg temp_return_change, return_change;
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             always @ ( nickel_in or dime_in or quarter_in or
             collect or temp_nickel_count or 
             reset or nickel_count or return_change) begin

nickel_out = 0;
dime_out   = 0;
dispense   = 0;
collect    = 0;
temp_nickel_count = 0;
temp_return_change = 0;

// Check whether money has come in
if (! reset) begin

temp_nickel_count = nickel_count;
if (nickel_in) 
  temp_nickel_count = temp_nickel_count + 1;
else if (dime_in) 
  temp_nickel_count = temp_nickel_count + 2;
else if (quarter_in) 
  temp_nickel_count = temp_nickel_count + 5;

// correct amount deposited?
if (temp_nickel_count >= 7) begin

temp_nickel_count = temp_nickel_count - 7;
dispense = 1;
collect = 1;

end 
// return change
if (return_change || collect) begin

if (temp_nickel_count >= 2) begin
  dime_out = 1;
  temp_nickel_count = temp_nickel_count - 2;
  temp_return_change = 1;
end

if (temp_nickel_count == 1) begin
  nickel_out = 1;
  temp_nickel_count = temp_nickel_count - 1;
end

end
end

end
always @ (posedge clk ) begin

nickel_count = temp_nickel_count;
return_change = temp_return_change;

end
endmodule
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Figure A-4 Drink Machine—Count Nickels Version Block Diagram

Carry-Lookahead Adder

Figure A-5 and Example A-5 show how to build a 32-bit carry-
lookahead adder. The adder is built by partitioning of the 32-bit input 
into eight slices of 4 bits each. The PG module computes propagate 
and generate values for each of the eight slices.

Propagate (output P from PG) is 1 for a bit position if that position 
propagates a carry from the next-lower position to the next-higher 
position. Generate (output G) is 1 for a bit position if that position 
generates a carry to the next-higher position, regardless of the carry-
in from the next-lower position.

The carry-lookahead logic reads the carry-in, propagate, and 
generate information computed from the inputs. It computes the carry 
value for each bit position. This logic makes the addition operation 
an XOR of the inputs and the carry values.
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The following list shows the order in which the carry values are 
computed by a three-level tree of 4-bit carry-lookahead blocks 
(illustrated in Figure A-4):

1. The first level of the tree computes the 32 carry values and the 8 
group propagate and generate values. Each of the first-level group 
propagate and generate values tells if that 4-bit slice propagates 
and generates carry values from the next-lower group to the next-
higher. The first-level lookahead blocks read the group carry 
computed at the second level.

2. At the second level of the tree, the lookahead blocks read the 
group propagate and generate information from the four first-level 
blocks and then compute their own group propagate and generate 
information. They also read group carry information computed at 
the third level to compute the carries for each of the third-level 
blocks.

3. At the third level of the tree, the third-level block reads the 
propagate and generate information of the second level to 
compute a propagate and generate value for the entire adder. It 
also reads the external carry to compute each second-level carry. 
The carry-out for the adder is 1 if the third-level generate is 1 or 
if the third-level propagate is 1 and the external carry is 1.

The third-level carry-lookahead block can process four second-
level blocks. Because there are only two second-level blocks in 
Figure A-4, the high-order 2 bits of the computed carry are 
ignored, the high-order 2 bits of the generate input to the third-
level are set to 00 (zero), and the propagate high-order bits are 
set to 11. This causes the unused portion to propagate carries 
but not to generate them.

Figure A-5 shows the three levels of a block diagram of the 32-bit 
carry-lookahead adder. Example A-5 shows the code for the adder.
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Figure A-5 Carry-Lookahead Adder Block Diagram
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Example A-5 Carry-Lookahead Adder
‘define word_size 32
‘define word [‘word_size-1:0]

‘define n 4
‘define slice [‘n-1:0]

‘define s0 (1*‘n)-1:0*‘n
‘define s1 (2*‘n)-1:1*‘n
‘define s2 (3*‘n)-1:2*‘n
‘define s3 (4*‘n)-1:3*‘n
‘define s4 (5*‘n)-1:4*‘n
‘define s5 (6*‘n)-1:5*‘n
‘define s6 (7*‘n)-1:6*‘n
‘define s7 (8*‘n)-1:7*‘n

module cla32_4(a, b, cin, s, cout);
input ‘word a, b;
input cin;
output ‘word s;
output cout;

 wire [7:0] gg, gp, gc; // Group generate, propagate,
// carry

 wire [3:0] ggg, ggp, ggc;// Second-level gen., prop.
 wire gggg, gggp; // Third-level gen., prop.

 bitslice i0(a[‘s0], b[‘s0], gc[0], s[‘s0], gp[0], gg[0]);
 bitslice i1(a[‘s1], b[‘s1], gc[1], s[‘s1], gp[1], gg[1]);
 bitslice i2(a[‘s2], b[‘s2], gc[2], s[‘s2], gp[2], gg[2]);
 bitslice i3(a[‘s3], b[‘s3], gc[3], s[‘s3], gp[3], gg[3]);

 bitslice i4(a[‘s4], b[‘s4], gc[4], s[‘s4], gp[4], gg[4]);
 bitslice i5(a[‘s5], b[‘s5], gc[5], s[‘s5], gp[5], gg[5]);
 bitslice i6(a[‘s6], b[‘s6], gc[6], s[‘s6], gp[6], gg[6]);
 bitslice i7(a[‘s7], b[‘s7], gc[7], s[‘s7], gp[7], gg[7]);

 cla c0(gp[3:0], gg[3:0], ggc[0], gc[3:0], ggp[0], ggg[0]);
 cla c1(gp[7:4], gg[7:4], ggc[1], gc[7:4], ggp[1], ggg[1]);

 assign ggp[3:2] = 2’b11;
 assign ggg[3:2] = 2’b00;
 cla c2(ggp, ggg, cin, ggc, gggp, gggg);
 assign cout = gggg | (gggp & cin);
endmodule

// Compute sum and group outputs from a, b, cin           
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module bitslice(a, b, cin, s, gp, gg);
input ‘slice a, b;
input cin;
output ‘slice s;
output gp, gg;

 wire ‘slice p, g, c;
 pg i1(a, b, p, g);
 cla i2(p, g, cin, c, gp, gg);
 sum i3(a, b, c, s);
endmodule

// compute propagate and generate from input bits

module pg(a, b, p, g);
input ‘slice a, b;
output ‘slice p, g;

 assign p = a | b;
 assign g = a & b;
endmodule

// compute sum from the input bits and the carries

module sum(a, b, c, s);
input ‘slice a, b, c;
output ‘slice s;

 wire ‘slice t = a ^ b;
 assign s = t ^ c;
endmodule

// n-bit carry-lookahead block

module cla(p, g, cin, c, gp, gg);
input ‘slice p, g;// propagate and generate bits
input cin; // carry in
output ‘slice c; // carry produced for each bit
output gp, gg; // group generate and group propagate

 function [99:0] do_cla;
 input ‘slice p, g;
 input cin;

 begin : label
 integer i;
 reg gp, gg;
 reg ‘slice c;
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 gp = p[0];
 gg = g[0];
 c[0] = cin;
 for(i = 1; i < ‘n; i = i+1) begin
 gp = gp & p[i];
 gg = (gg & p[i]) | g[i];
 c[i] = (c[i-1] & p[i-1]) | g[i-1];
 end
 do_cla = {c, gp, gg};
 end
 endfunction

 assign {c, gp, gg} = do_cla(p, g, cin);
endmodule
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B
Verilog Syntax B

This appendix contains a syntax description of the Verilog language 
as supported by Synopsys FPGA Compiler II / FPGA Express. It 
covers the following topics:

• Syntax

• Lexical Conventions

• Verilog Keywords

• Unsupported Verilog Language Constructs

Syntax

This section presents the syntax of the supported Verilog language 
in Backus-Naur form (BNF) and the syntax formalism.
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Note:
The BNF syntax convention used in this section differs from the 
Synopsys syntax convention used elsewhere in this manual.

BNF Syntax Formalism

White space separates lexical tokens.

name 
is a keyword.

<name> 
is a syntax construct definition.

<name> 
is a syntax construct item.

<name>? 
is an optional item.

<name>* 
is zero, one, or more items.

<name>+ 
is one or more items.

<port> <,<port>>* 
is a comma-separated list of items.

::= 
gives a syntax definition to an item.

||= 
refers to an alternative syntax construct.
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BNF Syntax

<source_text> 
   ::= <description>*

<description> 
   ::= <module>

<module>
   ::= module <name_of_module> <list_of_ports>? ;
              <module_item>*
       endmodule

<name_of_module> 
   ::= <IDENTIFIER>

<list_of_ports> 
   ::= ( <port> <,<port>>* )
   ||= ( )

<port>
   ::= <port_expression>?
   ||= . <name_of_port> ( <port_expression>? )

<port_expression>
   ::= <port_reference>
   ||= { <port_reference> <, <port_reference>>* }

<port_reference>
   ::= <name_of_variable>
   ||= <name_of_variable> [ <expression> ]
   ||= <name_of_variable> [ <expression> : <expression> ]

<name_of_port>
   ::= <IDENTIFIER>

<name_of_variable>
   ::= <IDENTIFIER>
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<module_item>
   ::= <parameter_declaration>
   ||= <input_declaration>
   ||= <output_declaration>
   ||= <inout_declaration>
   ||= <net_declaration>
   ||= <reg_declaration>
   ||= <integer_declaration>
   ||= <gate_instantiation>
   ||= <module_instantiation>
   ||= <continuous_assign>
   ||= <function>

<function>
   ::= function <range>? <name_of_function> ;
            <func_declaration>*
            <statement_or_null>
       endfunction

<name_of_function>
   ::= <IDENTIFIER>

<func_declaration>
   ::= <parameter_declaration>
   ||= <input_declaration>
   ||= <reg_declaration>
   ||= <integer_declaration>

<always>
   ::= always @ ( <identifier> or <identifier> )
   ||= always @ ( posedge <identifier> )
   ||= always @ ( negedge <identifier> )
   ||= always @ ( <edge> or <edge> or ... )

<edge>
   ::= posedge <identifier>
   ||= negedge <identifier>

<parameter_declaration>
   ::= parameter <range>? <list_of_assignments> ;
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<input_declaration>
   ::= input <range>? <list_of_variables> ;

<output_declaration>
   ::= output <range>? <list_of_variables> ;

<inout_declaration>
   ::= inout <range>? <list_of_variables> ;

<net_declaration>
   ::= <NETTYPE> <charge_strength>? <expandrange>? <delay>? 
<list_of_variables> ;
   ||= <NETTYPE> <drive_strength>? <expandrange>? <delay>? 
<list_of_assignments> ;

<NETTYPE>
   ::= wire
   ||= wor
   ||= wand
   ||= tri

<expandrange>
   ::= <range>
   ||= scalared <range>
   ||= vectored <range>

<reg_declaration>
   ::= reg <range>? <list_of_register_variables> ;

<integer_declaration>
   ::= integer <list_of_integer_variables> ;
<continuous_assign>
   ::= assign <drive_strength>? <delay>? 
              <list_of_assignments>;

<list_of_variables>
   ::= <name_of_variable> <, <name_of_variable>>*

<name_of_variable>
   ::= <IDENTIFIER>
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<list_of_register_variables>
   ::= <register_variable> <, <register_variable>>*

<register_variable>
   ::= <IDENTIFIER>

<list_of_integer_variables>
   ::= <integer_variable> <, <integer_variable>>*

<integer_variable>
   ::= <IDENTIFIER>

<charge_strength>
   ::= ( small )
   ||= ( medium )
   ||= ( large )

<drive_strength>
   ::= ( <STRENGTH0> , <STRENGTH1> )
   ||= ( <STRENGTH1> , <STRENGTH0> )

<STRENGTH0>
   ::= supply0
   ||= strong0
   ||= pull0
   ||= weak0
   ||= highz0

<STRENGTH1>
   ::= supply1
   ||= strong1
   ||= pull1
   ||= weak1
   ||= highz1

<range>
   ::= [ <expression> : <expression> ]

<list_of_assignments>
   ::= <assignment> <, <assignment>>*
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<gate_instantiation>
   ::= <GATETYPE> <drive_strength>? <delay>?
            <gate_instance> <, <gate_instance>>* ;

<GATETYPE>
   ::= and
   ||= nand
   ||= or
   ||= nor
   ||= xor
   ||= xnor
   ||= buf
   ||= not

<gate_instance>
   ::= <name_of_gate_instance>? ( <terminal>
                       <, <terminal>>* )

<name_of_gate_instance>
   ::= <IDENTIFIER>

<terminal>
   ::= <identifier>
   ||= <expression>

<module_instantiation>
   ::= <name_of_module> <parameter_value_assignment>? 
       <module_instance> <, <module_instance>>* ;

<name_of_module>
   ::= <IDENTIFIER>

<parameter_value_assignment>
   ::= #( <expression> <,<expression>>*)

<module_instance>
   ::= <name_of_module_instance> 
       ( <list_of_module_terminals>? )

<name_of_module_instance>
   ::= <IDENTIFIER>
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<list_of_module_terminals>
   ::= <module_terminal>? <,<module_terminal>>*
   ||= <named_port_connection> <,<named_port_connection>>*

<module_terminal>
   ::= <identifier>
   ||= <expression>

<named_port_connection>
   ::= . IDENTIFIER ( <identifier> )
   ||= . IDENTIFIER ( <expression> )

<statement>
   ::= <assignment>
   ||= if ( <expression> )
          <statement_or_null>
   ||= if ( <expression> )
          <statement_or_null>
       else
          <statement_or_null>
   ||= case ( <expression> )
          <case_item>+
       endcase
   ||= casex ( <expression> )
          <case_item>+
       endcase
   ||= casez ( <expression> )
          <case_item>+
       endcase
   ||= for ( <assignment> ; <expression> ; <assignment> )
          <statement>
   ||= <seq_block>
   ||= disable <IDENTIFIER> ;
   ||= forever <statement>
   ||= while ( <expression> ) <statement>

<statement_or_null>
   ::= statement
   ||= ;

<assignment>
   ::= <lvalue> = <expression>
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<case_item>
   ::= <expression> <,<expression>>* : 
<statement_or_null>
   ||= default : <statement_or_null>
   ||= default <statement_or_null>

<seq_block>
   ::= begin
           <statement>*
       end
   ||= begin : <name_of_block>
           <block_declaration>*
           <statement>*
       end

<name_of_block>
   ::= <IDENTIFIER>

<block_declaration>
   ::= <parameter_declaration>
   ||= <reg_declaration>
   ||= <integer_declaration>

<lvalue>
   ::= <IDENTIFIER>
   ||= <IDENTIFIER> [ <expression> ]
   ||= <concatenation>

<expression>
   ::= <primary>
   ||= <UNARY_OPERATOR> <primary>
   ||= <expression> <BINARY_OPERATOR>
   ||= <expression> ? <expression> : <expression>

<UNARY_OPERATOR>
   ::= !
   ||= ~
   ||= &
   ||= ~&
   ||= |
   ||= ~|
   ||= ^
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   ||= ~^
   ||= -
   ||= +

<BINARY_OPERATOR>
   ::=  +
   ||=  -
   ||=  *
   ||=  /
   ||=  %
   ||=  ==
   ||=  !=
   ||=  &&
   ||=  ||
   ||=  <
   ||=  <=
   ||=  >
   ||=  >=
   ||=  &
   ||=  |
   ||=  <<
   ||=  >>

<primary>
   ::= <number>
   ||= <identifier>
   ||= <identifier> [ <expression> ]
   ||= <identifier> [ <expression> : <expression> ]
   ||= <concatenation>
   ||= <multiple_concatenation>
   ||= <function_call>
   ||= ( <expression> )

<number>
   ::= <NUMBER>
   ||= <BASE> <NUMBER>
   ||= <SIZE> <BASE> <NUMBER>

<NUMBER>
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A number can have any of these characters:  
0123456789abcdefxzABCDEFXZ.

<SIZE>
   ::= ’b
   ||= ’B
   ||= ’o
   ||= ’O
   ||= ’d
   ||= ’D
   ||= ’h
   ||= ’H

<SIZE>

A size can have any number of these digits:  0123456789

<concatenation>
   ::= { <expression> <,<expression>>* }

<multiple_concatenation>
   ::= { <expression> { <expression> <,<expression>>* } }

<function_call>
   ::= <name_of_function> ( <expression> <,<expression>>*)

<name_of_function>
   ::= <IDENTIFIER>

<identifier>

An identifier is any sequence of letters, digits, and the underscore 
character ( _ ), where the first character is a letter or an underscore. 
Uppercase and lowercase letters are treated as different characters. 
Identifiers can be any size, and all characters are significant. Escaped 
identifiers start with the backslash character (\) and end with a space. 
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The leading backslash character (\) is not part of the identifier. Use 
escaped identifiers to include any printable ASCII characters in an 
identifier. 

<delay>
   ::= # <NUMBER>
   ||= # <identifier>
   ||= # ( <expression> <,<expression>>* )

Lexical Conventions

The lexical conventions FPGA Compiler II / FPGA Express uses are 
nearly identical to those of the Verilog language. The types of lexical 
tokens FPGA Compiler II / FPGA Express uses are described in the 
following subsections: 

• White Space

• Comments

• Numbers

• Identifiers

• Operators

• Macro Substitution

• include Construct

• Simulation Directives

• Verilog System Functions
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White Space

White space separates words in the input description and can contain 
spaces, tabs, new lines, and form feeds. You can place white space 
anywhere in the description. FPGA Compiler II / FPGA Express 
ignores white space.

Comments

You can enter comments anywhere in a Verilog description, in two 
forms:

• Beginning with two slashes //

FPGA Compiler II / FPGA Express ignores all text between these 
characters and the end of the current line. 

• Beginning with the two characters /* and ending with */

FPGA Compiler II / FPGA Express ignores all text between these 
characters, so you can continue comments over more than one 
line.

Note:
You cannot nest comments.

Numbers

You can declare numbers in several different radices and bit-widths. 
A radix is the base number on which a numbering system is built. For 
example, the binary numbering system has a radix of 2, octal has a 
radix of 8, and decimal has a radix of 10.
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You can use these three number formats:

• A simple decimal number that is a sequence of digits in the range 
of 0 to 9. All constants declared this way are assumed to be 32-
bit numbers. 

• A number that specifies the bit-width as well as the radix. These 
numbers are the same as those in the previous format, except 
that they are preceded by a decimal number that specifies the bit-
width.

• A number followed by a two-character sequence prefix that 
specifies the number’s size and radix. The radix determines which 
symbols you can include in the number. Constants declared this 
way are assumed to be 32-bit numbers. Any of these numbers 
can include underscores ( _ ), which improve readability and do 
not affect the value of the number. Table B-1 summarizes the 
available radices and valid characters for the number.

Example B-1 shows some valid number declarations.

Example B-1 Valid Verilog Number Declarations

391               //  32-bit decimal number
’h3a13            //  32-bit hexadecimal number
10’o1567          //  10-bit octal number
3’b010            //  3-bit binary number
4’d9              //  4-bit decimal number
40’hFF_FFFF_FFFF  //  40-bit hexadecimal number
2’bxx             //  2-bits don’t care

Table B-1 Verilog Radices

Name Character Prefix Valid Characters

Binary ’b 0 1 x X z Z _ ?

Octal ’o 0–7 x X z Z _ ?

Decimal ’d 0–9 _

Hexadecimal ’h 0–9 a–f A–F x X z Z _ ?
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3’bzzz            //  3-bits high-impedance

Identifiers

Identifiers are user-defined words for variables, function names, 
module names, and instance names. Identifiers can be composed of 
letters, digits, and the underscore character ( _ ). The first character 
of an identifier cannot be a number. Identifiers can be any length. 
Identifiers are case-sensitive, and all characters are significant.

Identifiers that contain special characters, begin with numbers, or 
have the same name as a keyword can be specified as an escaped 
identifier. An escaped identifier starts with the backslash character 
(\), followed by a sequence of characters, followed by white space. 

Some escaped identifiers are shown in Example B-2.

Example B-2 Sample Escaped Identifiers

\a+b                   \3state
\module                \(a&b)|c

The Verilog language supports the concept of hierarchical names, 
which can be used to access variables of submodules directly from 
a higher-level module. These are partially supported by FPGA 
Compiler II / FPGA Express. (For more information, see 
“Unsupported Verilog Language Constructs” on page B-20.)

Operators

Operators are one- or two-character sequences that perform 
operations on variables. Some examples of operators are +, ~^, <=, 
and >>. Operators are described in detail in “Operators” on page 4-3.
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Macro Substitution

Macro substitution assigns a string of text to a macro variable. The 
string of text is inserted into the code where the macro is encountered. 
The definition begins with the back quotation mark (‘), followed by the 
keyword define, followed by the name of the macro variable. All text 
from the macro variable until the end of the line is assigned to the 
macro variable.

You can declare and use macro variables anywhere in the description. 
The definitions can carry across several files that are read into FPGA 
Compiler II / FPGA Express at the same time. To make a macro 
substitution, type a back quotation mark (‘) followed by the macro 
variable name.

Some sample macro variable declarations are shown in Example B-3.

Example B-3 Macro Variable Declarations

‘define highbits      31:29
‘define bitlist       {first, second, third}
wire [31:0] bus;
‘bitlist = bus[‘highbits];

Text macros are not supported when used with sized constants, as 
shown in Example B-4.
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Example B-4 Macro With Sized Constants

‘define SIZE 4

module test (in,out);
output [3:0] out;
input [3:0] in;

assign out = ’SIZE’b0101; //text macro from ‘define statement 
 //cannot be used with a sized constant

endmodule

include Construct

The include construct in Verilog is similar to the #include directive
in C. You can use this construct to include Verilog code, such as type 
declarations and functions, from one module in another module. 
Example B-5 shows an application of the include construct.

Example B-5 Including a File Within a File

Contents of file1.v

‘define WORDSIZE 8
function [WORDSIZE-1:0] fastadder;
.
.
endfunction

Contents of secondfile

module secondfile (in1,in2,out)
‘include file1.v
wire [WORDSIZE-1:0] temp;
assign temp = fastadder (in1,in2);
.
.
endmodule
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Included files can include other files, with up to 24 levels of nesting. 
You cannot use the include construct recursively. 

Simulation Directives

Simulation directives refer to special commands that affect the 
operation of the Verilog HDL Simulator. You can include these 
directives in your design description, because FPGA Compiler II / 
FPGA Express parses and ignores them:

‘accelerate 
‘celldefine
‘default_nettype
‘endcelldefine 
‘endprotect
‘expand_vectornets
‘noaccelerate 
‘noexpand_vectornets
‘noremove_netnames
‘nounconnected_drive 
‘protect
‘remove_netnames
‘resetall 
‘timescale
‘unconnected_drive

Verilog System Functions

Verilog system functions are special functions Verilog HDL Simulators 
implement to generate input or output during simulation. Their names 
start with a dollar sign ($). These functions are parsed and ignored 
by FPGA Compiler II / FPGA Express.
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Verilog Keywords

Verilog uses keywords, shown in Table B-2, to interpret an input file. 
You cannot use these words as user variable names unless you use 
an escaped identifier. For more information, see “Identifiers” on 
page B-15.

Table B-2 Verilog Keywords
always force or trireg

and forever output table

assign fork parameter task

begin function pmos time

buf highz0 posedge tran

bufif0 highz1 primitive tranif0

bufif1 if pull0 tranif1

case initial pull1 tri

casex inout rcmos triand

casez input reg tri0

cmos integer release tri1

deassign join repeat vectored

default large rnmos wait

defparam medium rpmos wand

disable module rtran weak0

end nand rtranif0 weak1

endcase negedge rtranif1 while

endfunction nmos scalared wire

endmodule nor small wor

endprimitive not strong0 xnor

endtable notif0 strong1 xor

endtask notif1 supply0

event pulldown supply1

for pullup trior
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Unsupported Verilog Language Constructs

FPGA Compiler II / FPGA Express does not support the following 
Verilog constructs:

• Unsupported definitions and declarations

- primitive definition

- time declaration

- event declaration

- triand, trior, tri1, tri0, and trireg net types

- Ranges and arrays for integers

• Unsupported statements

- defparam statement

- initial statement

- repeat statement

- delay control

- event control

- wait statement

- fork statement

- deassign statement

- force statement

- release statement
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• Unsupported operators

- Case equality and inequality operators (=== and !==)

- Division and modulus operators for variables

• Unsupported gate-level constructs

- nmos, pmos, cmos, rnmos, rpmos, rcmos, pullup, pulldown, 
tranif0, tranif1, rtran, rtrainf0, and rtrainf1 gate types

• Unsupported miscellaneous constructs

- Hierarchical names within a module

Constructs added to the Verilog Simulator in versions after Verilog 
1.6 might not be supported.

If you use an unsupported construct in a Verilog description, FPGA 
Compiler II / FPGA Express issues a syntax error such as

event is not supported
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Glossary

anonymous type
A predefined or underlying type with no name, such as universal 
integers.

ASIC 
Application-specific integrated circuit.

behavioral view
The set of Verilog statements that describe the behavior of a design 
by using sequential statements. These statements are similar in 
expressive capability to those found in many other programming 
languages. See also the data flow view, sequential statement, and 
structural view definitions.

bit-width
The width of a variable, signal, or expression in bits. For example, 
the bit-width of the constant 5 is 3 bits.

character literal 
Any value of type CHARACTER, in single quotation marks.

computable
Any expression whose (constant) value FPGA Compiler II / FPGA 
Express can determine during translation.
GL-1



constraints
The designer’s specification of design performance goals. FPGA 
Compiler II / FPGA Express uses constraints to direct the 
optimization of a design to meet area and timing goals.

convert
To change one type to another. Only integer types and subtypes are 
convertible, along with same-sized arrays of convertible element 
types.

data flow view
The set of VHDL/Verilog statements that describe the behavior of a 
design by using concurrent statements. These descriptions are 
usually at the level of Boolean equations combined with other 
operators and function calls. See also the behavioral view and 
structural view definitions.

design constraints
See constraints.

flip-flop
An edge-sensitive memory device.

HDL 
Hardware Description Language. 

identifier
A sequence of letters, underscores, and numbers. An identifier 
cannot be a VHDL/Verilog reserved word, such as type or loop. An 
identifier must begin with a letter or an underscore.

latch
A level-sensitive memory device.

netlist
A network of connected components that together define a design.
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optimization
The modification of a design in an attempt to improve some 
performance aspect. FPGA Compiler II / FPGA Express optimizes 
designs and tries to meet specified design constraints for area and 
speed. 

port
A signal declared in the interface list of an entity.

reduction operator
An operator that takes an array of bits and produces a single-bit 
result, namely the result of the operator applied to each successive 
pair of array elements.

register
A memory device containing one or more flip-flops or latches used 
to hold a value.

resource sharing
The assignment of a similar VHDL/Verilog operation (for example, 
+) to a common netlist cell. Netlist cells are the resources—they are 
equivalent to built hardware.

RTL
Register transfer level, a set of structural and data flow statements.

sequential statement
A set of VHDL/Verilog statements that execute in sequence. 

signed value
A value that can be positive, zero, or negative.

structural view
The set of VHDL/Verilog statements used to instantiate primitive 
and hierarchical components in a design. A VHDL/Verilog design at 
the structural level is also called a netlist. See also the behavioral 
view and data flow view definitions.
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subtype
A type declared as a constrained version of another type. 

synthesis
The creation of optimized circuits from a high-level description. 
When VHDL/Verilog is used, synthesis is a two-step process: 
translation from VHDL/Verilog to gates and optimization of those 
gates for a specific FPGA library. 

technology library
A library of cells available to FPGA Compiler II / FPGA Express 
during the synthesis process. A technology library can contain area, 
timing, and functional information on each cell.

translation
The mapping of high-level language constructs onto a lower-level 
form. FPGA Compiler II / FPGA Express translates RTL VHDL/
Verilog descriptions to gates.

type
In VHDL/Verilog, the mechanism by which objects are restricted in 
the values they are assigned and the operations that can be applied 
to them. 

unsigned
A value that can be only positive or zero.

variable
An electrical quantity that can be used to transmit information. A 
signal is declared with a type and receives its value from one or 
more drivers. Signals are created in Verilog through either wire or 
reg declarations.

VHDL
VHSIC hardware description language.
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VHSIC
Very high speed integrated circuit, a high-technology program of the 
United States Department of Defense.
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^~ (binary bitwise XNOR operator) 4-9

^~ (reduction XNOR operator) 4-10
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AND binary bitwise operator (&) 4-9
AND logical operator (&&) 4-8
AND reduction operator (&) 4-10
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arithmetic optimization
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introduction 7-7

assign 3-15
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optimization 7-34
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B
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begin-end pair 5-4
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binary AND 4-9
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unary negation (~) 4-9
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begin in 5-14
end in 5-14
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sequential 5-14
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buf 3-21
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C
call

function 5-3
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default 5-20
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register inference 5-20
statement 5-18

full case 5-20
parallel case 5-21

case item 5-19, 5-23, 5-26
syntax B-9
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case item 5-23
statement 5-22
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case item 5-26
statement 5-25

charge strength, syntax of B-6
circuitry

efficient 7-1
combinational feedback path 7-32
combinational logic
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apparently sequential constructs 5-2
in functional descriptions 2-3

comments
HDL Compiler directives 8-2
lexical conventions B-13

common subexpressions
sharing 7-13

component implication
distinct component

syntax 8-16
instantiation 8-16
registers 6-1

component organization 7-3
concatenation

in procedural assignment 5-10
operand 3-4, 4-19
operator 4-19
syntax B-11

concatenation operator ({}) 4-13
number of operands 4-3
repetition multiplier 4-13
unsized constants 4-13

conditional operator 4-12
nested 4-12
number of operands 4-3

conditional statement 5-15
conditionally assigned variable

reading 5-18, 6-19
connection list 3-17

terminals 3-17
constant
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sized 4-16
unsized 4-16, B-14

constant propagation 7-31
constant-valued expression

definition 4-2
in range specifications 3-8
represented in parameters 3-8
synthesized circuitry 4-2

construct 3-7

unsupported B-20
context-determined operands 4-19
continuous assignment 2-3

drive strength in 3-16
driving a wire 3-9
in a wire declaration 3-15
in function declarations 5-3
in modules 3-7
left side of 3-16
right side of 3-16
syntax B-5

D
data assignments 3-7
data declarations 3-7
decimal numbers B-13
declarations

function 5-3
input 5-5
integer 5-9
parameter 5-8
register 5-6

decrementing loop 5-27
default 5-20
define B-16
definitions

register inference 6-1
delay

gate-level options 3-21
syntax B-12

delay value 3-11
description style 2-6
descriptions

logically equivalent 7-1
design

efficiency 7-34
Design Compiler

restructuring 1-5
synthesis and optimization 1-5

design flow 1-6
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design methodology 2-6
directives

enum 8-10
full_case

syntax 8-5
simulation B-18

disable 5-31
in named block 5-31

division operator (/) 4-4
don’t care inference

simulation 7-29
synthesis 7-29

don’t care values 7-28
dot operator (.) 3-6
drive strength

in a continuous assignment 3-16
syntax B-6

E
edge

syntax B-4
efficiency

of descriptions 7-1
endfunction

keyword 5-4
enum directive 8-10
equality operator (==) 4-6
escaped identifier B-15
event

always block 5-35
specification

in always blocks 5-37
event expression

always block 5-34
examples

three-state component
registered input 6-58

two-phase clocked design 6-19
explicit state style

for state machines 7-19

expression tree 7-7
subexpressions in 7-10

expressions
bit-width 4-19
compile-time evaluation 7-31
context determined 4-19
definition 4-1
legal 4-1
self-determined 4-19
syntax B-9
using parentheses in 7-9

F
falling edge 5-35
feedback paths 7-32
finite state machines

describing with explicit state style 7-19
describing with implicit state style 7-19
using state information 7-16

flip-flop
definition 6-1
implying edge-triggered 5-34

for
duplicating statements 5-28
nested 5-27
range expression 5-27

for loops 5-27
begin statement 5-27
end statement 5-27

full case 5-20
full_case directive 8-5
fully specified variable 7-32
function

declaration 5-3
continuous assignments 5-3
module terminals in 5-3

ignored B-18
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local variables 5-8
outputs 5-5
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range specification 5-4
syntax B-4

function call 5-3
operand 4-3, 4-18
syntax B-11

function declaration
in functional descriptions 2-3
syntax B-4

function definition
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function name
syntax B-4, B-11

function statement
begin-end blocks 5-14
case statements 5-18
casex statements 5-22
casez statements 5-25
disable statement 5-31
for loop 5-27
forever 5-30
if ... else construct 5-15
procedural assignment 5-10
supported types 5-9
while loop 5-29

functional description 1-7, 2-3
always blocks in 2-3
combinational logic in 2-3
construction and use 5-1
function declarations in 2-3
mixing with structural descriptions 2-4
sequential logic in 2-3

G
gate

connecting to inout 3-15
gate instance

name, syntax B-7
syntax B-7

gate instantiation
in modules 3-7

syntax B-7
gate types B-7
gate-level constructs 2-3
gate-level modeling 3-20

delay options 3-21
instance names 3-21

global variable
integer 5-9

H
hardware description languages 1-2
HDL

definition 1-2
HDL Compiler

design knowledge 7-7
efficient translations 7-7

HDL Compiler directives
circuitry synthesized for parallel_case 8-4
definition 8-1
enum 8-10
full_case 8-5
full_case used with parallel_case 8-6
parallel_case 8-4
parallel_case used with full_case 8-6
state_vector 8-8
translate_off 8-2
translate_on 8-2

HDL synthesis 1-2
hexadecimal numbers B-13
hierarchical boundaries 2-2
hierarchical constructs 2-3
hierarchical names

not supported B-15
high-impedance state 6-51

I
identifier B-15

escaped B-15
lowercase sensitivity B-11
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uppercase sensitivity B-11

if ... else construct 5-15
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implicit state style
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include construct

example B-17
incompletely specified variable 7-32
incrementing loop 5-27
inequality operator (!=) 4-6
inference report

description 6-51
example 6-2

infinite loops 5-30
inout

connecting to gate 3-15
connecting to module 3-15
declaration 3-7

syntax of B-5
statement 3-15
wire 3-15

input
declaration 3-7, 5-5
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range specifications 5-5
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statement 3-14
structural data type 3-8
wire 3-14

input declaration
definition 5-5
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input statement 3-7, 5-5
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declaration 5-9
syntax of B-5

in procedural assignment 5-10

integer variable 5-9
global 5-9
local 5-9
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internal design format 1-4

K
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L
language constructs 2-6
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definition 6-1
latch inference

avoiding 8-5, 8-7
local variables 6-11

least significant bit 3-8
lexical conventions B-12
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integer 5-9
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combinational 5-2
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loop

decrementing 5-27
incrementing 5-27
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M
macro substitution B-16
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memory construct 5-7
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gate-level 3-20
module 3-2, 3-7
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instance, syntax B-7
instantiation 3-17
instantiation, syntax B-7
name, syntax B-3, B-7
syntax B-3
terminals 3-17

module definition
in structural descriptions 2-3

module instantiation 3-17
bit-widths 3-17
in structural descriptions 2-3
name-based 3-18
named notation 3-18
positional notation 3-18
position-based 3-18

module statement
module instantiations 3-7

module terminals
in function declarations 5-3

modulus operator (%) 4-4
most significant bit 3-8
msb (most significant bit) 3-8
multipath branch 5-18

in casex statement 5-22
in casez statement 5-25

multiplexer
creating with case and parallel_case 8-4

multiplication operator (*) 4-4

N
named block

construct 5-14
disable used in 5-31
syntax B-9

variables in 5-15
named notation 3-18
NAND reduction operator (~&) 4-10
negative edge 5-35
negedge 5-35, 5-36
net types B-5
netlist connection

in structural descriptions 2-3
NOR reduction operator (~|) 4-10
NOT logical operator (!) 4-8
number 4-16

binary B-13
decimal B-13
formats B-13
hexadecimal B-13
octal B-13
operand in expressions 4-16
sized 4-16
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O
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conditional (?:) 4-12
definition 4-3
division (/) 4-4
dot (.) 3-6
equality (==) 4-6
inequality (!=) 4-6
lexical conventions B-15
logical and (&&) 4-8
logical not (!) 4-8
logical or (||) 4-8
modulus (%) 4-4
multiplication (*) 4-4
nested conditional 4-12
precedence 4-15
reduction AND (&) 4-10
reduction NAND (~&) 4-10
reduction NOR(~|) 4-10
reduction OR (|) 4-10
reduction XNOR(~^) 4-10
reduction XOR (^) 4-10
relational 4-5
shift left ( 4-11
shift right (>>) 4-11
subtraction (-) 4-4
unary 4-3, B-9
unary bitwise negation (~) 4-9

OR binary bitwise operator (|) 4-9
OR logical operator (||) 4-8
OR reduction operator (|) 4-10
output
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