
FPGA Compiler II /
FPGA Express
Verilog HDL
Reference Manual
Version 1999.05, May 1999

Comments?
E-mail your comments about Synopsys
documentation to doc@synopsys.com

Copyright Notice and Proprietary Information
Copyright  1999 Synopsys, Inc. All rights reserved. This software and documentation are owned by Synopsys, Inc., and
furnished under a license agreement. The software and documentation may be used or copied only in accordance with the terms of
the license agreement. No part of the software and documentation may be reproduced, transmitted, or translated, in any form or by
any means, electronic, mechanical, manual, optical, or otherwise, without prior written permission of Synopsys, Inc., or as expressly
provided by the license agreement.

Right to Copy Documentation
The license agreement with Synopsys permits licensee to make copies of the documentation for its internal use only.
Each copy shall include all copyrights, trademarks, service marks, and proprietary rights notices, if any. Licensee must
assign sequential numbers to all copies. These copies shall contain the following legend on the cover page:

“This document is duplicated with the permission of Synopsys, Inc., for the exclusive use of
__ and its employees. This is copy number
__________.”

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the United States of America.
Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader’s responsibility to
determine the applicable regulations and to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH
REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Registered Trademarks
Synopsys, the Synopsys logo, BiNMOS-CBA, CMOS-CBA, COSSAP, DESIGN (ARROWS), DesignPower, DesignWare,

dont_use, Eagle Design Automation, ExpressModel, in-Sync, LM-1000, LM-1200, Logic Modeling, Logic Modeling
(logo), Memory Architect, ModelAccess, ModelTools, PathMill, PLdebug, Powerview, Retargeter, SmartLicense,
SmartLogic, SmartModel, SmartModels, SNUG, SOLV-IT!, SourceModel Library, Stream Driven Simulator_,
Synopsys, Synopsys (logo), Synopsys VHDL Compiler, Synthetic Designs, Synthetic Libraries, TestBench Manager,
TimeMill, ViewBase, ViewData, ViewDoc, ViewDraw, ViewFault, ViewFlow, VIEWFPGA, ViewGen, Viewlogic,
ViewPlace, ViewPLD, ViewScript, ViewSim, ViewState, ViewSynthesis, ViewText, Workview, Workview Office, and
Workview Plus are registered trademarks of Synopsys, Inc.

Trademarks
3-D Debugging, AC/Grade, AMPS, Arcadia, Arkos, Aurora, BCView, BOA, BRT, CBA Design System,

CBA-Frame, characterize, Chip Architect, Chronologic, Compiler Designs, Core Network, Core Store, Cyclone, Data
Path Express, DataPath Architect, DC Expert, DC Expert Plus, DC Professional, Delay Mill, Design Advisor, Design
Analyzer_proposed, Design Exchange, Design Source, DesignTime, DesignWare Developer, Direct RTL, Direct
Silicon Access, dont_touch, dont_touch_network, DW 8051, DWPCI, DxDataBook, DxDataManager, Eagle, Eaglei,
Eagle V, Embedded System Prototype, Floorplan Manager, Formality, FoundryModel, FPGA Compiler II, FPGA
Express, Fusion, FusionHDL, General Purpose Post-Processor, GPP, HDL Advisor, HTX, Integrator, IntelliFlow,
Interactive Waveform Viewer, ISIS, ISIS PreVUE, LM-1400, LM-700, LM-family, Logic Model, ModelSource,
ModelWare, MOTIVE, MS-3200, MS-3400, PathBlazer, PDQ, POET, PowerArc, PowerCODE, PowerGate, PowerMill,
PreVUE, PrimeTime, Protocol Compiler, QUIET, QUIET Expert, RailMill, RTL Analyzer, Shadow Debugger, Silicon
Architects, SimuBus, SmartCircuit, SmartModel Windows, Source-Level Design, SourceModel, SpeedWave, SWIFT,
SWIFT interface, Synopsys Behavioral Compiler, Synopsys Design Compiler, Synopsys ECL Compiler, Synopsys
ECO Compiler, Synopsys FPGA Compiler, Synopsys Frame Compiler, Synopsys Graphical Environment, Synopsys
HDL Compiler, Synopsys Library Compiler, Synopsys ModelFactory, Synopsys Module Compiler, Synopsys Power
Compiler, Synopsys Test Compiler, Synopsys Test Compiler Plus, TAP-in, Test Manager, TestGen, TestGen Expert
Plus, TestSim, Timing Annotator, TLC, Trace-On-Demand, VCS, DCS Express, VCSi, VHDL System Simulator,
ViewAnalog, ViewDatabook, ViewDRC, ViewLibrarian, ViewLibrary, ViewProject, ViewSymbol, ViewTrace, Visualyze,
Vivace, VMD, VSS Expert, VSS Professional VWaves, XFX, XNS, and XTK are trademarks of Synopsys, Inc.

Service Marks
SolvNET is a service mark of Synopsys, Inc.
All other product or company names may be trademarks of their respective owners.
Printed in the U.S.A.

FPGA Compiler II / FPGA Express Verilog HDL Reference Manual, Version 1999.05
ii

About This Manual

This manual describes the Verilog portion of Synopsys FPGA
Compiler II / FPGA Express application, part of the Synopsys suite
of synthesis tools. FPGA Compiler II / FPGA Express reads an RTL
Verilog HDL model of a discrete electronic system and synthesizes
this description into a gate-level netlist.

FPGA Compiler II / FPGA Express supports v1.6 of the Verilog
language. Deviations from the definition of the Verilog language are
explicitly noted. Constructs added in versions subsequent to Verilog
1.6 might not be supported. Aspects of the Verilog language that are
not supported are listed in Appendix B.

Audience

This manual is written for logic designers and electronic engineers
who are familiar with Synopsys synthesis products. Knowledge of the
Verilog language is required, and knowledge of a high-level
programming language is helpful.
iii

Other Sources of Information

The resources in the following sections provide additional information:

• Related Publications

• SolvNET Online Help

• Customer Support

Related Publications

These Synopsys documents supply additional information:

• FPGA Compiler II / FPGA Express Getting Started Manual

• Design Compiler Command-Line Interface Guide

• Design Compiler Reference Manual: Constraints and Timing

• Design Compiler Reference Manual: Optimization and Timing
Analysis

• Design Compiler Tutorial

• Design Compiler User Guide

• DesignWare Developer Guide

• VSS User Guide

Man Pages

You can view man pages from fc2_shell / fe_shell environment. From
the shell prompt, enter:
iv

fc2_shell> help command_name

or

fe_shell> help command_name

SolvNET Online Help

SOLV-IT! is the Synopsys electronic knowledge base. It contains
information about Synopsys and its tools and is updated daily.

Access SOLV-IT! through e-mail or through the World Wide Web
(WWW). For more information about SOLV-IT!, send e-mail to

solvitfb@synopsys.com

or view the Synopsys Web page at

http://www.synopsys.com

Customer Support

If you have problems, questions, or suggestions, contact the
Synopsys Technical Support Center in one of the following ways:

• Send e-mail to

support_center@synopsys.com

• Call (650) 584-4200 outside the continental United States or call
(800) 245-8005 inside the continental United States, from 7 a.m.
to 5:30 p.m. Pacific time, Monday through Friday.

• Send a fax to (650) 584-2539.
v

Conventions

The following conventions are used in Synopsys documentation.

Convention Description
courier Indicates command syntax.

In command syntax and examples, shows
system prompts, text from files, error
messages, and reports printed by the
system.

courier italic Indicates a user specification, such as
object_name

courier bold In command syntax and examples, indicates
user input (text the user types verbatim).

[] Denotes optional parameters, such as pin1
[pin2, . . pinN]

| Indicates a choice among alternatives, such
as

low | medium | high

This example indicates that you can enter
one of three possible values for an option:
low, medium, or high.

_ Connects two terms that are read as a single
term by the system. For example,
design_space.

(Ctrl-c) Indicates a keyboard combination, such as
holding down the Ctrl key and pressing c.

\ Indicates a continuation of a command line.
/ Indicates levels of directory structure.
Edit > Copy Shows a menu selection. Edit is the menu

name and Copy is the item on the menu.
vi

Table of Contents

About This Manual

1. FPGA Compiler II / FPGA Express with Verilog HDL

Hardware Description Languages . 1-2

FPGA Compiler II / FPGA Express and the Design Process 1-4

Using FPGA Compiler II / FPGA Express to Compile a Verilog HDL Design
1-5

Design Methodology . 1-6

2. Description Styles

Design Hierarchy . 2-2

Structural Descriptions . 2-3

Functional Descriptions . 2-3

Mixing Structural and Functional Descriptions 2-4

Design Methodology . 2-6

Description Style . 2-6

Language Constructs. 2-6
vii

Register Selection . 2-7

Asynchronous Designs . 2-8

3. Structural Descriptions

Modules. 3-2

Macromodules. 3-3

Port Definitions . 3-4

Port Names . 3-5

Renaming Ports . 3-6

Module Statements and Constructs . 3-7

Structural Data Types. 3-8
parameter . 3-8
wire. 3-9
wand. 3-10
wor . 3-11
tri . 3-12
supply0 and supply1. 3-13
reg . 3-13

Port Declarations . 3-14
input . 3-14
output . 3-14
inout . 3-15

Continuous Assignment . 3-15

Module Instantiations . 3-17

Named and Positional Notation . 3-18

Parameterized Designs . 3-19
viii

Gate-Level Modeling . 3-20

Three-State Buffer Instantiation . 3-22

4. Expressions

Constant-Valued Expressions . 4-2

Operators . 4-3

Arithmetic Operators . 4-4

Relational Operators . 4-5

Equality Operators . 4-6

Handling Comparisons to X or Z . 4-7

Logical Operators. 4-8

Bitwise Operators. 4-9

Reduction Operators . 4-10

Shift Operators. 4-11

Conditional Operator . 4-12

Concatenation Operators. 4-13

Operator Precedence. 4-15

Operands. 4-16

Numbers . 4-16

Wires and Registers. 4-17
Bit-Selects . 4-17
Part-Selects . 4-18

Function Calls . 4-18

Concatenation of Operands . 4-19

Expression Bit-Widths . 4-19
ix

5. Functional Descriptions

Sequential Constructs . 5-2

Function Declarations . 5-3

Input Declarations . 5-5

Output From a Function . 5-5

Register Declarations. 5-6

Memory Declarations. 5-7

Parameter Declarations . 5-8

Integer Declarations. 5-9

Function Statements . 5-9

Procedural Assignments . 5-10

RTL Assignments. 5-11

begin...end Block Statements . 5-14

if...else Statements . 5-15

Conditional Assignments . 5-18

case Statements . 5-18

Full Case and Parallel Case. 5-20

casex Statements . 5-22

casez Statements . 5-25

for Loops . 5-27

while Loops . 5-29

forever Loops . 5-30

disable Statements . 5-31

task Statements. 5-32

always Blocks . 5-34
x

Event Expression . 5-34

Incomplete Event Specification . 5-37

6. Register and Three-State Inference

Register Inference . 6-1

The Inference Report . 6-2

Latch Inference Warnings . 6-4

Controlling Register Inference . 6-4
Attributes That Control Register Inference 6-4

Inferring Latches . 6-7
Inferring SR Latches. 6-7
Inferring D Latches . 6-9
Understanding the Limitations of D Latch Inference 6-19
Inferring Master-Slave Latches. 6-19

Inferring Flip-Flops . 6-21
Inferring D Flip-Flops . 6-21
Understanding the Limitations of D Flip-Flop Inference 6-35
Inferring JK Flip-Flops . 6-37
Inferring Toggle Flip-Flops . 6-41
Getting the Best Results. 6-46

Understanding Limitations of Register Inference 6-50

Three-State Inference . 6-51

Reporting Three-State Inference . 6-51

Controlling Three-State Inference . 6-51

Inferring Three-State Drivers . 6-52
Simple Three-State Driver . 6-52
Registered Three-State Drivers . 6-57
xi

Understanding the Limitations of Three-State Inference 6-60

7. Writing Circuit Descriptions

How Statements Are Mapped to Logic . 7-2

Design Structure . 7-3

Using Design Knowledge. 7-7

Optimizing Arithmetic Expressions . 7-7
Arranging Expression Trees for Minimum Delay. 7-7
Sharing Common Subexpressions. 7-12

Using Operator Bit-Width Efficiently. 7-15

Using State Information . 7-16

Describing State Machines . 7-19

Minimizing Registers . 7-24

Separating Sequential and Combinational Assignments 7-27

Don’t Care Inference . 7-28

Limitations of Using Don’t Care Values 7-29

Differences Between Simulation and Synthesis. 7-29

Propagating Constants . 7-31

Synthesis Issues . 7-31

Feedback Paths and Latches. 7-32

Synthesizing Asynchronous Designs. 7-32

Designing for Overall Efficiency. 7-34

Describing Random Logic . 7-35

Sharing Complex Operators . 7-35
xii

8. FPGA Compiler II / FPGA Express Directives

Notation for FPGA Compiler II / FPGA Express Directives 8-2

translate_off and translate_on Directives . 8-2

parallel_case Directive . 8-4

full_case Directive . 8-5

state_vector Directive . 8-8

enum Directive. 8-10

Component Implication . 8-16

A. Examples

Count Zeros—Combinational Version . A-2

Count Zeros—Sequential Version . A-5

Drink Machine—State Machine Version . A-7

Drink Machine—Count Nickels Version. A-10

Carry-Lookahead Adder . A-12

B. Verilog Syntax

Syntax . B-1

BNF Syntax Formalism . B-2

BNF Syntax . B-3

Lexical Conventions. B-12

White Space . B-13

Comments . B-13
xiii

Numbers . B-13

Identifiers . B-15

Operators . B-15

Macro Substitution . B-16

include Construct . B-17

Simulation Directives . B-18

Verilog System Functions . B-18

Verilog Keywords . B-19

Unsupported Verilog Language Constructs. B-20
xiv

xv

xvi

List of Figures

Figure 1-1 FPGA Compiler II / FPGA Express Design Process. . . . 1-4

Figure 1-2 Design Flow . 1-6

Figure 3-1 Structural Parts of a Module . 3-2

Figure 5-1 Schematic of RTL Nonblocking Assignments 5-13

Figure 5-2 Schematic of Blocking Assignment. 5-14

Figure 6-1 SR Latch . 6-9

Figure 6-2 D Latch . 6-13

Figure 6-3 D Latch With Asynchronous Set 6-15

Figure 6-4 D Latch With Asynchronous Reset 6-16

Figure 6-5 D Latch With Asynchronous Set and Reset 6-18

Figure 6-6 Two-Phase Clocks . 6-20

Figure 6-7 Positive Edge-Triggered D Flip-Flop 6-23

Figure 6-8 Negative Edge-Triggered D Flip-Flop 6-24

Figure 6-9 D Flip-Flop With Asynchronous Set 6-25

Figure 6-10 D Flip-Flop With Asynchronous Reset 6-26

Figure 6-11 D Flip-Flop With Asynchronous Set and Reset 6-28
xvii

Figure 6-12 D Flip-Flop With Synchronous Set 6-30

Figure 6-13 D Flip-Flop With Synchronous Reset 6-31

Figure 6-14 D Flip-Flop With Synchronous and Asynchronous Load 6-33

Figure 6-15 Multiple Flip-Flops With Asynchronous and Synchronous Controls
6-35

Figure 6-16 JK Flip-Flop. 6-39

Figure 6-17 JK Flip-Flop With Asynchronous Set and Reset. 6-41

Figure 6-18 Toggle Flip-Flop With Asynchronous Set 6-43

Figure 6-19 Toggle Flip-Flop With Asynchronous Reset 6-44

Figure 6-20 Toggle Flip-Flop With Enable and Asynchronous Reset. 6-46

Figure 6-21 Schematic of Simple Three-State Driver 6-53

Figure 6-22 One Three-State Driver Inferred From a Single Block . . 6-55

Figure 6-23 Two Three-State Drivers Inferred From Separate Blocks 6-57

Figure 6-24 Three-State Driver With Registered Enable 6-58

Figure 6-25 Three-State Driver Without Registered Enable. 6-60

Figure 7-1 Ripple Carry Chain Implementation 7-4

Figure 7-2 Carry-Lookahead Chain Implementation 7-5

Figure 7-3 Default Expression Tree . 7-8

Figure 7-4 Balanced Adder Tree (Same Arrival Times for All Signals) 7-9

Figure 7-5 Expression Tree With Minimum Delay (Signal A Arrives Last)
7-9

Figure 7-6 Expression Tree With Subexpressions Dictated by Parentheses
7-10

Figure 7-7 Default Expression Tree With 4-Bit Temporary Variable . 7-11

Figure 7-8 Expression Tree With 5-Bit Intermediate Result 7-12
xviii

Figure 7-9 Synthesized Circuit With Six Implied Registers 7-25

Figure 7-10 Synthesized Circuit With Three Implied Registers 7-26

Figure 7-11 Mealy Machine Schematic . 7-28

Figure 7-12 Circuit Schematic With Two Array Indexes 7-37

Figure 7-13 Circuit Schematic With One Array Index. 7-39

Figure A-1 Count Zeros—Combinational Version Block Diagram . . A-4

Figure A-2 Count Zeros—Sequential Version Block Diagram A-7

Figure A-3 Drink Machine—State Machine Version Block Diagram . A-10

Figure A-4 Drink Machine—Count Nickels Version Block Diagram . A-12

Figure A-5 Carry-Lookahead Adder Block Diagram A-14
xix

xx

List of Tables

Table 4-1 Verilog Operators Supported by FPGA Compiler II / FPGA Express
4-3

Table 4-2 Operator Precedence . 4-15

Table 4-3 Expression Bit-Widths . 4-20

Table 6-1 SR Latch Truth Table (Nand Type) 6-8

Table 6-2 Truth Table for JK Flip-Flop . 6-38

Table B-1 Verilog Radices . B-14

Table B-2 Verilog Keywords . B-19
xxi

xxii

List of Examples

Example 2-1 Mixed Structural and Functional Descriptions. 2-5

Example 3-1 Module Definition . 3-3

Example 3-2 Macromodule Construct . 3-3

Example 3-3 Module Port Lists . 3-5

Example 3-4 Renaming Ports in Modules . 3-6

Example 3-5 parameter Declaration Syntax Error 3-9

Example 3-6 parameter Declarations. 3-9

Example 3-7 wire Declarations. 3-10

Example 3-8 wand (wired-AND). 3-11

Example 3-9 wor (wired-OR) . 3-11

Example 3-10 tri (Three-State). 3-12

Example 3-11 supply0 and supply1 Constructs 3-13

Example 3-12 reg Declarations . 3-13

Example 3-13 Two Equivalent Continuous Assignments 3-15

Example 3-14 Module Instantiations . 3-18

Example 3-15 parameter Declaration in a Module 3-20
xxiii

Example 3-16 Gate-Level Instantiations. 3-21

Example 3-17 Three-State Gate Instantiation 3-22

Example 4-1 Valid Expressions . 4-2

Example 4-2 Addition Operator . 4-5

Example 4-3 Relational Operator . 4-6

Example 4-4 Equality Operator . 4-6

Example 4-5 Comparison to X Ignored . 4-7

Example 4-6 Logical Operators . 4-8

Example 4-7 Bitwise Operators . 4-9

Example 4-8 Reduction Operators . 4-10

Example 4-9 Shift Operator . 4-11

Example 4-10 Conditional Operator . 4-12

Example 4-11 Nested Conditional Operator. 4-13

Example 4-12 Concatenation Operator . 4-14

Example 4-13 Concatenation Equivalent . 4-14

Example 4-14 Wire Operands . 4-17

Example 4-15 Bit-Select Operands . 4-17

Example 4-16 Part-Select Operands . 4-18

Example 4-17 Function Call Used as an Operand 4-18

Example 4-18 Concatenation of Operands . 4-19

Example 4-19 Self-Determined Expression . 4-21

Example 4-20 Context-Determined Expressions 4-21

Example 5-1 Sequential Statements . 5-2

Example 5-2 Equivalent Combinational Description 5-2
xxiv

Example 5-3 Combinational Ripple Carry Adder 5-3

Example 5-4 Simple Function Declaration . 5-4

Example 5-5 Many Outputs From a Function. 5-6

Example 5-6 Register Declarations . 5-7

Example 5-7 Memory Declarations . 5-7

Example 5-8 Parameter Declaration in a Function. 5-8

Example 5-9 Integer Declarations . 5-9

Example 5-10 Procedural Assignments . 5-11

Example 5-11 RTL Nonblocking Assignments 5-12

Example 5-12 Blocking Assignment. 5-13

Example 5-13 Block Statement With a Named Block 5-14

Example 5-14 if Statement That Synthesizes Multiplexer Logic. 5-16

Example 5-15 if...else if...else Structure. 5-17

Example 5-16 Nested if and else Statements 5-17

Example 5-17 Synthesizing a Latch for a Conditionally Driven Variable
5-18

Example 5-18 case Statement . 5-20

Example 5-19 A case Statement That Is Both Full and Parallel. 5-21

Example 5-20 A case Statement That Is Parallel but Not Full 5-22

Example 5-21 A case Statement That Is Not Full or Parallel 5-22

Example 5-22 casex Statement With x . 5-23

Example 5-23 Before Using casex With ? . 5-24

Example 5-24 After Using casex With ?. 5-24

Example 5-25 Invalid casex Expression. 5-24
xxv

Example 5-26 casez Statement With z . 5-26

Example 5-27 Invalid casez Expression. 5-26

Example 5-28 A Simple for Loop . 5-27

Example 5-29 Nested for Loops. 5-28

Example 5-30 Example for Loop . 5-28

Example 5-31 Expanded for Loop . 5-28

Example 5-32 Unsupported while Loop . 5-29

Example 5-33 Supported while Loop . 5-30

Example 5-34 Supported forever Loop . 5-30

Example 5-35 Comparator Using disable. 5-31

Example 5-36 Synchronous Reset of State Register Using disable in a
forever Loop . 5-32

Example 5-37 Using the task Statement . 5-33

Example 5-38 A Simple always Block . 5-34

Example 5-39 Incomplete Event List . 5-37

Example 5-40 Complete Event List . 5-37

Example 5-41 Incomplete Event List for Asynchronous Preload 5-37

Example 6-1 Inference Report for a JK Flip-Flop 6-2

Example 6-2 SR Latch . 6-8

Example 6-3 Inference Report for an SR Latch 6-8

Example 6-4 Latch Inference Using an if Statement 6-10

Example 6-5 Latch Inference Using a case Statement 6-10

Example 6-6 Avoiding Latch Inference. 6-11

Example 6-7 Another Way to Avoid Latch Inference 6-11
xxvi

Example 6-8 Function: No Latch Inference 6-11

Example 6-9 D Latch . 6-12

Example 6-10 Inference Report for a D Latch 6-13

Example 6-11 D Latch With Asynchronous Set 6-14

Example 6-12 Inference Report for D Latch With Asynchronous Set 6-14

Example 6-13 D Latch With Asynchronous Reset 6-16

Example 6-14 Inference Report for D Latch With Asynchronous Reset
6-16

Example 6-15 D Latch With Asynchronous Set and Reset 6-17

Example 6-16 Inference Report for D Latch With Asynchronous Set and Reset
6-18

Example 6-17 Invalid Use of a Conditionally Assigned Variable 6-19

Example 6-18 Two-Phase Clocks. 6-20

Example 6-19 Using an always Block to Infer a Flip-Flop 6-21

Example 6-20 Positive Edge-Triggered D Flip-Flop 6-22

Example 6-21 Inference Report for a Positive Edge-Triggered D Flip-Flop
6-22

Example 6-22 Negative Edge-Triggered D Flip-Flop 6-23

Example 6-23 Inference Report for a Negative Edge-Triggered D Flip-Flop
6-23

Example 6-24 D Flip-Flop With Asynchronous Set 6-24

Example 6-25 Inference Report for a D Flip-Flop With Asynchronous Set
6-25

Example 6-26 D Flip-Flop With Asynchronous Reset 6-26

Example 6-27 Inference Report for a D Flip-Flop With Asynchronous Reset
6-26
xxvii

Example 6-28 D Flip-Flop With Asynchronous Set and Reset. 6-27

Example 6-29 Inference Report for a D Flip-Flop With Asynchronous Set
and Reset . 6-28

Example 6-30 D Flip-Flop With Synchronous Set 6-29

Example 6-31 Inference Report for a D Flip-Flop With Synchronous Set
6-30

Example 6-32 D Flip-Flop With Synchronous Reset 6-31

Example 6-33 Inference Report for a D Flip-Flop With Synchronous Reset
6-31

Example 6-34 D Flip-Flop With Synchronous and Asynchronous Load
6-32

Example 6-35 Inference Report for a D Flip-Flop With Synchronous and
Asynchronous Load . 6-32

Example 6-36 Multiple Flip-Flops With Asynchronous and Synchronous Controls
6-34

Example 6-37 Inference Reports for Multiple Flip-Flops With
Asynchronous and Synchronous Controls 6-34

Example 6-38 JK Flip-Flop. 6-38

Example 6-39 Inference Report for JK Flip-Flop 6-38

Example 6-40 JK Flip-Flop With Asynchronous Set and Reset 6-40

Example 6-41 Inference Report for JK Flip-Flop With Asynchronous Set
and Reset . 6-41

Example 6-42 Toggle Flip-Flop With Asynchronous Set 6-42

Example 6-43 Inference Report for a Toggle Flip-Flop With Asynchronous Set
6-42

Example 6-44 Toggle Flip-Flop With Asynchronous Reset 6-43
xxviii

Example 6-45 Inference Report: Toggle Flip-Flop With Asynchronous Reset
6-44

Example 6-46 Toggle Flip-Flop With Enable and Asynchronous Reset6-45

Example 6-47 Inference Report: Toggle Flip-Flop With Enable and
Asynchronous Reset . 6-45

Example 6-48 Circuit With Six Implied Registers 6-47

Example 6-49 Circuit With Three Implied Registers. 6-48

Example 6-50 Delays in Registers . 6-49

Example 6-51 Three-State Inference Report 6-51

Example 6-52 Simple Three-State Driver. 6-52

Example 6-53 Inference Report for Simple Three-State Driver 6-53

Example 6-54 Inferring One Three-State Driver From a Single Block 6-54

Example 6-55 Single Block Inference Report. 6-54

Example 6-56 Inferring Three-State Drivers From Separate Blocks . 6-56

Example 6-57 Inference Report for Two Three-State Drivers. 6-56

Example 6-58 Three-State Driver With Registered Enable 6-57

Example 6-59 Inference Report for Three-State Driver With Registered Enable
6-58

Example 6-60 Three-State Driver Without Registered Enable 6-59

Example 6-61 Inference Report for Three-State Driver Without Registered Enable
6-59

Example 7-1 Four Logic Blocks . 7-3

Example 7-2 Ripple Carry Chain . 7-4

Example 7-3 Carry-Lookahead Chain . 7-4

Example 7-4 4-Input Adder . 7-6
xxix

Example 7-5 4-Input Adder With Parentheses 7-6

Example 7-6 Simple Arithmetic Expression 7-8

Example 7-7 Parentheses in an Arithmetic Expression 7-10

Example 7-8 Adding Numbers of Different Bit-Widths 7-11

Example 7-9 Simple Additions With a Common Subexpression . . . 7-13

Example 7-10 Sharing Common Subexpressions 7-13

Example 7-11 Unidentified Common Subexpressions 7-14

Example 7-12 More Efficient Use of Operators 7-15

Example 7-13 A Simple Finite State Machine 7-16

Example 7-14 Better Implementation of a Finite State Machine 7-18

Example 7-15 Summing Three Cycles of Data in the Implicit State Style (Preferred)
7-20

Example 7-16 Summing Three Cycles of Data in the Explicit State Style
(Not Advisable) . 7-21

Example 7-17 Synchronous Reset—Explicit State Style (Preferred) . 7-22

Example 7-18 Synchronous Reset—Implicit State Style (Not Advisable)
7-23

Example 7-19 Inefficient Circuit Description With Six Implied Registers
7-24

Example 7-20 Circuit With Three Implied Registers. 7-26

Example 7-21 Mealy Machine . 7-27

Example 7-22 Fully Synchronous Counter Design. 7-33

Example 7-23 Asynchronous Counter Design 7-33

Example 7-24 Equivalent Statements . 7-35

Example 7-25 Inefficient Circuit Description With Two Array Indexes 7-36
xxx

Example 7-26 Efficient Circuit Description With One Array Index . . . 7-38

Example 8-1 // synopsys translate_on and // synopsys translate_off Directives
8-3

Example 8-2 // synopsys parallel_case Directives 8-4

Example 8-3 // synopsys full_case Directives 8-6

Example 8-4 Latches and // synopsys full_case 8-7

Example 8-5 // synopsys state_vector Example. 8-9

Example 8-6 Enumeration of Type Colors . 8-10

Example 8-7 Invalid enum Declaration. 8-10

Example 8-8 More enum Type Declarations 8-11

Example 8-9 Invalid Bit Value Encoding for Colors 8-11

Example 8-10 Enumeration Literals Used as Constants 8-11

Example 8-11 Finite State Machine With // synopsys enum and // synopsys
state_vector. 8-12

Example 8-12 Unsupported Bit-Select From Enumerated Type. 8-13

Example 8-13 Unsupported Bit-Select (With Component Instantiation)
From Enumerated Type. 8-13

Example 8-14 Using Inference With Enumerated Types 8-14

Example 8-15 Changing the Enumeration Encoding 8-14

Example 8-16 Supported Bit-Select From Enumerated Type. 8-15

Example 8-17 Enumerated Type Declaration for a Port 8-15

Example 8-18 Incorrect Enumerated Type Declaration for a Port . . . 8-16

Example 8-19 Component Implication . 8-17

Example A-1 Count Zeros—Combinational Version. A-3

Example A-2 Count Zeros—Sequential Version. A-5
xxxi

Example A-3 Drink Machine—State Machine Version A-8

Example A-4 Drink Machine—Count Nickels Version. A-10

Example A-5 Carry-Lookahead Adder . A-15

Example B-1 Valid Verilog Number Declarations B-14

Example B-2 Sample Escaped Identifiers . B-15

Example B-3 Macro Variable Declarations . B-16

Example B-4 Macro With Sized Constants. B-17

Example B-5 Including a File Within a File . B-17
xxxii

1
FPGA Compiler II / FPGA Express with
Verilog HDL 1

FPGA Compiler II / FPGA Express translates and optimizes Verilog
HDL descriptions into an internal gate-level equivalent, and then
compiles this representation to produce optimized gate-level designs
in a given FPGA technology.

This chapter introduces the main concepts and capabilities of FPGA
Compiler II / FPGA Express in the following sections:

• Hardware Description Languages

• FPGA Compiler II / FPGA Express and the Design Process

• Using FPGA Compiler II / FPGA Express to Compile a Verilog
HDL Design

• Design Methodology
1-1

FPGA Compiler II / FPGA Express with Verilog HDL

Hardware Description Languages

Hardware description languages (HDLs) describe the architecture
and behavior of discrete electronic systems. Modern HDLs and their
associated simulators are very powerful tools for integrated circuit
designers.

A typical HDL supports a mixed-level description in which gate and
netlist constructs are used with functional descriptions. This mixed-
level capability enables you to describe system architectures at a very
high level of abstraction and then incrementally refine a design’s
detailed gate-level implementation.

HDL descriptions play an important role in modern design
methodology, for three main reasons:

• Design functionality can be verified early in the design process.
A design written as an HDL description can be simulated
immediately. Design simulation at this higher level, before
implementation at the gate level, allows you to evaluate
architectural and design decisions.

• FPGA Compiler II / FPGA Express provides Verilog compilation
and logic synthesis, allowing you to automatically convert an HDL
description to a gate-level implementation in a target FPGA
technology. This step eliminates the former technology-specific
design bottleneck, the majority of circuit design time, and the
errors that occur when you hand-translate an HDL specification
to gates.
1-2

FPGA Compiler II / FPGA Express with Verilog HDL

With FPGA Compiler II / FPGA Express logic optimization, you
can automatically transform a synthesized design into a smaller
or faster circuit. FPGA Compiler II / FPGA Express provides both
logic synthesis and optimization. For further information, refer to
FPGA Compiler II / FPGA Express online help.

• HDL descriptions provide technology-independent
documentation of a design and its functionality. An HDL
description is easier to read and understand than a netlist or a
schematic description. Because the initial HDL design description
is technology-independent, you can reuse it to generate the
design in a different technology, without having to translate from
the original technology.
1-3

FPGA Compiler II / FPGA Express with Verilog HDL

FPGA Compiler II / FPGA Express and the Design
Process

FPGA Compiler II / FPGA Express translates hardware descriptions
in Verilog to a Synopsys internal design format. The design can then
be optimized and mapped to a specific FPGA technology library by
FPGA Compiler II / FPGA Express, as Figure 1-1 shows.

Figure 1-1 FPGA Compiler II / FPGA Express Design Process

FPGA Compiler II / FPGA Express supports a majority of the Verilog
constructs. (For exceptions, see “Unsupported Verilog Language
Constructs” on page B-20.)

Verilog
Description

FPGA Compiler II /

Optimized
Technology-Specific

Netlist

FPGA Technology Library FPGA Express
1-4

FPGA Compiler II / FPGA Express with Verilog HDL

Using FPGA Compiler II / FPGA Express to Compile a
Verilog HDL Design

When a Verilog design is read into FPGA Compiler II / FPGA Express,
it is converted to an internal database format so FPGA Compiler II /
FPGA Express can synthesize and optimize the design. When FPGA
Compiler II / FPGA Express optimizes a design, it may restructure
part or all of the design. You control the degree of restructuring.
Options include:

• Fully preserving a design’s hierarchy

• Allowing certain modules to be combined with others

• Compressing the entire design into one module (called flattening
the design), if that is beneficial

The following section describes the design process that uses FPGA
Compiler II / FPGA Express with a Verilog HDL Simulator.
1-5

FPGA Compiler II / FPGA Express with Verilog HDL

Design Methodology

Figure 1-2 shows a typical design process that uses FPGA Compiler
II / FPGA Express and a Verilog HDL Simulator.

Figure 1-2 Design Flow

Verilog

Synopsys
FPGA Compiler II /

Verilog HDL

Simulation Output
Compare
Output

Verilog HDL

1.

2.

3.

4.

5.

6.

7.

Test Driver

Verilog HDL

FPGA Vendor
Development System

FPGA Express

Simulation Output

Description

SimulatorSimulator
1-6

FPGA Compiler II / FPGA Express with Verilog HDL

The steps in the design flow shown in Figure 1-2 are:

1. Write a design description in the Verilog language. This
description can be a combination of structural and functional
elements (as shown in Chapter 2, "Description Styles”). This
description is for use with both Synopsys FPGA Compiler II /
FPGA Express and a Verilog simulator.

2. Provide Verilog-language test drivers for the Verilog HDL
simulator. For information on writing these drivers, see the
appropriate simulator manual. The drivers supply test vectors for
simulation and gather output data.

3. Simulate the design by using a Verilog HDL simulator. Verify that
the description is correct.

4. Use FPGA Compiler II / FPGA Express to synthesize and optimize
the Verilog description into a gate-level design. FPGA Compiler
II / FPGA Express generates optimized netlists to satisfy timing
constraints for a targeted FPGA architecture.

5. Use your FPGA development system to place and route the FPGA
netlist. Then generate a Verilog netlist for post-place-and-route
simulation. The development system includes simulation models
and interfaces required for the design flow.

6. Simulate the technology-specific version of the design with the
Verilog simulator. You can use the original Verilog simulation
drivers from step 3 because module and port definitions are
preserved through the translation and optimization processes.

7. Compare the output of the gate-level simulation (step 6) with the
output of the original Verilog description simulation (step 3) to
verify that the implementation is correct.
1-7

FPGA Compiler II / FPGA Express with Verilog HDL

1-8

FPGA Compiler II / FPGA Express with Verilog HDL

2
Description Styles 2

A Verilog circuit description can be one of two types: structural or
functional. A structural description explains the physical makeup of
the circuit, detailing gates and the connections between them. A
functional description, also referred to as an RTL (Register Transfer
Level) description, describes what the circuit does.

This chapter covers the following topics:

• Design Hierarchy

• Structural Descriptions

• Functional Descriptions

• Mixing Structural and Functional Descriptions

• Register Selection

• Asynchronous Designs
2-1

Description Styles

Design Hierarchy

Synopsys FPGA Compiler II / FPGA Express maintains the
hierarchical boundaries you define when you use structural Verilog.
These boundaries have two major effects:

• Constraints can be specified on a per-module basis. For example,
this allows some modules to be optimized for area while others
are optimized for speed.

• Module instantiations within HDL descriptions are maintained
during input. The instance name you assign to user-defined
components is carried through to the gate-level implementation.

Chapter 3, "Structural Descriptions”, discusses modules and module
instantiations.

Note:
FPGA Compiler II / FPGA Express does not automatically
maintain (create) the hierarchy of other, nonstructural Verilog
constructs such as blocks, loops, functions, and tasks. These
elements of an HDL description are translated in the context of
their design.

The choice of hierarchical boundaries has a significant effect on the
quality of the synthesized design. Using FPGA Compiler II / FPGA
Express, you can optimize a design while preserving these
hierarchical boundaries. However, FPGA Compiler II / FPGA Express
only partially optimizes logic across hierarchical modules. Full
optimization is possible across those parts of the design hierarchy
that are collapsed in FPGA Compiler II / FPGA Express.
2-2

Description Styles

Structural Descriptions

The structural elements of a Verilog structural description are generic
logic gates, library-specific components, and user-defined
components connected by wires. In one way, a structural description
can be viewed as a simple netlist composed of nets that connect
instantiations of gates. However, unlike in a netlist, nets in the
structural description can be driven by an arbitrary expression that
describes the value assigned to the net. A statement that drives an
arbitrary expression onto a net is called a continuous assignment.
Continuous assignments are convenient links between pure netlist
descriptions and functional descriptions.

A Verilog structural description can define a range of hierarchical and
gate-level constructs, including module definitions, module
instantiations, and netlist connections. Refer to Chapter 3, "Structural
Descriptions”, for more information.

Functional Descriptions

The functional elements of a Verilog description are function
declarations, task statements, and always blocks. These elements
describe the function of the circuit but do not describe its physical
makeup or layout. The choice of gates and components is left entirely
to FPGA Compiler II / FPGA Express.

You can construct functional descriptions with the Verilog functional
constructs described in Chapter 5, "Functional Descriptions”. These
constructs can appear within functions or always blocks. Functions
imply only combinational logic; always blocks can imply either
combinational or sequential logic.
2-3

Description Styles

Although many Verilog functional constructs (for example, for loops
and multiple assignments to the same variable) appear sequential in
nature, they describe combinational-logic networks. Other functional
constructs imply sequential-logic networks. Latches and registers are
inferred from these constructs. Refer to Chapter 6, "Register and
Three-State Inference” for details.

Mixing Structural and Functional Descriptions

When you use a functional description style in a design, you typically
describe the combinational portions of the design in Verilog functions,
always blocks, and assignments. The complexity of the logic
determines whether you use one or many functions.

Example 2-1 shows how structural and functional description styles
are mixed in a design specification. In Example 2-1, the function
detect_logic determines whether the input bit is a 0 or a 1. After
making this determination, detect_logic sets ns to the next state of
the machine. An always block infers flip-flops to hold the state
information between clock cycles.

You can specify elements of a design directly as module instantiations
at the structural level. For example, see the three-state buffer t1 in
Example 2-1. (Note that three-states can be inferred. For more
information, refer to “Three-State Inference” on page 6-51.) You can
also use this description style to identify the wires and ports that carry
information from one part of the design to another.
2-4

Description Styles

Example 2-1 Mixed Structural and Functional Descriptions
// This finite-state machine (Mealy type) reads one bit per
// clock cycle and detects three or more consecutive 1s.
module three_ones(signal, clock, detect, output_enable);
input signal, clock, output_enable;
output detect;

// Declare current state and next state variables.
reg [1:0] cs;
reg [1:0] ns;
wire ungated_detect;

// declare the symbolic names for states
parameter NO_ONES = 0, ONE_ONE = 1,
 TWO_ONES = 2, AT_LEAST_THREE_ONES = 3;

// ************* STRUCTURAL DESCRIPTION ****************
// Instance of a three-state gate that enables output
three_state t1 (ungated_detect, output_enable, detect);

// ******************* ALWAYS BLOCK ********************
// always block infers flip-flops to hold the state of
// the FSM.
always @ (posedge clock) begin
 cs <= ns;
end

// ************* FUNCTIONAL DESCRIPTION ****************
function detect_logic;
 input [1:0] cs;
 input signal;
 begin
 detect_logic = 0; //default value
 if (signal == 0) //bit is zero
 ns = NO_ONES;
 else //bit is one, increment state
 case (cs)
 NO_ONES: ns = ONE_ONE;
 ONE_ONE: ns = TWO_ONES;
 TWO_ONES, AT_LEAST_THREE_ONES:
 begin
 ns = AT_LEAST_THREE_ONES;
 detect_logic = 1;
 end
 endcase
 end
endfunction
2-5

Description Styles

// ************** assign STATEMENT **************
assign ungated_detect = detect_logic(cs, signal);
endmodule

For a structural or functional HDL description to be synthesized, it
must follow the Synopsys synthesis policy, which has three parts:

• Design Methodology

• Description Style

• Language Constructs

Design Methodology

Design methodology refers to the synthesis design process that uses
FPGA Compiler II / FPGA Express and Verilog HDL Simulator. This
process is described in Chapter 1, "FPGA Compiler II / FPGA Express
with Verilog HDL”.

Description Style

Use the HDL design and coding style that makes the best use of the
synthesis process to obtain high-quality results from FPGA Compiler
II / FPGA Express. See Chapter 7, "Writing Circuit Descriptions”, for
guidelines.

Language Constructs

The third component of the Verilog synthesis policy is the set of Verilog
constructs that describe your design, determine its architecture, and
give consistently good results.
2-6

Description Styles

Synopsys uses HDL constructs that maximize coding flexibility while
producing consistently good results. Although FPGA Compiler II /
FPGA Express can read the entire Verilog language, a few HDL
constructs cannot be synthesized. These constructs are unsupported
because they cannot be realized in logic. For example, you cannot
use simulation time as a trigger because time is an element of the
simulation process and cannot be realized. “Unsupported Verilog
Language Constructs” on page B-20 lists these constructs.

Register Selection

The clocking scheme and the placement of registers are important
architectural factors. There are two ways to define registers in your
Verilog description. Each method has specific advantages.

• You can directly instantiate registers into a Verilog description,
selecting from any element in your FPGA library.

Clocking schemes can be arbitrarily complex. You can choose
between a flip-flop and a latch-based architecture. The main
disadvantages to this approach are that

- The Verilog description is specific to a given technology,
because you choose structural elements from that technology
library. However, you can isolate the portion of your design with
directly instantiated registers as a separate component
(module), and then connect it to the rest of the design.

- The description is more difficult to write.
2-7

Description Styles

• You can use some Verilog constructs to direct FPGA Compiler II
/ FPGA Express to infer registers from the description.

The advantages to this approach directly counter the
disadvantages of the previous approach. With register inference,
the Verilog description is much easier to write and is technology-
independent. This method allows FPGA Compiler II / FPGA
Express to select the type of component inferred, based on
constraints. Therefore, if a specific component is necessary, use
instantiation. Some types of registers and latches cannot be
inferred.

See “Register Inference” on page 6-1 for a discussion of latch and
register inference.

Asynchronous Designs

You can use FPGA Compiler II / FPGA Express to construct
asynchronous designs that use multiple or gated clocks. However,
although these designs are logically and statically correct, they may
not simulate or operate correctly because of race conditions.

“Synthesis Issues” on page 7-31 describes how to write Verilog
descriptions of asynchronous designs.
2-8

Description Styles

3
Structural Descriptions 3

A Verilog structural description defines a connection of components
that form a physical circuit. This chapter details the construction of
structural descriptions, in the following major sections:

• Modules

• Macromodules

• Port Definitions

• Module Statements and Constructs

• Module Instantiations
3-1

Structural Descriptions

Modules

The principal design entity in the Verilog language is the module. A
module consists of the module name, its input and output description
(port definition), a description of the functionality or implementation
for the module (module statements and constructs), and named
instantiations. Figure 3-1 illustrates the basic structural parts of a
module.

Figure 3-1 Structural Parts of a Module

Example 3-1 shows a simple module that implements a 2-input NAND
gate by instantiating an AND gate and an INV gate. The first line of
the module definition gives the name of the module and a list of ports.
The second and third lines give the direction for all ports. (Ports are
either inputs, outputs, or bidirectionals.)

Module

Definitions:
Port, Wire, Register,
Parameter, Integer,
Function

 Module Statements
and Constructs

Module Instantiations

Module Name
and Port List
3-2

Structural Descriptions

The fourth line of the description creates a wire variable. The next
two lines instantiate the two components, creating copies named
instance1 and instance2 of the components AND and INV. These
components connect to the ports of the module and are finally
connected by use of the variable and_out.

Example 3-1 Module Definition

module NAND(a,b,z);
input a,b; //Inputs to NAND gate
output z; //Outputs from NAND gate
wire and_out; //Output from AND gate

AND instance1(a,b,and_out);
INV instance2(and_out, z);

endmodule

Macromodules

The macromodule construct makes simulation more efficient, by
merging the macromodule definition with the definition of the calling
(parent) module. However, FPGA Compiler II / FPGA Express treats
the macromodule construct as a module construct. Whether you use
module or macromodule, the synthesis process, the hierarchy
synthesis creates, and its result are the same. Example 3-2 shows
how to use the macromodule construct.

Example 3-2 Macromodule Construct

macromodule adder (in1,in2,out1);
input [3:0] in1,in2;
output [4:0] out1;

assign out1 = in1 + in2;
endmodule
3-3

Structural Descriptions

Note:
When FPGA Compiler II / FPGA Express instantiates a
macromodule, a new level of hierarchy is created.

Port Definitions

A port list consists of port expressions that describe the input and
output interfaces for a module. Define the port list in parentheses after
the module name, as shown here:

module name (port_list);

A port expression in a port list can be any of the following:

• An identifier

• A single bit selected from a bit vector declared within the module

• A group of bits selected from a bit vector declared within the
module

• A concatenation of any of the above

Concatenation is the process of combining several single-bit or
multiple-bit operands into one large bit vector. For more information,
see “Concatenation Operators” on page 4-13.

Declare each port in a port list as input, output, or bidirectional in the
module by use of an input, output, or inout statement. (See “Port
Declarations” on page 3-14.) For example, the module definition in
Example 3-1 on page 3-3 shows that module NAND has three ports:
a, b, and z, connected to 1-bit nets a, b, and z. Declare these
connections in the input and output statements.
3-4

Structural Descriptions

Port Names

Some port expressions are identifiers. If the port expression is an
identifier, the port name is the same as the identifier. A port expression
is not an identifier if the expression is a single bit, a group of bits
selected from a vector of bits, or a concatenation of signals. In these
cases, the port is unnamed unless you explicitly name it.

Example 3-3 shows some module definition fragments that illustrate
the use of port names. The ports for module ex1, named a, b, and z,
are connected to nets a, b, and z, respectively. The first two ports of
module ex2 are unnamed; the third port is named z. The ports are
connected to nets a[1], a[0], and z, respectively. Module ex3 has two
ports: the first port, unnamed, is connected to a concatenation of nets
a and b; the second port, named z, is connected to net z.

Example 3-3 Module Port Lists

module ex1(a, b, z);
input a, b;
output z;

endmodule

module ex2(a[1], a[0], z);
input [1:0] a;
output z;

endmodule

module ex3({a,b}, z);
input a,b;
output z;

endmodule
3-5

Structural Descriptions

Renaming Ports

You can rename a port by explicitly assigning a name to a port
expression by using the dot (.) operator. The module definition
fragments in Example 3-4 show how to rename ports. The ports for
module ex4 are explicitly named in_a, in_b, and out and are
connected to nets a, b, and z. Module ex5 shows ports named i1, i0,
and z connected to nets a[1], a[0], and z, respectively. The first port
for module ex6 (the concatenation of nets a and b) is named i.

Example 3-4 Renaming Ports in Modules

module ex4(.in_a(a), .in_b(b), .out(z));
input a, b;
output z;

endmodule

module ex5(.i1(a[1]), .i0(a[0]), z);
input [1:0] a;
output z;

endmodule

module ex6(.i({a,b}), z);
input a,b;
output z;

endmodule
3-6

Structural Descriptions

Module Statements and Constructs

FPGA Compiler II / FPGA Express recognizes the following Verilog
statements and constructs when they are used in a Verilog module:

• parameter declarations

• wire, wand, wor, tri, supply0, and supply1 declarations

• reg declarations

• input declarations

• output declarations

• inout declarations

• Continuous assignments

• Module instantiations

• Gate instantiations

• Function definitions

• always blocks

• task statements

Data declarations and assignments are described in this section.
Module and gate instantiations are described in “Module
Instantiations” on page 3-17. Function definitions, always blocks, and
task statements are described in Chapter 5, "Functional
Descriptions”.
3-7

Structural Descriptions

Structural Data Types

Verilog structural data types include wire, wand, wor, tri, supply0, and
supply1. Although parameter does not fall into the category of
structural data types, it is presented here because it is used with
structural data types.

You can define an optional range for all the data types presented in
this section. The range provides a means for creating a bit vector.
The syntax for a range specification is

[msb : lsb]

Expressions for most significant bit (msb) and least significant bit (lsb)
must be nonnegative constant-valued expressions. Constant-valued
expressions are composed only of constants, Verilog parameters,
and operators.

parameter

Verilog parameters allow you to customize each instantiation of a
module. By setting different values for the parameter when you
instantiate the module, you can cause constructions of different logic.
For more information, see “Parameterized Designs” on page 3-19.

A parameter represents constant values symbolically. The definition
for a parameter consists of the parameter name and the value
assigned to it. The value can be any constant-valued integer or
Boolean expression. If you do not set the size of the parameter with
a range definition or a sized constant, the parameter is unsized and
defaults to a 32-bit quantity. Refer to “Constant-Valued Expressions”
on page 4-2 for a discussion of constant formats.
3-8

Structural Descriptions

You can use a parameter wherever a number is allowed, except when
declaring the number of bits in an assignment statement, which will
generate a syntax error as shown in Example 3-5.

Example 3-5 parameter Declaration Syntax Error

parameter size = 4;
assign out = in ? 4’b0000 : size’b0101; // syntax error

You can define a parameter anywhere within a module definition.
However, the Verilog language requires that you define the parameter
before you use it.

Example 3-6 shows two parameter declarations. Parameters true and
false are unsized and have values of 1 and 0, respectively. Parameters
S0, S1, S2, and S3 have values of 3, 1, 0, and 2, respectively, and
are stored as 2-bit quantities.

Example 3-6 parameter Declarations

parameter TRUE=1, FALSE=0;
parameter [1:0] S0=3, S1=1, S2=0, S3=2;

wire

A wire data type in a Verilog description represents the physical wires
in a circuit. A wire connects gate-level instantiations and module
instantiations. The Verilog language allows you to read a value from
a wire from within a function or a begin...end block, but you cannot
assign a value to a wire within a function or a begin...end block. (An
always block is a specific type of begin...end block.)

A wire does not store its value. It must be driven in one of two ways:
3-9

Structural Descriptions

• By connecting the wire to the output of a gate or module

• By assigning a value to the wire in a continuous assignment

In the Verilog language, an undriven wire defaults to a value of Z (high
impedance). However, FPGA Compiler II / FPGA Express leaves
undriven wires unconnected. Multiple connections or assignments to
a wire simply short the wires together.

In Example 3-7, two wires are declared: a is a single-bit wire, and b
is a 3-bit vector of wires. Its most significant bit (msb) has an index
of 2, and its least significant bit (lsb) has an index of 0.

Example 3-7 wire Declarations

wire a;
wire [2:0] b;

You can assign a delay value in a wire declaration, and you can use
the Verilog keywords scalared and vectored for simulation. FPGA
Compiler II / FPGA Express accepts the syntax of these constructs,
but they are ignored when the circuit is synthesized.

Note:
You can use delay information for modeling, but FPGA Compiler
II / FPGA Express ignores delay information. If the functionality
of your circuit depends on the delay information, FPGA Compiler
II / FPGA Express might create logic whose behavior does not
agree with the behavior of the simulated circuit.

wand

The wand (wired-AND) data type is a specific type of wire.

In Example 3-8, two variables drive the variable c. The value of c is
determined by the logical AND of a and b.
3-10

Structural Descriptions

Example 3-8 wand (wired-AND)

module wand_test(a, b, c);
input a, b;
output c;

wand c;

assign c = a;
assign c = b;

endmodule

You can assign a delay value in a wand declaration, and you can use
the Verilog keywords scalared and vectored for simulation. FPGA
Compiler II / FPGA Express accepts the syntax of these constructs,
but ignores the constructs during synthesis of the circuit.

wor

The wor (wired-OR) data type is a specific type of wire.

In Example 3-9, two variables drive the variable c. The value of c is
determined by the logical OR of a and b.

Example 3-9 wor (wired-OR)

module wor_test(a, b, c);
input a, b;
output c;

wor c;

assign c = a;
assign c = b;

endmodule
3-11

Structural Descriptions

tri

The tri (three-state) data type is a specific type of wire. All variables
that drive the tri must have a value of Z (high-impedance), except
one. This single variable determines the value of the tri.

Note:
FPGA Compiler II / FPGA Express does not enforce the previous
condition. You must ensure that no more than one variable driving
a tri has a value other than Z.

In Example 3-10, three variables drive the variable out.

Example 3-10 tri (Three-State)
module tri_test (out, condition);

input [1:0] condition;
output out;

reg a, b, c;
tri out;

always @ (condition) begin
a = 1’bz; //set all variables to Z
b = 1’bz;
c = 1’bz;

case (condition) //set only one variable to non-Z
2’b00 : a = 1’b1;
2’b01 : b = 1’b0;
2’b10 : c = 1’b1;

endcase
end

assign out = a; //make the tri connection
assign out = b;
assign out = c;

endmodule
3-12

Structural Descriptions

supply0 and supply1

The supply0 and supply1 data types define wires tied to logic 0
(ground) and logic 1 (power). Using supply0 and supply1 is the same
as declaring a wire and assigning a 0 or a 1 to it. In Example 3-11,
power is tied to logic 1 and gnd (ground) is tied to logic 0.

Example 3-11 supply0 and supply1 Constructs

supply0 gnd;
supply1 power;

reg

A reg represents a variable in Verilog. A reg can be a 1-bit quantity
or a vector of bits. For a vector of bits, the range indicates the most
significant bit and least significant bit of the vector. Both must be
nonnegative constants, parameters, or constant-valued expressions.
Example 3-12 shows some reg declarations.

Example 3-12 reg Declarations

reg x; //single bit
reg a,b,c; //3 1-bit quantities
reg [7:0] q; //an 8-bit vector
3-13

Structural Descriptions

Port Declarations

You must explicitly declare the direction (input, output, or bidirectional)
of each port that appears in the port list of a port definition. Use the
input, output, and inout statements, as described in the following
sections.

input

You declare all input ports of a module with an input statement. An
input is a type of wire and is governed by the syntax of wire. You can
use a range specification to declare an input that is a vector of signals,
as in the case of input b in the following example. The input statements
can appear in any order in the description, but you must declare them
before using them. For example,

input a;
input [2:0] b;

output

You declare all output ports of a module with an output statement.
Unless otherwise defined by a reg, wand, wor, or tri declaration, an
output is a type of wire and is governed by the syntax of wire. An
output statement can appear in any order in the description, but you
must declare the statement before you use it.

You can use a range specification to declare an output that is a vector
of signals. If you use a reg declaration for an output, the reg must
have the same range as the vector of signals. For example,

output a;
output [2:0] b;
reg [2:0] b;
3-14

Structural Descriptions

inout

You can declare bidirectional ports with the inout statement. An inout
is a type of wire and is governed by the syntax of wire. FPGA Compiler
II / FPGA Express allows you to connect only inout ports to module
or gate instantiations. You must declare an inout before you use it.
For example,

inout a;
inout [2:0] b;

Continuous Assignment

If you want to drive a value onto a wire, wand, wor, or tri, use a
continuous assignment to specify an expression for the wire value.
You can specify a continuous assignment in two ways:

• Use an explicit continuous assignment statement after the wire,
wand, wor, or tri declaration.

• Specify the continuous assignment in the same line as the
declaration for a wire.

Example 3-13 shows two equivalent methods for specifying a
continuous assignment for wire a.

Example 3-13 Two Equivalent Continuous Assignments

wire a; //declare
assign a = b & c; //assign
wire a = b & c; //declare and assign
3-15

Structural Descriptions

The left side of a continuous assignment can be

• A wire, wand, wor, or tri

• One or more bits selected from a vector

• A concatenation of any of these

The right side of the continuous assignment statement can be any
supported Verilog operator or any arbitrary expression that uses
previously declared variables and functions. You cannot assign a
value to a reg in a continuous assignment.

Verilog allows you to assign drive strength for each continuous
assignment statement. FPGA Compiler II / FPGA Express accepts
drive strength, but it does not affect the synthesis of the circuit. Keep
this in mind when you use drive strength in your Verilog source.

Assignments are done bitwise, with the low bit on the right side
assigned to the low bit on the left side. If the number of bits on the
right side is greater than the number on the left side, the high-order
bits on the right side are discarded. If the number of bits on the left
side is greater than the number on the right side, operands on the
right side are zero-extended.
3-16

Structural Descriptions

Module Instantiations

Module instantiations are copies of the logic in a module that define
component interconnections.

module_name instance_name1 (terminal, terminal, ...),
 instance_name2 (terminal, terminal, ...);

A module instantiation consists of the name of the module
(module_name) followed by one or more instantiations. An
instantiation consists of an instantiation name (instance_name) and
a connection list. A connection list is a list of expressions called
terminals, separated by commas. These terminals are connected to
the ports of the instantiated module. Module instantiations have this
syntax:

(terminal1 , terminal2 , ...),
(terminal1 , terminal2 , ...);

Terminals connected to input ports can be any arbitrary expression.
Terminals connected to output and inout ports can be identifiers,
single- or multiple-bit slices of an array, or a concatenation of these.
The bit-widths for a terminal and its module port must be the same.

If you use an undeclared variable as a terminal, the terminal is
implicitly declared as a scalar (1-bit) wire. After the variable is implicitly
declared as a wire, it can appear wherever a wire is allowed.

Example 3-14 shows the declaration for the module SEQ with two
instantiations (SEQ_1 and SEQ_2).
3-17

Structural Descriptions

Example 3-14 Module Instantiations

module SEQ(BUS0,BUS1,OUT); //description of module SEQ
input BUS0, BUS1;
output OUT;
...

endmodule

module top(D0, D1, D2, D3, OUT0, OUT1);
input D0, D1, D2, D3;
output OUT0, OUT1;

SEQ SEQ_1(D0,D1,OUT0), //instantiations of module SEQ
SEQ_2(.OUT(OUT1),.BUS1(D3),.BUS0(D2));

endmodule

Named and Positional Notation

Module instantiations can use either named or positional notation to
specify the terminal connections.

In name-based module instantiation, you explicitly designate which
port is connected to each terminal in the list. Undesignated ports in
the module are unconnected.

In position-based module instantiation, you list the terminals and
specify connections to the module according to each terminal’s
position in the list. The first terminal in the connection list is connected
to the first module port, the second terminal to the second module
port, and so on. Omitted terminals indicate that the corresponding
port on the module is unconnected.
3-18

Structural Descriptions

In Example 3-14, SEQ_2 is instantiated by the use of named notation,
as follows:

• Signal OUT1 is connected to port OUT of the module SEQ.

• Signal D3 is connected to port BUS1.

• Signal D2 is connected to port BUS0.

SEQ_1 is instantiated by the use of positional notation, as follows:

• Signal D0 is connected to port BUS0 of module SEQ.

• Signal D1 is connected to port BUS1.

• Signal OUT0 is connected to port OUT.

Parameterized Designs

The Verilog language allows you to create parameterized designs by
overriding parameter values in a module during instantiation. You can
do this with the defparam statement or with the following syntax:

module_name #(parameter_value , parameter_value ,...)
instance_name (terminal_list)

FPGA Compiler II / FPGA Express does not support the defparam
statement but does support the previous syntax.

The module in Example 3-15 contains a parameter declaration.
3-19

Structural Descriptions

Example 3-15 parameter Declaration in a Module

module foo (a,b,c);

parameter width = 8;

input [width-1:0] a,b;
output [width-1:0] c;

assign c = a & b;

endmodule

In Example 3-15, the default value of the parameter width is 8, unless
you override the value when the module is instantiated. When you
change the value, you build a different version of your design. This
type of design is called a parameterized design.

FPGA Compiler II / FPGA Express automatically manages templates
and parameters. Some errors due to parameter or port size mismatch
are detected when an implementation is created, not when the Verilog
is read.

Gate-Level Modeling

Verilog provides several basic logic gates that enable modeling at the
gate level. Gate-level modeling is a special case of positional notation
for module instantiation that uses a set of predefined module names.
FPGA Compiler II / FPGA Express supports the following gate types:

• and

• nand

• or

• nor
3-20

Structural Descriptions

• xor

• xnor

• buf

• not

• tran

Connection lists for instantiations of a gate-level model use positional
notation. In the connection lists for and, nand, or, nor, xor, and xnor
gates, the first terminal connects to the output of the gate and the
remaining terminals connect to the inputs of the gate. You can build
arbitrarily wide logic gates with as many inputs as you want.

Connection lists for buf, not, and tran gates also use positional
notation. You can have as many outputs as you want, followed by only
one input. Each terminal in a gate-level instantiation can be a 1-bit
expression or signal.

In gate-level modeling, instance names are optional. Drive strengths
and delays are allowed, but they FPGA Compiler II / FPGA Express
ignores them. Example 3-16 shows two gate-level instantiations.

Example 3-16 Gate-Level Instantiations

buf (buf_out,e);
and and4(and_out,a,b,c,d);

Note:
FPGA Compiler II / FPGA Express parses but ignores delay
options for gate primitives. Because FPGA Compiler II / FPGA
Express ignores the delay information, it can create logic whose
behavior does not agree with the simulated behavior of the circuit.
See “D Flip-Flop With Asynchronous Set or Reset” on page 6-24.
3-21

Structural Descriptions

Three-State Buffer Instantiation

FPGA Compiler II / FPGA Express supports the following gate types
for instantiation of three-state gates:

• bufif0 (active-low enable line)

• bufif1 (active-high enable line)

• notif0 (active-low enable line, output inverted)

• notif1 (active-high enable line, output inverted)

Connection lists for bufif and notif gates use positional notation.
Specify the order of the terminals as follows:

• The first terminal connects to the output of the gate.

• The second terminal connects to the input of the gate.

• The third terminal connects to the control line.

Example 3-17 shows a three-state gate instantiation with an active-
high enable and no inverted output.

Example 3-17 Three-State Gate Instantiation

module three_state (in1,out1,cntrl1);
input in1,cntrl1;
output out1;

bufif1 (out1,in1,cntrl1);

endmodule
3-22

Structural Descriptions

4
Expressions 4

In Verilog, expressions consist of a single operand or multiple
operands separated by operators. Use expressions where a value is
required in Verilog.

This chapter explains how to build and use expressions using

• Constant-Valued Expressions

• Operators

• Operands

• Expression Bit-Widths
4-1

Expressions

Constant-Valued Expressions

A constant-valued expression is an expression whose operands are
either constants or parameters. FPGA Compiler II / FPGA Express
determines the value of these expressions.

In Example 4-1, size-1 is a constant-valued expression. The
expression (op == ADD) ? a + b : a – b is not a constant-valued
expression, because the value depends on the variable op. If the value
of op is 1, b is added to a; otherwise, b is subtracted from a.

Example 4-1 Valid Expressions

// all expressions are constant-valued,
// except in the assign statement.
module add_or_subtract(a, b, op, s);
// performs s = a+b if op is ADD
// performs s = a-b if op is not ADD

parameter size=8;
parameter ADD=1’b1;

input op;
input [size-1:0] a, b;
output [size-1:0] s;
assign s = (op == ADD) ? a+b : a-b;//not a constant-

 //valued expression
endmodule

The operators and operands in an expression influence the way a
design is synthesized. FPGA Compiler II / FPGA Express evaluates
constant-valued expressions and does not synthesize circuitry to
compute their value. If an expression contains constants, they are
propagated to reduce the amount of circuitry required. FPGA
Compiler II / FPGA Express does synthesize circuitry for an
expression that contains variables, however.
4-2

Expressions

Operators

Operators identify the operation to be performed on their operands
to produce a new value. Most operators are either unary operators,
which apply to only one operand, or binary operators, which apply to
two operands. Two exceptions are conditional operators, which take
three operands, and concatenation operators, which take any number
of operands.

The Verilog language operators supported by FPGA Compiler II /
FPGA Express are listed in Table 4-1. A description of the operators
and their order of precedence appears in the following sections.

Table 4-1 Verilog Operators Supported by FPGA Compiler II / FPGA Express

Operator Type Operator Description

Arithmetic Operators + – * /
%

Arithmetic
Modules

Relational Operators >
>=
<
<=

Relational

Equality Operators ==
!=

Logical equality
Logical inequality

Logical Operators !
&&
||

Logical NOT
Logical AND
Logical OR

Bitwise Operators ~
&
|
^
^~ ~^

Bitwise NOT
Bitwise AND
Bitwise OR
Bitwise XOR
Bitwise XNOR

Reduction Operators &
|
~&
~|
^
~^ ^~

Reduction AND
Reduction OR
Reduction NAND
Reduction NOR
Reduction XOR
Reduction XNOR
4-3

Expressions

In the following descriptions, the terms variable and variable operand
refer to operands or expressions that are not constant-valued
expressions. This group includes wires and registers, bit-selects and
part-selects of wires and registers, function calls, and expressions
that contain any of these elements.

Arithmetic Operators

Arithmetic operators perform simple arithmetic on operands. The
Verilog arithmetic operators are

• Addition (+)

• Subtraction (–)

• Multiplication (*)

• Division (/)

• Modules (%)

You can use the +, –, and * operators with any operand form
(constants or variables). The + and – operators can be used as either
unary or binary operators. FPGA Compiler II / FPGA Express requires
that the / and % operators have constant-valued operands.

Shift Operators <<
>>

Shift left
Shift right

Conditional Operator ? : Conditions

Concatenation Operator { } Concatenation

Table 4-1 Verilog Operators Supported by FPGA Compiler II / FPGA Express(Continued)

Operator Type Operator Description
4-4

Expressions

Example 4-2 shows three forms of the addition operator. The circuitry
built for each addition operation is different, because of the different
operand types. The first addition requires no logic, the second
synthesizes an incrementer, and the third synthesizes an adder.

Example 4-2 Addition Operator

parameter size=8;
wire [3:0] a,b,c,d,e;

assign c = size + 2; //constant + constant
assign d = a + 1; //variable + constant
assign e = a + b; //variable + variable

Relational Operators

Relational operators compare two quantities and yield a 0 or 1 value.
A true comparison evaluates to 1; a false comparison evaluates to 0.
All comparisons assume unsigned quantities. The circuitry
synthesized for relational operators is a bitwise comparator whose
size is based on the sizes of the two operands.

The Verilog relational operators are

• Less than (<)

• Less than or equal to (<=)

• Greater than (>)

• Greater than or equal to (>=)

Example 4-3 shows the use of a relational operator.
4-5

Expressions

Example 4-3 Relational Operator

function [7:0] max(a, b);
input [7:0] a,b;

if (a >= b) max = a;
else max = b;

endfunction

Equality Operators

Equality operators generate a 0 if the expressions being compared
are not equal and a 1 if the expressions are equal. Equality and
inequality comparisons are performed by bit.

The Verilog equality operators are

• Equality (==)

• Inequality (!=)

Example 4-4 shows the equality operator testing for a JMP instruction.
The output signal jump is set to 1 if the two high-order bits of
instruction are equal to the value of parameter JMP; otherwise, jump
is set to 0.

Example 4-4 Equality Operator

module is_jump_instruction (instruction, jump);
parameter JMP = 2’h3;

input [7:0] instruction;
output jump;
assign jump = (instruction[7:6] == JMP);

endmodule
4-6

Expressions

Handling Comparisons to X or Z

FPGA Compiler II / FPGA Express always ignores comparisons to
an X or a Z. If your code contains a comparison to an X or a Z, a
warning message displays, indicating that the comparison is always
evaluated to false, which might cause simulation to disagree with
synthesis.

Example 4-5 shows code from a file called test2.v. FPGA Compiler II
/ FPGA Express always assigns the variable B to the value 1, because
the comparison to X is ignored.

Example 4-5 Comparison to X Ignored

always begin
if (A == 1’bx) //this is line 10

B = 0;
else

B = 1;
end

When FPGA Compiler II / FPGA Express reads this code, it generates
the following warning message:

Warning: Comparisons to a "don’t care" are treated as always
being false in routine test2 line 10 in file ’test2.v’. This
may cause simulation to disagree with synthesis. (HDL-170)

For an alternative method of handling comparisons to X or Z, use the
translate_off and translate_on directives to comment out the condition
and its first branch (the true clause) so that only the else branch goes
through synthesis.
4-7

Expressions

Logical Operators

Logical operators generate a 1 or a 0, according to whether an
expression evaluates to true (1) or false (0). The Verilog logical
operators are

• Logical NOT (!)

• Logical AND (&&)

• Logical OR (||)

The logical NOT operator produces a value of 1 if its operand is zero
and a value of 0 if its operand is nonzero. The logical AND operator
produces a value of 1 if both operands are nonzero. The logical OR
operator produces a value of 1 if either operand is nonzero.

Example 4-6 shows some logical operators.

Example 4-6 Logical Operators

module is_valid_sub_inst(inst,mode,valid,unimp);

parameterIMMEDIATE=2’b00, DIRECT=2’b01;
parameterSUBA_imm=8’h80, SUBA_dir=8’h90,

SUBB_imm=8’hc0, SUBB_dir=8’hd0;
input [7:0] inst;
input [1:0] mode;
output valid, unimp;

assign valid = (((mode == IMMEDIATE) && (
(inst == SUBA_imm) ||
(inst == SUBB_imm))) ||
((mode == DIRECT) && (

(inst == SUBA_dir) ||
(inst == SUBB_dir))));

assign unimp = !valid;
endmodule
4-8

Expressions

Bitwise Operators

Bitwise operators act on the operand bit by bit. The Verilog bitwise
operators are

• Unary negation (~)

• Binary AND (&)

• Binary OR (|)

• Binary XOR (^)

• Binary XNOR (^~ or ~^)

Example 4-7 shows some bitwise operators.

Example 4-7 Bitwise Operators

module full_adder(a, b, cin, s, cout);
input a, b, cin;
output s, cout;

assign s = a ^ b ^ cin;
assign cout = (a&b) | (cin & (a|b));

endmodule
4-9

Expressions

Reduction Operators

Reduction operators take one operand and return a single bit. For
example, the reduction AND operator takes the AND value of all the
bits of the operand and returns a 1-bit result. The Verilog reduction
operators are

• Reduction AND (&)

• Reduction OR (|)

• Reduction NAND(~&)

• Reduction NOR (~|)

• Reduction XOR (^)

• Reduction NXOR (^~ or ~^)

Example 4-8 shows the use of some reduction operators.

Example 4-8 Reduction Operators

module check_input (in, parity, all_ones);
input [7:0] in;
output parity, all_ones;

assign parity = ^ in;
assign all_ones = & in;

endmodule
4-10

Expressions

Shift Operators

A shift operator takes two operands and shifts the value of the first
operand right or left by the number of bits given by the second
operand.

The Verilog shift operators are

• Shift left (<<)

• Shift right (>>)

After the shift, vacated bits fill with zeros. Shifting by a constant results
in minor circuitry modification (because only rewiring is required).
Shifting by a variable causes a general shifter to be synthesized.
Example 4-9 shows use of a shift-right operator to perform division
by 4.

Example 4-9 Shift Operator

module divide_by_4(dividend, quotient);
input [7:0] dividend;
output [7:0] quotient;

assign quotient = dividend >> 2; //shift right 2 bits
endmodule
4-11

Expressions

Conditional Operator

The conditional operator (? :) evaluates an expression and returns a
value that is based on the truth of the expression.

Example 4-10 shows how to use the conditional operator. If the
expression (op == ADD) evaluates to true, the value a + b is assigned
to result; otherwise, the value a – b is assigned to result.

Example 4-10 Conditional Operator

module add_or_subtract(a, b, op, result);

parameter ADD=1’b0;
input [7:0] a, b;
input op;
output [7:0] result;

assign result = (op == ADD) ? a+b : a-b;
endmodule

You can nest conditional operators to produce an if...then construct.
Example 4-11 shows the conditional operators used to evaluate the
value of op successively and perform the correct operation.
4-12

Expressions

Example 4-11 Nested Conditional Operator

module arithmetic(a, b, op, result);

parameterADD=3’h0,SUB=3’h1,AND=3’h2,
OR=3’h3, XOR=3’h4;

input [7:0] a,b;
input [2:0] op;
output [7:0] result;

assign result = ((op == ADD) ? a+b : (
 (op == SUB) ? a-b : (
 (op == AND) ? a&b : (
 (op == OR) ? a|b : (
 (op == XOR) ? a^b : (a))))));

endmodule

Concatenation Operators

Concatenation combines one or more expressions to form a larger
vector. In the Verilog language, you indicate concatenation by listing
all expressions to be concatenated, separated by commas, in curly
braces ({}). Any expression, except an unsized constant, is allowed
in a concatenation. For example, the concatenation {1’b1,1’b0,1’b0}
yields the value 3’b100.

You can also use a constant-valued repetition multiplier to repeat the
concatenation of an expression. The concatenation {1’b1,1’b0,1’b0}
can also be written as {1’b1,{2{1’b0}}} to yield 3’b100. The expression
{2{expr}} within the concatenation repeats expr two times.

Example 4-12 shows a concatenation that forms the value of a
condition-code register.
4-13

Expressions

Example 4-12 Concatenation Operator

output [7:0] ccr;
wire half_carry, interrupt, negative, zero, overflow, carry;
...
assign ccr = { 2’b00, half_carry, interrupt,
 negative, zero, overflow, carry };

Example 4-13 shows an equivalent description for the concatenation.

Example 4-13 Concatenation Equivalent

output [7:0] ccr;
...
assign ccr[7] = 1’b0;
assign ccr[6] = 1’b0;
assign ccr[5] = half_carry;
assign ccr[4] = interrupt;
assign ccr[3] = negative;
assign ccr[2] = zero;
assign ccr[1] = overflow;
assign ccr[0] = carry;
4-14

Expressions

Operator Precedence

Table 4-2 lists the precedence of all operators, from highest to lowest.
All operators at the same level in the table are evaluated from left to
right, except the conditional operator (?:), which is evaluated from
right to left.

Table 4-2 Operator Precedence

Operator Description

[] Bit-select or part-select

() Parentheses

! ~ Logical and bitwise negation

& | ~& ~| ^ ~^ ^~ Reduction operators

 + – Unary arithmetic

{ } Concatenation

* / % Arithmetic

+ - Arithmetic

<< >> Shift

> >= < <= Relational

== != Logical equality and inequality

& Bitwise AND

^ ^~ ~^ Bitwise XOR and XNOR

| Bitwise OR

&& Logical AND

|| Logical OR

? : Conditional
4-15

Expressions

Operands

You can use the following kinds of operands in an expression:

• Numbers

• Wires and registers

- Bit-selects

- Part-selects

• Function calls

The following sections explain each of these operands.

Numbers

A number is either a constant value or a value specified as a
parameter. The expression size-1 in Example 4-1 on page 4-2
illustrates how you can use both a parameter and a constant in an
expression.

You can define constants as sized or unsized, in binary, octal, decimal,
or hexadecimal bases. The default size of an unsized constant is 32
bits. Refer to “Numbers” on page B-13 for a discussion of the number
format.
4-16

Expressions

Wires and Registers

Variables that represent wires as well as registers are allowed in an
expression. If the variable is a multiple-bit vector and you use only
the name of the variable, the entire vector is used in the expression.
Bit-selects and part-selects allow you to select single or multiple bits,
respectively, from a vector. These are described in the next two
sections.

Wires are described in “Module Statements and Constructs” on
page 3-7, and registers are described in “Function Declarations” on
page 5-3.

In the Verilog fragment shown in Example 4-14, a, b, and c are 8-bit
vectors of wires. Because only the variable names appear in the
expression, the entire vector of each wire is used in evaluation of the
expression.

Example 4-14 Wire Operands

wire [7:0] a,b,c;
assign c = a & b;

Bit-Selects

A bit-select is the selection of a single bit from a wire, register, or
parameter vector. The value of the expression in brackets ([]) selects
the bit you want from the vector. The selected bit must be within the
declared range of the vector. Example 4-15 shows a simple example
of a bit-select with an expression.

Example 4-15 Bit-Select Operands

wire [7:0] a,b,c;
assign c[0] = a[0] & b[0];
4-17

Expressions

Part-Selects

A part-select is the selection of a group of bits from a wire, register,
or parameter vector. The part-select expression must be constant-
valued in the Verilog language, unlike the bit-select operator. If a
variable is declared with ascending or descending indexes, the part-
select (when applied to that variable) must be in the same order.

You can also write the expression in Example 4-14 with part-select,
as shown in Example 4-16.

Example 4-16 Part-Select Operands

assign c[7:0] = a[7:0] & b[7:0]

Function Calls

Verilog allows you to call one function from inside an expression and
use the return value from the called function as an operand. Functions
in Verilog return a value consisting of 1 or more bits. The syntax of a
function call is the function name followed by a comma-separated list
of function inputs enclosed in parentheses. Example 4-17 uses the
function call legal in an expression.

Example 4-17 Function Call Used as an Operand

assign error = ! legal(in1, in2);

Functions are described in “Function Declarations” on page 5-3.
4-18

Expressions

Concatenation of Operands

Concatenation is the process of combining several single- or multiple-
bit operands into one large bit vector. The use of the concatenation
operator, a pair of braces ({}), is described in “Concatenation
Operators” on page 4-13.

Example 4-18 shows two 4-bit vectors (nibble1 and nibble2) that are
joined to form an 8-bit vector that is assigned to an 8-bit wire vector
(byte).

Example 4-18 Concatenation of Operands

wire [7:0] byte;
wire [3:0] nibble1, nibble2;
assign byte = {nibble1,nibble2};

Expression Bit-Widths

The bit-width of an expression depends on the widths of the operands
and the types of operators in the expression.

Table 4-3 shows the bit-width for each operand and operator. In the
table, i, j, and k are expressions; L(i) is the bit-width of expression i.

To preserve significant bits within an expression, Verilog fills in zeros
for smaller-width operands. The rules for this zero extension depend
on the operand type. These rules appear in Table 4-3.

Verilog classifies expressions (and operands) as either self-
determined or context-determined. A self-determined expression is
4-19

Expressions

one in which the width of the operands is determined solely by the
expression itself. These operand widths are never extended.

Table 4-3 Expression Bit-Widths

Expression Bit Length Comments

unsized constant 32 bits Self-determined

sized constant as specified Self-determined

i + j max(L(i),L(j)) Context-determined

i – j max(L(i),L(j)) Context-determined

i * j max(L(i),L(j)) Context-determined

i / j max(L(i),L(j)) Context-determined

i % j max(L(i),L(j)) Context-determined

i & j max(L(i),L(j)) Context-determined

i | j max(L(i),L(j)) Context-determined

i ^ j max(L(i),L(j)) Context-determined

i ^~ j max(L(i),L(j)) Context-determined

~i L(i) Context-determined

i == j 1 bit Self-determined

i !== j 1 bit Self-determined

i && j 1 bit Self-determined

i || j 1 bit Self-determined

i > j 1 bit Self-determined

i >= j 1 bit Self-determined

i < j 1 bit Self-determined

i <= j 1 bit Self-determined

&i 1 bit Self-determined

|i 1 bit Self-determined

^i 1 bit Self-determined

~&i 1 bit Self-determined

~|i 1 bit Self-determined

~^i 1 bit Self-determined

i >> j L(i) j is self-determined

{i{j}} i*L(j) j is self-determined

i << j L(i) j is self-determined

{i,...,j} L(i)+...+L(j) Self-determined

{i {j,...,k}} i*(L(j)+...+L(k)) Self-determined
4-20

Expressions

Example 4-19 shows a self-determined expression that is a
concatenation of variables with known widths.

Example 4-19 Self-Determined Expression

output [7:0] result;
wire [3:0] temp;

assign temp = 4’b1111;
assign result = {temp,temp};

The concatenation has two operands. Each operand has a width of
4 bits and a value of 4’b1111. The resulting width of the concatenation
is 8 bits, which is the sum of the width of the operands. The value of
the concatenation is 8’b11111111.

A context-determined expression is one in which the width of the
expression depends on all the operand widths in the expression. For
example, Verilog defines the resulting width of an addition as the
greater of the widths of its two operands. The addition of two 8-bit
quantities produces an 8-bit value; however, if the result of the addition
is assigned to a 9-bit quantity, the addition produces a 9-bit result.
Because the addition operands are context-determined, they are
zero-extended to the width of the largest quantity in the entire
expression.

Example 4-20 shows some context-determined expressions.

Example 4-20 Context-Determined Expressions

if (((1’b1 << 15) >> 15) == 1’b0)
 //This expression is ALWAYS true.

i ? j : k Max(L(j),L(k)) i is self-determined

Table 4-3 Expression Bit-Widths(Continued)

Expression Bit Length Comments
4-21

Expressions

if ((((1’b1 << 15) >> 15) | 20’b0) == 1’b0)
//This expression is NEVER true.

The expression ((1’b1 << 15) >> 15) produces a 1-bit 0 value (1’b0).
The 1 is shifted off the left end of the vector, producing a value of 0.
The right shift has no additional effect. For a shift operator, the first
operand (1’b1) is context-dependent; the second operand (15) is self-
determined.

The expression (((1’b1 << 15) >> 15) | 20’b0) produces a 20-bit 1
value (20’b1). 20’b1 has a 1 in the least significant bit position and 0s
in the other 19 bit positions. Because the largest operand in the
expression has a width of 20, the first operand of the shift is zero-
extended to a 20-bit value. The left shift of 15 does not drop the 1
value off the left end; the right shift brings the 1 value back to the right
end, resulting in a 20-bit 1 value (20’b1).
4-22

Expressions

5
Functional Descriptions 5

A Verilog functional description defines a circuit in terms of what it
does.

This chapter describes the construction and use of functional
descriptions in the following major sections:

• Sequential Constructs

• Function Declarations

• Function Statements

• task Statements

• always Blocks
5-1

Functional Descriptions

Sequential Constructs

Although many Verilog constructs appear sequential in nature, they
describe combinational circuitry. A simple description that appears to
be sequential is shown in Example 5-1.

Example 5-1 Sequential Statements

x = b;
if (y)

x = x + a;

FPGA Compiler II / FPGA Express determines the combinational
equivalent of this description. In fact, it treats the statements in
Example 5-1 exactly as it treats the statements in Example 5-2.

Example 5-2 Equivalent Combinational Description

if (y)
x = b + a;

else
x = b;

To describe combinational logic, you write a sequence of statements
and operators to generate the outputs you want. For example,
suppose the addition operator (+) is not supported and you want to
create a combinational ripple carry adder. The easiest way to describe
this circuit is as a cascade of full adders, as in Example 5-3. The
example has eight full adders, with each adder following the one
before. From this description, FPGA Compiler II / FPGA Express
generates a fully combinational adder.
5-2

Functional Descriptions

Example 5-3 Combinational Ripple Carry Adder

function [7:0] adder;
input [7:0] a, b;

reg c;
integer i;
begin

c = 0;
for (i = 0; i <= 7; i = i + 1) begin

adder[i] = a[i] ^ b[i] ^ c;
c = a[i] & b[i] | a[i] & c | b[i] & c;

end
end

endfunction

Function Declarations

Using a function declaration is one of three methods for describing
combinational logic. The other two methods are the always block,
described in “always Blocks” on page 5-34, and the continuous
assignment, described in “Continuous Assignment” on page 3-15.
You must declare and use Verilog functions within a module. You can
call functions from the structural part of a Verilog description by using
them in a continuous assignment statement or as a terminal in a
module instantiation. You can also call functions from other functions
or from always blocks.

FPGA Compiler II / FPGA Express supports the following Verilog
function declarations:

• Input declarations

• Output from a function

• Register declarations
5-3

Functional Descriptions

• Memory declarations

• Parameter declarations

• Integer declarations

Functions begin with the keyword function and end with the keyword
endfunction. The width of the function’s return value (if any) and the
name of the function follow the function keyword, as the following
syntax shows.

function [range] name_of_function ;
[func_declaration]
statement_or_null

endfunction

Defining the bit range of the return value is optional. Specify the range
inside square brackets ([]). If you do not define the range, a function
returns a 1-bit quantity by default. You set the function’s output by
assigning it to the function name. A function can contain one or more
statements. If you use multiple statements, enclose the statements
inside a begin...end pair.

A simple function declaration is shown in Example 5-4.

Example 5-4 Simple Function Declaration

function [7:0] scramble;
input [7:0] a;
input [2:0] control;
integer i;

begin
for (i = 0; i <= 7; i = i + 1)

scramble[i] = a[i ^ control];
end

endfunction
5-4

Functional Descriptions

Function statements FPGA Compiler II / FPGA Express supports are
discussed in “Function Statements” on page 5-9.

Input Declarations

The input declarations specify the input signals for a function. You
must declare the inputs to a Verilog function immediately after you
declare the function name. The syntax of input declarations for a
function is the same as the syntax of input declarations for a module:

input [range] list_of_variables ;

The optional range specification declares an input as a vector of
signals. Specify range inside square brackets ([]).

Note:
The order in which you declare the inputs must match the order
of the inputs in the function call.

Output From a Function

The output from a function is assigned to the function name. A Verilog
function has only one output, which can be a vector. For multiple
outputs from a function, use the concatenation operation to bundle
several values into one return value. This single return value can then
be unbundled by the caller. Example 5-5 shows how unbundling is
done.
5-5

Functional Descriptions

Example 5-5 Many Outputs From a Function

function [9:0] signed_add;
input [7:0] a, b;
 reg [7:0] sum;
 reg carry, overflow;

 begin
 ...
 signed_add = {carry, overflow, sum};
 end
endfunction
...
assign {C, V, result_bus} = signed_add(busA, busB);

The signed_add function bundles the values of carry, overflow, and
sum into one value. This new value is returned in the assign statement
following the function. The original values are then unbundled by the
function that called the signed_add function.

Register Declarations

A register represents a variable in Verilog. The syntax for a register
declaration is

reg [range] list_of_register_variables ;

A reg can be a single-bit quantity or a vector of bits. The range
specifies the most significant bit (msb) and the least significant bit
(lsb) of the vector enclosed in square brackets ([]). Both bits must be
nonnegative constants, parameters, or constant-valued expressions.
Example 5-6 shows some reg declarations.
5-6

Functional Descriptions

Example 5-6 Register Declarations

reg x; //single bit
reg a, b, c; //3 single-bit quantities
reg [7:0] q; //an 8-bit vector

The Verilog language allows you to assign a value to a reg variable
only within a function or an always block.

In the Verilog simulator, reg variables can hold state information. A
reg can hold its value across separate calls to a function. In some
cases, FPGA Compiler II / FPGA Express emulates this behavior by
inserting flow-through latches. In other cases, it emulates this
behavior without a latch. The concept of holding state is elaborated
on in “Inferring Latches” on page 6-7.

Memory Declarations

The memory declaration models a bank of registers or memory. In
Verilog, the memory declaration is a two-dimensional array of reg
variables. Sample memory declarations are shown in Example 5-7.

Example 5-7 Memory Declarations

reg [7:0] byte_reg;
reg [7:0] mem_block [255:0];
5-7

Functional Descriptions

In Example 5-7, byte_reg is an 8-bit register and mem_block is an
array of 256 registers, each of which is 8 bits wide. You can index the
array of registers to access individual registers, but you cannot access
individual bits of a register directly. Instead, you must copy the
appropriate register into a temporary one-dimensional register. For
example, to access the fourth bit of the eighth register in mem_block,
enter

byte_reg = mem_block [7];
individual_bit = byte_reg [3];

Parameter Declarations

Parameter variables are local or global variables that hold values. The
syntax for a parameter declaration is

parameter [range] identifier = expression,
identifier = expression ;

The range specification is optional.

You can declare parameter variables as being local to a function.
However, you cannot use a local variable outside that function.
Parameter declarations in a function are identical to parameter
declarations in a module. The function in Example 5-8 contains a
parameter declaration.

Example 5-8 Parameter Declaration in a Function

function gte;
parameter width = 8;
input [width-1:0] a,b;
gte = (a >= b);

endfunction
5-8

Functional Descriptions

Integer Declarations

Integer variables are local or global variables that hold numeric
values. The syntax for an integer declaration is

integer identifier_list;

You can declare integer variables locally at the function level or
globally at the module level. The default size for integers is 32 bits.
FPGA Compiler II / FPGA Express determines bit-widths, except in
the case of a don’t care condition resulting during compile.

Example 5-9 illustrates integer declarations.

Example 5-9 Integer Declarations

integer a; //single 32-bit integer
integer b, c; //two integers

Function Statements

The function statements FPGA Compiler II / FPGA Express supports
are

• Procedural assignments

• RTL assignments

• begin...end block statements

• if...else statements

• case, casex, and casez statements
5-9

Functional Descriptions

• for loops

• while loops

• forever loops

• disable statements

Procedural Assignments

Procedural assignments are assignment statements used inside a
function. They are similar to the continuous assignment statements
described in “Continuous Assignment” on page 3-15, except that the
left side of a procedural assignment can contain only reg variables
and integers. Assignment statements set the value of the left side to
the current value of the right side. The right side of the assignment
can contain any arbitrary expression of the data types described in
“Structural Data Types” on page 3-8, including simple constants and
variables.

The left side of the procedural assignment statement can contain only
the following data types:

• reg variables

• Bit-selects of reg variables

• Part-selects of reg variables (must be constant-valued)

• Integers

• Concatenations of the previous data types
5-10

Functional Descriptions

FPGA Compiler II / FPGA Express assigns the low bit on the right
side to the low bit on the left side. If the number of bits on the right
side is greater than the number on the left side, the high-order bits
on the right side are discarded. If the number of bits on the left side
is greater than the number on the right side, the right-side bits are
zero-extended. FPGA Compiler II / FPGA Express allows multiple
procedural assignments.

Some examples of procedural assignments are shown in
Example 5-10.

Example 5-10 Procedural Assignments

sum = a + b;
control[5] = (instruction == 8’h2e);
{carry_in, a[7:0]} = 9’h 120;

RTL Assignments

FPGA Compiler II / FPGA Express handles variables driven by an
RTL (nonblocking) assignment differently than those driven by a
procedural (blocking) assignment.

In procedural assignments, a value passed along from variable A to
variable B to variable C results in all three variables having the same
value in every clock cycle. In the netlist, procedural assignments are
indicated when the input net of one flip-flop is connected to the input
net of another flip-flop. Both flip-flops input the same value in the same
clock cycle.
5-11

Functional Descriptions

In RTL assignments, however, values are passed on in the next clock
cycle. Assignment from variable A to variable B occurs after one clock
cycle, if variable A has been a previous target of an RTL assignment.
Assignment from variable B to variable C always takes place after
one clock cycle, because B is the target when RTL assigns variable
A’s value to B. In the netlist, an RTL assignment shows flip-flop B
receiving its input from the output net of flip-flop A. It takes one clock
cycle for the value held by flip-flop A to propagate to flip-flop B.

A variable can follow only one assignment method and therefore
cannot be the target of RTL as well as procedural assignments.

Example 5-11 is a description of a serial register implemented with
RTL assignments. Figure 5-1 shows the resulting schematic for
Example 5-11.

Example 5-11 RTL Nonblocking Assignments

module rtl (clk, data, regc, regd);
input data, clk;
output regc, regd;

reg regc, regd;

always @(posedge clk)
begin

regc <= data;
regd <= regc;

end
endmodule
5-12

Functional Descriptions

Figure 5-1 Schematic of RTL Nonblocking Assignments

If you use a procedural assignment, as in Example 5-12, FPGA
Compiler II / FPGA Express does not synthesize a serial register.
Therefore, the recently assigned value of rega, which is data, is
assigned to regb, as the schematic in Figure 5-2 indicates.

Example 5-12 Blocking Assignment

module rtl (clk, data, rega, regb);
input data, clk;
output rega, regb;

reg rega, regb;

always @(posedge clk)
begin

rega = data;
regb = rega;

end
endmodule
5-13

Functional Descriptions

Figure 5-2 Schematic of Blocking Assignment

begin...end Block Statements

Using block statements is a way of syntactically grouping several
statements into a single statement.

In Verilog, sequential blocks are delimited by the keywords begin and
end. These begin...end pairs are commonly used in conjunction with
if, case, and for statements to group several statements. Functions
and always blocks that contain more than one statement require a
begin...end pair to group the statements. Verilog also provides a
construct called a named block, as in Example 5-13.

Example 5-13 Block Statement With a Named Block

begin : block_name
5-14

Functional Descriptions

 reg local_variable_1 ;
integer local_variable_2 ;
parameter local_variable_3 ;

 ... statements ...
end

In Verilog, no semicolon (;) follows the begin or end keywords. You
identify named blocks by following the begin with a colon (:) and a
block_name, as shown. Verilog syntax allows you to declare variables
locally in a named block. You can include reg, integer, and parameter
declarations within a named block but not in an unnamed block.
Named blocks allow you to use the disable statement.

if...else Statements

The if ... else statements execute a block of statements according to
the value of one or more expressions.

The syntax of if...else statements is

if (e xpr)
 begin
 ... statements ...
 end
else
 begin
 ... statements ...
 end
5-15

Functional Descriptions

The if statement consists of the keyword if followed by an expression
in parentheses. The if statement is followed by a statement or block
of statements enclosed by begin and end. If the value of the
expression is nonzero, the expression is true and the statement block
that follows is executed. If the value of the expression is zero, the
expression is false and the statement block that follows is not
executed.

An optional else statement can follow an if statement. If the expression
following if is false, the statement or block of statements following else
is executed.

The if...else statements can cause synthesis of registers. Registers
are synthesized when you do not assign a value to the same reg in
all branches of a conditional construct. Information on registers is in
“Register Inference” on page 6-1.

FPGA Compiler II / FPGA Express synthesizes multiplexer logic (or
similar select logic) from a single if statement. The conditional
expression in an if statement is synthesized as a control signal to a
multiplexer, which determines the appropriate path through the
multiplexer. For example, the statements in Example 5-14 create
multiplexer logic controlled by c and place either a or b in the variable
x.

Example 5-14 if Statement That Synthesizes Multiplexer Logic

if (c)
x = a;

else
x = b;

Example 5-15 illustrates how if and else can be used to create an
arbitrarily long if...else if...else structure.
5-16

Functional Descriptions

Example 5-15 if...else if...else Structure

if (instruction == ADD)
 begin
 carry_in = 0;
 complement_arg = 0;
 end
else if (instruction == SUB)
 begin
 carry_in = 1;
 complement_arg = 1;
 end
else
 illegal_instruction = 1;

Example 5-16 shows how to use nested if and else statements.

Example 5-16 Nested if and else Statements

if (select[1])
 begin
 if (select[0]) out = in[3];
 else out = in[2];
 end
else
 begin
 if (select[0]) out = in[1];
 else out = in[0];
 end
5-17

Functional Descriptions

Conditional Assignments

FPGA Compiler II / FPGA Express can synthesize a latch for a
conditionally assigned variable. A variable is conditionally assigned
if there is a path that does not explicitly assign a value to that variable.
See “Understanding the Limitations of D Latch Inference” on
page 6-19 for more information.

In Example 5-17, the variable value is conditionally driven. If c is not
true, value is not assigned and retains its previous value.

Example 5-17 Synthesizing a Latch for a Conditionally Driven Variable

always begin
 if (c) begin
 value = x;
 end
 y = value; //causes a latch to be synthesized for value
end

case Statements

The case statement is similar in function to the if...else conditional
statement. The case statement allows a multipath branch in logic that
is based on the value of an expression. One way to describe a
multicycle circuit is with a case statement (see Example 5-18).
Another way is with multiple @ (clock edge) statements, which are
discussed in the subsequent sections on loops.
5-18

Functional Descriptions

The syntax for a case statement is

case (expr)
 case_item1 : begin

 ... statements ...

 end
 case_item2 : begin

 ... statements ...

 end
 default: begin

 ... statements ...
 end
endcase

The case statement consists of the keyword case, followed by an
expression in parentheses, followed by one or more case items (and
associated statements to be executed), followed by the keyword
endcase. A case item consists of an expression (usually a simple
constant) or a list of expressions separated by commas, followed by
a colon (:).

The expression following the case keyword is compared with each
case item expression, one by one. When the expressions are equal,
the condition evaluates to true. Multiple expressions separated by
commas can be used in each case item. When multiple expressions
are used, the condition is said to be true if any of the expressions in
the case item match the expression following the case keyword.
5-19

Functional Descriptions

The first case item that evaluates to true determines the path. All
subsequent case items are ignored, even if they are true. If no case
item is true, no action is taken. You can define a default case item
with the expression default, which is used when no other case item
is true.

An example of a case statement is shown in Example 5-18.

Example 5-18 case Statement

case (state)
 IDLE: begin
 if (start)
 next_state = STEP1;
 else
 next_state = IDLE;
 end
 STEP1: begin
 //do first state processing here
 next_state = STEP2;
 end
 STEP2: begin
 //do second state processing here
 next_state = IDLE;
 end
endcase

Full Case and Parallel Case

FPGA Compiler II / FPGA Express automatically determines whether
a case statement is full or parallel. A case statement is full if all
possible branches are specified. If you do not specify all possible
branches but you know that one or more branches can never occur,
you can declare a case statement as full-case with the // synopsys
5-20

Functional Descriptions

full_case directive. Otherwise, FPGA Compiler II / FPGA Express
synthesizes a latch. See “parallel_case Directive” on page 8-4 and
“full_case Directive” on page 8-5 for more information.

FPGA Compiler II / FPGA Express synthesizes optimal logic for the
control signals of a case statement. If FPGA Compiler II / FPGA
Express cannot statically determine that branches are parallel, it
synthesizes hardware that includes a priority encoder. If FPGA
Compiler II / FPGA Express can determine that no cases overlap
(parallel case), it synthesizes a multiplexer, because a priority
encoder is not necessary. You can also declare a case statement as
parallel case with the //synopsys parallel_case directive. Refer to
“parallel_case Directive” on page 8-4. Example 5-19 does not result
in either a latch or a priority encoder.

Example 5-19 A case Statement That Is Both Full and Parallel

input [1:0] a;
always @(a or w or x or y or z) begin

case (a)
2’b11:
 b = w ;
2’b10:
 b = x ;
2’b01:
 b = y ;
2’b00:
 b = z ;

endcase
end

Example 5-20 shows a case statement that is missing branches for
the cases 2’b01 and 2’b10. Example 5-20 infers a latch for b.
5-21

Functional Descriptions

Example 5-20 A case Statement That Is Parallel but Not Full

input [1:0] a;
always @(a or w or z) begin

case (a)
2’b11:
 b = w ;
2’00:
 b = z ;

endcase
end

The case statement in Example 5-21 is not parallel or full because
the values of inputs w and x cannot be determined. However, if you
know that only one of the inputs equals 2’b11 at a given time, you can
use the // synopsys parallel_case directive to avoid synthesizing a
priority encoder. If you know that either w or x always equals 2’b11
(a situation known as a one-branch tree), you can use the // synopsys
full_case directive to avoid synthesizing a latch.

Example 5-21 A case Statement That Is Not Full or Parallel

always @(w or x) begin
case (2’b11)

w:
 b = 10 ;
x:
 b = 01 ;

endcase
end

casex Statements

The casex statement allows a multipath branch in logic, according to
the value of an expression, just as the case statement does. The
differences between the case statement and the casex statement are
the keyword and the processing of the expressions.
5-22

Functional Descriptions

The syntax for a casex statement is

casex (expr)
 case_item1 : begin
 ... statements ...
 end
 case_item2 : begin
 ... statements ...
 end
 default: begin
 ... statements ...
 end
endcase

A case item can have expressions consisting of

• A simple constant

• A list of identifiers or expressions separated by commas, followed
by a colon (:)

• Concatenated, bit-selected, or part-selected expressions

• A constant containing z, x, or ?

When a z, x, or ? appears in a case item, it means that the
corresponding bit of the casex expression is not compared. Example
5-22 shows a case item that includes an x.

Example 5-22 casex Statement With x

reg [3:0] cond;
casex (cond)
 4’b100x: out = 1;
 default: out = 0;
endcase

In Example 5-22, out is set to 1 if cond is equal to 4’b1000 or 4’b1001,
because the last bit of cond is defined as x.
5-23

Functional Descriptions

Example 5-23 shows a complicated section of code that can be
simplified with a casex statement that uses the ? value.

Example 5-23 Before Using casex With ?
if (cond[3]) out = 0;
else if (!cond[3] & cond[2]) out = 1;
else if (!cond[3] & !cond[2] & cond[1]) out = 2;
else if (!cond[3] & !cond[2] & !cond[1] & cond[0]) out = 3;
else if (!cond[3] & !cond[2] & !cond[1] & !cond[0]) out = 4;

Example 5-24 shows the simplified version of the same code.

Example 5-24 After Using casex With ?

casex (cond)
4’b1???: out = 0;
4’b01??: out = 1;
4’b001?: out = 2;
4’b0001: out = 3;
4’b0000: out = 4;

endcase

FPGA Compiler II / FPGA Express allows ?, z, and x bits in case items
but not in casex expressions. Example 5-25 shows an invalid casex
expression.

Example 5-25 Invalid casex Expression

express = 3’bxz?;
 ...
casex (express) //illegal testing of an expression
 ...
endcase
5-24

Functional Descriptions

casez Statements

The casez statement allows a multipath branch in logic according to
the value of an expression, just like the case statement. The
differences between the case statement and the casez statement are
the keyword and the way the expressions are processed. The casez
statement acts exactly the same as casex, except that x is not allowed
in case items; only z and ? are accepted as special characters.

The syntax for a casez statement is

casez (expr)
 case_item1 : begin
 ... statements ...
 end
 case_item2 : begin
 ... statements ...
 end
 default: begin
 ... statements ...
 end
endcase
5-25

Functional Descriptions

A case item can have expressions consisting of

• A simple constant

• A list of identifiers or expressions separated by commas, followed
by a colon (:)

• Concatenated, bit-selected, or part-selected expressions

• A constant containing z or ?

When a casez statement is evaluated, the value z in the case item is
ignored. An example of a casez statement with z in the case item is
shown in Example 5-26.

Example 5-26 casez Statement With z

casez (what_is_it)
 2’bz0: begin
 //accept anything with least significant bit zero
 it_is = even;
 end
 2’bz1: begin
 //accept anything with least significant bit one
 it_is = odd;
 end
endcase

FPGA Compiler II / FPGA Express allows ? and z bits in case items
but not in casez expressions. Example 5-27 shows an invalid
expression in a casez statement.

Example 5-27 Invalid casez Expression

express = 1’bz;
 ...
casez (express) //illegal testing of an expression
 ...
endcase
5-26

Functional Descriptions

for Loops

The for loop repeatedly executes a single statement or block of
statements. The repetitions are performed over a range determined
by the range expressions assigned to an index. Two range
expressions appear in each for loop: low_range and high_range. In
the syntax lines that follow, high_range is greater than or equal to
low_range. FPGA Compiler II / FPGA Express recognizes
incrementing as well as decrementing loops. The statement to be
duplicated is surrounded by begin and end statements.

Note:
FPGA Compiler II / FPGA Express allows four syntax forms for a
for loop. They are

for (index = low_range ;index < high_range ;index = index + step)
for (index = high_range ;index > low_range ;index = index - step)
for (index = low_range ;index <= high_range ;index = index + step)
for (index = high_range ;index >= low_range ;index = index - step)

Example 5-28 shows a simple for loop.

Example 5-28 A Simple for Loop

for (i = 0; i <= 31; i = i + 1) begin
 s[i] = a[i] ^ b[i] ^ carry;
 carry = a[i] & b[i] | a[i] & carry |
 b[i] & carry;
end

The for loops can be nested, as shown in Example 5-29.
5-27

Functional Descriptions

Example 5-29 Nested for Loops

for (i = 6; i >= 0; i = i - 1)
 for (j = 0; j <= i; j = j + 1)
 if (value[j] > value[j+1]) begin
 temp = value[j+1];
 value[j+1] = value[j];
 value[j] = temp;
 end

You can use for loops as duplicating statements. Example 5-30 shows
a for loop that is expanded into its longhand equivalent in Example
5-31.

Example 5-30 Example for Loop

for (i=0; i < 8; i=i+1)
 example[i] = a[i] & b[7-i];

Example 5-31 Expanded for Loop

example[0] = a[0] & b[7];
example[1] = a[1] & b[6];
example[2] = a[2] & b[5];
example[3] = a[3] & b[4];
example[4] = a[4] & b[3];
example[5] = a[5] & b[2];
example[6] = a[6] & b[1];
example[7] = a[7] & b[0];
5-28

Functional Descriptions

while Loops

The while loop executes a statement until the controlling expression
evaluates to false. A while loop creates a conditional branch that must
be broken by one of the following statements to prevent combinational
feedback.

@ (posedge clock)

or

@ (negedge clock)

FPGA Compiler II / FPGA Express supports while loops if you insert
one of these expressions in every path through the loop:

@ (posedge clock)

or

@ (negedge clock)

Example 5-32 shows an unsupported while loop that has no event
expression.

Example 5-32 Unsupported while Loop

always
while (x < y)

x = x + z;

If you add @ (posedge clock) expressions after the while loop in
Example 5-32, you get the supported version shown in Example 5-33.
5-29

Functional Descriptions

Example 5-33 Supported while Loop

always
begin @ (posedge clock)

while (x < y)
begin

@ (posedge clock);
x = x + z;

end
end;

forever Loops

Infinite loops in Verilog use the keyword forever. You must break up
an infinite loop with an @ (posedge clock) or @ (negedge clock)
expression to prevent combinational feedback, as shown in Example
5-34.

Example 5-34 Supported forever Loop

always
forever
begin

@ (posedge clock);
x = x + z;

end

You can use forever loops with a disable statement to implement
synchronous resets for flip-flops. The disable statement is described
in the next section. See “Register Inference” on page 6-1 for more
information on synchronous resets.

Using the style illustrated in Example 5-34 is not a good idea, because
you cannot test it. The synthesized state machine does not reset to
a known state; therefore, it is impossible to create a test program for
it. Example 5-36 illustrates how a synchronous reset for the state
machine can be synthesized.
5-30

Functional Descriptions

disable Statements

FPGA Compiler II / FPGA Express supports the disable statement
when you use it in named blocks. When a disable statement is
executed, it causes the named block to terminate. A comparator
description that uses disable is shown in Example 5-35.

Example 5-35 Comparator Using disable

begin : compare
for (i = 7; i >= 0; i = i - 1) begin

 if (a[i] != b[i]) begin
 greater_than = a[i];
 less_than = ~a[i];
 equal_to = 0;
 //comparison is done so stop looping
 disable compare;
 end

end

// If we get here a == b
// If the disable statement is executed, the next three
// lines will not be executed
 greater_than = 0;
 less_than = 0;
 equal_to = 1;
end

Example 5-35 describes a combinational comparator. Although the
description appears sequential, the generated logic runs in a single
clock cycle.

You can also use a disable statement to implement a synchronous
reset, as shown in Example 5-36.
5-31

Functional Descriptions

Example 5-36 Synchronous Reset of State Register Using disable in a
forever Loop

always
forever
begin: Block

@ (posedge clk)
if (Reset)

begin
z <= 1’b0;
disable Block;

end
z <= a;

end

The disable statement in Example 5-36 causes the block reset_label
to terminate immediately and return to the beginning of the block.

task Statements

In Verilog, task statements are similar to functions, but task
statements can have output and inout ports. You can use the task
statement to structure your Verilog code so that a portion of code is
reusable.

In Verilog, tasks can have timing controls and can take a nonzero time
to return. However, FPGA Compiler II / FPGA Express ignores all
timing controls, so synthesis might disagree with simulation if timing
controls are critical to the function of the circuit.
5-32

Functional Descriptions

Example 5-37 shows how a task statement is used to define an adder
function.

Example 5-37 Using the task Statement

module task_example (a,b,c);
input [7:0] a,b;
output [7:0] c;
reg [7:0] c;

task adder;
input [7:0] a,b;
output [7:0] adder;
reg c;
integer i;

begin
c = 0;
for (i = 0; i <= 7; i = i+1) begin

adder[i] = a[i] ^ b[i] ^ c;
c = (a[i] & b[i]) | (a[i] & c) | (b[i] & c);

end
end

endtask
always

adder (a,b,c); //c is a reg

endmodule

Note:
Only reg variables can receive output values from a task; wire
variables cannot.
5-33

Functional Descriptions

always Blocks

An always block can imply latches or flip-flops, or it can specify purely
combinational logic. An always block can contain logic triggered in
response to a change in a level or the rising or falling edge of a signal.
The syntax of an always block is

always @ (event-expression [or event-expression *]) begin
 ... statements ...
end

Event Expression

The event expression declares the triggers or timing controls. The
word or groups several triggers. The Verilog language specifies that
if triggers in the event expression occur, the block is executed. Only
one trigger in a group of triggers needs to occur for the block to be
executed. However, FPGA Compiler II / FPGA Express ignores the
event expression unless it is a synchronous trigger that infers a
register. Refer to Chapter 6, "Register and Three-State Inference”,
for details.

Example 5-38 shows a simple example of an always block with
triggers.

Example 5-38 A Simple always Block

always @ (a or b or c) begin
 f = a & b & c
end
5-34

Functional Descriptions

In Example 5-38, a, b, and c are asynchronous triggers. If any triggers
change, the simulator resimulates the always block and recalculates
the value of f. FPGA Compiler II / FPGA Express ignores the triggers
in this example because they are not synchronous. However, you
must indicate all variables that are read in the always block as triggers.
If you do not indicate all the variables as triggers, FPGA Compiler II
/ FPGA Express gives a warning message similar to the following:

Warning: Variable ’foo’ is being read in block ’bar’ declared
on line 88 but does not occur in the timing control of the
block.

For a synchronous always block, FPGA Compiler II / FPGA Express
does not require listing of all variables.

Any of the following types of event expressions can trigger an always
block:

• A change in a specified value. For example,

always @ (identifier) begin
 ... statements ...
end

In the previous example, FPGA Compiler II / FPGA Express
ignores the trigger.

• The rising edge of a clock. For example,

always @ (posedge event) begin
 ... statements ...
end

• The falling edge of a clock. For example,

always @ (negedge event) begin
 ... statements ...
end
5-35

Functional Descriptions

• A clock or an asynchronous preload condition. For example,

always @ (posedge CLOCK or negedge reset) begin
 if ! reset begin
 ... statements .. .
 end
 else begin
 ... statements ...
 end
end

• An asynchronous preload that is based on two events joined by
the word or. For example,

always @ (posedge CLOCK or posedge event1 or
 negedge event2) begin
 if (event1) begin
 ... statements ...
 end
 else if (! event2) begin
 ... statements ...
 end
 else begin
 ... statements ...
 end
end

When the event expression does not contain posedge or negedge,
combinational logic (no registers) is usually generated, although flow-
through latches can be generated.

Note:
The statements @ (posedge clock) and @ (negedge clock) are
not supported in functions or tasks.
5-36

Functional Descriptions

Incomplete Event Specification

You risk misinterpretation of an always block if you do not list all the
signals entering an always block in the event specification. Example
5-39 shows an incomplete event list.

Example 5-39 Incomplete Event List

always @(a or b) begin
 f = a & b & c;
end

FPGA Compiler II / FPGA Express builds a 3-input AND gate for the
description in Example 5-39, but in simulation of this description, f is
not recalculated when c changes, because c is not listed in the event
expression. The simulated behavior is not that of a 3-input AND gate.

The simulated behavior of the description in Example 5-40 is correct,
because it includes all the signals in the event expression.

Example 5-40 Complete Event List

always @(a or b or c) begin
 f = a & b & c;
end

In some cases, you cannot list all the signals in the event specification.
Example 5-41 illustrates this problem.

Example 5-41 Incomplete Event List for Asynchronous Preload

always @ (posedge c or posedge p)
if (p)

z = d;
else

z = a;
5-37

Functional Descriptions

In the logic synthesized for Example 5-41, if d changes while p is high,
the change is reflected immediately in the output, z. However, when
this description is simulated, z is not recalculated when d changes,
because d is not listed in the event specification. As a result, synthesis
might not match simulation.

Asynchronous preloads can be correctly modeled in FPGA Compiler
II / FPGA Express only when you want changes in the load data to
be reflected immediately in the output. In Example 5-41, data d must
change to the preload value before preload condition p transits from
low to high. If you attempt to read a value in an asynchronous preload,
FPGA Compiler II / FPGA Express prints a warning similar to the
following:

Warning:Variable ’d’ is being read asynchronously in routine
reset line 21 in file ’/usr/tests/hdl/asyn.v’. This may cause
simulation-synthesis mismatches.
5-38

Functional Descriptions

6
Register and Three-State Inference 6

FPGA Compiler II / FPGA Express can infer registers (latches and
flip-flops) and three-state cells. This chapter explains inference
behavior and results, in the following sections:

• Register Inference

• Three-State Inference

Register Inference

Register inference allows you to use sequential logic in your designs
and keep your designs technology-independent. A register is a
simple, 1-bit memory device, either a latch or a flip-flop. A latch is a
level-sensitive memory device. A flip-flop is an edge-triggered
memory device.
6-1

Register and Three-State Inference

The register inference capability can support coding styles other than
those described in this chapter. However, for best results,

• Restrict each always block to a single type of memory-element
inferencing: latch, latch with asynchronous set or reset, flip-flop,
flip-flop with asynchronous reset, or flip-flop with synchronous
reset.

• Use the templates provided in “Inferring Latches” on page 6-7 and
“Inferring Flip-Flops” on page 6-21

The Inference Report

FPGA Compiler II / FPGA Express generates a general inference
report when building a design. It provides the asynchronous set or
reset, synchronous set or reset, and synchronous toggle conditions
of each latch or flip-flop, expressed as Boolean formulas. Example
6-1 shows an inference report for a JK flip-flop.

Example 6-1 Inference Report for a JK Flip-Flop

Q_reg
Sync-reset: J’ K
Sync-set: J K’
Sync-toggle: J K
Sync-set and Sync-reset ==> Q: X

Register Name Type Width Bus MB AR AS SR SS ST

Q_reg Flip-flop 1 - - N N Y Y N
6-2

Register and Three-State Inference

In the inference reports in Example 6-1:

• Y indicates that the flip-flop has a synchronous reset (SR) and a
synchronous set (SS)

• N indicates that the flip-flop does not have an asynchronous reset
(AR), an asynchronous set (AS), or a synchronous toggle (ST)

In the inference report (Example 6-1), the last part of the report lists
the objects that control the synchronous reset and set conditions. In
this example, a synchronous reset occurs when J is low (logic 0) and
K is high (logic 1). The last line of the report indicates the register
output value when both set and reset are active:

zero (0)
Indicates that the reset has priority and that the output goes to
logic 0.

one (1)
Indicates that the set has priority and that the output goes to
logic 1.

X
Indicates that there is no priority and that the output is unstable.

“Inferring Latches” on page 6-7 and “Inferring Flip-Flops” on
page 6-21 provide inference reports for each register template. After
you input a Verilog description, check the inference report to verify
the information.
6-3

Register and Three-State Inference

Latch Inference Warnings

FPGA Compiler II / FPGA Express generates a warning message
when it infers a latch. This is useful for verifying that a combinational
design does not contain memory components.

Controlling Register Inference

Use directives to direct the type of sequential device you want inferred.
The default is to implement the type of latch described in the HDL
code. These attributes override this behavior.

Attributes That Control Register Inference

FPGA Compiler II / FPGA Express provides the following directives
for controlling register inference:

async_set_reset
When a signal has this directive set to true, FPGA Compiler II /
FPGA Express searches for a branch that uses the signal as a
condition. FPGA Compiler II / FPGA Express then checks whether
the branch contains an assignment to a constant value. If the
branch does, the signal becomes an asynchronous reset or set.

Attach this directive to single-bit signals, using the following
syntax:

// synopsys async_set_reset ” signal_name_list ”

async_set_reset_local
FPGA Compiler II / FPGA Express treats listed signals in the
specified block as if they have the async_set_reset directive set
to true.
6-4

Register and Three-State Inference

Attach this directive to a block label, using the following syntax:

/* synopsys async_set_reset_local block_label
 ” signal_name_list ” */

async_set_reset_local_all
FPGA Compiler II / FPGA Express treats all signals in the
specified blocks as if they have the async_set_reset directive set
to true.

Attach this directive to block labels, using the following syntax:

/* synopsys async_set_reset_local_all
 ” block_label_list ” */

sync_set_reset
When a signal has this directive set to true, FPGA Compiler II /
FPGA Express checks the signal to determine whether it
synchronously sets or resets a register in the design.

Attach this directive to single-bit signals, using the following
syntax:

//synopsys sync_set_reset ” signal_name_list ”

sync_set_reset_local
FPGA Compiler II / FPGA Express treats listed signals, in the
specified block as if they have the sync_set_reset directive set to
true.

Attach this directive to a block label, using the following syntax:

/* synopsys sync_set_reset_local block_label
 ” signal_name_list ” */

sync_set_reset_local_all
FPGA Compiler II / FPGA Express treats all signals in the
specified blocks as if they have the sync_set_reset directive set
to true.
6-5

Register and Three-State Inference

Attach this directive to block labels, using the following syntax:

/* synopsys sync_set_reset_local_all
 ” block_label_list ” */

one_cold
A one-cold implementation means that all signals in a group are
active low and that only one signal can be active at a given time.
The one_cold directive prevents FPGA Compiler II / FPGA
Express from implementing priority encoding logic for the set and
reset signals.

Add a check to the Verilog code to ensure that the group of signals
has a one-cold implementation. FPGA Compiler II / FPGA
Express does not produce any logic to check this assertion.

Attach this directive to set or reset signals on sequential devices,
using the following syntax:

// synopsys one_cold ” signal_name_list ”

one_hot
A one-hot implementation means that all signals in a group are
active-high and that only one signal can be active at a given time.
The one_hot directive prevents FPGA Compiler II / FPGA Express
from implementing priority encoding logic for the set and reset
signals.

Add a check to the Verilog code to ensure that the group of signals
has a one-hot implementation. FPGA Compiler II / FPGA Express
does not produce any logic to check this assertion.

Attach this directive to set or reset signals on sequential devices,
using the following syntax:

// synopsys one_hot ” signal_name_list ”
6-6

Register and Three-State Inference

Inferring Latches

In simulation, a signal or variable holds its value until that output is
reassigned. In hardware, a latch implements this holding-of-state
capability. FPGA Compiler II / FPGA Express supports inference of
the following types of latches:

• SR latch

• D latch

• Master-slave latch

The following sections provide details about each of these latch types.

Inferring SR Latches

Use SR latches with caution, because they are difficult to test. If you
decide to use SR latches, verify that the inputs are hazard-free (that
they do not glitch). During synthesis, FPGA Compiler II / FPGA
Express does not ensure that the logic driving the inputs is hazard-
free.

Example 6-2 shows the Verilog code that implements the inferred SR
latch shown in Figure 6-1 on page 6-9 and described in Table 6-1.
Because the output y is unstable when both inputs have a logic 0
value, you might want to include a check in the Verilog code to detect
this condition during simulation.

Synthesis does not support such checks, so you must put the
translate_off and translate_on directives around the check. See
“translate_off and translate_on Directives” on page 8-2 for more
information about special comments in the Verilog source code.
6-7

Register and Three-State Inference

Example 6-3 shows the inference report FPGA Compiler II / FPGA
Express generates.

Example 6-2 SR Latch

module sr_latch (SET, RESET, Q);
 input SET, RESET;
 output Q;
 reg Q;

//synopsys async_set_reset ”SET, RESET”
always @(RESET or SET)
 if (~RESET)
 Q = 0;
 else if (~SET)
 Q = 1;
endmodule

Example 6-3 Inference Report for an SR Latch

y_reg
Async-reset: RESET’
Async-set: SET’
Async-set and Async-reset ==> Q: 1

Table 6-1 SR Latch Truth Table (Nand Type)

set reset y

0 0 Not stable

0 1 1

1 0 0

1 1 y

Register Name Type Width Bus MB AR AS SR SS ST

Q_reg Latch 1 - - Y Y - - -
6-8

Register and Three-State Inference

Figure 6-1 SR Latch

Inferring D Latches

When you do not specify the resulting value for an output under all
conditions, as in an incompletely specified if or case statement, FPGA
Compiler II / FPGA Express infers a D latch.

For example, the if statement in Example 6-4 infers a D latch because
there is no else clause. The Verilog code specifies a value for output
Q only when input enable has a logic 1 value. As a result, output Q
becomes a latched value.
6-9

Register and Three-State Inference

Example 6-4 Latch Inference Using an if Statement

always @ (DATA or GATE) begin
 if (GATE) begin
 Q = DATA;
 end
end

The case statement in Example 6-5 infers D latches because the case
statement does not provide assignments to decimal for values of I
between 10 and 15.

Example 6-5 Latch Inference Using a case Statement

always @(I) begin
 case(I)
 4’h0: decimal= 10’b0000000001;
 4’h1: decimal= 10’b0000000010;
 4’h2: decimal= 10’b0000000100;
 4’h3: decimal= 10’b0000001000;
 4’h4: decimal= 10’b0000010000;
 4’h5: decimal= 10’b0000100000;
 4’h6: decimal= 10’b0001000000;
 4’h7: decimal= 10’b0010000000;
 4’h8: decimal= 10’b0100000000;
 4’h9: decimal= 10’b1000000000;
 endcase
end

To avoid latch inference, assign a value to the signal under all
conditions. To avoid latch inference by the if statement in Example
6-4, modify the block as shown in Example 6-6 or Example 6-7. To
avoid latch inference by the case statement in Example 6-5, add the
following statement before the endcase statement:

default: decimal= 10’b0000000000;
6-10

Register and Three-State Inference

Example 6-6 Avoiding Latch Inference

always @ (DATA, GATE) begin
 Q = 0;
 if (GATE)
 Q = DATA;
end

Example 6-7 Another Way to Avoid Latch Inference

always @ (DATA, GATE) begin
 if (GATE)
 Q = DATA;
 else
 Q = 0;
end

Variables declared locally within a subprogram do not hold their value
over time because every time a subprogram is called, its variables
are reinitialized. Therefore, FPGA Compiler II / FPGA Express does
not infer latches for variables declared in subprograms. In Example
6-8, FPGA Compiler II / FPGA Express does not infer a latch for output
Q.

Example 6-8 Function: No Latch Inference

function MY_FUNC
 input DATA, GATE;
 reg STATE;

 begin
 if (GATE) begin
 STATE = DATA;
 end
 MY_FUNC = STATE;
 end
end function
. . .
Q = MY_FUNC(DATA, GATE);
6-11

Register and Three-State Inference

The following sections provide truth tables, code examples, and
figures for these types of D latches:

• Simple D Latch

• D Latch With Asynchronous Set or Reset

• D Latch With Asynchronous Set and Reset

Simple D Latch

When you infer a D latch, make sure you can control the gate and
data signals from the top-level design ports or through combinational
logic. Controllable gate and data signals ensure that simulation can
initialize the design.

Example 6-9 provides the Verilog template for a D latch. FPGA
Compiler II / FPGA Express generates the inference report shown in
Example 6-10. Figure 6-2 shows the inferred latch.

Example 6-9 D Latch

module d_latch (GATE, DATA, Q);
 input GATE, DATA;
 output Q;
 reg Q;

always @(GATE or DATA)
 if (GATE)
 Q = DATA;

endmodule
6-12

Register and Three-State Inference

Example 6-10 Inference Report for a D Latch

Q_reg
reset/set: none

Figure 6-2 D Latch

Register Name Type Width Bus MB AR AS SR SS ST

Q_reg Latch 1 - - N N - - -
6-13

Register and Three-State Inference

D Latch With Asynchronous Set or Reset

The templates in this section use the async_set_reset directive to
direct FPGA Compiler II / FPGA Express to the asynchronous set or
reset pins of the inferred latch.

Example 6-11 provides the Verilog template for a D latch with an
asynchronous set. FPGA Compiler II / FPGA Express generates the
inference report shown in Example 6-12. Figure 6-3 shows the
inferred latch.

Example 6-11 D Latch With Asynchronous Set

module d_latch_async_set (GATE, DATA, SET, Q);
 input GATE, DATA, SET;
 output Q;
 reg Q;

//synopsys async_set_reset ”SET”
always @(GATE or DATA or SET)
 if (~SET)
 Q = 1’b1;
 else if (GATE)
 Q = DATA;
endmodule

Example 6-12 Inference Report for D Latch With Asynchronous Set

Q_reg
Async-set: SET’

Register Name Type Width Bus MB AR AS SR SS ST

Q_reg Latch 1 - - N Y - - -
6-14

Register and Three-State Inference

Figure 6-3 D Latch With Asynchronous Set

Note:
Because the target technology library does not contain a latch
with an asynchronous set, FPGA Compiler II / FPGA Express
synthesizes the set logic by using combinational logic.

Example 6-13 provides the Verilog template for a D latch with an
asynchronous reset. FPGA Compiler II / FPGA Express generates
the inference report shown in Example 6-14. Figure 6-4 shows the
inferred latch.
6-15

Register and Three-State Inference

Example 6-13 D Latch With Asynchronous Reset

module d_latch_async_reset (RESET, GATE, DATA, Q);
 input RESET, GATE, DATA;
 output Q;
 reg Q;

//synopsys async_set_reset ”RESET”
always @ (RESET or GATE or DATA)
 if (~RESET)
 Q = 1’b0;
 else if (GATE)
 Q = DATA;
endmodule

Example 6-14 Inference Report for D Latch With Asynchronous Reset

Q_reg
Async-reset: RESET’

Figure 6-4 D Latch With Asynchronous Reset

Register Name Type Width Bus MB AR AS SR SS ST

Q_reg Latch 1 - - Y N - - -
6-16

Register and Three-State Inference

D Latch With Asynchronous Set and Reset

Example 6-15 provides the Verilog template for a D latch with an
active-low asynchronous set and reset. This template uses the
async_set_reset_local directive to direct FPGA Compiler II / FPGA
Express to the asynchronous signals in block infer. This template uses
the one_cold directive to prevent priority encoding of the set and reset
signals.

For this template, if you do not specify the one_cold directive, the set
signal has priority, because it serves as the condition for the if clause.
FPGA Compiler II / FPGA Express generates the inference report
shown in Example 6-16. Figure 6-5 shows the inferred latch.

Example 6-15 D Latch With Asynchronous Set and Reset

module d_latch_async (GATE, DATA, RESET, SET, Q);
 input GATE, DATA, RESET, SET;
 output Q;
 reg Q;

// synopsys async_set_reset_local infer ”RESET, SET”
// synopsys one_cold ”RESET, SET”
always @ (GATE or DATA or RESET or SET)
begin : infer
 if (!SET)
 Q = 1’b1;
 else if (!RESET)
 Q = 1’b0;
 else if (GATE)
 Q = DATA;
end

// synopsys translate_off
always @ (RESET or SET)
 if (RESET == 1’b0 & SET == 1’b0)
 $write (”ONE-COLD violation for RESET and SET.”);
// synopsys translate_on
endmodule
6-17

Register and Three-State Inference

Example 6-16 Inference Report for D Latch With Asynchronous Set and
Reset

Q_reg
Async-reset: RESET’
Async-set: SET’
Async-set and Async-reset ==> Q: X

Figure 6-5 D Latch With Asynchronous Set and Reset

Register Name Type Width Bus MB AR AS SR SS ST

Q_reg Latch 1 - - Y Y - - -
6-18

Register and Three-State Inference

Understanding the Limitations of D Latch Inference

A variable must always have a value before it is read. As a result, a
conditionally assigned variable cannot be read after the if statement
in which it is assigned. A conditionally assigned variable is assigned
a new value under some, but not all, conditions. Example 6-17 shows
an invalid use of the conditionally assigned variable VALUE.

Example 6-17 Invalid Use of a Conditionally Assigned Variable

begin

 if (condition) then
 VALUE <= X;

 Y <= VALUE; // Invalid read of variable VALUE
end

Inferring Master-Slave Latches

You can infer two-phase systems by using D latches. Example 6-18
shows a simple two-phase system with clocks MCK and SCK. Figure
6-6 shows the inferred latches.
6-19

Register and Three-State Inference

Example 6-18 Two-Phase Clocks

module latch_verilog (DATA, MCK, SCK, Q);
 input DATA, MCK, SCK;
 output Q;
 reg Q;

 reg TEMP;

always @(DATA or MCK)
 if (MCK)
 TEMP = DATA;

always @(TEMP or SCK)
 if (SCK)
 Q = TEMP;
endmodule

Figure 6-6 Two-Phase Clocks
6-20

Register and Three-State Inference

Inferring Flip-Flops

FPGA Compiler II / FPGA Express can infer D flip-flops, JK flip-flops,
and toggle flip-flops. The following sections provide details about each
of these flip-flop types.

Many FPGA devices have a dedicated set/reset hardware resource
that should be used. For this reason, you should infer asynchronous
set/reset signals for all flip-flops in the design. FPGA Compiler II /
FPGA Express will then use the global set/reset lines.

Inferring D Flip-Flops

FPGA Compiler II / FPGA Express infers a D flip-flop whenever the
sensitivity list of an always block includes an edge expression (a test
for the rising or falling edge of a signal). Use the following syntax to
describe a rising edge:

posedge SIGNAL

Use the following syntax to describe a falling edge:

negedge SIGNAL

When the sensitivity list of an always block contains an edge
expression, FPGA Compiler II / FPGA Express creates flip-flops for
all the variables that are assigned values in the block. Example 6-19
shows the most common use of an always block to infer a flip-flop.

Example 6-19 Using an always Block to Infer a Flip-Flop

always @(edge)
begin
 .
end
6-21

Register and Three-State Inference

Simple D Flip-Flop

When you infer a D flip-flop, make sure you can control the clock and
data signals from the top-level design ports or through combinational
logic. Controllable clock and data signals ensure that simulation can
initialize the design. If you cannot control the clock and data signals,
infer a D flip-flop with an asynchronous reset or set or with a
synchronous reset or set.

When you are inferring a simple D flip-flop, the always block can
contain only one edge expression.

Example 6-20 provides the Verilog template for a positive edge-
triggered D flip-flop. FPGA Compiler II / FPGA Express generates the
inference report shown in Example 6-21. Figure 6-7 shows the
inferred flip-flop.

Example 6-20 Positive Edge-Triggered D Flip-Flop

module dff_pos (DATA, CLK, Q);
 input DATA, CLK;
 output Q;
 reg Q;

always @(posedge CLK)
 Q = DATA;
endmodule

Example 6-21 Inference Report for a Positive Edge-Triggered D Flip-Flop

Q_reg
set/reset/toggle: none

Register Name Type Width Bus MB AR AS SR SS ST

Q_reg Flip-flop 1 - - N N N N N
6-22

Register and Three-State Inference

Figure 6-7 Positive Edge-Triggered D Flip-Flop

Example 6-22 provides the Verilog template for a negative edge-
triggered D flip-flop. FPGA Compiler II / FPGA Express generates the
inference report shown in Example 6-23. Figure 6-8 shows the
inferred flip-flop.

Example 6-22 Negative Edge-Triggered D Flip-Flop

module dff_neg (DATA, CLK, Q);
 input DATA, CLK;
 output Q;
 reg Q;

always @(negedge CLK)
 Q = DATA;
endmodule

Example 6-23 Inference Report for a Negative Edge-Triggered D Flip-Flop

Q_reg
set/reset/toggle: none

Register Name Type Width Bus MB AR AS SR SS ST

Q_reg Flip-flop 1 - - N N N N N
6-23

Register and Three-State Inference

Figure 6-8 Negative Edge-Triggered D Flip-Flop

D Flip-Flop With Asynchronous Set or Reset

When inferring a D flip-flop with an asynchronous set or reset, include
edge expressions for the clock and the asynchronous signals in the
sensitivity list of the always block. Specify the asynchronous
conditions by using if statements. Specify the branches for the
asynchronous conditions before the branches for the synchronous
conditions. Example 6-24 provides the Verilog template for a D flip-
flop with an asynchronous set. FPGA Compiler II / FPGA Express
generates the inference report shown in Example 6-25. Figure 6-9
shows the inferred flip-flop.

Example 6-24 D Flip-Flop With Asynchronous Set

module dff_async_set (DATA, CLK, SET, Q);
 input DATA, CLK, SET;
 output Q;
 reg Q;

always @(posedge CLK or negedge SET)
 if (~SET)
 Q = 1’b1;
 else
 Q = DATA;
endmodule
6-24

Register and Three-State Inference

Example 6-25 Inference Report for a D Flip-Flop With Asynchronous Set

Q_reg
Async-set: SET’

Figure 6-9 D Flip-Flop With Asynchronous Set

Example 6-26 provides the Verilog template for a D flip-flop with an
asynchronous reset. FPGA Compiler II / FPGA Express generates
the inference report shown in Example 6-27. Figure 6-10 shows the
inferred flip-flop.

Register Name Type Width Bus MB AR AS SR SS ST

Q_reg Flip-flop 1 - - N Y N N N
6-25

Register and Three-State Inference

Example 6-26 D Flip-Flop With Asynchronous Reset

module dff_async_reset (DATA, CLK, RESET, Q);
 input DATA, CLK, RESET;
 output Q;
 reg Q;

always @(posedge CLK or posedge RESET)
 if (RESET)
 Q = 1’b0;
 else
 Q = DATA;
endmodule

Example 6-27 Inference Report for a D Flip-Flop With Asynchronous Reset

Q_reg
Async-reset: RESET

Figure 6-10 D Flip-Flop With Asynchronous Reset

Register Name Type Width Bus MB AR AS SR SS ST

Q_reg Flip-flop 1 - - Y N N N N
6-26

Register and Three-State Inference

D Flip-Flop With Asynchronous Set and Reset

Example 6-28 provides the Verilog template for a D flip-flop with active
high asynchronous set and reset pins. The template uses the one_hot
directive to prevent priority encoding of the set and reset signals. For
this template, if you do not specify the one_hot directive, the reset
signal has priority, because it is used as the condition for the if clause.
FPGA Compiler II / FPGA Express generates the inference report
shown in Example 6-29. Figure 6-11 shows the inferred flip-flop.

Note:
Most FPGA architectures donot have a register with an
asynchronous set and asynchronous reset cell available. For this
reason, you should avoid this construct.

Example 6-28 D Flip-Flop With Asynchronous Set and Reset

module dff_async (RESET, SET, DATA, Q, CLK);
 input CLK;
 input RESET, SET, DATA;
 output Q;
 reg Q;

// synopsys one_hot ”RESET, SET”
always @(posedge CLK or posedge RESET or
 posedge SET)
 if (RESET)
 Q= 1’b0;
 else if (SET)
 Q= 1’b1;
 else Q= DATA;

// synopsys translate_off
always @ (RESET or SET)
 if (RESET + SET > 1)
 $write (”ONE-HOT violation for RESET and SET.”);
// synopsys translate_on
endmodule
6-27

Register and Three-State Inference

Example 6-29 Inference Report for a D Flip-Flop With Asynchronous Set
and Reset

Q_reg
Async-reset: RESET
Async-set: SET
Async-set and Async-reset ==> Q: X

Figure 6-11 D Flip-Flop With Asynchronous Set and Reset

Register Name Type Width Bus MB AR AS SR SS ST

Q_reg Flip-flop 1 - - Y Y N N N
6-28

Register and Three-State Inference

D Flip-Flop With Synchronous Set or Reset

The previous examples illustrate how to infer a D flip-flop with
asynchronous controls—one way to initialize or control the state of a
sequential device. You can also synchronously reset or set a flip-flop
(see Example 6-30 and Example 6-32). The sync_set_reset directive
directs FPGA Compiler II / FPGA Express to the synchronous controls
of the sequential device.

When the target technology library does not have a D flip-flop with
synchronous reset, FPGA Compiler II / FPGA Express infers a D flip-
flop with synchronous reset logic as the input to the D pin of the flip-
flop. If the reset (or set) logic is not directly in front of the D pin of the
flip-flop, initialization problems can occur during gate-level simulation
of the design.

Example 6-30 provides the Verilog template for a D flip-flop with
synchronous set. FPGA Compiler II / FPGA Express generates the
inference report shown in Example 6-31. Figure 6-12 shows the
inferred flip-flop.

Example 6-30 D Flip-Flop With Synchronous Set

module dff_sync_set (DATA, CLK, SET, Q);
 input DATA, CLK, SET;
 output Q;
 reg Q;

//synopsys sync_set_reset ”SET”
always @(posedge CLK)
 if (SET)
 Q = 1’b1;
 else
 Q = DATA;
endmodule
6-29

Register and Three-State Inference

Example 6-31 Inference Report for a D Flip-Flop With Synchronous Set

Q_reg
Sync-set: SET

Figure 6-12 D Flip-Flop With Synchronous Set

Example 6-32 provides the Verilog template for a D flip-flop with
synchronous reset. FPGA Compiler II / FPGA Express generates the
inference report shown in Example 6-33. Figure 6-13 shows the
inferred flip-flop.

Register Name Type Width Bus MB AR AS SR SS ST

Q_reg Flip-flop 1 - - N N N Y N
6-30

Register and Three-State Inference

Example 6-32 D Flip-Flop With Synchronous Reset

module dff_sync_reset (DATA, CLK, RESET, Q);
 input DATA, CLK, RESET;
 output Q;
 reg Q;

//synopsys sync_set_reset ”RESET”
always @(posedge CLK)
 if (~RESET)
 Q = 1’b0;
 else
 Q = DATA;
endmodule

Example 6-33 Inference Report for a D Flip-Flop With Synchronous Reset

Q_reg
Sync-reset: RESET’

Figure 6-13 D Flip-Flop With Synchronous Reset

Register Name Type Width Bus MB AR AS SR SS ST

Q_reg Flip-flop 1 - - N N Y N N
6-31

Register and Three-State Inference

D Flip-Flop With Synchronous and Asynchronous Load

D flip-flops can have asynchronous or synchronous controls. To infer
a component with synchronous as well as asynchronous controls,
you must check the asynchronous conditions before you check the
synchronous conditions.

Example 6-34 provides the Verilog template for a D flip-flop with a
synchronous load (called SLOAD) and an asynchronous load (called
ALOAD). FPGA Compiler II / FPGA Express generates the inference
report shown in Example 6-35. Figure 6-14 shows the inferred flip-
flop.

Example 6-34 D Flip-Flop With Synchronous and Asynchronous Load

module dff_a_s_load (ALOAD, SLOAD, ADATA, SDATA, CLK, Q);
 input ALOAD, ADATA, SLOAD, SDATA, CLK;
 output Q;
 reg Q;

always @ (posedge CLK or posedge ALOAD)
 if (ALOAD)
 Q= ADATA;
 else if (SLOAD)
 Q = SDATA;
endmodule

Example 6-35 Inference Report for a D Flip-Flop With Synchronous and
Asynchronous Load

Q_reg
set/reset/toggle: none

Register Name Type Width Bus MB AR AS SR SS ST

Q_reg Flip-flop 1 - - N N N N N
6-32

Register and Three-State Inference

Figure 6-14 D Flip-Flop With Synchronous and Asynchronous Load

Multiple Flip-Flops With Asynchronous and Synchronous
Controls

If a signal is synchronous in one block but asynchronous in another
block, use the sync_set_reset_local and async_set_reset_local
directives to direct FPGA Compiler II / FPGA Express to the correct
implementation.

In Example 6-36, block infer_sync uses the reset signal as a
synchronous reset and block infer_async uses the reset signal as an
asynchronous reset. FPGA Compiler II / FPGA Express generates
the inference reports shown in Example 6-37. Figure 6-15 shows the
resulting design.
6-33

Register and Three-State Inference

Example 6-36 Multiple Flip-Flops With Asynchronous and Synchronous
Controls

module multi_attr (DATA1, DATA2, CLK, RESET, SLOAD,
 Q1, Q2);
 input DATA1, DATA2, CLK, RESET, SLOAD;
 output Q1, Q2;
 reg Q1, Q2;

//synopsys sync_set_reset_local infer_sync ”RESET”
always @(posedge CLK)
begin : infer_sync
 if (~RESET)
 Q1 = 1’b0;
 else if (SLOAD)
 Q1 = DATA1;
end

//synopsys async_set_reset_local infer_async ”RESET”
always @(posedge CLK or negedge RESET)
begin: infer_async
 if (~RESET)
 Q2 = 1’b0;
 else if (SLOAD)
 Q2 = DATA2;
end
endmodule

Example 6-37 Inference Reports for Multiple Flip-Flops With Asynchronous
and Synchronous Controls

Q1_reg

Sync-reset: RESET’

Q2_reg
Async-reset: RESET’

Register Name Type Width Bus MB AR AS SR SS ST

Q1_reg Flip-flop 1 - - N N Y N N

Register Name Type Width Bus MB AR AS SR SS ST

Q2_reg Flip-flop 1 - - Y N N N N
6-34

Register and Three-State Inference

Figure 6-15 Multiple Flip-Flops With Asynchronous and Synchronous
Controls

Understanding the Limitations of D Flip-Flop Inference

If you use an if statement to infer D flip-flops, your design must meet
the following requirements:

• The signal in an edge expression cannot be an indexed
expression.

The following always block is invalid, because it uses an indexed
expression:

always @(posedge clk[1])

FPGA Compiler II / FPGA Express generates the following
message when you use an indexed expression in the always
block:

Error: In an event expression with ’posedge’ and ’negedge’
qualifiers, only simple identifiers are allowed %s.
6-35

Register and Three-State Inference

(VE-91)

• Set and reset conditions must be single-bit variables.

The following reset condition is invalid, because it uses a bused
variable:

always @(posedge clk and negedge reset_bus)
 if (!reset_bus[1])
 .
end

FPGA Compiler II / FPGA Express generates the following
message when you use a bused variable in a set or reset
condition:

Error: The expression for the reset condition of the ’if’
statement in this ’always’ block can only be a simple
identifier or its negation (%s). (VE-92)

• Set and reset conditions cannot use complex expressions.

The following reset condition is invalid, because it uses a complex
expression:

always @(posedge clk and negedge reset)
 if (reset == (1-1))
 .
end

FPGA Compiler II / FPGA Express generates the VE-92 message
when you use a complex expression in a set or reset condition.

• An if statement must occur at the top level of the always block.

The following example is invalid, because the if statement does
not occur at the top level:
6-36

Register and Three-State Inference

always @(posedge clk or posedge reset) begin
 #1;
 if (reset)
 .
end

FPGA Compiler II / FPGA Express generates the following
message when the if statement does not occur at the top level:

Error: The statements in this ’always’ block are outside
the scope of the synthesis policy (%s). Only an ’if’
statement is allowed at the top level in this ’always’
block. Please refer to the HDL Compiler reference manual
for ways to infer flip-flops and latches from ’always’
blocks. (VE-93)

Inferring JK Flip-Flops

When you infer a JK flip-flop, make sure you can control the J, K, and
clock signals from the top-level design ports to ensure that simulation
can initialize the design.The following sections provide code
examples, inference reports, and figures for these types of JK flip-
flops:

• JK flip-flop

• JK flip-flop with asynchronous set and reset

JK Flip-Flop

Example 6-38 provides the Verilog code that implements the JK flip-
flop described in Table 6-2.

In the JK flip-flop, the J and K signals act as active-high synchronous
set and reset. Use the sync_set_reset directive to indicate that the J
and K signals are the synchronous set and reset for the design.
6-37

Register and Three-State Inference

Example 6-39 shows the inference report generated by FPGA
Compiler II / FPGA Express. Figure 6-16 shows the inferred flip-flop.

Table 6-2 Truth Table for JK Flip-Flop

Example 6-38 JK Flip-Flop

module JK(J, K, CLK, Q);
 input J, K;
 input CLK;
 output Q;
 reg Q;

// synopsys sync_set_reset ”J, K”
always @ (posedge CLK)
 case ({J, K})
 2’b01 : Q = 0;
 2’b10 : Q = 1;
 2’b11 : Q = ~Q;
 endcase
endmodule

Example 6-39 Inference Report for JK Flip-Flop

Q_reg
Sync-reset: J’ K
Sync-set: J K’
Sync-toggle: J K
Sync-set and Sync-reset ==> Q: X

J K CLK Qn+1

0 0 Rising Qn

0 1 Rising 0

1 0 Rising 1

1 1 Rising QnB

X X Falling Qn

Register Name Type Width Bus MB AR AS SR SS ST

Q_reg Flip-flop 1 - - N N Y Y Y
6-38

Register and Three-State Inference

Figure 6-16 JK Flip-Flop

JK Flip-Flop With Asynchronous Set and Reset

Example 6-40 provides the Verilog template for a JK flip-flop with
asynchronous set and reset. Use the sync_set_reset directive to
indicate the JK function. Use the one_hot directive to prevent priority
encoding of the J and K signals.

FPGA Compiler II / FPGA Express generates the inference report
shown in Example 6-41. Figure 6-17 shows the inferred flip-flop.
6-39

Register and Three-State Inference

Example 6-40 JK Flip-Flop With Asynchronous Set and Reset

module jk_async_sr (RESET, SET, J, K, CLK, Q);
 input RESET, SET, J, K, CLK;
 output Q;
 reg Q;

// synopsys sync_set_reset ”J, K”
// synopsys one_hot ”RESET, SET”
always @ (posedge CLK or posedge RESET or
 posedge SET)
 if (RESET)
 Q=1’b0;
 else if (SET)
 Q=1’b1;
 else
 case ({J, K})
 2’b01 : Q = 0;
 2’b10 : Q = 1;
 2’b11 : Q = ~Q;
 endcase

//synopsys translate_off
always @(RESET or SET)
 if (RESET + SET > 1)
 $write (”ONE-HOT violation for RESET and SET.”);
// synopsys translate_on
endmodule
6-40

Register and Three-State Inference

Example 6-41 Inference Report for JK Flip-Flop With Asynchronous Set and
Reset

Q_reg
 Async-reset: RESET
 Async-set: SET
 Sync-reset: J’ K
 Sync-set: J K’
 Sync-toggle: J K
 Async-set and Async-reset ==> Q: X
 Sync-set and Sync-reset ==> Q: X

Figure 6-17 JK Flip-Flop With Asynchronous Set and Reset

Inferring Toggle Flip-Flops

To infer toggle flip-flops, follow the coding style in the following
examples.

Register Name Type Width Bus MB AR AS SR SS ST

Q_reg Flip-flop 1 - - Y Y Y Y Y
6-41

Register and Three-State Inference

You must include asynchronous controls in the toggle flip-flop
description. Without them, you cannot initialize toggle flip-flops to a
known state.

This section describes toggle flip-flops with an asynchronous set or
reset and toggle flip-flops with an enable and an asynchronous reset.

Toggle Flip-Flop With Asynchronous Set or Reset

Example 6-42 shows the template for a toggle flip-flop with
asynchronous set. FPGA Compiler II / FPGA Express generates the
inference report shown in Example 6-43. Figure 6-18 shows the flip-
flop.

Example 6-42 Toggle Flip-Flop With Asynchronous Set

module t_async_set (SET, CLK, Q);
 input SET, CLK;
 output Q;
 reg Q;

always @ (posedge CLK or posedge SET)
 if (SET)
 Q = 1;
 else
 Q = ~Q;
endmodule

Example 6-43 Inference Report for a Toggle Flip-Flop With Asynchronous
Set

TMP_Q_reg
Async-set: SET
Sync-toggle: true

Register Name Type Width Bus MB AR AS SR SS ST

TMP_Q_reg Flip-flop 1 - - N Y N N Y
6-42

Register and Three-State Inference

Figure 6-18 Toggle Flip-Flop With Asynchronous Set

Example 6-44 provides the Verilog template for a toggle flip-flop with
asynchronous reset. Example 6-45 shows the inference report.
Figure 6-19 shows the inferred flip-flop.

Example 6-44 Toggle Flip-Flop With Asynchronous Reset

module t_async_reset (RESET, CLK, Q);
 input RESET, CLK;
 output Q;
 reg Q;

always @ (posedge CLK or posedge RESET)
 if (RESET)
 Q = 0;
 else
 Q = ~Q;
endmodule
6-43

Register and Three-State Inference

Example 6-45 Inference Report: Toggle Flip-Flop With Asynchronous Reset

TMP_Q_reg
Async-reset: RESET
 Sync-toggle: true

Figure 6-19 Toggle Flip-Flop With Asynchronous Reset

Toggle Flip-Flops With Enable and Asynchronous Reset

Example 6-46 provides the Verilog template for a toggle flip-flop with
an enable and an asynchronous reset. The flip-flop toggles only when
the enable (TOGGLE signal) has a logic 1 value. FPGA Compiler II /
FPGA Express generates the inference report shown in Example
6-47. Figure 6-20 shows the inferred flip-flop.

Register Name Type Width Bus MB AR AS SR SS ST

TMP_Q_reg Flip-flop 1 - - Y N N N Y
6-44

Register and Three-State Inference

Example 6-46 Toggle Flip-Flop With Enable and Asynchronous Reset

module t_async_en_r (RESET, TOGGLE, CLK, Q);
 input RESET, TOGGLE, CLK;
 output Q;
 reg Q;
always @ (posedge CLK or posedge RESET)
begin : infer
 if (RESET)
 Q = 0;
 else if (TOGGLE)
 Q = ~Q;
end
endmodule

Example 6-47 Inference Report: Toggle Flip-Flop With Enable and
Asynchronous Reset

TMP_Q_reg
Async-reset: RESET
Sync-toggle: TOGGLE

Register Name Type Width Bus MB AR AS SR SS ST

TMP_Q_reg Flip-flop 1 - - Y N N N Y
6-45

Register and Three-State Inference

Figure 6-20 Toggle Flip-Flop With Enable and Asynchronous Reset

Getting the Best Results

This section provides tips for improving the results you achieve during
flip-flop inference. Topics include

• Minimizing flip-flop count

• Correlating synthesis results with simulation results

Minimizing Flip-Flop Count

An always block that contains a clock edge in the sensitivity list causes
FPGA Compiler II / FPGA Express to infer a flip-flop for each variable
assigned a value in that block. It might not be necessary to register
all variables in the block. Make sure your HDL description builds only
as many flip-flops as the design requires.
6-46

Register and Three-State Inference

The description in Example 6-48 builds six flip-flops, one for each
variable assigned a value in the block (COUNT(2:0), AND_BITS,
OR_BITS, and XOR_BITS).

Example 6-48 Circuit With Six Implied Registers

module count (CLK, RESET, AND_BITS, OR_BITS, XOR_BITS);
 input CLK, RESET;
 output AND_BITS, OR_BITS, XOR_BITS;
 reg AND_BITS, OR_BITS, XOR_BITS;

 reg [2:0] COUNT;

always @(posedge CLK) begin
 if (RESET)
 COUNT = 0;
 else
 COUNT = COUNT + 1;

 AND_BITS = & COUNT;
 OR_BITS = | COUNT;
 XOR_BITS = ^ COUNT;
end
endmodule

In this design, the outputs—AND_BITS, OR_BITS, and XOR_BITS—

depend solely on the value of the variable COUNT. If the variable
COUNT is registered, these three outputs do not need to be
registered.

To compute values synchronously and store them in flip-flops, set up
an always block with a signal edge trigger. To let other values change
asynchronously, make a separate always block with no signal edge
trigger. Put the assignments you want clocked in the always block
with the signal edge trigger, and put the other assignments in the
other always block. You use this technique for creating Mealy
machines.
6-47

Register and Three-State Inference

To avoid inferring extra registers, assign the outputs in an always block
that does not have a clock edge in its condition expression. Example
6-49 shows a description with two always blocks, one with a clock
edge condition and one without. Put the registered (synchronous)
assignments into the block with the clock edge condition. Put the other
(asynchronous) assignments in the other block. This description style
lets you choose the variables that are registered and those that are
not.

Example 6-49 Circuit With Three Implied Registers

module count (CLK, RESET,
 AND_BITS, OR_BITS, XOR_BITS);
 input CLK, RESET;
 output AND_BITS, OR_BITS, XOR_BITS;
 reg AND_BITS, OR_BITS, XOR_BITS;

 reg [2:0] COUNT;

//synchronous block
always @(posedge CLK) begin
 if (RESET)
 COUNT = 0;
 else
 COUNT = COUNT + 1;
end
//asynchronous block
always @(COUNT) begin
 AND_BITS = & COUNT;
 OR_BITS = | COUNT;
 XOR_BITS = ^ COUNT;
end
endmodule

The technique of separating combinational logic from registered or
sequential logic is useful for describing state machines. See the
following examples in Appendix A:
6-48

Register and Three-State Inference

• “Count Zeros—Combinational Version” on page A-2

• “Count Zeros—Sequential Version” on page A-5

• “Drink Machine—State Machine Version” on page A-7

• “Drink Machine—Count Nickels Version” on page A-10

• “Carry-Lookahead Adder” on page A-12

Correlating With Simulation Results

Using delay specifications with registered values can cause the
simulation to behave differently from the logic FPGA Compiler II /
FPGA Express synthesizes. For example, the description in Example
6-50 contains delay information that causes FPGA Compiler II / FPGA
Express to synthesize a circuit that behaves unexpectedly (the post-
synthesis simulation results do not match the pre-synthesis
simulation results).

Example 6-50 Delays in Registers

module flip_flop (D, CLK, Q);
input D, CLK;
output Q;
.

endmodule

module top (A, C, D, CLK);
.
reg B;

always @ (A or C or D or CLK)
begin

B <= #100 A;
flip_flop F1(A, CLK, C);
flip_flop F2(B, CLK, D);

end
endmodule
6-49

Register and Three-State Inference

In Example 6-50, B changes 100 nanoseconds after A changes. If
the clock period is less than 100 nanoseconds, output D is one or
more clock cycles behind output C during simulation of the design.
However, because FPGA Compiler II / FPGA Express ignores the
delay information, A and B change values at the same time, and so
do C and D. This behavior is not the same as in the post-synthesis
simulation.

When using delay information in your designs, make sure that the
delays do not affect registered values. In general, you can safely
include delay information in your description if it does not change the
value that gets clocked into a flip-flop.

Understanding Limitations of Register Inference

FPGA Compiler II / FPGA Express cannot infer the following
components. You must instantiate these components in your Verilog
description.

• Flip-flops and latches with three-state outputs

• Flip-flops with bidirectional pins

• Flip-flips with multiple clock inputs

• Multiport latches

• Register banks

Note:
Although you can instantiate flip-flops with bidirectional pins,
FPGA Compiler II / FPGA Express interprets these cells as black
boxes.
6-50

Register and Three-State Inference

Three-State Inference

FPGA Compiler II / FPGA Express infers a three-state driver when
you assign the value of z to a variable. The z value represents the
high-impedance state. FPGA Compiler II / FPGA Express infers one
three-state driver per block. You can assign high-impedance values
to single-bit or bused variables.

Reporting Three-State Inference

FPGA Compiler II / FPGA Express generates an inference report that
shows information about the inferred devices. Example 6-51 shows
a three-state inference report.

Example 6-51 Three-State Inference Report

The first column of the report indicates the name of the inferred three-
state device. The second column indicates the type of three-state
device FPGA Compiler II / FPGA Express inferred. The third column
indicates whether the three-state device has multiple bits.

Controlling Three-State Inference

FPGA Compiler II / FPGA Express always infers a three-state driver
when you assign the value of z to a variable. FPGA Compiler II / FPGA
Express does not provide any means of controlling the inference.

Three-State Device Name Type MB

OUT1_tri Three-State Buffer N
6-51

Register and Three-State Inference

Inferring Three-State Drivers

This section contains Verilog examples that infer the following types
of three-state drivers:

• Simple three-state drivers

• Registered three-state drivers

Simple Three-State Driver

This section provides a template for a simple three-state driver. In
addition, it provides examples of how allocating high-impedance
assignments to different blocks affects three-state inference.

Example 6-52 provides the Verilog template for a simple three-state
driver. FPGA Compiler II / FPGA Express generates the inference
report shown in Example 6-53. Figure 6-21 shows the inferred three-
state driver.

Example 6-52 Simple Three-State Driver

module three_state (ENABLE, IN1, OUT1);
 input IN1, ENABLE;
 output OUT1;
 reg OUT1;

always @(ENABLE or IN1) begin
 if (ENABLE)
 OUT1 = IN1;
 else
 OUT1 = 1’bz; //assigns high-impedance state
end
endmodule
6-52

Register and Three-State Inference

Example 6-53 Inference Report for Simple Three-State Driver

Figure 6-21 Schematic of Simple Three-State Driver

Example 6-54 provides an example of placing all high-impedance
assignments in a single block. In this case, the data is gated and
FPGA Compiler II / FPGA Express infers a single three-state driver.
Example 6-55 shows the inference report. Figure 6-22 shows the
schematic the code generates.

Three-State Device Name Type MB

OUT1_tri Three-State Buffer N
6-53

Register and Three-State Inference

Example 6-54 Inferring One Three-State Driver From a Single Block

module three_state (A, B, SELA, SELB, T);
 input A, B, SELA, SELB;
 output T;
 reg T;

always @(SELA or SELB or A or B) begin
 T = 1’bz;
 if (SELA)
 T = A;
 if (SELB)
 T = B;
end
endmodule

Example 6-55 Single Block Inference Report

Three-State Device Name Type MB

T_tri Three-State Buffer N
6-54

Register and Three-State Inference

Figure 6-22 One Three-State Driver Inferred From a Single Block

Example 6-56 provides an example of placing each high-impedance
assignment in a separate block. In this case, FPGA Compiler II / FPGA
Express infers multiple three-state drivers. Example 6-57 shows the
inference report. Figure 6-23 shows the schematic the code
generates.

TRI
6-55

Register and Three-State Inference

Example 6-56 Inferring Three-State Drivers From Separate Blocks

module three_state (A, B, SELA, SELB, T);
 input A, B, SELA, SELB;
 output T;
 reg T;

always @(SELA or A)
 if (SELA)
 T = A;
 else
 T = 1’bz;

always @(SELB or B)
 if (SELB)
 T = B;
 else
 T = 1’bz;
endmodule

Example 6-57 Inference Report for Two Three-State Drivers

Three-State Device Name Type MB

T_tri Three-State Buffer N

Three-State Device Name Type MB

T_tri2 Three-State Buffer N
6-56

Register and Three-State Inference

Figure 6-23 Two Three-State Drivers Inferred From Separate Blocks

Registered Three-State Drivers

When a variable is registered in the same block in which it is three-
stated, FPGA Compiler II / FPGA Express also registers the enable
pin of the three-state gate. Example 6-58 shows an example of this
type of code. Example 6-59 shows the inference report. Figure 6-24
shows the schematic generated by the code.

Example 6-58 Three-State Driver With Registered Enable

module ff_3state (DATA, CLK, THREE_STATE, OUT1);
 input DATA, CLK, THREE_STATE;
 output OUT1;
 reg OUT1;

always @ (posedge CLK) begin
 if (THREE_STATE)
 OUT1 = 1’bz;
 else
 OUT1 = DATA;
end
endmodule
6-57

Register and Three-State Inference

Example 6-59 Inference Report for Three-State Driver With Registered
Enable

Figure 6-24 Three-State Driver With Registered Enable

In Figure 6-24, the three-state gate has a register on its enable pin.
Example 6-60 uses two blocks to instantiate a three-state gate, with
a flip-flop only on the input. Example 6-61 shows the inference report.
Figure 6-25 shows the schematic the code generates.

Three-state Device Name Type MB

OUT1_tri
OUT1_tr_enable_reg

Three-State Buffer
Flip-flop (width 1)

N
N

6-58

Register and Three-State Inference

Example 6-60 Three-State Driver Without Registered Enable

module ff_3state (DATA, CLK, THREE_STATE, OUT1);
 input DATA, CLK, THREE_STATE;
 output OUT1;
 reg OUT1;

 reg TEMP;

always @(posedge CLK)
 TEMP = DATA;

always @(THREE_STATE or TEMP)
 if (THREE_STATE)
 OUT1 = TEMP;
 else
 OUT1 = 1’bz;
endmodule

Example 6-61 Inference Report for Three-State Driver Without Registered
Enable

Three-State Device Name Type MB

OUT1_tri Three-State Buffer N
6-59

Register and Three-State Inference

Figure 6-25 Three-State Driver Without Registered Enable

Understanding the Limitations of Three-State Inference

You can use the z value in the following ways:

• Variable assignment

• Function call argument

• Return value

You cannot use the z value in an expression, except for comparison
with z. Be careful when using expressions that compare with the z
value. FPGA Compiler II / FPGA Express always evaluates these
expressions to false, and the pre-synthesis and post-synthesis
simulation results might differ. For this reason, FPGA Compiler II /
FPGA Express issues a warning when it synthesizes such
comparisons.

This is an example of incorrect use of the z value in an expression:

OUT_VAL = (1’bz && IN_VAL);
6-60

Register and Three-State Inference

This is an example of correct use of the z value in an expression:

if (IN_VAL == 1’bz) then
6-61

Register and Three-State Inference

6-62

Register and Three-State Inference

7
Writing Circuit Descriptions 7

You can write many logically equivalent descriptions in Verilog to
describe a circuit design. However, some descriptions are more
efficient than others in terms of the synthesized circuit’s area and
speed. The way you write your Verilog source code can affect
synthesis.

This chapter describes how to write a Verilog description to ensure
an efficient implementation. Topics include

• How Statements Are Mapped to Logic

• Don’t Care Inference

• Propagating Constants

• Synthesis Issues

• Designing for Overall Efficiency
7-1

Writing Circuit Descriptions

Here are some general guidelines for writing efficient circuit
descriptions:

• Restructure a design that makes repeated use of several large
components, to minimize the number of instantiations.

• In a design that needs some, but not all, of its variables or signals
stored during operation, minimize the number of latches or flip-
flops required.

• Consider collapsing hierarchy for more-efficient synthesis.

How Statements Are Mapped to Logic

Verilog descriptions are mapped to logic by the creation of blocks of
combinational circuits and storage elements. A statement or an
operator in a Verilog function can represent a block of combinational
logic or, in some cases, a latch or register.

The description fragment shown in Example 7-1 represents four logic
blocks:

• A comparator that compares the value of b with 10

• An adder that has a and b as inputs

• An adder that has a and 10 as inputs

• A multiplexer (implied by the if statement) that controls the final
value of y
7-2

Writing Circuit Descriptions

Example 7-1 Four Logic Blocks

if (b < 10)
 y = a + b;
else
 y = a + 10;

The logic blocks created by FPGA Compiler II / FPGA Express are
custom-built for their environment. That is, if a and b are 4-bit
quantities, a 4-bit adder is built. If a and b are 9-bit quantities, a 9-bit
adder is built. Because FPGA Compiler II / FPGA Express
incorporates a large set of these customized logic blocks, it can
translate most Verilog statements and operators.

Design Structure

FPGA Compiler II / FPGA Express provides significant control over
the preoptimization structure, or organization of components, in your
design. Whether or not your design structure is preserved after
optimization depends on the options you select. FPGA Compiler II /
FPGA Express automatically chooses the best structure for your
design. You can view the preoptimized structure in the schematic
window and then correlate it back to the original HDL source code.

You control structure by the way you order assignment statements
and the way you use variables. Each Verilog assignment statement
implies a piece of logic. The following examples illustrate two possible
descriptions of an adder’s carry chain. Example 7-2 results in a ripple
carry implementation, as in Figure 7-1. Example 7-3 has more
structure (gates), because the HDL source includes temporary
registers, and it results in a carry-lookahead implementation, as in
Figure 7-2.
7-3

Writing Circuit Descriptions

Example 7-2 Ripple Carry Chain

// a is the addend
// b is the augend
// c is the carry
// cin is the carry in
c0 = (a0 & b0) |
 (a0 | b0) & cin;
c1 = (a1 & b1) |
 (a1 | b1) & c0;

Figure 7-1 Ripple Carry Chain Implementation

Example 7-3 Carry-Lookahead Chain

// p’s are propagate
// g’s are generate
p0 = a0 | b0;
g0 = a0 & b0;
p1 = a1 | b1;
g1 = a1 & b1;
c0 = g0 | p0 & cin;
c1 = g1 | p1 & g0 |
 p1 & p0 & cin;

a0 cin a1 b1b0

c0 c1
7-4

Writing Circuit Descriptions

Figure 7-2 Carry-Lookahead Chain Implementation

You can also use parentheses to control the structure of complex
components in a design. FPGA Compiler II / FPGA Express uses
parentheses to define logic groupings. Example 7-4 and Example 7-5
illustrate two groupings of adders. The circuit diagrams show how
grouping the logic affects the way the circuit is synthesized. When
Example 7-4 is parsed, (a + b) is grouped together by default, then c
and d are added one at a time.

a0 b0

c1c0

cin
a1 b1
7-5

Writing Circuit Descriptions

Example 7-4 4-Input Adder

z = a + b + c + d;

Example 7-5 4-Input Adder With Parentheses

z = (a + b) + (c + d);

Note:
Manual or automatic resource sharing can also affect the structure
of a design.

 +

 +

 +

 a b
 c d

 z

 +

 +

 z

 +

a b c d
7-6

Writing Circuit Descriptions

Using Design Knowledge

In many circumstances, you can improve the quality of synthesized
circuits by better describing your high-level knowledge of a circuit.
FPGA Compiler II / FPGA Express cannot always derive details of a
circuit architecture. Any additional architectural information you can
provide to FPGA Compiler II / FPGA Express can result in a more
efficient circuit.

Optimizing Arithmetic Expressions

FPGA Compiler II / FPGA Express uses the properties of arithmetic
operators (such as the associative and commutative properties of
addition) to rearrange an expression so that it results in an optimized
implementation. You can also use arithmetic properties to control the
choice of implementation for an expression. Three forms of arithmetic
optimization are discussed in this section:

• Arranging Expression Trees for Minimum Delay

• Sharing Common Subexpressions

Arranging Expression Trees for Minimum Delay

If your goal is to speed up your design, arithmetic optimization can
minimize the delay through an expression tree by rearranging the
sequence of the operations. Consider the statement in Example 7-6.
7-7

Writing Circuit Descriptions

Example 7-6 Simple Arithmetic Expression

Z <= A + B + C + D;

The parser performs each addition in order, as though parentheses
were placed as shown, and constructs the expression tree shown in
Figure 7-3:

Z <= ((A + B) + C) + D);

Figure 7-3 Default Expression Tree

Considering Signal Arrival Times

If all signals arrive at the same time, the critical path can be reduced
to two adders.

Z <= (A + B) + (C + D);

The parser evaluates the expressions in parentheses first and
constructs a balanced adder tree, as shown in Figure 7-4.

A B

C

D

Z

7-8

Writing Circuit Descriptions

Figure 7-4 Balanced Adder Tree (Same Arrival Times for All Signals)

Suppose signals B, C, and D arrive at the same time and signal A
arrives last. The expression tree that produces the minimum delay is
shown in Figure 7-5.

Figure 7-5 Expression Tree With Minimum Delay (Signal A Arrives Last)

Using Parentheses

You can use parentheses in expressions to exercise more control over
the way expression trees are constructed. Parentheses are regarded
as user directives that force an expression tree to use the groupings
inside the parentheses. The expression tree cannot be rearranged to
violate these groupings.

A B C D

Z

A

B C

D

Z

7-9

Writing Circuit Descriptions

To illustrate the effect of parentheses on the construction of an
expression tree, consider Example 7-7.

Example 7-7 Parentheses in an Arithmetic Expression

Q <= ((A + (B + C)) + D + E) + F;

The parentheses in the expression in Example 7-7 define the following
subexpressions, whose numbers correspond to those in Figure 7-6:

1 (B + C)
2 (A + (B + C))
3 ((A + (B + C)) + D + E)

These subexpressions must be preserved in the expression tree. The
default expression tree for Example 7-7 is shown in Figure 7-6.

Figure 7-6 Expression Tree With Subexpressions Dictated by Parentheses

A

B C

D

Q

E

F

1

3

2

7-10

Writing Circuit Descriptions

Considering Overflow Characteristics

When FPGA Compiler II / FPGA Express performs arithmetic
optimization, it considers how to handle the overflow from carry bits
during addition. The optimized structure of an expression tree is
affected by the bit-widths you declare for storing intermediate results.
For example, suppose you write an expression that adds two 4-bit
numbers and stores the result in a 4-bit register. If the result of the
addition overflows the 4-bit output, the most significant bits are
truncated. Example 7-8 shows how FPGA Compiler II / FPGA
Express handles overflow characteristics.

Example 7-8 Adding Numbers of Different Bit-Widths

t <= a + b; // a and b are 4-bit numbers
z <= t + c; // c is a 6-bit number

In Example 7-8, three variables are added (a + b + c). A temporary
variable, t, holds the intermediate result of a + b. Suppose t is declared
as a 4-bit variable so the overflow bits from the addition of a + b are
truncated. The parser determines the default structure of the
expression tree, which is shown in Figure 7-7.

Figure 7-7 Default Expression Tree With 4-Bit Temporary Variable

a[4] b[4]

c[6]

z[6]

t[4]
7-11

Writing Circuit Descriptions

Now suppose the addition is performed without a temporary variable
(z = a + b + c). FPGA Compiler II / FPGA Express determines that
five bits are needed to store the intermediate result of the addition,
so no overflow condition exists. The results of the final addition might
be different from the first case, where a 4-bit temporary variable is
declared that truncates the result of the intermediate addition.
Therefore, these two expression trees do not always yield the same
result. The expression tree for the second case is shown in Figure 7-8.

Figure 7-8 Expression Tree With 5-Bit Intermediate Result

Sharing Common Subexpressions

Subexpressions consist of two or more variables in an expression. If
the same subexpression appears in more than one equation, you
might want to share these operations to reduce the area of your circuit.
You can force common subexpressions to be shared by declaring a
temporary variable to store the subexpression, then use the
temporary variable wherever you want to repeat the subexpression.
Example 7-9 shows a group of simple additions that use the common
subexpression (a + b).

a[4] b[4]

c[6]

z[6]

[5]
7-12

Writing Circuit Descriptions

Example 7-9 Simple Additions With a Common Subexpression

temp <= a + b;
x <= temp;
y <= temp + c;

Instead of manually forcing common subexpressions to be shared,
you can let FPGA Compiler II / FPGA Express automatically
determine whether sharing common subexpressions improves your
circuit. You do not need to declare a temporary variable to hold the
common subexpression in this case.

In some cases, sharing common subexpressions results in more
adders being built. Consider Example 7-10, where A + B is a common
subexpression.

Example 7-10 Sharing Common Subexpressions

if cond1
Y <= A + B;

else
Y <= C + D;

end;
if cond2

Z <= E + F;
else

Z <= A + B;
end;

If the common subexpression A + B is shared, three adders are
needed to implement this section of code:

(A + B)
(C + D)
(E + F)
7-13

Writing Circuit Descriptions

If the common subexpression is not shared, only two adders are
needed: one to implement the additions A + B and C + D and one to
implement the additions E + F and A + B.

FPGA Compiler II / FPGA Express analyzes common subexpressions
during the resource sharing phase of the compile command and
considers area costs and timing characteristics. To turn off the sharing
of common subexpressions for the current design, use the constraint
manager.

The FPGA Compiler II / FPGA Express parser does not identify
common subexpressions unless you use parentheses or write them
in the same order. For example, the two equations in Example 7-11
use the common subexpression A + B.

Example 7-11 Unidentified Common Subexpressions

Y <= A + B + C;
Z <= D + A + B;

The parser does not recognize A + B as a common subexpression,
because it parses the second equation as (D + A) + B. You can force
the parser to recognize the common subexpression by rewriting the
second assignment statement as

Z <= A + B + D;

or

Z <= D + (A + B);

Note:
You do not have to rewrite the assignment statement, because
FPGA Compiler II / FPGA Express recognizes common
subexpressions automatically.
7-14

Writing Circuit Descriptions

Using Operator Bit-Width Efficiently

You can improve circuits by using operators more carefully. In
Example 7-12, the adder sums the 8-bit value of a with the lower 4
bits of temp. Although temp is declared as an 8-bit value, the upper
4 bits of temp are always 0, so only the lower 4 bits of temp are needed
for the addition.

You can simplify the addition by changing temp to temp [3:0], as
shown in Example 7-12. Now, instead of using eight full adders to
perform the addition, four full adders are used for the lower 4 bits and
four half adders are used for the upper 4 bits. This yields a significant
savings in circuit area.

Example 7-12 More Efficient Use of Operators

module all (a,b,y);
input [7:0] a,b;
output [8:0] y;
function [8:0] add_lt_10;
input [7:0] a,b;
reg [7:0] temp;

begin
if (b < 10)

temp = b;
else

temp = 10;
add_lt_10 = a + temp [3:0]; // use [3:0] for temp

end
endfunction
assign y = add_lt_10(a,b);
endmodule
7-15

Writing Circuit Descriptions

Using State Information

When you build finite state machines, you can often specify a constant
value of a signal in a particular state. You can write your Verilog
description so that FPGA Compiler II / FPGA Express produces a
more efficient circuit.

Example 7-13, shows the Verilog description of a simple finite state
machine.

Example 7-13 A Simple Finite State Machine

module machine (x, clock, current_state, z);

input x, clock;
output [1:0] current_state;
output z;

reg [1:0] current_state;
reg z;
/* Redeclared as reg so they can be assigned to in always
statements. By default, ports are wires and cannot be
assigned to in ’always’
*/
reg [1:0] next_state;
reg previous_z;

parameter [1:0] set0 = 0,
hold0 = 1,
set1 = 2;

always @ (x or current_state) begin
 case (current_state) //synopsys full_case

/* declared full_case to avoid extraneous latches */
set0:
 begin
 z = 0 ; //set z to 0
 next_state = hold0;
 end
7-16

Writing Circuit Descriptions

hold0:
 begin
 z = previous_z; //hold value of z
 if (x == 0)

next_state = hold0;
 else

next_state = set1;
 end
set1:
 begin
 z = 1; //set z to 1
 next_state = set0;
 end

 endcase
end
always @ (posedge clock) begin
 current_state = next_state;
 previous_z = z;
end
endmodule

In the state hold0, the output z retains its value from the previous
state. To synthesize this circuit, a flip-flop is inserted to hold the state
previous_z. However, you can make some assertions about the value
of z. In the state hold0, the value of z is always 0. This can be deduced
from the fact that the state hold0 is entered only from the state set0,
where z is always assigned the value 0.

Example 7-14 shows how the Verilog description can be changed to
use this assertion, resulting in a simpler circuit (because the flip-flop
for previous_z is not required). The changed line is shown in bold.
7-17

Writing Circuit Descriptions

Example 7-14 Better Implementation of a Finite State Machine

module machine (x, clock, current_state, z);

input x, clock;
output [1:0]current_state;
output z;

reg [1:0] current_state;
reg z;
/* Redeclared as reg so they can be assigned to in always
statements. By default, ports are wires and cannot be
assigned to in ’always’
*/
reg [1:0] next_state;

parameter [1:0] set0 = 0,
hold0 = 1,
set1 = 2;

always @ (x or current_state) begin
 case (current_state) //synopsys full_case

/* declared full_case to avoid extraneous latches */
set0:
 begin
 z = 0 ; //set z to 0
 next_state = hold0;
 end
hold0:
 begin
 z = 0; //hold z at 0
 if (x == 0)

next_state = hold0;
 else

next_state = set1;
 end
set1:
 begin
 z = 1; //set z to 1
 next_state = set0;
 end

 endcase
7-18

Writing Circuit Descriptions

end
always @ (posedge clock) begin
 current_state = next_state;
end
endmodule

Describing State Machines

You can use an implicit state style or an explicit state style to describe
a state machine. In the implicit state style, a clock edge (negedge or
posedge) signals a transition in the circuit from one state to another.
In the explicit state style, you use a constant declaration to assign a
value to all states. Each state and its transition to the next state are
defined under the case statement. Use the implicit state style to
describe a single flow of control through a circuit (where each state
in the state machine can be reached only from one other state). Use
the explicit state style to describe operations such as synchronous
resets.

Example 7-15 shows a description of a circuit that sums data over
three clock cycles. The circuit has a single flow of control, so the
implicit style is preferable.
7-19

Writing Circuit Descriptions

Example 7-15 Summing Three Cycles of Data in the Implicit State Style
(Preferred)

module sum3 (data, clk, total);
input [7:0] data;
input clk;
output [7:0] total;

reg total;

always
begin
 @ (posedge clk)
 total = data;
 @ (posedge clk)
 total = total + data;
 @ (posedge clk)
 total = total + data;
end
endmodule

Note:
With the implicit state style, you must use the same clock phase
(either posedge or negedge) for each event expression. Implicit
states can be updated only if they are controlled by a single clock
phase.

Example 7-16 shows a description of the same circuit in the explicit
state style. This circuit description requires more lines of code than
the previous example, although FPGA Compiler II / FPGA Express
synthesizes the same circuit for both descriptions.
7-20

Writing Circuit Descriptions

Example 7-16 Summing Three Cycles of Data in the Explicit State Style (Not
Advisable)

module sum3 (data, clk, total);
input [7:0] data;
input clk;
output [7:0] total;

reg total;
reg [1:0] state;

parameter S0 = 0, S1 = 1, S2 = 2;

always @ (posedge clk)
begin
 case (state)
 S0: begin
 total = data;
 state = S1;
 end
 S1: begin
 total = total + data;
 state = S2;
 end
 default : begin
 total = total + data;
 state = S0;
 end
 endcase
end
endmodule

Example 7-17 shows a description of the same circuit with a
synchronous reset added. This example is coded in the explicit state
style. Notice that the reset operation is addressed once before the
case statement.
7-21

Writing Circuit Descriptions

Example 7-17 Synchronous Reset—Explicit State Style (Preferred)

module SUM3 (data, clk, total, reset);
input [7:0] data;
input clk, reset;
output [7:0] total;

reg total;
reg [1:0] state;

parameter S0 = 0, S1 = 1, S2 = 2;

always @ (posedge clk)
begin
 if (reset)
 state = S0;
 else
 case (state)
 S0: begin
 total = data;
 state = S1;
 end
 S1: begin
 total = total + data;
 state = S2;
 end
 default : begin
 total = total + data;
 state = S0;
 end
 endcase;
end
endmodule

Example 7-18 shows how to describe the same function in the implicit
state style. This style is not as efficient for describing synchronous
resets. In this case, the reset operation has to be addressed for every
always @ statement.
7-22

Writing Circuit Descriptions

Example 7-18 Synchronous Reset—Implicit State Style (Not Advisable)

module SUM3 (data, clk, total, reset);
input [7:0] data;
input clk, reset;
output [7:0] total;

reg total;

always
begin: reset_label

 @ (posedge clk)
if (reset)

begin
total = 8’b0;
disable reset_label;

end
else

total = data;

@ (posedge clk)
if (reset)

begin
total = 8’b0;
disable reset_label;

end
else

total = total + data;

@ (posedge clk)
if (reset)

begin
total = 8’b0;
disable reset_label;

end
else

total = total + data;
end

endmodule
7-23

Writing Circuit Descriptions

Minimizing Registers

In an always block that is triggered by a clock edge, every variable
that has a value assigned has its value held in a flip-flop.

Organize your Verilog description so you build only as many registers
as you need. Example 7-19 shows a description where extra registers
are implied.

Example 7-19 Inefficient Circuit Description With Six Implied Registers

module count (clock, reset, and_bits, or_bits, xor_bits);
input clock, reset;
output and_bits, or_bits, xor_bits;
reg and_bits, or_bits, xor_bits;

reg [2:0] count;

always @(posedge clock) begin
if (reset)
 count = 3’60;
else
 count = count + 1;

and_bits = & count;
or_bits = | count;
xor_bits = ^ count;

end
endmodule

This description implies the use of six flip-flops: three to hold the
values of count and one each to hold and_bits, or_bits, and xor_bits.
However, the values of the outputs and_bits, or_bits, and xor_bits
depend solely on the values of count. Because count is registered,
there is no reason to register the three outputs. The synthesized
circuit is shown in Figure 7-9.
7-24

Writing Circuit Descriptions

Figure 7-9 Synthesized Circuit With Six Implied Registers

To avoid implying extra registers, you can assign the outputs from
within an asynchronous always block. Example 7-20 shows the same
logic described with two always blocks, one synchronous and one
asynchronous, which separate registered or sequential logic from
combinational logic. This technique is useful for describing finite state
machines. Signal assignments in the synchronous always block are
registered. Signal assignments in the asynchronous always block are
not. Therefore, this version of the design uses three fewer flip-flops
than the version in Example 7-19.
7-25

Writing Circuit Descriptions

Example 7-20 Circuit With Three Implied Registers

module count (clock, reset, and_bits, or_bits, xor_bits);
input clock, reset;
output and_bits, or_bits, xor_bits;
reg and_bits, or_bits, xor_bits;

reg [2:0] count;

always @(posedge clock) begin//synchronous
if (reset)

count = 3’b0;
else

count = count + 1;
end
always @(count) begin//asynchronous

and_bits = & count;
or_bits = | count;
xor_bits = ^ count;

end
endmodule

The more efficient version of the circuit is shown in Figure 7-10.

Figure 7-10 Synthesized Circuit With Three Implied Registers
7-26

Writing Circuit Descriptions

Separating Sequential and Combinational Assignments

To compute values synchronously and store them in flip-flops, set up
an always block with a signal edge trigger. To let other values change
asynchronously, make a separate always block with no signal edge
trigger. Put the assignments you want clocked in the always block
with the signal edge trigger and the other assignments in the other
always block. This technique is used for creating Mealy machines,
such as the one in Example 7-21. Note that out changes
asynchronously with in1 or in2.

Example 7-21 Mealy Machine
module mealy (in1, in2, clk, reset, out);

input in1, in2, clk, reset;
output out;
reg current_state, next_state, out;

always @(posedge clk or negedge reset)
// state vector flip-flops (sequential)

if (!reset)
current_state = 1’b0;

else
current_state = next_state;

always @(in1 or in2 or current_state)
// output and state vector decode (combinational)

case (current_state)
0: begin

next_state = 1;
out = 1’b0;

 end
1: if (in1) begin

next_state = 1’b0;
out = in2;

end
else begin

next_state = 1’b1;
out = !in2;

end
endcase

endmodule
7-27

Writing Circuit Descriptions

The schematic for this circuit is shown in Figure 7-11.

Figure 7-11 Mealy Machine Schematic

Don’t Care Inference

You can greatly reduce circuit area by using don’t care values. To use
a don’t care value in your design, create an enumerated type for the
don’t care value.
7-28

Writing Circuit Descriptions

Don’t care values are best used as default assignments to variables.
You can assign a don’t care value to a variable at the beginning of a
module, in the default section of a case statement, or in the else
section of an if statement.

Limitations of Using Don’t Care Values

In some cases, using don’t care values as default assignments can
cause these problems:

• Don’t care values create a greater potential for mismatches
between simulation and synthesis.

• Defaults for variables can hide mistakes in the Verilog code.

For example, you might assign a default don’t care value to VAR.
If you later assign a value to VAR, expecting VAR to be a don’t
care value, you might have overlooked an intervening condition
under which VAR is assigned.

Therefore, when you assign a value to a variable (or signal) that
contains a don’t care value, make sure that the variable (or signal) is
really a don’t care value under those conditions. Note that assignment
to an x is interpreted as a don’t care value.

Differences Between Simulation and Synthesis

Don’t care values are treated differently in simulation and in synthesis,
and there can be a mismatch between the two. To a simulator, a don’t
care is a distinct value, different from a one or a zero. In synthesis,
however, a don’t care becomes a zero or a one (and hardware is built
that treats the don’t care value as either a zero or a one).
7-29

Writing Circuit Descriptions

Whenever a comparison is made with a variable whose value is don’t
care, simulation and synthesis can differ. Therefore, the safest way
to use don’t care values is to

• Assign don’t care values only to output ports

• Make sure that the design never reads output ports

These guidelines guarantee that when you simulate within the scope
of the design, the only difference between simulation and synthesis
occurs when the simulator indicates that an output is a don’t care
value.

If you use don’t care values internally to a design, expressions FPGA
Compiler II / FPGA Express compares to don’t care values (X) are
synthesized as though values are not equal to X.

For example,

if A = ’X’ then
...

is synthesized as

if FALSE then
...

If you use expressions comparing values with X, pre-synthesis and
post-synthesis simulation results might not agree. For this reason,
FPGA Compiler II / FPGA Express issues the following warning:

Warning: A partial don’t-care value was read in routine test
line 24 in file ’test.v’ This may cause simulation to
disagree with synthesis. (HDL-171)
7-30

Writing Circuit Descriptions

Propagating Constants

Constant propagation is the compile-time evaluation of expressions
that contain constants. FPGA Compiler II / FPGA Express uses
constant propagation to reduce the amount of hardware required to
implement complex operators. Therefore, when you know that a
variable is a constant, specify it as a constant. For example, a +
operator with a constant of 1 as one of its arguments causes an
incrementer, rather than a general adder, to be built. If both arguments
of an operator are constants, no hardware is constructed, because
FPGA Compiler II / FPGA Express can calculate the expression’s
value and insert it directly into the circuit.

Comparators and shifters also benefit from constant propagation.
When you shift a vector by a constant, the implementation requires
only a reordering (rewiring) of bits, so no logic is needed.

Synthesis Issues

The next two sections describe feedback paths and latches that result
from ambiguities in signal or variable assignments, and asynchronous
behavior.
7-31

Writing Circuit Descriptions

Feedback Paths and Latches

Sometimes your Verilog source can imply combinational feedback
paths or latches in synthesized logic. This happens when a signal or
a variable in a combinational logic block (an always block without a
posedge or negedge clock statement) is not fully specified. A variable
or signal is fully specified when it is assigned under all possible
conditions.

Synthesizing Asynchronous Designs

In a synchronous design, all registers use the same clock signal. That
clock signal must be a primary input to the design. A synchronous
design has no combinational feedback paths, one-shots, or delay
lines. Synchronous designs perform the same function regardless of
the clock rate, as long as the rate is slow enough to allow signals to
propagate all the way through the combinational logic between
registers.

Synopsys synthesis tools offer limited support for asynchronous
designs. The most common way to produce asynchronous logic in
Verilog is to use gated clocks on registers. If you use asynchronous
design techniques, synthesis and simulation results might not agree.
Because FPGA Compiler II / FPGA Express does not issue warning
messages for asynchronous designs, you are responsible for
verifying the correctness of your circuit.

The following examples show two approaches to the same counter
design: Example 7-22 is synchronous, and Example 7-23 is
asynchronous.
7-32

Writing Circuit Descriptions

Example 7-22 Fully Synchronous Counter Design

module COUNT (RESET, ENABLE, CLK, Z);

input RESET, ENABLE, CLK;
output [2:0] Z;
reg [2:0] Z;

always @ (posedge CLK) begin
if (RESET) begin

Z = 3’b0;
end else if (ENABLE == 1’b1) begin

if (Z == 3’d7) begin
Z = 3’b0;

end else begin
Z = Z + 3’b1;

end
end

end

endmodule

Example 7-23 Asynchronous Counter Design

module COUNT (RESET, ENABLE, CLK, Z);

input RESET, ENABLE, CLK;
output [2:0] Z;
reg [2:0] Z;
wire GATED_CLK = CLK & ENABLE;

always @ (posedge GATED_CLK or posedge RESET) begin
if (RESET) begin

Z = 3’b0;
end else begin

if (Z == 3’d7) begin
Z = 3’b0;

end else begin
Z = Z + 3’b1;

end
end

end
endmodule
7-33

Writing Circuit Descriptions

The asynchronous version of the design uses two asynchronous
design techniques. The first technique is to enable the counter by
ANDing the clock with the enable line. The second technique is to
use an asynchronous reset. These techniques work if the proper
timing relationships exist between the asynchronous control lines
(ENABLE and RESET) and the clock (CLK) and if the control lines
are glitch-free.

Some forms of asynchronous behavior are not supported. For
example, you might expect the following circuit description of a one-
shot signal generator to generate three inverters (an inverting delay
line) and a NAND gate.

X = A ~& (~(~(~ A)));

However, this circuit description is optimized to

X = A ~& (~ A); then X = 1;

Designing for Overall Efficiency

The efficiency of a synthesized design depends primarily on how you
describe its component structure. The next two sections explain how
to describe random logic and how to share complex operators.
7-34

Writing Circuit Descriptions

Describing Random Logic

You can describe random logic with many different shorthand Verilog
expressions. FPGA Compiler II / FPGA Express often generates the
same optimized logic for equivalent expressions, so your description
style for random logic does not affect the efficiency of the circuit.
Example 7-24 shows four groups of statements that are equivalent.
(Assume that a, b, and c are 4-bit variables.) FPGA Compiler II / FPGA
Express creates the same optimized logic in all four cases.

Example 7-24 Equivalent Statements

c = a & b;

c[3:0] = a[3:0] & b[3:0];

c[3] = a[3] & b[3];
c[2] = a[2] & b[2];
c[1] = a[1] & b[1];
c[0] = a[0] & b[0];

for (i = 0; i <= 3; i = i + 1)
 c[i] = a[i] & b[i];

Sharing Complex Operators

You can use automatic resource sharing to share most operators.
However, some complex operators can be shared only if you rewrite
your source description more efficiently. These operators are

• Noncomputable array index

• Function call

• Shifter
7-35

Writing Circuit Descriptions

Example 7-25 shows a circuit description that creates more functional
units than necessary when automatic resource sharing is turned off.

Example 7-25 Inefficient Circuit Description With Two Array Indexes

module rs(a, i, j, c, y, z);

 input [7:0] a;
 input [2:0] i,j;
 input c;

 output y, z;
 reg y, z;

 always @(a or i or j or c)
begin
z=0;
y=0;
if(c)

begin
z = a[i];

 end
else

begin
y = a[j];
end

end
endmodule

The schematic for this code description is shown in Figure 7-12.
7-36

Writing Circuit Descriptions

Figure 7-12 Circuit Schematic With Two Array Indexes
7-37

Writing Circuit Descriptions

You can rewrite the circuit description in Example 7-25 so that it
contains only one array index, as shown in Example 7-26.

Example 7-26 Efficient Circuit Description With One Array Index

module rs1(a, i, j, c, y, z);

input [7:0] a;
input [2:0] i,j;
input c;

output y, z;
reg y, z;

reg [3:0] index;
reg temp;

always @(a or i or j or c) begin
if(c)

begin
index = i;
end

else
begin
index = j;
end

temp = a[index];

z=0;
y=0;
if(c)

begin
z = temp;
end

else
begin
y = temp;
end

end

endmodule
7-38

Writing Circuit Descriptions

The circuit in Example 7-26 is more efficient than that in Example
7-25, since it uses a temporary register, temp, to store the value
evaluated in the if statement. The schematic is shown in Figure 7-13.

Figure 7-13 Circuit Schematic With One Array Index
7-39

Writing Circuit Descriptions

Consider resource sharing whenever you use a complex operation
more than once. Complex operations include adders, multipliers,
shifters (only when shifting by a variable amount), comparators, and
most user-defined functions.
7-40

Writing Circuit Descriptions

8
FPGA Compiler II / FPGA Express Directives8

Specific aspects of the synthesis process can be controlled by special
comments in the Verilog source code called FPGA Compiler II / FPGA
Express directives. Because these directives are just a special case
of regular comments, they are ignored by the Verilog HDL Simulator
and do not affect simulation. This chapter describes FPGA Compiler
II / FPGA Express directives and their effect on translation, in the
following sections:

• Notation for FPGA Compiler II / FPGA Express Directives

• translate_off and translate_on Directives

• parallel_case Directive

• full_case Directive

• state_vector Directive

• enum Directive
8-1

FPGA Compiler II / FPGA Express Directives

• Component Implication

Notation for FPGA Compiler II / FPGA Express Directives

The special comments that make up FPGA Compiler II / FPGA
Express directives begin, like all other Verilog comments, with the
characters // or /* . The // characters begin a comment that fits on
one line (most FPGA Compiler II / FPGA Express directives do). If
you use the /* characters to begin a multiline comment, you must
end the comment with */. You do not need to use the /* characters at
the beginning of each line but only at the beginning of the first line.

Note:
You cannot use // synopsys in a regular comment. Also, the
compiler displays a syntax error if Verilog code is in a // synopsys
directive.

translate_off and translate_on Directives

When the // synopsys translate_off and // synopsys translate_on
directives are present, FPGA Compiler II / FPGA Express suspends
translation of the source code and restarts translation at a later point.
Use these directives when your Verilog source code contains
commands specific to simulation that FPGA Compiler II / FPGA
Express does not accept.

You turn translation off by using either

// synopsys translate_off

/* synopsys translate_off */
8-2

FPGA Compiler II / FPGA Express Directives

You turn translation back on by using either

// synopsys translate_on

/* synopsys translate_on */

At the beginning of each Verilog file, translation is enabled. After that,
you can use the translate_off and translate_on directives anywhere
in the text. These directives must be used in pairs. Each translate_off
must appear before its corresponding translate_on. Example 8-1
shows a simulation driver protected by a translate_off directive.

Example 8-1 // synopsys translate_on and // synopsys translate_off
Directives

module trivial (a, b, f);
input a,b;
output f;
 assign f = a & b;
 // synopsys translate_off
 initial $monitor (a, b, f);
 // synopsys translate_on
endmodule

/* synopsys translate_off */
module driver;
 reg [1:0] value_in;
 integer i;
 trivial triv1(value_in[1], value_in[0]);
 initial begin
 for (i = 0; i < 4; i = i + 1)
 #10 value_in = i;
 end
endmodule
/* synopsys translate_on */
8-3

FPGA Compiler II / FPGA Express Directives

parallel_case Directive

The // synopsys parallel_case directive affects the way logic is
generated for the case statement. As presented in “Full Case and
Parallel Case” on page 5-20, a case statement generates the logic
for a priority encoder. Under certain circumstances, you might not
want to build a priority encoder to handle a case statement. You can
use the parallel_case directive to force FPGA Compiler II / FPGA
Express to generate multiplexer logic instead.

The syntax for the parallel_case directive is

// synopsys parallel_case

or

/* synopsys parallel_case */

In Example 8-2, the states of a state machine are encoded as one
hot signal. If the case statement were implemented as a priority
encoder, the generated logic would be unnecessarily complex.

Example 8-2 // synopsys parallel_case Directives

reg [3:0] current_state, next_state;
parameter state1 = 4’b0001, state2 = 4’b0010,

state3 = 4’b0100, state4 = 4’b1000;

case (1)//synopsys parallel_case

 current_state[0] : next_state = state2;
 current_state[1] : next_state = state3;
 current_state[2] : next_state = state4;
 current_state[3] : next_state = state1;

endcase
8-4

FPGA Compiler II / FPGA Express Directives

Use the parallel_case directive immediately after the case
expression, as shown. This directive makes all case-item evaluations
in parallel. All case items that evaluate to true are executed, not just
the first, which could give you unexpected results.

In general, use parallel_case when you know that only one case item
is executed. If only one case item is executed, the logic generated
from a parallel_case directive performs the same function as the
circuit when it is simulated. If two case items are executed and you
have used the parallel_case directive, the generated logic is not the
same as the simulated description.

full_case Directive

The // synopsys full_case directive asserts that all possible clauses
of a case statement have been covered and that no default clause is
necessary. This directive has two uses: It avoids the need for default
logic, and it can avoid latch inference from a case statement by
asserting that all necessary conditions are covered by the given
branches of the case statement. As shown in “Full Case and Parallel
Case” on page 5-20, a latch can be inferred whenever a variable is
not assigned a value under all conditions.

The syntax for the full_case directive is eiher

// synopsys full_case

/* synopsys full_case */
8-5

FPGA Compiler II / FPGA Express Directives

If the case statement contains a default clause, FPGA Compiler II /
FPGA Express assumes that all conditions are covered. If there is no
default clause and you do not want latches to be created, use the
full_case directive to indicate that all necessary conditions are
described in the case statement.

Example 8-3 shows two uses of full_case. The parallel_case and
full_case directives can be combined in one comment.

Example 8-3 // synopsys full_case Directives

reg [1:0] in, out;
reg [3:0] current_state, next_state;
parameter state1 = 4’b0001, state2 = 4’b0010,
 state3 = 4’b0100, state4 = 4’b1000;

case (in) // synopsys full_case
 0: out = 2;
 1: out = 3;
 2: out = 0;
endcase

case (1) // synopsys parallel_case full_case
 current_state[0] : next_state = state2;
 current_state[1] : next_state = state3;
 current_state[2] : next_state = state4;
 current_state[3] : next_state = state1;
endcase

In the first case statement, the condition in == 3 is not covered. You
can either use a default clause to cover all other conditions or use the
full_case directive (as in Example 8-3) to indicate that other branch
conditions do not occur. If you cover all possible conditions explicitly,
FPGA Compiler II / FPGA Express recognizes the case statement as
full-case, so the full_case directive is not necessary.
8-6

FPGA Compiler II / FPGA Express Directives

The second case statement in Example 8-3 does not cover all 16
possible branch conditions. For example, current_state == 4’b0101
is not covered. The parallel_case directive is used in this example
because only one of the four case items can evaluate to true and be
executed.

Although you can use the full_case directive to avoid creating latches,
using this directive does not guarantee that latches will not be built.
You still must assign a value to each variable used in the case
statement in all branches of the case statement. Example 8-4
illustrates a situation in which the full_case directive prevents a latch
from being inferred for variable b but not for variable a.

Example 8-4 Latches and // synopsys full_case

reg a, b;
reg [1:0] c;
case (c) // synopsys full_case
 0: begin a = 1; b = 0; end
 1: begin a = 0; b = 0; end
 2: begin a = 1; b = 1; end
 3: b = 1; // a is not assigned here
endcase

In general, use full_case when you know that all possible
branches of the case statement have been enumerated, or at least
all branches that can occur. If all branches that can occur are
enumerated, the logic generated from the case statement
performs the same function as the simulated circuit. If a case condition
is not fully enumerated, the generated logic and the simulation are
not the same.
8-7

FPGA Compiler II / FPGA Express Directives

Note:
You do not need the full_case directive if you have a default branch
or you enumerate all possible branches in a case statement,
because FPGA Compiler II / FPGA Express assumes the case
statement is full_case.

state_vector Directive

The // synopsys state_vector directive labels a variable in a Verilog
description as the state vector of an equivalent finite state machine.

The syntax for the state_vector directive is

// synopsys state_vector vector_name

or

/* synopsys state_vector vector_name */

The vector_name variable is the name chosen as a state vector. This
declaration allows Synopsys FPGA Compiler II / FPGA Express to
extract the labeled state vector from the Verilog description. Used
with the enum directive, described in the next section, the state_vector
directive allows you to define the state vector of a finite state machine
(and its encodings) from a Verilog description. Example 8-5 shows
one way to use the state_vector directive.

Caution!
Do not define two state_vector directives in one module. Although
FPGA Compiler II / FPGA Express does not issue an error
message, it recognizes only the first state_vector directive and
ignores the second.
8-8

FPGA Compiler II / FPGA Express Directives

Example 8-5 // synopsys state_vector Example

reg [1:0] state, next_state;
// synopsys state_vector state

always @ (state or in) begin
case (state) // synopsys full_case

0: begin
out = 3;
next_state = 1;
end

1: begin
out = 2;
next_state = 2;
end

2: begin
out = 1;
next_state = 3;
end

3: begin
out = 0
if (in)
next_state = 0;
else

next_state = 3;
endcase

end

always @ (posedge clock)
state = next_state;
8-9

FPGA Compiler II / FPGA Express Directives

enum Directive

The // synopsys enum directive is designed for use with the Verilog
parameter definition statement to specify state machine encodings.
When a variable is marked as a state_vector (see “state_vector
Directive” on page 8-8) and it is declared as an enum, the Synopsys
FPGA Compiler II / FPGA Express uses the enum values and names
for the states of an extracted state machine.

The syntax of the enum directive is either

// synopsys enum enum_name

/* synopsys enum enum_name */

Example 8-6 shows the declaration of an enumeration of type colors
that is 3 bits wide and has the enumeration literals red, green, blue,
and cyan with the values shown.

Example 8-6 Enumeration of Type Colors

parameter [2:0] // synopsys enum colors
red = 3’b000, green = 3’b001, blue = 3’b010, cyan = 3’b011;

The enumeration must include a size (bit-width) specification.
Example 8-7 shows an invalid enum declaration.

Example 8-7 Invalid enum Declaration

parameter /* synopsys enum colors */
red = 3’b000, green = 1;
// [2:0] required
8-10

FPGA Compiler II / FPGA Express Directives

Example 8-8 shows a register, a wire, and an input port with the
declared type of colors. In each of the following declarations, the array
bounds must match those of the enumeration declaration. If you use
different bounds, synthesis might not agree with simulation behavior.

Example 8-8 More enum Type Declarations

reg [2:0] /* synopsys enum colors */ counter;

wire [2:0] /* synopsys enum colors */ peri_bus;
input [2:0] /* synopsys enum colors */ input_port;

Even though you declare a variable to be of type enum, it can still be
assigned a bit value that is not one of the enumeration values in the
definition. Example 8-9 relates to Example 8-8 and shows an invalid
encoding for colors.

Example 8-9 Invalid Bit Value Encoding for Colors

counter = 3’b111;

Because 111 is not in the definition for colors, it is not a valid encoding.
FPGA Compiler II / FPGA Express accepts this encoding, because
it is valid Verilog code, but FPGA Compiler II / FPGA Express
recognizes this assignment as an invalid encoding and ignores it.

You can use enumeration literals just like constants, as shown in
Example 8-10.

Example 8-10 Enumeration Literals Used as Constants

if (input_port == blue)
 counter = red;

You can also use enumeration with the state_vector directive.
Example 8-11 shows how the state_vector variable is tagged by use
of enumeration.
8-11

FPGA Compiler II / FPGA Express Directives

Example 8-11 Finite State Machine With // synopsys enum and // synopsys
state_vector

// This finite-state machine (Mealy type) reads 1 bit
// per cycle and detects 3 or more consecutive 1s.

module enum2_V(signal, clock, detect);
input signal, clock;
output detect;
reg detect;

// Declare the symbolic names for states
parameter [1:0]//synopsys enum state_info
 NO_ONES = 2’h0,
 ONE_ONE = 2’h1,
 TWO_ONES = 2’h2,
 AT_LEAST_THREE_ONES = 2’h3;

// Declare current state and next state variables.
reg [1:0] /* synopsys enum state_info */ cs;
reg [1:0] /* synopsys enum state_info */ ns;

// synopsys state_vector cs

always @ (cs or signal)

 begin
 detect = 0;// default values
 if (signal == 0)
 ns = NO_ONES;
 else
 case (cs) // synopsys full_case
 NO_ONES: ns = ONE_ONE;
 ONE_ONE: ns = TWO_ONES;
 TWO_ONES, ns = AT_LEAST_THREE_ONES;
 AT_LEAST_THREE_ONES:
 begin
 ns = AT_LEAST_THREE_ONES;
 detect = 1;
 end
 endcase
 end
8-12

FPGA Compiler II / FPGA Express Directives

always @ (posedge clock) begin
 cs = ns;
end
endmodule

Enumerated types are designed to be used as whole entities. This
design allows FPGA Compiler II / FPGA Express to rebind the
encodings of an enumerated type more easily. You cannot select a
bit or a part from a variable that has been given an enumerated type.
If you do, the overall behavior of your design changes when FPGA
Compiler II / FPGA Express changes the original encoding. Example
8-12 shows an unsupported bit-select.

Example 8-12 Unsupported Bit-Select From Enumerated Type

parameter [2:0] /* synopsys enum states */
s0 = 3’d0, s1 = 3’d1, s2 = 3’d2, s3 = 3’d3,
s4 = 3’d4, s5 = 3’d5, s6 = 3’d6, s7 = 3’d7;

reg [2:0] /* synopsys enum states */ state, next_state;

assign high_bit = state[2]; // not supported

Because you cannot access individual bits of an enumerated type,
you cannot use component instantiation to hook up single-bit flip-flops
or three-states. Example 8-13 shows an example of this type of
unsupported bit-select.

Example 8-13 Unsupported Bit-Select (With Component Instantiation) From
Enumerated Type

DFF ff0 (next_state[0], clk, state[0]);
DFF ff1 (next_state[1], clk, state[1]);
DFF ff2 (next_state[2], clk, state[2]);
8-13

FPGA Compiler II / FPGA Express Directives

To create flip-flops and three-states for enum values, you must imply
them with the posedge construct or the literal z, as shown in Example
8-14.

Example 8-14 Using Inference With Enumerated Types

parameter [2:0] /* synopsys enum states */
s0 = 3’d0, s1 = 3’d1, s2 = 3’d2, s3 = 3’d3,
s4 = 3’d4, s5 = 3’d5, s6 = 3’d6, s7 = 3’d7;

reg [2:0] /* synopsys enum states */ state, next_state;

parameter [1:0] /* synopsys enum outputs */
DONE = 2’d0, PROCESSING = 2’d1, IDLE = 2’d2;

reg [1:0] /* synopsys enum outputs */ out, triout;

always @ (posedge clk) state = next_state;
assign triout = trienable ? out : ’bz;

If you use the constructs shown in Example 8-14, you can change
the enumeration encodings by changing the parameter and reg
declarations, as shown in Example 8-15. You can also allow FPGA
Compiler II / FPGA Express to change the encodings.

Example 8-15 Changing the Enumeration Encoding

parameter [3:0] /* synopsys enum states */
s0 = 4’d0, s1 = 4’d10, s2 = 4’d15, s3 = 4’d5,
s4 = 4’d2, s5 = 4’d4, s6 = 4’d6, s7 = 4’d8;

reg [3:0] /* synopsys enum states */ state, next_state;

parameter [1:0] /* synopsys enum outputs */
DONE = 2’d3, PROCESSING = 2’d1, IDLE = 2’d0;

reg [1:0] /* synopsys enum outputs */ out, triout;

always @ (posedge clk) state = next_state;
assign triout = trienable ? out : ’bz;
8-14

FPGA Compiler II / FPGA Express Directives

If you must select individual bits of an enumerated type, you can
declare a temporary variable of the same size as the enumerated
type. Assign the enumerated type to the variable, then select
individual bits of the temporary variable. Example 8-16 shows how
this is done.

Example 8-16 Supported Bit-Select From Enumerated Type

parameter [2:0] /* synopsys enum states */
s0 = 3’d0, s1 = 3’d1, s2 = 3’d2, s3 = 3’d3,
s4 = 3’d4, s5 = 3’d5, s6 = 3’d6, s7 = 3’d7;

reg [2:0] /* synopsys enum states */ state, next_state;
wire [2:0] temporary;

assign temporary = state;
assign high_bit = temporary[2]; //supported

Note:
Selecting individual bits from an enumerated type is not
recommended.

If you declare a port as a reg and as an enumerated type, you must
declare the enumeration when you declare the port. Example 8-17
shows the declaration of the enumeration.

Example 8-17 Enumerated Type Declaration for a Port

module good_example (a,b);

parameter [1:0] /* synopsys enum colors */
green = 2’b00, white = 2’b11;

input a;
output [1:0] /* synopsys enum colors */ b;
reg [1:0] b;
.
.
endmodule
8-15

FPGA Compiler II / FPGA Express Directives

Example 8-18 shows the wrong way to declare a port as an
enumerated type, because the enumerated type declaration appears
with the reg declaration instead of with the output port declaration.
This code does not export enumeration information to FPGA Compiler
II / FPGA Express.

Example 8-18 Incorrect Enumerated Type Declaration for a Port

module bad_example (a,b);

parameter [1:0] /* synopsys enum colors */
green = 2’b00, white = 2’b11;

input a;
output [1:0] b;
reg [1:0] /* synopsys enum colors */ b;
.
.
endmodule

Component Implication

In Verilog, you cannot instantiate modules in behavioral code. To
include an embedded netlist in your behavioral code, use the
directives // synopsys map_to_module and // synopsys
return_port_name for FPGA Compiler II / FPGA Express to recognize
the netlist as a function being implemented by another module. When
this subprogram is invoked in the behavioral code, FPGA Compiler II
/ FPGA Express instantiates the module (see Example 8-19).

The first directive, // synopsys map_to_module, flags a function for
implementation as a distinct component. The syntax is

// synopsys map_to_module modulename
8-16

FPGA Compiler II / FPGA Express Directives

The second directive identifies a return port (functions in Verilog do
not have output ports). To instantiate the function as a component,
the return port must have a name. The syntax is

// synopsys return_port_name portname

Note:
Remember that if you add a map_to_module directive to a
function, the contents of the function are parsed and ignored
whereas the indicated module is instantiated. Ensure that the
functionality of the module instantiated in this way and the function
it replaces are the same; otherwise, pre-synthesis and post-
synthesis simulation do not match.

Example 8-19 illustrates the map_to_module and return_port_name
directives.

Example 8-19 Component Implication
module mux_inst (a, b, c, d, e);
input a, b, c, d;
output e;

function mux_func;
// synopsys map_to_module mux_module
// synopsys return_port_name mux_ret
input in1, in2, cntrl;

/*
** the contents of this function are ignored for
** synthesis, but the behavior of this function
** must match the behavior of mux_module for
** simulation purposes
*/
begin
if (cntrl) mux_func = in1;
else mux_func = in2;
end

endfunction

assign e = a & mux_func (b, c, d);
// this function call actually instantiates component (module) mux_module
8-17

FPGA Compiler II / FPGA Express Directives

endmodule

module mux_module (in1, in2, cntrl, mux_ret);
input in1, in2, cntrl;
output mux_ret;

and and2_0 (wire1, in1, cntrl);
not not1 (not_cntrl, cntrl);
and and2_1 (wire2, in2, not_cntrl);
or or2 (mux_ret, wire1, wire2);

endmodule
8-18

FPGA Compiler II / FPGA Express Directives

A
Examples A

This appendix presents examples that demonstrate basic concepts
of Synopsys FPGA Compiler II / FPGA Express:

• Count Zeros—Combinational Version

• Count Zeros—Sequential Version

• Drink Machine—State Machine Version

• Drink Machine—Count Nickels Version

• Carry-Lookahead Adder
A-1

Examples

Count Zeros—Combinational Version

Using this circuit is one possible solution to a design problem. Given
an 8-bit value, the circuit must determine two things:

• The presence of a value containing exactly one sequence of zeros

• The number of zeros in the sequence (if any)

The circuit must complete this computation in a single clock cycle.
The input to the circuit is an 8-bit value, and the two outputs the circuit
produces are the number of zeros found and an error indication.

A valid value contains only one series of zeros. If more than one series
of zeros appears, the value is invalid. A value consisting of all ones
is a valid value. If a value is invalid, the count of zeros is set to zero.
For example,

• The value 00000000 is valid, and the count is eight zeros.

• The value 11000111 is valid, and the count is three zeros.

• The value 00111110 is invalid.

A Verilog description and a schematic of the circuit are shown in
Example A-1 and Figure A-1.
A-2

Examples

Example A-1 Count Zeros—Combinational Version

module count_zeros(in, out, error);
 input [7:0] in;
 output [3:0] out;
 output error;
 function legal;
 input [7:0] x;
 reg seenZero, seenTrailing;
 integer i;
 begin : _legal_block
 legal = 1; seenZero = 0; seenTrailing = 0;
 for (i=0; i <= 7; i=i+1)
 if (seenTrailing && (x[i] == 1’b0)) begin
 legal = 0;
 disable _legal_block;
 end
 else if (seenZero && (x[i] == 1’b1))
 seenTrailing = 1;
 else if (x[i] == 1’b0)
 seenZero = 1;
 end
 endfunction

 function [3:0] zeros;
 input [7:0] x;
 reg [3:0] count;
 integer i;

 begin
 count = 0;
 for (i=0; i <= 7; i=i+1)
 if (x[i] == 1’b0) count = count + 1;
 zeros = count;
 end
 endfunction
 wire is_legal = legal(in);
 assign error = ! is_legal;
 assign out = is_legal ? zeros(in) : 1’b0;
endmodule
A-3

Examples

Figure A-1 Count Zeros—Combinational Version Block Diagram

This example shows two Verilog functions: legal and zeros. The
function legal determines if the value is valid. It returns a 1-bit value:
either 1 for a valid value or 0 for an invalid value. The function zeros
cycles through all bits of the value, counts the number of zeros, and
returns the appropriate value. The two functions are controlled by
continuous assignment statements at the bottom of the module
definition. This example shows a combinational (parallel) approach
to counting zeros; the next example shows a sequential (serial)
approach.
A-4

Examples

Count Zeros—Sequential Version

Example A-2 and Figure A-2 show a sequential (clocked) solution to
the “count zeros” design problem. The circuit specification is slightly
different from the specification in the combinational solution. The
circuit now accepts the 8-bit string serially, 1 bit per clock cycle, using
the data and clk inputs. The other two inputs are

• reset, which resets the circuit

• read, which causes the circuit to begin accepting data

The circuit’s three outputs are

• is_legal, which is true if the data is a valid value

• data_ready, which is true at the first invalid bit or when all 8 bits
have been processed

• zeros, which is the number of zeros if is_legal is true

Example A-2 Count Zeros—Sequential Version
module count_zeros(data,reset,read,clk,zeros,is_legal,
 data_ready);

 parameter TRUE=1, FALSE=0;

 input data, reset, read, clk;
 output is_legal, data_ready;
 output [3:0] zeros;
 reg [3:0] zeros;

 reg is_legal, data_ready;
 reg seenZero, new_seenZero;
 reg seenTrailing, new_seenTrailing;
 reg new_is_legal;
 reg new_data_ready;
 reg [3:0] new_zeros;
 reg [2:0] bits_seen, new_bits_seen;
A-5

Examples

always @ (data or reset or read or is_legal
 or data_ready or seenTrailing or
 seenZero or zeros or bits_seen) begin
 if (reset) begin
 new_data_ready = FALSE;
 new_is_legal = TRUE;
 new_seenZero = FALSE;
 new_seenTrailing = FALSE;
 new_zeros = 0;
 new_bits_seen = 0;
 end
 else begin
 new_is_legal = is_legal;
 new_seenZero = seenZero;
 new_seenTrailing = seenTrailing;
 new_zeros = zeros;
 new_bits_seen = bits_seen;
 new_data_ready = data_ready;
 if (read) begin
 if (seenTrailing && (data == 0))
 begin
 new_is_legal = FALSE;
 new_zeros = 0;
 new_data_ready = TRUE;
 end
 else if (seenZero && (data == 1’b1))
 new_seenTrailing = TRUE;
 else if (data == 1’b0) begin
 new_seenZero = TRUE;
 new_zeros = zeros + 1;
 end

if (bits_seen == 7)
 new_data_ready = TRUE;
 else
 new_bits_seen = bits_seen+1;
 end
 end
 end

always @ (posedge clk) begin
 zeros = new_zeros;
 bits_seen = new_bits_seen;
 seenZero = new_seenZero;
 seenTrailing = new_seenTrailing;
 is_legal = new_is_legal;
 data_ready = new_data_ready;
end
endmodule
A-6

Examples

Figure A-2 Count Zeros—Sequential Version Block Diagram

Drink Machine—State Machine Version

The next design is a vending control unit for a soft drink vending
machine. The circuit reads signals from a coin-input unit and sends
outputs to a change-dispensing unit and a drink-dispensing unit.

Input signals from the coin-input unit are nickel_in (nickel deposited),
dime_in (dime deposited), and quarter_in (quarter deposited).

Outputs to the vending control unit are collect (collect coins), to the
coin-input unit; nickel_out (nickel change) and dime_out (dime
change), to the change-dispensing unit; and dispense (dispense
drink), to the drink-dispensing unit.

The price of a drink is 35 cents. The Verilog description for this design,
A-7

Examples

shown in Example A-3, uses a state machine description style. The
description includes the state_vector directive, which enables FPGA
Compiler II / FPGA Express to extract an equivalent state machine.

Example A-3 Drink Machine—State Machine Version
‘define vend_a_drink {D,dispense,collect} = {IDLE,2’b11}

module drink_machine(nickel_in, dime_in, quarter_in,
 collect, nickel_out, dime_out,
 dispense, reset, clk) ;
 parameter IDLE=0,FIVE=1,TEN=2,TWENTY_FIVE=3,
 FIFTEEN=4,THIRTY=5,TWENTY=6,OWE_DIME=7;

 input nickel_in, dime_in, quarter_in, reset, clk;
 output collect, nickel_out, dime_out, dispense;

 reg collect, nickel_out, dime_out, dispense;
 reg [2:0] D, Q; /* state */
// synopsys state_vector Q
always @ (nickel_in or dime_in or quarter_in or reset)
 begin
 nickel_out = 0;
 dime_out = 0;
 dispense = 0;
 collect = 0;

 if (reset) D = IDLE;
 else begin
 D = Q;

 case (Q)
 IDLE:
 if (nickel_in) D = FIVE;
 else if (dime_in) D = TEN;
 else if (quarter_in) D = TWENTY_FIVE;
 FIVE:
 if(nickel_in) D = TEN;
 else if (dime_in) D = FIFTEEN;
 else if (quarter_in) D = THIRTY;
 TEN:
 if (nickel_in) D = FIFTEEN;
 else if (dime_in) D = TWENTY;
 else if (quarter_in) ‘vend_a_drink;
 TWENTY_FIVE:
 if(nickel_in) D = THIRTY;
 else if (dime_in) ‘vend_a_drink;
A-8

Examples

 else if (quarter_in) begin

 ‘vend_a_drink;
 nickel_out = 1;
 dime_out = 1;
 end

 FIFTEEN:
 if (nickel_in) D = TWENTY;
 else if (dime_in) D = TWENTY_FIVE;
 else if (quarter_in) begin
 ‘vend_a_drink;
 nickel_out = 1;
 end

 THIRTY:
 if (nickel_in) ‘vend_a_drink;
 else if (dime_in) begin
 ‘vend_a_drink;
 nickel_out = 1;
 end
 else if (quarter_in) begin
 ‘vend_a_drink;
 dime_out = 1;
 D = OWE_DIME;
 end

 TWENTY:
 if (nickel_in) D = TWENTY_FIVE;
 else if (dime_in) D = THIRTY;
 else if (quarter_in) begin
 ‘vend_a_drink;
 dime_out = 1;
 end

 OWE_DIME:
 begin
 dime_out = 1;
 D = IDLE;
 end
 endcase
 end
end

always @ (posedge clk) begin
 Q = D;
end
endmodule
A-9

Examples

Figure A-3 Drink Machine—State Machine Version Block Diagram

Drink Machine—Count Nickels Version

Example A-4 uses the same design parameters as Example A-4 with
the same input and output signals. In this version, a counter counts
the number of nickels deposited. This counter is incremented by one
if the deposit is a nickel, by two if it’s a dime, and by five if it’s a quarter.

Example A-4 Drink Machine—Count Nickels Version
module drink_machine(nickel_in,dime_in,quarter_in,collect,
 nickel_out,dime_out,dispense,reset,clk);

input nickel_in, dime_in, quarter_in, reset, clk;
output nickel_out, dime_out, collect, dispense;

reg nickel_out, dime_out, dispense, collect;
reg [3:0] nickel_count, temp_nickel_count;
reg temp_return_change, return_change;
A-10

Examples

 always @ (nickel_in or dime_in or quarter_in or
 collect or temp_nickel_count or
 reset or nickel_count or return_change) begin

nickel_out = 0;
dime_out = 0;
dispense = 0;
collect = 0;
temp_nickel_count = 0;
temp_return_change = 0;

// Check whether money has come in
if (! reset) begin

temp_nickel_count = nickel_count;
if (nickel_in)
 temp_nickel_count = temp_nickel_count + 1;
else if (dime_in)
 temp_nickel_count = temp_nickel_count + 2;
else if (quarter_in)
 temp_nickel_count = temp_nickel_count + 5;

// correct amount deposited?
if (temp_nickel_count >= 7) begin

temp_nickel_count = temp_nickel_count - 7;
dispense = 1;
collect = 1;

end
// return change
if (return_change || collect) begin

if (temp_nickel_count >= 2) begin
 dime_out = 1;
 temp_nickel_count = temp_nickel_count - 2;
 temp_return_change = 1;
end

if (temp_nickel_count == 1) begin
 nickel_out = 1;
 temp_nickel_count = temp_nickel_count - 1;
end

end
end

end
always @ (posedge clk) begin

nickel_count = temp_nickel_count;
return_change = temp_return_change;

end
endmodule
A-11

Examples

Figure A-4 Drink Machine—Count Nickels Version Block Diagram

Carry-Lookahead Adder

Figure A-5 and Example A-5 show how to build a 32-bit carry-
lookahead adder. The adder is built by partitioning of the 32-bit input
into eight slices of 4 bits each. The PG module computes propagate
and generate values for each of the eight slices.

Propagate (output P from PG) is 1 for a bit position if that position
propagates a carry from the next-lower position to the next-higher
position. Generate (output G) is 1 for a bit position if that position
generates a carry to the next-higher position, regardless of the carry-
in from the next-lower position.

The carry-lookahead logic reads the carry-in, propagate, and
generate information computed from the inputs. It computes the carry
value for each bit position. This logic makes the addition operation
an XOR of the inputs and the carry values.
A-12

Examples

The following list shows the order in which the carry values are
computed by a three-level tree of 4-bit carry-lookahead blocks
(illustrated in Figure A-4):

1. The first level of the tree computes the 32 carry values and the 8
group propagate and generate values. Each of the first-level group
propagate and generate values tells if that 4-bit slice propagates
and generates carry values from the next-lower group to the next-
higher. The first-level lookahead blocks read the group carry
computed at the second level.

2. At the second level of the tree, the lookahead blocks read the
group propagate and generate information from the four first-level
blocks and then compute their own group propagate and generate
information. They also read group carry information computed at
the third level to compute the carries for each of the third-level
blocks.

3. At the third level of the tree, the third-level block reads the
propagate and generate information of the second level to
compute a propagate and generate value for the entire adder. It
also reads the external carry to compute each second-level carry.
The carry-out for the adder is 1 if the third-level generate is 1 or
if the third-level propagate is 1 and the external carry is 1.

The third-level carry-lookahead block can process four second-
level blocks. Because there are only two second-level blocks in
Figure A-4, the high-order 2 bits of the computed carry are
ignored, the high-order 2 bits of the generate input to the third-
level are set to 00 (zero), and the propagate high-order bits are
set to 11. This causes the unused portion to propagate carries
but not to generate them.

Figure A-5 shows the three levels of a block diagram of the 32-bit
carry-lookahead adder. Example A-5 shows the code for the adder.
A-13

Examples

Figure A-5 Carry-Lookahead Adder Block Diagram

CIN COUT 27:24

P
G

GP
GG

CLA

CIN COUT 23:20

P
G

GP
GG

CLA

CIN COUT 19:16

P
G

GP
GG

CLA

CIN COUT 31:28

P
G

GP
GG

CLA

0

A 27:24
B 27:24

P
G

PG

A 31:28
B 31:28

P
G

PG

A 23:20
B 23:20

P
G

PG

A 19:16
B 19:16

P
G

PG

CIN

P
G

COUT

GP
GG

CLA

CIN

P
G

COUT

GP
GG

CLA

7
7

4
4

6
6

5
5

1

CIN COUT 11:8

P
G

GP
GG

CLA

CIN COUT 7:4

P
G

GP
GG

CLA

CIN COUT 3:0

P
G

GP
GG

CLA

CIN COUT 15:12

P
G

GP
GG

CLA

A 11:8
B 11:8

P
G

PG

A 15:12
B 15:12

P
G

PG

A 7:4
B 7:4

P
G

PG

A 3:0
B 3:0

P
G

PG

CIN

P
G

COUT

GP
GG

CLA

3
3

0
0

2
2

1
1

0

1

GGGG or (GGGP and CIN)

GC 7:4

GC 3:0
GGGP

GGGG

GGC

CIN
B A

XOR

S

"00"

3:2
"11"

3:2

third-level

second-level

first-level

1

0

COUT

GP 7:4

GP 3:0

GG 7:4

GG 3:0

GGP

GGG

7

6

5

4

1

2

3

0

 blocks

 blocks

 block
A-14

Examples

Example A-5 Carry-Lookahead Adder
‘define word_size 32
‘define word [‘word_size-1:0]

‘define n 4
‘define slice [‘n-1:0]

‘define s0 (1*‘n)-1:0*‘n
‘define s1 (2*‘n)-1:1*‘n
‘define s2 (3*‘n)-1:2*‘n
‘define s3 (4*‘n)-1:3*‘n
‘define s4 (5*‘n)-1:4*‘n
‘define s5 (6*‘n)-1:5*‘n
‘define s6 (7*‘n)-1:6*‘n
‘define s7 (8*‘n)-1:7*‘n

module cla32_4(a, b, cin, s, cout);
input ‘word a, b;
input cin;
output ‘word s;
output cout;

 wire [7:0] gg, gp, gc; // Group generate, propagate,
// carry

 wire [3:0] ggg, ggp, ggc;// Second-level gen., prop.
 wire gggg, gggp; // Third-level gen., prop.

 bitslice i0(a[‘s0], b[‘s0], gc[0], s[‘s0], gp[0], gg[0]);
 bitslice i1(a[‘s1], b[‘s1], gc[1], s[‘s1], gp[1], gg[1]);
 bitslice i2(a[‘s2], b[‘s2], gc[2], s[‘s2], gp[2], gg[2]);
 bitslice i3(a[‘s3], b[‘s3], gc[3], s[‘s3], gp[3], gg[3]);

 bitslice i4(a[‘s4], b[‘s4], gc[4], s[‘s4], gp[4], gg[4]);
 bitslice i5(a[‘s5], b[‘s5], gc[5], s[‘s5], gp[5], gg[5]);
 bitslice i6(a[‘s6], b[‘s6], gc[6], s[‘s6], gp[6], gg[6]);
 bitslice i7(a[‘s7], b[‘s7], gc[7], s[‘s7], gp[7], gg[7]);

 cla c0(gp[3:0], gg[3:0], ggc[0], gc[3:0], ggp[0], ggg[0]);
 cla c1(gp[7:4], gg[7:4], ggc[1], gc[7:4], ggp[1], ggg[1]);

 assign ggp[3:2] = 2’b11;
 assign ggg[3:2] = 2’b00;
 cla c2(ggp, ggg, cin, ggc, gggp, gggg);
 assign cout = gggg | (gggp & cin);
endmodule

// Compute sum and group outputs from a, b, cin
A-15

Examples

module bitslice(a, b, cin, s, gp, gg);
input ‘slice a, b;
input cin;
output ‘slice s;
output gp, gg;

 wire ‘slice p, g, c;
 pg i1(a, b, p, g);
 cla i2(p, g, cin, c, gp, gg);
 sum i3(a, b, c, s);
endmodule

// compute propagate and generate from input bits

module pg(a, b, p, g);
input ‘slice a, b;
output ‘slice p, g;

 assign p = a | b;
 assign g = a & b;
endmodule

// compute sum from the input bits and the carries

module sum(a, b, c, s);
input ‘slice a, b, c;
output ‘slice s;

 wire ‘slice t = a ^ b;
 assign s = t ^ c;
endmodule

// n-bit carry-lookahead block

module cla(p, g, cin, c, gp, gg);
input ‘slice p, g;// propagate and generate bits
input cin; // carry in
output ‘slice c; // carry produced for each bit
output gp, gg; // group generate and group propagate

 function [99:0] do_cla;
 input ‘slice p, g;
 input cin;

 begin : label
 integer i;
 reg gp, gg;
 reg ‘slice c;
A-16

Examples

 gp = p[0];
 gg = g[0];
 c[0] = cin;
 for(i = 1; i < ‘n; i = i+1) begin
 gp = gp & p[i];
 gg = (gg & p[i]) | g[i];
 c[i] = (c[i-1] & p[i-1]) | g[i-1];
 end
 do_cla = {c, gp, gg};
 end
 endfunction

 assign {c, gp, gg} = do_cla(p, g, cin);
endmodule
A-17

Examples

A-18

Examples

B
Verilog Syntax B

This appendix contains a syntax description of the Verilog language
as supported by Synopsys FPGA Compiler II / FPGA Express. It
covers the following topics:

• Syntax

• Lexical Conventions

• Verilog Keywords

• Unsupported Verilog Language Constructs

Syntax

This section presents the syntax of the supported Verilog language
in Backus-Naur form (BNF) and the syntax formalism.
B-1

Verilog Syntax

Note:
The BNF syntax convention used in this section differs from the
Synopsys syntax convention used elsewhere in this manual.

BNF Syntax Formalism

White space separates lexical tokens.

name
is a keyword.

<name>
is a syntax construct definition.

<name>
is a syntax construct item.

<name>?
is an optional item.

<name>*
is zero, one, or more items.

<name>+
is one or more items.

<port> <,<port>>*
is a comma-separated list of items.

::=
gives a syntax definition to an item.

||=
refers to an alternative syntax construct.
B-2

Verilog Syntax

BNF Syntax

<source_text>
 ::= <description>*

<description>
 ::= <module>

<module>
 ::= module <name_of_module> <list_of_ports>? ;
 <module_item>*
 endmodule

<name_of_module>
 ::= <IDENTIFIER>

<list_of_ports>
 ::= (<port> <,<port>>*)
 ||= ()

<port>
 ::= <port_expression>?
 ||= . <name_of_port> (<port_expression>?)

<port_expression>
 ::= <port_reference>
 ||= { <port_reference> <, <port_reference>>* }

<port_reference>
 ::= <name_of_variable>
 ||= <name_of_variable> [<expression>]
 ||= <name_of_variable> [<expression> : <expression>]

<name_of_port>
 ::= <IDENTIFIER>

<name_of_variable>
 ::= <IDENTIFIER>
B-3

Verilog Syntax

<module_item>
 ::= <parameter_declaration>
 ||= <input_declaration>
 ||= <output_declaration>
 ||= <inout_declaration>
 ||= <net_declaration>
 ||= <reg_declaration>
 ||= <integer_declaration>
 ||= <gate_instantiation>
 ||= <module_instantiation>
 ||= <continuous_assign>
 ||= <function>

<function>
 ::= function <range>? <name_of_function> ;
 <func_declaration>*
 <statement_or_null>
 endfunction

<name_of_function>
 ::= <IDENTIFIER>

<func_declaration>
 ::= <parameter_declaration>
 ||= <input_declaration>
 ||= <reg_declaration>
 ||= <integer_declaration>

<always>
 ::= always @ (<identifier> or <identifier>)
 ||= always @ (posedge <identifier>)
 ||= always @ (negedge <identifier>)
 ||= always @ (<edge> or <edge> or ...)

<edge>
 ::= posedge <identifier>
 ||= negedge <identifier>

<parameter_declaration>
 ::= parameter <range>? <list_of_assignments> ;
B-4

Verilog Syntax

<input_declaration>
 ::= input <range>? <list_of_variables> ;

<output_declaration>
 ::= output <range>? <list_of_variables> ;

<inout_declaration>
 ::= inout <range>? <list_of_variables> ;

<net_declaration>
 ::= <NETTYPE> <charge_strength>? <expandrange>? <delay>?
<list_of_variables> ;
 ||= <NETTYPE> <drive_strength>? <expandrange>? <delay>?
<list_of_assignments> ;

<NETTYPE>
 ::= wire
 ||= wor
 ||= wand
 ||= tri

<expandrange>
 ::= <range>
 ||= scalared <range>
 ||= vectored <range>

<reg_declaration>
 ::= reg <range>? <list_of_register_variables> ;

<integer_declaration>
 ::= integer <list_of_integer_variables> ;
<continuous_assign>
 ::= assign <drive_strength>? <delay>?
 <list_of_assignments>;

<list_of_variables>
 ::= <name_of_variable> <, <name_of_variable>>*

<name_of_variable>
 ::= <IDENTIFIER>
B-5

Verilog Syntax

<list_of_register_variables>
 ::= <register_variable> <, <register_variable>>*

<register_variable>
 ::= <IDENTIFIER>

<list_of_integer_variables>
 ::= <integer_variable> <, <integer_variable>>*

<integer_variable>
 ::= <IDENTIFIER>

<charge_strength>
 ::= (small)
 ||= (medium)
 ||= (large)

<drive_strength>
 ::= (<STRENGTH0> , <STRENGTH1>)
 ||= (<STRENGTH1> , <STRENGTH0>)

<STRENGTH0>
 ::= supply0
 ||= strong0
 ||= pull0
 ||= weak0
 ||= highz0

<STRENGTH1>
 ::= supply1
 ||= strong1
 ||= pull1
 ||= weak1
 ||= highz1

<range>
 ::= [<expression> : <expression>]

<list_of_assignments>
 ::= <assignment> <, <assignment>>*
B-6

Verilog Syntax

<gate_instantiation>
 ::= <GATETYPE> <drive_strength>? <delay>?
 <gate_instance> <, <gate_instance>>* ;

<GATETYPE>
 ::= and
 ||= nand
 ||= or
 ||= nor
 ||= xor
 ||= xnor
 ||= buf
 ||= not

<gate_instance>
 ::= <name_of_gate_instance>? (<terminal>
 <, <terminal>>*)

<name_of_gate_instance>
 ::= <IDENTIFIER>

<terminal>
 ::= <identifier>
 ||= <expression>

<module_instantiation>
 ::= <name_of_module> <parameter_value_assignment>?
 <module_instance> <, <module_instance>>* ;

<name_of_module>
 ::= <IDENTIFIER>

<parameter_value_assignment>
 ::= #(<expression> <,<expression>>*)

<module_instance>
 ::= <name_of_module_instance>
 (<list_of_module_terminals>?)

<name_of_module_instance>
 ::= <IDENTIFIER>
B-7

Verilog Syntax

<list_of_module_terminals>
 ::= <module_terminal>? <,<module_terminal>>*
 ||= <named_port_connection> <,<named_port_connection>>*

<module_terminal>
 ::= <identifier>
 ||= <expression>

<named_port_connection>
 ::= . IDENTIFIER (<identifier>)
 ||= . IDENTIFIER (<expression>)

<statement>
 ::= <assignment>
 ||= if (<expression>)
 <statement_or_null>
 ||= if (<expression>)
 <statement_or_null>
 else
 <statement_or_null>
 ||= case (<expression>)
 <case_item>+
 endcase
 ||= casex (<expression>)
 <case_item>+
 endcase
 ||= casez (<expression>)
 <case_item>+
 endcase
 ||= for (<assignment> ; <expression> ; <assignment>)
 <statement>
 ||= <seq_block>
 ||= disable <IDENTIFIER> ;
 ||= forever <statement>
 ||= while (<expression>) <statement>

<statement_or_null>
 ::= statement
 ||= ;

<assignment>
 ::= <lvalue> = <expression>
B-8

Verilog Syntax

<case_item>
 ::= <expression> <,<expression>>* :
<statement_or_null>
 ||= default : <statement_or_null>
 ||= default <statement_or_null>

<seq_block>
 ::= begin
 <statement>*
 end
 ||= begin : <name_of_block>
 <block_declaration>*
 <statement>*
 end

<name_of_block>
 ::= <IDENTIFIER>

<block_declaration>
 ::= <parameter_declaration>
 ||= <reg_declaration>
 ||= <integer_declaration>

<lvalue>
 ::= <IDENTIFIER>
 ||= <IDENTIFIER> [<expression>]
 ||= <concatenation>

<expression>
 ::= <primary>
 ||= <UNARY_OPERATOR> <primary>
 ||= <expression> <BINARY_OPERATOR>
 ||= <expression> ? <expression> : <expression>

<UNARY_OPERATOR>
 ::= !
 ||= ~
 ||= &
 ||= ~&
 ||= |
 ||= ~|
 ||= ^
B-9

Verilog Syntax

 ||= ~^
 ||= -
 ||= +

<BINARY_OPERATOR>
 ::= +
 ||= -
 ||= *
 ||= /
 ||= %
 ||= ==
 ||= !=
 ||= &&
 ||= ||
 ||= <
 ||= <=
 ||= >
 ||= >=
 ||= &
 ||= |
 ||= <<
 ||= >>

<primary>
 ::= <number>
 ||= <identifier>
 ||= <identifier> [<expression>]
 ||= <identifier> [<expression> : <expression>]
 ||= <concatenation>
 ||= <multiple_concatenation>
 ||= <function_call>
 ||= (<expression>)

<number>
 ::= <NUMBER>
 ||= <BASE> <NUMBER>
 ||= <SIZE> <BASE> <NUMBER>

<NUMBER>
B-10

Verilog Syntax

A number can have any of these characters:
0123456789abcdefxzABCDEFXZ.

<SIZE>
 ::= ’b
 ||= ’B
 ||= ’o
 ||= ’O
 ||= ’d
 ||= ’D
 ||= ’h
 ||= ’H

<SIZE>

A size can have any number of these digits: 0123456789

<concatenation>
 ::= { <expression> <,<expression>>* }

<multiple_concatenation>
 ::= { <expression> { <expression> <,<expression>>* } }

<function_call>
 ::= <name_of_function> (<expression> <,<expression>>*)

<name_of_function>
 ::= <IDENTIFIER>

<identifier>

An identifier is any sequence of letters, digits, and the underscore
character (_), where the first character is a letter or an underscore.
Uppercase and lowercase letters are treated as different characters.
Identifiers can be any size, and all characters are significant. Escaped
identifiers start with the backslash character (\) and end with a space.
B-11

Verilog Syntax

The leading backslash character (\) is not part of the identifier. Use
escaped identifiers to include any printable ASCII characters in an
identifier.

<delay>
 ::= # <NUMBER>
 ||= # <identifier>
 ||= # (<expression> <,<expression>>*)

Lexical Conventions

The lexical conventions FPGA Compiler II / FPGA Express uses are
nearly identical to those of the Verilog language. The types of lexical
tokens FPGA Compiler II / FPGA Express uses are described in the
following subsections:

• White Space

• Comments

• Numbers

• Identifiers

• Operators

• Macro Substitution

• include Construct

• Simulation Directives

• Verilog System Functions
B-12

Verilog Syntax

White Space

White space separates words in the input description and can contain
spaces, tabs, new lines, and form feeds. You can place white space
anywhere in the description. FPGA Compiler II / FPGA Express
ignores white space.

Comments

You can enter comments anywhere in a Verilog description, in two
forms:

• Beginning with two slashes //

FPGA Compiler II / FPGA Express ignores all text between these
characters and the end of the current line.

• Beginning with the two characters /* and ending with */

FPGA Compiler II / FPGA Express ignores all text between these
characters, so you can continue comments over more than one
line.

Note:
You cannot nest comments.

Numbers

You can declare numbers in several different radices and bit-widths.
A radix is the base number on which a numbering system is built. For
example, the binary numbering system has a radix of 2, octal has a
radix of 8, and decimal has a radix of 10.
B-13

Verilog Syntax

You can use these three number formats:

• A simple decimal number that is a sequence of digits in the range
of 0 to 9. All constants declared this way are assumed to be 32-
bit numbers.

• A number that specifies the bit-width as well as the radix. These
numbers are the same as those in the previous format, except
that they are preceded by a decimal number that specifies the bit-
width.

• A number followed by a two-character sequence prefix that
specifies the number’s size and radix. The radix determines which
symbols you can include in the number. Constants declared this
way are assumed to be 32-bit numbers. Any of these numbers
can include underscores (_), which improve readability and do
not affect the value of the number. Table B-1 summarizes the
available radices and valid characters for the number.

Example B-1 shows some valid number declarations.

Example B-1 Valid Verilog Number Declarations

391 // 32-bit decimal number
’h3a13 // 32-bit hexadecimal number
10’o1567 // 10-bit octal number
3’b010 // 3-bit binary number
4’d9 // 4-bit decimal number
40’hFF_FFFF_FFFF // 40-bit hexadecimal number
2’bxx // 2-bits don’t care

Table B-1 Verilog Radices

Name Character Prefix Valid Characters

Binary ’b 0 1 x X z Z _ ?

Octal ’o 0–7 x X z Z _ ?

Decimal ’d 0–9 _

Hexadecimal ’h 0–9 a–f A–F x X z Z _ ?
B-14

Verilog Syntax

3’bzzz // 3-bits high-impedance

Identifiers

Identifiers are user-defined words for variables, function names,
module names, and instance names. Identifiers can be composed of
letters, digits, and the underscore character (_). The first character
of an identifier cannot be a number. Identifiers can be any length.
Identifiers are case-sensitive, and all characters are significant.

Identifiers that contain special characters, begin with numbers, or
have the same name as a keyword can be specified as an escaped
identifier. An escaped identifier starts with the backslash character
(\), followed by a sequence of characters, followed by white space.

Some escaped identifiers are shown in Example B-2.

Example B-2 Sample Escaped Identifiers

\a+b \3state
\module \(a&b)|c

The Verilog language supports the concept of hierarchical names,
which can be used to access variables of submodules directly from
a higher-level module. These are partially supported by FPGA
Compiler II / FPGA Express. (For more information, see
“Unsupported Verilog Language Constructs” on page B-20.)

Operators

Operators are one- or two-character sequences that perform
operations on variables. Some examples of operators are +, ~^, <=,
and >>. Operators are described in detail in “Operators” on page 4-3.
B-15

Verilog Syntax

Macro Substitution

Macro substitution assigns a string of text to a macro variable. The
string of text is inserted into the code where the macro is encountered.
The definition begins with the back quotation mark (‘), followed by the
keyword define, followed by the name of the macro variable. All text
from the macro variable until the end of the line is assigned to the
macro variable.

You can declare and use macro variables anywhere in the description.
The definitions can carry across several files that are read into FPGA
Compiler II / FPGA Express at the same time. To make a macro
substitution, type a back quotation mark (‘) followed by the macro
variable name.

Some sample macro variable declarations are shown in Example B-3.

Example B-3 Macro Variable Declarations

‘define highbits 31:29
‘define bitlist {first, second, third}
wire [31:0] bus;
‘bitlist = bus[‘highbits];

Text macros are not supported when used with sized constants, as
shown in Example B-4.
B-16

Verilog Syntax

Example B-4 Macro With Sized Constants

‘define SIZE 4

module test (in,out);
output [3:0] out;
input [3:0] in;

assign out = ’SIZE’b0101; //text macro from ‘define statement
 //cannot be used with a sized constant

endmodule

include Construct

The include construct in Verilog is similar to the #include directive
in C. You can use this construct to include Verilog code, such as type
declarations and functions, from one module in another module.
Example B-5 shows an application of the include construct.

Example B-5 Including a File Within a File

Contents of file1.v

‘define WORDSIZE 8
function [WORDSIZE-1:0] fastadder;
.
.
endfunction

Contents of secondfile

module secondfile (in1,in2,out)
‘include file1.v
wire [WORDSIZE-1:0] temp;
assign temp = fastadder (in1,in2);
.
.
endmodule
B-17

Verilog Syntax

Included files can include other files, with up to 24 levels of nesting.
You cannot use the include construct recursively.

Simulation Directives

Simulation directives refer to special commands that affect the
operation of the Verilog HDL Simulator. You can include these
directives in your design description, because FPGA Compiler II /
FPGA Express parses and ignores them:

‘accelerate
‘celldefine
‘default_nettype
‘endcelldefine
‘endprotect
‘expand_vectornets
‘noaccelerate
‘noexpand_vectornets
‘noremove_netnames
‘nounconnected_drive
‘protect
‘remove_netnames
‘resetall
‘timescale
‘unconnected_drive

Verilog System Functions

Verilog system functions are special functions Verilog HDL Simulators
implement to generate input or output during simulation. Their names
start with a dollar sign ($). These functions are parsed and ignored
by FPGA Compiler II / FPGA Express.
B-18

Verilog Syntax

Verilog Keywords

Verilog uses keywords, shown in Table B-2, to interpret an input file.
You cannot use these words as user variable names unless you use
an escaped identifier. For more information, see “Identifiers” on
page B-15.

Table B-2 Verilog Keywords
always force or trireg

and forever output table

assign fork parameter task

begin function pmos time

buf highz0 posedge tran

bufif0 highz1 primitive tranif0

bufif1 if pull0 tranif1

case initial pull1 tri

casex inout rcmos triand

casez input reg tri0

cmos integer release tri1

deassign join repeat vectored

default large rnmos wait

defparam medium rpmos wand

disable module rtran weak0

end nand rtranif0 weak1

endcase negedge rtranif1 while

endfunction nmos scalared wire

endmodule nor small wor

endprimitive not strong0 xnor

endtable notif0 strong1 xor

endtask notif1 supply0

event pulldown supply1

for pullup trior
B-19

Verilog Syntax

Unsupported Verilog Language Constructs

FPGA Compiler II / FPGA Express does not support the following
Verilog constructs:

• Unsupported definitions and declarations

- primitive definition

- time declaration

- event declaration

- triand, trior, tri1, tri0, and trireg net types

- Ranges and arrays for integers

• Unsupported statements

- defparam statement

- initial statement

- repeat statement

- delay control

- event control

- wait statement

- fork statement

- deassign statement

- force statement

- release statement
B-20

Verilog Syntax

• Unsupported operators

- Case equality and inequality operators (=== and !==)

- Division and modulus operators for variables

• Unsupported gate-level constructs

- nmos, pmos, cmos, rnmos, rpmos, rcmos, pullup, pulldown,
tranif0, tranif1, rtran, rtrainf0, and rtrainf1 gate types

• Unsupported miscellaneous constructs

- Hierarchical names within a module

Constructs added to the Verilog Simulator in versions after Verilog
1.6 might not be supported.

If you use an unsupported construct in a Verilog description, FPGA
Compiler II / FPGA Express issues a syntax error such as

event is not supported
B-21

Verilog Syntax

B-22

Verilog Syntax

Glossary

anonymous type
A predefined or underlying type with no name, such as universal
integers.

ASIC
Application-specific integrated circuit.

behavioral view
The set of Verilog statements that describe the behavior of a design
by using sequential statements. These statements are similar in
expressive capability to those found in many other programming
languages. See also the data flow view, sequential statement, and
structural view definitions.

bit-width
The width of a variable, signal, or expression in bits. For example,
the bit-width of the constant 5 is 3 bits.

character literal
Any value of type CHARACTER, in single quotation marks.

computable
Any expression whose (constant) value FPGA Compiler II / FPGA
Express can determine during translation.
GL-1

constraints
The designer’s specification of design performance goals. FPGA
Compiler II / FPGA Express uses constraints to direct the
optimization of a design to meet area and timing goals.

convert
To change one type to another. Only integer types and subtypes are
convertible, along with same-sized arrays of convertible element
types.

data flow view
The set of VHDL/Verilog statements that describe the behavior of a
design by using concurrent statements. These descriptions are
usually at the level of Boolean equations combined with other
operators and function calls. See also the behavioral view and
structural view definitions.

design constraints
See constraints.

flip-flop
An edge-sensitive memory device.

HDL
Hardware Description Language.

identifier
A sequence of letters, underscores, and numbers. An identifier
cannot be a VHDL/Verilog reserved word, such as type or loop. An
identifier must begin with a letter or an underscore.

latch
A level-sensitive memory device.

netlist
A network of connected components that together define a design.
GL-2

optimization
The modification of a design in an attempt to improve some
performance aspect. FPGA Compiler II / FPGA Express optimizes
designs and tries to meet specified design constraints for area and
speed.

port
A signal declared in the interface list of an entity.

reduction operator
An operator that takes an array of bits and produces a single-bit
result, namely the result of the operator applied to each successive
pair of array elements.

register
A memory device containing one or more flip-flops or latches used
to hold a value.

resource sharing
The assignment of a similar VHDL/Verilog operation (for example,
+) to a common netlist cell. Netlist cells are the resources—they are
equivalent to built hardware.

RTL
Register transfer level, a set of structural and data flow statements.

sequential statement
A set of VHDL/Verilog statements that execute in sequence.

signed value
A value that can be positive, zero, or negative.

structural view
The set of VHDL/Verilog statements used to instantiate primitive
and hierarchical components in a design. A VHDL/Verilog design at
the structural level is also called a netlist. See also the behavioral
view and data flow view definitions.
GL-3

subtype
A type declared as a constrained version of another type.

synthesis
The creation of optimized circuits from a high-level description.
When VHDL/Verilog is used, synthesis is a two-step process:
translation from VHDL/Verilog to gates and optimization of those
gates for a specific FPGA library.

technology library
A library of cells available to FPGA Compiler II / FPGA Express
during the synthesis process. A technology library can contain area,
timing, and functional information on each cell.

translation
The mapping of high-level language constructs onto a lower-level
form. FPGA Compiler II / FPGA Express translates RTL VHDL/
Verilog descriptions to gates.

type
In VHDL/Verilog, the mechanism by which objects are restricted in
the values they are assigned and the operations that can be applied
to them.

unsigned
A value that can be only positive or zero.

variable
An electrical quantity that can be used to transmit information. A
signal is declared with a type and receives its value from one or
more drivers. Signals are created in Verilog through either wire or
reg declarations.

VHDL
VHSIC hardware description language.
GL-4

VHSIC
Very high speed integrated circuit, a high-technology program of the
United States Department of Defense.
GL-5

GL-6

Index

Symbols
! (logical NOT operator) 4-8
!= (inequality operator) 4-6
% (modulus operator) 4-4
& (binary bitwise AND operator) 4-9
& (reduction AND operator) 4-10
&& (logical AND operator) 4-8
–(subtraction operator) 4-4
* (multiplication operator) 4-4
+ (addition operator) 4-4
/ (division operator) 4-4
// synopsys enum 8-10
// synopsys full_case 8-5
// synopsys parallel_case 8-4

circuitry synthesized for 8-4
// synopsys state_vector 8-8
// synopsys translate_off 8-2
// synopsys translate_on 8-2
== (equality operator) 4-6
> (greater than operator) 4-5
>= (greater than or equal to operator) 4-5
?: (conditional operator) 4-12
^ (binary bitwise XOR operator) 4-9
^ (reduction XOR operator) 4-10
^~ (binary bitwise XNOR operator) 4-9

^~ (reduction XNOR operator) 4-10
{} (concatenation operator) 4-13
| (binary bitwise OR operator) 4-9
| (reduction OR operator) 4-10
|| (logical OR operator) 4-8
~ (unary negation operator) 4-9
~& (reduction NAND operator) 4-10
~^ (binary bitwise XNOR operator) 4-9
~^ (reduction XNOR operator) 4-10
~| (reduction NOR operator) 4-10

A
adder tree

balanced 7-8
addition operator (+) 4-4
always block 5-34

clocks 5-35
edge syntax B-4
event expression 5-34, 5-35
event specification 5-37
grouping triggers 5-34
in functional descriptions 2-3
in modules 3-7
negedge in 5-36
posedge in 5-36
syntax B-4
IN-1

AND binary bitwise operator (&) 4-9
AND logical operator (&&) 4-8
AND reduction operator (&) 4-10
and, connection list 3-21
apparently sequential constructs 5-2
arithmetic optimization

considering overflow from carry bits 7-11
introduction 7-7

assign 3-15
async_set_reset 6-4
async_set_reset_local_all 6-5
asynchronous designs

optimization 7-34
asynchronous preload 5-36

B
balanced adder tree 7-8
begin-end 5-14
begin-end pair 5-4
bidirectional port 3-15
binary bitwise AND operator (&) 4-9
binary bitwise OR operator (|) 4-9
binary bitwise XNOR operator (^~ or ~^) 4-9
binary bitwise XOR operator (^) 4-9
binary numbers B-13
binary operators 4-3, B-10
bit-select

definition 4-17
from an enumerated type 8-15

bit-width
expression 4-19
in module instantiation 3-17
prefix for numbers B-14
specifying in numbers B-14

bitwise operator 4-9
binary AND 4-9
binary OR (|) 4-9
binary XNOR (^~ or ~^) 4-9
binary XOR (^) 4-9

unary negation (~) 4-9
block

begin in 5-14
end in 5-14
named 5-14
sequential 5-14
statements 5-14
syntax B-9
variables in named 5-15

buf 3-21
buffer instantiation 3-22

C
call

function 5-3
carry-lookahead adder chain 7-4
case

avoiding latch and register inference 5-20
case item 5-19
circuitry synthesized 8-4
default 5-20
latch inference 5-20, 8-6
multiple expressions in 5-19
register inference 5-20
statement 5-18

full case 5-20
parallel case 5-21

case item 5-19, 5-23, 5-26
syntax B-9

casex
case item 5-23
statement 5-22

casez
case item 5-26
statement 5-25

charge strength, syntax of B-6
circuitry

efficient 7-1
combinational feedback path 7-32
combinational logic
IN-2

apparently sequential constructs 5-2
in functional descriptions 2-3

comments
HDL Compiler directives 8-2
lexical conventions B-13

common subexpressions
sharing 7-13

component implication
distinct component

syntax 8-16
instantiation 8-16
registers 6-1

component organization 7-3
concatenation

in procedural assignment 5-10
operand 3-4, 4-19
operator 4-19
syntax B-11

concatenation operator ({}) 4-13
number of operands 4-3
repetition multiplier 4-13
unsized constants 4-13

conditional operator 4-12
nested 4-12
number of operands 4-3

conditional statement 5-15
conditionally assigned variable

reading 5-18, 6-19
connection list 3-17

terminals 3-17
constant

in number operands 4-16
sized 4-16
unsized 4-16, B-14

constant propagation 7-31
constant-valued expression

definition 4-2
in range specifications 3-8
represented in parameters 3-8
synthesized circuitry 4-2

construct 3-7

unsupported B-20
context-determined operands 4-19
continuous assignment 2-3

drive strength in 3-16
driving a wire 3-9
in a wire declaration 3-15
in function declarations 5-3
in modules 3-7
left side of 3-16
right side of 3-16
syntax B-5

D
data assignments 3-7
data declarations 3-7
decimal numbers B-13
declarations

function 5-3
input 5-5
integer 5-9
parameter 5-8
register 5-6

decrementing loop 5-27
default 5-20
define B-16
definitions

register inference 6-1
delay

gate-level options 3-21
syntax B-12

delay value 3-11
description style 2-6
descriptions

logically equivalent 7-1
design

efficiency 7-34
Design Compiler

restructuring 1-5
synthesis and optimization 1-5

design flow 1-6
IN-3

design methodology 2-6
directives

enum 8-10
full_case

syntax 8-5
simulation B-18

disable 5-31
in named block 5-31

division operator (/) 4-4
don’t care inference

simulation 7-29
synthesis 7-29

don’t care values 7-28
dot operator (.) 3-6
drive strength

in a continuous assignment 3-16
syntax B-6

E
edge

syntax B-4
efficiency

of descriptions 7-1
endfunction

keyword 5-4
enum directive 8-10
equality operator (==) 4-6
escaped identifier B-15
event

always block 5-35
specification

in always blocks 5-37
event expression

always block 5-34
examples

three-state component
registered input 6-58

two-phase clocked design 6-19
explicit state style

for state machines 7-19

expression tree 7-7
subexpressions in 7-10

expressions
bit-width 4-19
compile-time evaluation 7-31
context determined 4-19
definition 4-1
legal 4-1
self-determined 4-19
syntax B-9
using parentheses in 7-9

F
falling edge 5-35
feedback paths 7-32
finite state machines

describing with explicit state style 7-19
describing with implicit state style 7-19
using state information 7-16

flip-flop
definition 6-1
implying edge-triggered 5-34

for
duplicating statements 5-28
nested 5-27
range expression 5-27

for loops 5-27
begin statement 5-27
end statement 5-27

full case 5-20
full_case directive 8-5
fully specified variable 7-32
function

declaration 5-3
continuous assignments 5-3
module terminals in 5-3

ignored B-18
keyword 5-4
local variables 5-8
outputs 5-5
IN-4

range specification 5-4
syntax B-4

function call 5-3
operand 4-3, 4-18
syntax B-11

function declaration
in functional descriptions 2-3
syntax B-4

function definition
in modules 3-7

function name
syntax B-4, B-11

function statement
begin-end blocks 5-14
case statements 5-18
casex statements 5-22
casez statements 5-25
disable statement 5-31
for loop 5-27
forever 5-30
if ... else construct 5-15
procedural assignment 5-10
supported types 5-9
while loop 5-29

functional description 1-7, 2-3
always blocks in 2-3
combinational logic in 2-3
construction and use 5-1
function declarations in 2-3
mixing with structural descriptions 2-4
sequential logic in 2-3

G
gate

connecting to inout 3-15
gate instance

name, syntax B-7
syntax B-7

gate instantiation
in modules 3-7

syntax B-7
gate types B-7
gate-level constructs 2-3
gate-level modeling 3-20

delay options 3-21
instance names 3-21

global variable
integer 5-9

H
hardware description languages 1-2
HDL

definition 1-2
HDL Compiler

design knowledge 7-7
efficient translations 7-7

HDL Compiler directives
circuitry synthesized for parallel_case 8-4
definition 8-1
enum 8-10
full_case 8-5
full_case used with parallel_case 8-6
parallel_case 8-4
parallel_case used with full_case 8-6
state_vector 8-8
translate_off 8-2
translate_on 8-2

HDL synthesis 1-2
hexadecimal numbers B-13
hierarchical boundaries 2-2
hierarchical constructs 2-3
hierarchical names

not supported B-15
high-impedance state 6-51

I
identifier B-15

escaped B-15
lowercase sensitivity B-11
IN-5

syntax B-11
uppercase sensitivity B-11

if ... else construct 5-15
ignored functions B-18
implicit state style

for state machines 7-19
implying registers 6-1
include construct

example B-17
incompletely specified variable 7-32
incrementing loop 5-27
inequality operator (!=) 4-6
inference report

description 6-51
example 6-2

infinite loops 5-30
inout

connecting to gate 3-15
connecting to module 3-15
declaration 3-7

syntax of B-5
statement 3-15
wire 3-15

input
declaration 3-7, 5-5
ports 3-14
range specifications 5-5
signal 5-5
statement 3-14
structural data type 3-8
wire 3-14

input declaration
definition 5-5
syntax B-5

input statement 3-7, 5-5
instance names

in gate-level modeling 3-21
integer 5-9

declaration 5-9
syntax of B-5

in procedural assignment 5-10

integer variable 5-9
global 5-9
local 5-9
size 5-9

internal design format 1-4

K
keywords B-19

L
language constructs 2-6
latch

definition 6-1
latch inference

avoiding 8-5, 8-7
local variables 6-11

least significant bit 3-8
lexical conventions B-12
local variable 5-8

integer 5-9
logic

combinational 5-2
multipath branch 5-18, 5-22, 5-25

logical AND operator (&&) 4-8
logical NOT operator (!) 4-8
logical OR operator (||) 4-8
loop

decrementing 5-27
incrementing 5-27

lsb (least significant bit) 3-8

M
macro substitution B-16
macro variable B-16
memory construct 5-7

two-dimensional array 5-7
modeling
IN-6

gate-level 3-20
module 3-2, 3-7

connecting to inout 3-15
connection list 3-17
constructs 3-7
instance name, syntax B-7
instance, syntax B-7
instantiation 3-17
instantiation, syntax B-7
name, syntax B-3, B-7
syntax B-3
terminals 3-17

module definition
in structural descriptions 2-3

module instantiation 3-17
bit-widths 3-17
in structural descriptions 2-3
name-based 3-18
named notation 3-18
positional notation 3-18
position-based 3-18

module statement
module instantiations 3-7

module terminals
in function declarations 5-3

modulus operator (%) 4-4
most significant bit 3-8
msb (most significant bit) 3-8
multipath branch 5-18

in casex statement 5-22
in casez statement 5-25

multiplexer
creating with case and parallel_case 8-4

multiplication operator (*) 4-4

N
named block

construct 5-14
disable used in 5-31
syntax B-9

variables in 5-15
named notation 3-18
NAND reduction operator (~&) 4-10
negative edge 5-35
negedge 5-35, 5-36
net types B-5
netlist connection

in structural descriptions 2-3
NOR reduction operator (~|) 4-10
NOT logical operator (!) 4-8
number 4-16

binary B-13
decimal B-13
formats B-13
hexadecimal B-13
octal B-13
operand in expressions 4-16
sized 4-16
specifying bit-width B-14
syntax B-10
unsized 4-16

O
octal numbers B-13
operand 4-1, 4-16

bit-select 4-17
concatenation 3-4, 4-19
constants 4-16
constant-valued 4-4
context-determined 4-19
function call 4-3, 4-18
in expressions 4-16
number 4-16
part-select 4-18
register 4-17
self-determined 4-19
variable 4-4
wire 4-17

operator 4-1, 7-15, B-15
addition (+) 4-4
IN-7

arithmetic 4-4
binary 4-3, B-10
binary bitwise AND (&) 4-9
binary XNOR bitwise operator(^~ or ~^) 4-9
bitwise 4-9
bitwise binary XOR (^) 4-9
bitwise OR (|) 4-9
concatenation ({}) 4-3, 4-13, 4-19
conditional 4-3
conditional (?:) 4-12
definition 4-3
division (/) 4-4
dot (.) 3-6
equality (==) 4-6
inequality (!=) 4-6
lexical conventions B-15
logical and (&&) 4-8
logical not (!) 4-8
logical or (||) 4-8
modulus (%) 4-4
multiplication (*) 4-4
nested conditional 4-12
precedence 4-15
reduction AND (&) 4-10
reduction NAND (~&) 4-10
reduction NOR(~|) 4-10
reduction OR (|) 4-10
reduction XNOR(~^) 4-10
reduction XOR (^) 4-10
relational 4-5
shift left (4-11
shift right (>>) 4-11
subtraction (-) 4-4
unary 4-3, B-9
unary bitwise negation (~) 4-9

OR binary bitwise operator (|) 4-9
OR logical operator (||) 4-8
OR reduction operator (|) 4-10
output

assigning to a function name 5-5
declaration 3-7, 5-5

syntax of B-5
of functions 5-5
port 3-14
reg 3-14
returning multiple 5-5
statement 3-7, 3-14
wire 3-14

overflow characteristics
arithmetic optimization 7-11

P
parallel case 5-21
parallel_case directive 8-4

circuitry synthesized for 8-4
parameter

declaration 3-7, 5-8
syntax of B-4

local variables 5-8
name 3-8
range 3-8
sized 3-8
variables 5-8

parameterized design 3-19
part-select 4-18

operand 4-18
physical circuit description 3-1
port

dot operator 3-6
explicit instantiation 3-18
explicitly renaming 3-6
expression 3-4

bit-select 3-4
concatenation 3-4
identifier 3-4, 3-5
part-select 3-4
syntax B-3

implicit instantiation 3-5, 3-18
input 3-14
list 3-4

syntax of B-3
IN-8

name
syntax B-3

output 3-14
renaming inside module 3-6
syntax B-3

port declarations 3-14
posedge 5-35, 5-36
positional notation 3-18
positive edge 5-35
precedence, operator 4-15
preload 5-36
priority encoder 8-4
procedural assignment

concatenation in 5-10
integer 5-10
left side 5-10
register 5-10
right side 5-10
statement 5-10

R
radices B-13
range

constant-valued expressions 3-8
expression in for loops 5-27
specification 3-8, 5-4

in function declarations 5-4
in inputs 5-5

syntax B-6
reading

conditionally assigned variables 5-18
reduction operator

AND (&) 4-10
NAND (~&) 4-10
NOR (~|) 4-10
OR (|) 4-10
XNOR (^~ or ~^) 4-10
XOR (^) 4-10

reg 5-6
register

declaration 5-6
syntax of B-5

definition of 6-1
holding state information 5-7
in procedural assignments 5-10
inference 6-1
operand 4-17
output 3-14

register inference 2-8
avoiding extra registers 7-24
D latch 6-9
definition 6-1
edge expressions 6-21
efficient circuits 7-24
SR latch 6-7
templates 6-2
wait statement 6-21

relational operators 4-5
resource allocation 7-1
resource sharing 7-1
ripple carry adder chain 7-4
rising edge 5-35

S
sequential

block 5-14
logic

in functional descriptions 2-3
sequential logic 2-4
sharing

common subexpressions
automatically determined 7-13

signals
edge detection 6-21

simulation
directives B-18
don’t care values 7-29
place in the design process 1-7
test vectors 1-7

size syntax B-11
IN-9

state information
holding with a register 5-7
using for efficiency 7-16

state machines
explicit state style 7-19
implicit state style 7-19

state_vector 8-8
statements 3-7
structural data types 3-8
structural description

construction 3-1
elements of 2-3
in design flow 1-7
mixing with functional description 2-4

structure
before optimization 7-3
controlling with parentheses 7-5
preservation 7-3

subexpressions
in an expression tree 7-10

subtraction operator (–) 4-4
sync_set_reset 6-5
sync_set_reset_local 6-5
sync_set_reset_local_all 6-5
syntax B-1

component implication
distinct component 8-16

full_case directive 8-5
of charge strength B-6
Verilog B-1

synthesis policy 2-6
system functions, Verilog B-18

T
task

construct 5-33
statement 5-32

in modules 3-7
terminal

expression 3-17

in function declaration 5-3
syntax B-7

test vectors
simulation 1-7

three-state
gate 6-57
registered input 6-58

three-state buffer instantiation 3-22
three-state gate 6-58
translate_off 8-2
translate_on 8-2
translation 8-2

restart 8-2
suspend 8-2

triggers 5-34
two-phase design 6-19

U
unary negation bitwise operator (~) 4-9
unary operator

definition 4-3
syntax B-9

unassigned variables 5-18
underscore B-11

in numbers B-14
unsupported

Verilog constructs B-20

V
variable

conditionally assigned 5-18, 6-19
in named blocks 5-15
integer 5-9
local in parameters 5-8
operand 4-4
reading 5-18
registering 6-48

verification of description implementation 1-7
Verilog
IN-10

relational operators 4-5
Verilog constructs

unsupported B-20
Verilog hardware descriptions 1-4
Verilog HDL description 1-1
Verilog keywords B-19
Verilog syntax B-1
Verilog system function B-18
VHDL

register inference 2-7

W
wait statement

creating registers 6-21
wand 3-10

wired-AND 3-10
white space

lexical convention B-13
wire 4-17

continuous assignment 3-15
declaration 3-7, 3-9, 3-10
driving with a continuous assignment 3-9
high impedance 3-10
inout 3-15
input 3-14

operand 4-17
output 3-14
structural data type 3-8
undriven 3-10
use in a function 3-9
wired-AND 3-10
wired-OR 3-11

wired-AND 3-10
wired-OR 3-11
wor

wired-OR 3-12
wor data type

wired-OR 3-11

X
XNOR binary bitwise operator (^~ or ~^) 4-9
xnor connection list 3-21
XNOR reduction operator (^~ or ~^) 4-10
XOR binary bitwise operator (^) 4-9
XOR reduction operator (^) 4-10

Z
z undriven wire 3-10
IN-11

	About This Manual
	Table of Contents
	About This Manual
	1. FPGA Compiler II / FPGA Express with Verilog HDL
	Hardware Description Languages 1�2
	FPGA Compiler II / FPGA Express and the Design Process 1�4
	Using FPGA Compiler II / FPGA Express to Compile a Verilog HDL Design 1�5
	Design Methodology 1�6

	2. Description Styles
	Design Hierarchy 2�2
	Structural Descriptions 2�3
	Functional Descriptions 2�3
	Mixing Structural and Functional Descriptions 2�4
	Design Methodology 2�6
	Description Style 2�6
	Language Constructs 2�6

	Register Selection 2�7
	Asynchronous Designs 2�8

	3. Structural Descriptions
	Modules 3�2
	Macromodules 3�3
	Port Definitions 3�4
	Port Names 3�5
	Renaming Ports 3�6

	Module Statements and Constructs 3�7
	Structural Data Types 3�8
	parameter 3�8
	wire 3�9
	wand 3�10
	wor 3�11
	tri 3�12
	supply0 and supply1 3�13
	reg 3�13

	Port Declarations 3�14
	input 3�14
	output 3�14
	inout 3�15

	Continuous Assignment 3�15

	Module Instantiations 3�17
	Named and Positional Notation 3�18
	Parameterized Designs 3�19
	Gate-Level Modeling 3�20
	Three-State Buffer Instantiation 3�22

	4. Expressions
	Constant-Valued Expressions 4�2
	Operators 4�3
	Arithmetic Operators 4�4
	Relational Operators 4�5
	Equality Operators 4�6
	Handling Comparisons to X or Z 4�7
	Logical Operators 4�8
	Bitwise Operators 4�9
	Reduction Operators 4�10
	Shift Operators 4�11
	Conditional Operator 4�12
	Concatenation Operators 4�13
	Operator Precedence 4�15

	Operands 4�16
	Numbers 4�16
	Wires and Registers 4�17
	Bit-Selects 4�17
	Part-Selects 4�18

	Function Calls 4�18
	Concatenation of Operands 4�19

	Expression Bit-Widths 4�19

	5. Functional Descriptions
	Sequential Constructs 5�2
	Function Declarations 5�3
	Input Declarations 5�5
	Output From a Function 5�5
	Register Declarations 5�6
	Memory Declarations 5�7
	Parameter Declarations 5�8
	Integer Declarations 5�9

	Function Statements 5�9
	Procedural Assignments 5�10
	RTL Assignments 5�11
	begin...end Block Statements 5�14
	if...else Statements 5�15
	Conditional Assignments 5�18
	case Statements 5�18
	Full Case and Parallel Case 5�20
	casex Statements 5�22
	casez Statements 5�25
	for Loops 5�27
	while Loops 5�29
	forever Loops 5�30
	disable Statements 5�31

	task Statements 5�32
	always Blocks 5�34
	Event Expression 5�34
	Incomplete Event Specification 5�37

	6. Register and Three-State Inference
	Register Inference 6�1
	The Inference Report 6�2
	Latch Inference Warnings 6�4
	Controlling Register Inference 6�4
	Attributes That Control Register Inference 6�4

	Inferring Latches 6�7
	Inferring SR Latches 6�7
	Inferring D Latches 6�9
	Understanding the Limitations of D Latch Inference 6�19
	Inferring Master-Slave Latches 6�19

	Inferring Flip-Flops 6�21
	Inferring D Flip-Flops 6�21
	Understanding the Limitations of D Flip-Flop Inference 6�35
	Inferring JK Flip-Flops 6�37
	Inferring Toggle Flip-Flops 6�41
	Getting the Best Results 6�46

	Understanding Limitations of Register Inference 6�50

	Three-State Inference 6�51
	Reporting Three-State Inference 6�51
	Controlling Three-State Inference 6�51
	Inferring Three-State Drivers 6�52
	Simple Three-State Driver 6�52
	Registered Three-State Drivers 6�57

	Understanding the Limitations of Three-State Inference 6�60

	7. Writing Circuit Descriptions
	How Statements Are Mapped to Logic 7�2
	Design Structure 7�3
	Using Design Knowledge 7�7
	Optimizing Arithmetic Expressions 7�7
	Arranging Expression Trees for Minimum Delay 7�7
	Sharing Common Subexpressions 7�12

	Using Operator Bit-Width Efficiently 7�15
	Using State Information 7�16
	Describing State Machines 7�19
	Minimizing Registers 7�24
	Separating Sequential and Combinational Assignments 7�27

	Don’t Care Inference 7�28
	Limitations of Using Don’t Care Values 7�29
	Differences Between Simulation and Synthesis 7�29

	Propagating Constants 7�31
	Synthesis Issues 7�31
	Feedback Paths and Latches 7�32
	Synthesizing Asynchronous Designs 7�32

	Designing for Overall Efficiency 7�34
	Describing Random Logic 7�35
	Sharing Complex Operators 7�35

	8. FPGA Compiler II / FPGA Express Directives
	Notation for FPGA Compiler II / FPGA Express Directives 8�2
	translate_off and translate_on Directives 8�2
	parallel_case Directive 8�4
	full_case Directive 8�5
	state_vector Directive 8�8
	enum Directive 8�10
	Component Implication 8�16

	A. Examples
	Count Zeros—Combinational Version A�2
	Count Zeros—Sequential Version A�5
	Drink Machine—State Machine Version A�7
	Drink Machine—Count Nickels Version A�10
	Carry-Lookahead Adder A�12

	B. Verilog Syntax
	Syntax B�1
	BNF Syntax Formalism B�2
	BNF Syntax B�3

	Lexical Conventions B�12
	White Space B�13
	Comments B�13
	Numbers B�13
	Identifiers B�15
	Operators B�15
	Macro Substitution B�16
	include Construct B�17
	Simulation Directives B�18
	Verilog System Functions B�18

	Verilog Keywords B�19
	Unsupported Verilog Language Constructs B�20

	List of Figures
	Figure 1�1 FPGA Compiler II / FPGA Express Design Process 1�4
	Figure 1�2 Design Flow 1�6
	Figure 3�1 Structural Parts of a Module 3�2
	Figure 5�1 Schematic of RTL Nonblocking Assignments 5�13
	Figure 5�2 Schematic of Blocking Assignment 5�14
	Figure 6�1 SR Latch 6�9
	Figure 6�2 D Latch 6�13
	Figure 6�3 D Latch With Asynchronous Set 6�15
	Figure 6�4 D Latch With Asynchronous Reset 6�16
	Figure 6�5 D Latch With Asynchronous Set and Reset 6�18
	Figure 6�6 Two-Phase Clocks 6�20
	Figure 6�7 Positive Edge-Triggered D Flip-Flop 6�23
	Figure 6�8 Negative Edge-Triggered D Flip-Flop 6�24
	Figure 6�9 D Flip-Flop With Asynchronous Set 6�25
	Figure 6�10 D Flip-Flop With Asynchronous Reset 6�26
	Figure 6�11 D Flip-Flop With Asynchronous Set and Reset 6�28
	Figure 6�12 D Flip-Flop With Synchronous Set 6�30
	Figure 6�13 D Flip-Flop With Synchronous Reset 6�31
	Figure 6�14 D Flip-Flop With Synchronous and Asynchronous Load 6�33
	Figure 6�15 Multiple Flip-Flops With Asynchronous and Synchronous Controls 6�35
	Figure 6�16 JK Flip-Flop 6�39
	Figure 6�17 JK Flip-Flop With Asynchronous Set and Reset 6�41
	Figure 6�18 Toggle Flip-Flop With Asynchronous Set 6�43
	Figure 6�19 Toggle Flip-Flop With Asynchronous Reset 6�44
	Figure 6�20 Toggle Flip-Flop With Enable and Asynchronous Reset 6�46
	Figure 6�21 Schematic of Simple Three-State Driver 6�53
	Figure 6�22 One Three-State Driver Inferred From a Single Block 6�55
	Figure 6�23 Two Three-State Drivers Inferred From Separate Blocks 6�57
	Figure 6�24 Three-State Driver With Registered Enable 6�58
	Figure 6�25 Three-State Driver Without Registered Enable 6�60
	Figure 7�1 Ripple Carry Chain Implementation 7�4
	Figure 7�2 Carry-Lookahead Chain Implementation 7�5
	Figure 7�3 Default Expression Tree 7�8
	Figure 7�4 Balanced Adder Tree (Same Arrival Times for All Signals) 7�9
	Figure 7�5 Expression Tree With Minimum Delay (Signal A Arrives Last) 7�9
	Figure 7�6 Expression Tree With Subexpressions Dictated by Parentheses 7�10
	Figure 7�7 Default Expression Tree With 4-Bit Temporary Variable 7�11
	Figure 7�8 Expression Tree With 5-Bit Intermediate Result 7�12
	Figure 7�9 Synthesized Circuit With Six Implied Registers 7�25
	Figure 7�10 Synthesized Circuit With Three Implied Registers 7�26
	Figure 7�11 Mealy Machine Schematic 7�28
	Figure 7�12 Circuit Schematic With Two Array Indexes 7�37
	Figure 7�13 Circuit Schematic With One Array Index 7�39
	Figure A�1 Count Zeros—Combinational Version Block Diagram A�4
	Figure A�2 Count Zeros—Sequential Version Block Diagram A�7
	Figure A�3 Drink Machine—State Machine Version Block Diagram A�10
	Figure A�4 Drink Machine—Count Nickels Version Block Diagram A�12
	Figure A�5 Carry-Lookahead Adder Block Diagram A�14

	List of Tables
	Table 4�1 Verilog Operators Supported by FPGA Compiler II / FPGA Express� 4�3
	Table 4�2 Operator Precedence� 4�15
	Table 4�3 Expression Bit-Widths� 4�20
	Table 6�1 SR Latch Truth Table (Nand Type) 6�8
	Table 6�2 Truth Table for JK Flip-Flop 6�38
	Table B�1 Verilog Radices B�14
	Table B�2 Verilog Keywords B�19

	List of Examples
	Example 2�1 Mixed Structural and Functional Descriptions 2�5
	Example 3�1 Module Definition 3�3
	Example 3�2 Macromodule Construct 3�3
	Example 3�3 Module Port Lists 3�5
	Example 3�4 Renaming Ports in Modules 3�6
	Example 3�5 parameter Declaration Syntax Error 3�9
	Example 3�6 parameter Declarations 3�9
	Example 3�7 wire Declarations 3�10
	Example 3�8 wand (wired-AND) 3�11
	Example 3�9 wor (wired-OR) 3�11
	Example 3�10 tri (Three-State) 3�12
	Example 3�11 supply0 and supply1 Constructs 3�13
	Example 3�12 reg Declarations 3�13
	Example 3�13 Two Equivalent Continuous Assignments 3�15
	Example 3�14 Module Instantiations 3�18
	Example 3�15 parameter Declaration in a Module 3�20
	Example 3�16 Gate-Level Instantiations 3�21
	Example 3�17 Three-State Gate Instantiation 3�22
	Example 4�1 Valid Expressions 4�2
	Example 4�2 Addition Operator 4�5
	Example 4�3 Relational Operator 4�6
	Example 4�4 Equality Operator 4�6
	Example 4�5 Comparison to X Ignored 4�7
	Example 4�6 Logical Operators 4�8
	Example 4�7 Bitwise Operators 4�9
	Example 4�8 Reduction Operators 4�10
	Example 4�9 Shift Operator 4�11
	Example 4�10 Conditional Operator 4�12
	Example 4�11 Nested Conditional Operator 4�13
	Example 4�12 Concatenation Operator 4�14
	Example 4�13 Concatenation Equivalent 4�14
	Example 4�14 Wire Operands 4�17
	Example 4�15 Bit-Select Operands 4�17
	Example 4�16 Part-Select Operands 4�18
	Example 4�17 Function Call Used as an Operand 4�18
	Example 4�18 Concatenation of Operands 4�19
	Example 4�19 Self-Determined Expression 4�21
	Example 4�20 Context-Determined Expressions 4�21
	Example 5�1 Sequential Statements 5�2
	Example 5�2 Equivalent Combinational Description 5�2
	Example 5�3 Combinational Ripple Carry Adder 5�3
	Example 5�4 Simple Function Declaration 5�4
	Example 5�5 Many Outputs From a Function 5�6
	Example 5�6 Register Declarations 5�7
	Example 5�7 Memory Declarations 5�7
	Example 5�8 Parameter Declaration in a Function 5�8
	Example 5�9 Integer Declarations 5�9
	Example 5�10 Procedural Assignments 5�11
	Example 5�11 RTL Nonblocking Assignments 5�12
	Example 5�12 Blocking Assignment 5�13
	Example 5�13 Block Statement With a Named Block 5�14
	Example 5�14 if Statement That Synthesizes Multiplexer Logic 5�16
	Example 5�15 if...else if...else Structure 5�17
	Example 5�16 Nested if and else Statements 5�17
	Example 5�17 Synthesizing a Latch for a Conditionally Driven Variable 5�18
	Example 5�18 case Statement 5�20
	Example 5�19 A case Statement That Is Both Full and Parallel 5�21
	Example 5�20 A case Statement That Is Parallel but Not Full 5�22
	Example 5�21 A case Statement That Is Not Full or Parallel 5�22
	Example 5�22 casex Statement With x 5�23
	Example 5�23 Before Using casex With ? 5�24
	Example 5�24 After Using casex With ? 5�24
	Example 5�25 Invalid casex Expression 5�24
	Example 5�26 casez Statement With z 5�26
	Example 5�27 Invalid casez Expression 5�26
	Example 5�28 A Simple for Loop 5�27
	Example 5�29 Nested for Loops 5�28
	Example 5�30 Example for Loop 5�28
	Example 5�31 Expanded for Loop 5�28
	Example 5�32 Unsupported while Loop 5�29
	Example 5�33 Supported while Loop 5�30
	Example 5�34 Supported forever Loop 5�30
	Example 5�35 Comparator Using disable 5�31
	Example 5�36 Synchronous Reset of State Register Using disable in a forever Loop 5�32
	Example 5�37 Using the task Statement 5�33
	Example 5�38 A Simple always Block 5�34
	Example 5�39 Incomplete Event List 5�37
	Example 5�40 Complete Event List 5�37
	Example 5�41 Incomplete Event List for Asynchronous Preload 5�37
	Example 6�1 Inference Report for a JK Flip-Flop 6�2
	Example 6�2 SR Latch 6�8
	Example 6�3 Inference Report for an SR Latch 6�8
	Example 6�4 Latch Inference Using an if Statement 6�10
	Example 6�5 Latch Inference Using a case Statement 6�10
	Example 6�6 Avoiding Latch Inference 6�11
	Example 6�7 Another Way to Avoid Latch Inference 6�11
	Example 6�8 Function: No Latch Inference 6�11
	Example 6�9 D Latch 6�12
	Example 6�10 Inference Report for a D Latch 6�13
	Example 6�11 D Latch With Asynchronous Set 6�14
	Example 6�12 Inference Report for D Latch With Asynchronous Set 6�14
	Example 6�13 D Latch With Asynchronous Reset 6�16
	Example 6�14 Inference Report for D Latch With Asynchronous Reset 6�16
	Example 6�15 D Latch With Asynchronous Set and Reset 6�17
	Example 6�16 Inference Report for D Latch With Asynchronous Set and Reset 6�18
	Example 6�17 Invalid Use of a Conditionally Assigned Variable 6�19
	Example 6�18 Two-Phase Clocks 6�20
	Example 6�19 Using an always Block to Infer a Flip-Flop 6�21
	Example 6�20 Positive Edge-Triggered D Flip-Flop 6�22
	Example 6�21 Inference Report for a Positive Edge-Triggered D Flip-Flop 6�22
	Example 6�22 Negative Edge-Triggered D Flip-Flop 6�23
	Example 6�23 Inference Report for a Negative Edge-Triggered D Flip-Flop 6�23
	Example 6�24 D Flip-Flop With Asynchronous Set 6�24
	Example 6�25 Inference Report for a D Flip-Flop With Asynchronous Set 6�25
	Example 6�26 D Flip-Flop With Asynchronous Reset 6�26
	Example 6�27 Inference Report for a D Flip-Flop With Asynchronous Reset 6�26
	Example 6�28 D Flip-Flop With Asynchronous Set and Reset 6�27
	Example 6�29 Inference Report for a D Flip-Flop With Asynchronous Set and Reset 6�28
	Example 6�30 D Flip-Flop With Synchronous Set 6�29
	Example 6�31 Inference Report for a D Flip-Flop With Synchronous Set 6�30
	Example 6�32 D Flip-Flop With Synchronous Reset 6�31
	Example 6�33 Inference Report for a D Flip-Flop With Synchronous Reset 6�31
	Example 6�34 D Flip-Flop With Synchronous and Asynchronous Load 6�32
	Example 6�35 Inference Report for a D Flip-Flop With Synchronous and Asynchronous Load 6�32
	Example 6�36 Multiple Flip-Flops With Asynchronous and Synchronous Controls 6�34
	Example 6�37 Inference Reports for Multiple Flip-Flops With Asynchronous and Synchronous Controls...
	Example 6�38 JK Flip-Flop 6�38
	Example 6�39 Inference Report for JK Flip-Flop 6�38
	Example 6�40 JK Flip-Flop With Asynchronous Set and Reset 6�40
	Example 6�41 Inference Report for JK Flip-Flop With Asynchronous Set and Reset 6�41
	Example 6�42 Toggle Flip-Flop With Asynchronous Set 6�42
	Example 6�43 Inference Report for a Toggle Flip-Flop With Asynchronous Set 6�42
	Example 6�44 Toggle Flip-Flop With Asynchronous Reset 6�43
	Example 6�45 Inference Report: Toggle Flip-Flop With Asynchronous Reset 6�44
	Example 6�46 Toggle Flip-Flop With Enable and Asynchronous Reset 6�45
	Example 6�47 Inference Report: Toggle Flip-Flop With Enable and Asynchronous Reset 6�45
	Example 6�48 Circuit With Six Implied Registers 6�47
	Example 6�49 Circuit With Three Implied Registers 6�48
	Example 6�50 Delays in Registers 6�49
	Example 6�51 Three-State Inference Report 6�51
	Example 6�52 Simple Three-State Driver 6�52
	Example 6�53 Inference Report for Simple Three-State Driver 6�53
	Example 6�54 Inferring One Three-State Driver From a Single Block 6�54
	Example 6�55 Single Block Inference Report 6�54
	Example 6�56 Inferring Three-State Drivers From Separate Blocks 6�56
	Example 6�57 Inference Report for Two Three-State Drivers 6�56
	Example 6�58 Three-State Driver With Registered Enable 6�57
	Example 6�59 Inference Report for Three-State Driver With Registered Enable 6�58
	Example 6�60 Three-State Driver Without Registered Enable 6�59
	Example 6�61 Inference Report for Three-State Driver Without Registered Enable 6�59
	Example 7�1 Four Logic Blocks 7�3
	Example 7�2 Ripple Carry Chain 7�4
	Example 7�3 Carry-Lookahead Chain 7�4
	Example 7�4 4-Input Adder 7�6
	Example 7�5 4-Input Adder With Parentheses 7�6
	Example 7�6 Simple Arithmetic Expression 7�8
	Example 7�7 Parentheses in an Arithmetic Expression 7�10
	Example 7�8 Adding Numbers of Different Bit-Widths 7�11
	Example 7�9 Simple Additions With a Common Subexpression 7�13
	Example 7�10 Sharing Common Subexpressions 7�13
	Example 7�11 Unidentified Common Subexpressions 7�14
	Example 7�12 More Efficient Use of Operators 7�15
	Example 7�13 A Simple Finite State Machine 7�16
	Example 7�14 Better Implementation of a Finite State Machine 7�18
	Example 7�15 Summing Three Cycles of Data in the Implicit State Style (Preferred) 7�20
	Example 7�16 Summing Three Cycles of Data in the Explicit State Style (Not Advisable) 7�21
	Example 7�17 Synchronous Reset—Explicit State Style (Preferred) 7�22
	Example 7�18 Synchronous Reset—Implicit State Style (Not Advisable) 7�23
	Example 7�19 Inefficient Circuit Description With Six Implied Registers 7�24
	Example 7�20 Circuit With Three Implied Registers 7�26
	Example 7�21 Mealy Machine 7�27
	Example 7�22 Fully Synchronous Counter Design 7�33
	Example 7�23 Asynchronous Counter Design 7�33
	Example 7�24 Equivalent Statements 7�35
	Example 7�25 Inefficient Circuit Description With Two Array Indexes 7�36
	Example 7�26 Efficient Circuit Description With One Array Index 7�38
	Example 8�1 // synopsys translate_on and // synopsys translate_off Directives 8�3
	Example 8�2 // synopsys parallel_case Directives 8�4
	Example 8�3 // synopsys full_case Directives 8�6
	Example 8�4 Latches and // synopsys full_case 8�7
	Example 8�5 // synopsys state_vector Example 8�9
	Example 8�6 Enumeration of Type Colors 8�10
	Example 8�7 Invalid enum Declaration 8�10
	Example 8�8 More enum Type Declarations 8�11
	Example 8�9 Invalid Bit Value Encoding for Colors 8�11
	Example 8�10 Enumeration Literals Used as Constants 8�11
	Example 8�11 Finite State Machine With // synopsys enum and // synopsys state_vector 8�12
	Example 8�12 Unsupported Bit-Select From Enumerated Type 8�13
	Example 8�13 Unsupported Bit-Select (With Component Instantiation) From Enumerated Type 8�13
	Example 8�14 Using Inference With Enumerated Types 8�14
	Example 8�15 Changing the Enumeration Encoding 8�14
	Example 8�16 Supported Bit-Select From Enumerated Type 8�15
	Example 8�17 Enumerated Type Declaration for a Port 8�15
	Example 8�18 Incorrect Enumerated Type Declaration for a Port 8�16
	Example 8�19 Component Implication 8�17
	Example A�1 Count Zeros—Combinational Version A�3
	Example A�2 Count Zeros—Sequential Version A�5
	Example A�3 Drink Machine—State Machine Version A�8
	Example A�4 Drink Machine—Count Nickels Version A�10
	Example A�5 Carry-Lookahead Adder A�15
	Example B�1 Valid Verilog Number Declarations B�14
	Example B�2 Sample Escaped Identifiers B�15
	Example B�3 Macro Variable Declarations B�16
	Example B�4 Macro With Sized Constants B�17
	Example B�5 Including a File Within a File B�17

	FPGA Compiler II / FPGA Express with Verilog HDL
	Hardware Description Languages
	FPGA Compiler II / FPGA Express and the Design Process
	Using FPGA Compiler II / FPGA Express to Compile a Verilog HDL Design
	Design Methodology

	Description Styles
	Design Hierarchy
	Structural Descriptions
	Functional Descriptions
	Mixing Structural and Functional Descriptions
	Design Methodology
	Description Style
	Language Constructs

	Register Selection
	Asynchronous Designs

	Structural Descriptions
	Modules
	Macromodules
	Port Definitions
	Port Names
	Renaming Ports

	Module Statements and Constructs
	Structural Data Types
	Port Declarations
	Continuous Assignment

	Module Instantiations
	Named and Positional Notation
	Parameterized Designs
	Gate-Level Modeling
	Three-State Buffer Instantiation

	Expressions
	Constant-Valued Expressions
	Operators
	Arithmetic Operators
	Relational Operators
	Equality Operators
	Handling Comparisons to X or Z
	Logical Operators
	Bitwise Operators
	Reduction Operators
	Shift Operators
	Conditional Operator
	Concatenation Operators
	Operator Precedence

	Operands
	Numbers
	Wires and Registers
	Function Calls
	Concatenation of Operands

	Expression Bit-Widths

	Functional Descriptions
	Sequential Constructs
	Function Declarations
	Input Declarations
	Output From a Function
	Register Declarations
	Memory Declarations
	Parameter Declarations
	Integer Declarations

	Function Statements
	Procedural Assignments
	RTL Assignments
	begin...end Block Statements
	if...else Statements
	Conditional Assignments
	case Statements
	Full Case and Parallel Case
	casex Statements
	casez Statements
	for Loops
	while Loops
	forever Loops
	disable Statements

	task Statements
	always Blocks
	Event Expression
	Incomplete Event Specification

	Register and Three-State Inference
	Register Inference
	The Inference Report
	Latch Inference Warnings
	Controlling Register Inference
	Inferring Latches
	Inferring Flip-Flops
	Understanding Limitations of Register Inference

	Three-State Inference
	Reporting Three-State Inference
	Controlling Three-State Inference
	Inferring Three-State Drivers
	Understanding the Limitations of Three-State Inference

	Writing Circuit Descriptions
	How Statements Are Mapped to Logic
	Design Structure
	Using Design Knowledge
	Optimizing Arithmetic Expressions
	Using Operator Bit-Width Efficiently
	Using State Information
	Describing State Machines
	Minimizing Registers
	Separating Sequential and Combinational Assignments

	Don’t Care Inference
	Limitations of Using Don’t Care Values
	Differences Between Simulation and Synthesis

	Propagating Constants
	Synthesis Issues
	Feedback Paths and Latches
	Synthesizing Asynchronous Designs

	Designing for Overall Efficiency
	Describing Random Logic
	Sharing Complex Operators

	FPGA Compiler II / FPGA Express Directives
	Notation for FPGA Compiler II / FPGA Express Directives
	translate_off and translate_on Directives
	parallel_case Directive
	full_case Directive
	state_vector Directive
	enum Directive
	Component Implication

	Examples
	Count Zeros—Combinational Version
	Count Zeros—Sequential Version
	Drink Machine—State Machine Version
	Drink Machine—Count Nickels Version
	Carry-Lookahead Adder

	Verilog Syntax
	Syntax
	BNF Syntax Formalism
	BNF Syntax

	Lexical Conventions
	White Space
	Comments
	Numbers
	Identifiers
	Operators
	Macro Substitution
	include Construct
	Simulation Directives
	Verilog System Functions

	Verilog Keywords
	Unsupported Verilog Language Constructs

	Glossary
	Index

