FPGA Express
VHDL Reference Manual

December 1997

Comments?
E-mail your comments about Synopsys documentation to
doc@synopsys.com

SYNOPSYS

Copyright Notice and Proprietary Information

Copyright © 1997 Synopsys, Inc. All rights reserved. This software and documentation are owned by Synopsys, Inc., andfiderishikcense
agreement. The software and documentation may be used or copied only in accordance with the terms of the license agpeeneénheNsmftware and
documentation may be reproduced, transmitted, or translated, in any form or by any means, electronic, mechanical, mrepoabtbptiwise, without
prior written permission of Synopsys, Inc., or as expressly provided by the license agreement.

Right to Copy Documentation

The license agreement with Synopsys permits licensee to make copies of the documentation for its internal use only. Ealtinchmlesall copyrights,
trademarks, service marks, and proprietary rights notices, if any. Licensee must assign sequential numbers to all capeged bleakt contain the
following legend on the cover page:

“This document is duplicated with the permission of Synopsys, Inc. for the exclusive use of
and its employees. This is copy humber

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the United States of Americar®tschagionals of other countries
contrary to United States law is prohibited. It is the reader’s responsibility to determine the applicable regulatiorsgpiy taith them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Trademarks

Trademarks

Synopsys, the Synopsys logo, BINMOS-CBA, CMOS-CBA, COSSAP, DESIGN (ARROWS), DesignPower, DesignWare, dont_use, ExpressModel, in
Sync, LM-1000, LM-1200, Logic Modeling, the Logic Modeling logo, Memory Architect, ModelAccess, ModelTools, PakiMdébug,

SmartLicense, SmartLogic, SmartModel, SmartModels, SNUG, SOLV-IT!, SourceModel Library, Stream Driven Simulator, SynopsZomMidiir,
Synthetic Designs, Synthetic Libraries, TestBench Manager, and TimeMill are registered trademarks of Synopsys, Inc.

3-D Debugging, AMPS, Arcadia, Arkos, Behavioral Compiler, CBA Design System, CBA-Frame, characterize, Chip Architect, Cmsigjies] Core
Network, Cyclone, Data Path Express, DataPath Architect, DC Expert, DC Expert Plus, DC Professional, DelayMill, DesigrCadyiStore, Design
Analyzer, Design Compiler, DesignSource, DesignTime, DesignWare Developer, Direct RTL, Direct Silicon Access, dont_totamichiargtwork,

ECL Compiler, ECO Compiler, Embedded System Prototype, Floorplan Manager, Formality, FoundryModel, FPGA Compiler, FPGA-Eaxpeess,
Compiler, Floorplan Manager, Formality, FoundryModel, FPGA Compiler, FEXpRess, Frame Compiler, General Purpose Post-Processor, GPP, HDL
Advisor, HDL Compiler, Integrator, Interactive Waveform Viewer, Library Compiler, LM-1400, LM-700, LM-family, Logic Model, [Hlodece,
ModelWare, Module Compiler, MS-3200, MS-3400, Power Compiler, PowerArc, PowerGate, PowerMill, PrimeTime, RailMill, RTL ABafdwmr
Debugger, Silicon Architects, SimuBus, SmartCircuit, SmartModel Windows, Source-Level Design, SourceModel, SWIFT, SWIEF, Byedasys
Graphical Environment, Test Compiler, Test Compiler Plus, Test Manager, TestSim, Timing Annotator, Trace-On-Demand, VHCRirSykttm
Visualyze, Vivace, VSS Expert, and VSS Professional are trademarks of Synopsys, Inc.

All other products are trademarks of their respective holders and should be treated as such.

Printed in the U.S.A.

Table of Contents

1 Using FPGA Express with VHDL
Hardware DescriptionLanguagescooviiiiei ... 1-2
Typical UsesforHDLS.t e 1-2
Advantagesof HDLS. i i 1-2
ABOULVHDL ... 1-3
FPGA ExpressDesignProcess ..., 1-5
Using FPGA Expressto CompileaVHDL Design................. 1-6
DesignMethodology ... 1-7
2 Description Styles
DesignHierarchy i e 2-2
DAl TYPES . . oottt 2-2
Design ConstraintS. . ..o oot e e 2-3
Register Salection. e 2-3
Asynchronous DeSIgNS.o 2-3
Language CoNStIUCESot vt 2-4
3 Describing Designs
VHDL ENtitieS . . . oot 31
VHDL CONSIIUCES. . . . oot e 34
Entities.o 34

FPGA Express VHDL Reference Manual
Table of Contents

Configurations. e 37
PrOCESSES . . .o 3-7
SUDPIOgraMS . .« . v ettt e 39
Packageso 3-10
UsingaPackage.cc i 3-10
Package Structure. 311
Package Declarations., 311
PackageBodies i 312
DefiNiNg DESIgNSo e 3-13
Entity Specifications. i 3-13
Entity Generic Specifications. 3-14
Entity Port Specifications., 314
Entity Architectures. 3-15
Entity Configurations 3-18
SUDPIOgraMS . . . ottt e 3-19
Subprogram Declarations. 3-20
SubprogramBodies 321
Subprogram Overloading. 3-22
Operator Overloading.co i 3-23
TypeDeclarations. 3-24
SubtypeDeclarations.o e 3-24
Constant Declarations. 3-24
Signal Declarations.t 3-25
Resolution Functions. oo 3-25
VariableDeclarations 3-28
Structural DeSIgN . . . oo 3-29
Using HardwareComponents.cooieiiieinenn ... 3-30
Component Declaration. 3-30
Sources of COMPONENES v v it 3-31
Consistency of Component Ports. 331
Component Instantiation Statement 3-32
Mapping GenericValues., 3-32
Mapping Port Connections.o, 3-33
Technol ogy-Independent Component Instantiation 3-34
4 Data Types

ENUMeEration TYPES . ..ot 4-2
Enumeration Overloading. i 4-3
Enumeration Encoding i 4-3
Enumeration EncodingValues. 4-5
INtegEr TYPES . .o it e e 4-6
ATTAY TYPES . o ettt e e e 4-7
ConstraiNed ArTay . ..ot e e 4-7
unconstrained Array oot e 4-8

FPGA Express VHDL Reference Manual
Table of Contents

RECOId TYPES . o v ot tee a 4-10
Predefined VHDL Data TypeS. oo e e e i 4-11
BOOLEAN DataType ... oot e 4-12
BIT DataType. . oot e e 4-13
CHARACTER DaAaTYpe. . . oo e e e e 4-13
INTEGER DataTypeot e e 4-13
NATURAL DaaType ... oo e e 4-13
POSITIVEDaaTYpe. ..o i et et e i 4-13
STRING DataType. . oot e e 4-14
BIT VECTORDaaType.ot 4-14
Unsupported Data TypesSo oo v v et 4-14
Physical TYPeS. . ..o oo 4-14
Floating Point TYPES. . ..o oot 4-14
ACCESS TYPES. . oot 4-14
FileTypes . . oo 4-15
SYNOPSY SDaa TYPES . oot o it ettt e 4-15
SUBLYPES. . o 4-15
5 Expressions

O aONS . ..t 52
Logical Operatorso oot e 53
Relational Operators.t e 55
Adding Operators i e 5-7
Unary (Sign) Operators.ot e e e e e 59
Multiplying Operators. v 5-9
Miscellaneous Arithmetic Operators.o oo on .t 5-12
OPEraNdS. . . oo e 5-13
OperandBitWidth 5-14
ComputableOperands.t 5-14
Literals. .o 5-17
NumericLiterals.o 5-17
Character Literals. i i 5-17
Enumeration Literals 517
String Literals.o 5-18
ldentifiers e 5-19
Indexed Namest e 5-20
SHCENAMES. . ..o 5-21
LimitationsonNull Slices............t 5-22
Limitations on Noncomputable Slices. 5-23
Recordsand Fields i 5-23
AQOregates. oo 5-24
Attributes. 5-26
FunctionCalls. 5-27
Qualified EXPressions.o v 5-28

FPGA Express VHDL Reference Manual
Table of Contents

vi

TYPE CONVEISIONS . . . oottt et e 5-29

6 Sequential Statements

Assignment Statements e 6-2
AsSignment Targets.ot 6-3
SimpleName TargetSo oot 6-3
Indexed Name TargetSocvii i 6-4
SliceTargetSo e 6-5
Field Targets . . .o e e e e 6-6
Aggregate TargetsS.o e 6-7
Variable Assignment Statement.ci i 6-8
Signal Assignment Statement. 6-9
Variable Assignment.t 6-9
Signal ASSIgNMENt.ot 6-9

if Statements. 6-10
Evaluatingcondition. i 6-11
Using the if Statement to Imply Registersand Latches 6-12
case Statement 6-12
Using Different Expression Typescooviieiiinnnn. 6-13
Invalid case Statements. 6-14
[00p StatemMEeNtS oo 6-15
[00p Statement.o 6-16
while..loop Statement i 6-17
for..loopStatement 6-17
next Statements 6-20
eXit StalemeNtS. 6-22
SUbPrograms. 6-23
Subprogram Calls 6-24
ProcedureCalls 6-25
FunctionCalls 6-27
refurn Statementso 6-28
Mapping Subprograms to Components (Entities). 6-29
wait Statements 6-34
Inferring SynchronousLogicc.ovivii it 6-34
Combinational vs. Sequential Processes. 6-38
NUIl StatementsS. 6-40

7 Concurrent Statements

Process Statements. 7-2
Combinational ProcessExample.o, 7-3
Sequential ProcessExample. ... 7-4
Driving Signalso 7-6
block Statements 7-7
Concurrent Procedure Calls. i 7-9

FPGA Express VHDL Reference Manual
Table of Contents

Concurrent Signal Assignments. 7-11

Conditional Signal Assignment., 7-12
Selected Signal Assignment 7-13
Component Instantiations.ot 7-15
generate StatementSo 7-17
for..generateStatement 7-17

if ..generateStatement 7-20

Register and Three-State Inference

Register Inference i e e 8-1
Using Register Inference. 8-2
Describing Clocked Signals. 8-2
wait versusif Statements. 8-4
Recommended Use of Register Inference Capabilities......... 8-4
Restrictions on Register Capabilities. 8-6
DelaysSiNnRegIStErSo e 87
DescribingLatches 8-7
Automatic Latch Inferencing. o ... 8-8
Restrictions on Latch Inference Capabilities. 8-9
Example—Design with Two-Phase Clocks. 8-10
Describing Flip-Flops 8-11
Flip-Flop with Asynchronous Reset. 8-11
Example—Synchronous Design with Asynchronous Reset8-13
AttribUteS. . . e 8-15
ASYNC_Set_reSel. 8-15
Latch with Asynchronous Setor Clear Inputs. 8-15
SYNC_SEel IeSelo 8-16
Flip-Flop with Synchronous Reset Input. 8-16
async_set reset local............ 8-17
sync_set_reset local. L. 8-19
async_set reset local_all. 8-21
sync_set reset local all................. 8-23
one_hot. e 8-25
one_cold. 8-27
FPGA Express Latch and Flip-Flop Inference 8-29
Efficient Use of Registers. i 8-30
Example—Using Synchronous and Asynchronous Processes. . . 8-32
Three-State Inference. 8-35
Assigningthe Value Z. 8-36
Latched Three-State Variables 8-37

FPGA Express Directives

Notation for FPGA Express Directives 9-2
FPGA Express Directives. e e 9-2

FPGA Express VHDL Reference Manual Vii
Table of Contents

viii

Trandation Stop and Start Directives. 9-3

Resolution Function Directives., 9-5
Component Implication Directives. 9-5
10 Synopsys Packages

std_logic 1164 Package.t 10-1
std logic arithPackage.c i 10-2
UsingthePackage.co i 10-3
ModifyingthePackage............. 10-3
DAl TYPES. oot e 10-4
UNSIGNEDo e 10-5
SIGNED . . .o 10-5
Conversion FUNCLioNSot 10-6
Arithmetic FUNCions. i 10-8
Comparison FUNCLiONS.ot i i e 10-11
ShiftFunctions 10-13
MultiplicationUsing Shifts 10-14
ENUM_ENCODING Attribute. 10-14
pragmabuilt_in....... 10-15
Two-Argument LogicFunctions 10-15
One-Argument Logic Functions 10-16

Type CONVEISION . ..ot e 10-17
trandlate off Directive. 10-18
std_logic_miscPackage.c. i 10-18

11 VHDL Constructs

VHDL Construct SUPPOIt.ot 11-1
DesignUnits o 11-2
DA A TYPES. . o et 11-3
Declarations.ot e 11-4
SpeCifications e 11-5
NaMES . . ettt e 11-5
(@0 1= 0] £ 11-6
Operandsand EXPressionso i i i e 11-7
Sequential Statements. e 11-8
Concurrent Statementst e 11-9
Predefined Language Environment. 11-9
VHDL Reserved Words. . ..o i 11-11

FPGA Express VHDL Reference Manual
Table of Contents

Using FPGA Express with VHDL

FPGA Express trandates and optimizes a VHDL description to an internal
gate-level equivalent format. Thisformat isthen compiled for a given
FPGA technology.

To work with VHDL, familiarize yourself with the following concepts:
Hardware Description Languages

About VHDL

About FPGAEXxpress

Using FPGAEXxpress

A Model of the Design Process

The United States Department of Defense, as part of its Very-High-Speed
Integrated Circuit (VHSIC) program, developédSIC HDL (VHDL) in

1982. VHDL describes the behavior, function, inputs, and outputs of a
digital circuit design. VHDL is similar in style and syntax to modern
programming languages, but includes many hardware-specific constructs.

FPGAEXxpressreads and parses the supported VHDL syntax. Chapter 11,
“HDL Constructs,” lists all VHDL constructs and includes the level of
Synopsys support provided for each construct.

Using FPGA Express with VHDL 1-1

1-2

Hardware Description Languages

Hardware description languages (HDL s) are used to describe the
architecture and behavior of discrete electronic systems.

HDL s were developed to deal with increasingly complex designs. An
analogy is often made to the development of software description
languages, from machine code (transistors and solder), to assembly
language (netlists), to high-level languages (HDLS).

Top-down, HDL -based system design is most useful in large projects,
where several designers or teams of designers are working concurrently.
HDL s provide structured development. After major architectural decisions
have been made, and major components and their connections have been
identified, work can proceed independently on subprojects.

Typical Uses for HDLs

HDLstypically support amixed-level description, where structural or
netlist constructs can be mixed with behavioral or algorithmic descriptions.
With this mixed-level capability, you can describe system architectures at a
high level of abstraction; then incrementally refine adesigninto a particular
component-level or gate-level implementation. Alternatively, you can read
an HDL design description into FPGA Express, then direct the compiler to
synthesize a gate-level implementation automatically.

Advantages of HDLs

A design methodology that uses HDL s has several fundamental advantages
over atraditional gate-level design methodology. Among the advantages
are the following:

You can verify design functionality early in the design process and
immediately simulate a design written as an HDL description. Design
simulation at this higher level, before implementation at the gate level,
allows you to test architectural and design decisions.

FPGAEXxpress provides logic synthesis and optimization, so you can
automatically convert a VHDL description to a gate-level implementation
in a given technology. This methodology eliminates the former gate-level
design bottleneck and reduces circuit design time and errors introduced
when hand-translating a VHDL specification to gates. With FIERgxess
logic optimization, you can automatically transform a synthesized design to

Using FPGA Express with VHDL
Hardware Description Languages

asmaller and faster circuit. You can apply information gained from the
synthesized and optimized circuits back to the VHDL description, perhaps
to fine-tune architectural decisions.

HDL descriptions provide technology-independent documentation of a
design and its functionality. An HDL description is more easily read and
understood than a netlist or schematic description. Because the initial HDL
design description is technology-independent, you can later reuse it to
generate the design in a different technology, without having to translate
from the original technology.

VHDL, like most high-level software languages, provides stigpg

checking. A component that expects a four-bit-wide signal type cannot be
connected to a three- or five-bit-wide signal; this mismatch causes an error
when the HDL description is compiled. If a variable’s range is defined as 1
to 15, an error results from assigning it a value of 0. Incorrect use of types
has been shown to be a major source of errors in descriptions. Type
checking catches this kind of error in the HDL description even before a
design is generated.

About VHDL

VHDL is one of a few HDLs in widespread use today. VHDL is recognized
as a standard HDL by the Institute of Electrical and Electronics Engineers
(IEEE Standard 1076, ratified in 1987) and by the United States
Department of Defense (MIL-STD-454L).

VHDL dividesentities (components, circuits, or systems) into an external

or visible part (entity name and connections) and an internal or hidden part
(entity algorithm and implementation). After you define the external
interface to an entity, other entities can use that entity when they all are
being developed. This concept of internal and external views is central to a
VHDL view of system design. An entity is defined, relative to other

entities, by its connections and behavior. You can explore alternate
implementationsdrchitectures) of an entity without changing the rest of

the design.

After you define an entity for one design, you can reuse it in other designs
as needed. You can develop libraries of entities for use by many designs or

for a family of designs.

The VHDL hardware model is shown in Figure 1-1.

Using FPGA Express with VHDL 1-3
About VHDL

14

Figure1-1 VHDL Hardware Model
Entity
(Architecture)
Process Process
Sequential red, blue Combinational
Process Process
Ports — wait ... ; :
if A (Signals) X and (Y xor 2);
then X
— else Y /
end if: Oto 15 Subprogram
Component

A VHDL entity (design) has one or more input, output, or inout ports that
are connected (wired) to neighboring systems. An entity is composed of
interconnected entities, processes, and components, all which operate
concurrently. Each entity is defined by a particular architecture, which is
composed of VHDL constructs such as arithmetic, signal assignment, or
component instantiation statements.

InVVHDL, independent processes model sequential (clocked) circuits, using
flip-flops and latches, and combinational (unclocked) circuits, using only
logic gates. Processes can define and call (instantiate) subprograms
(subdesigns). Processes communicate with each other by signals (wires).

A signal has a source (driver), one or more destinations (receivers), and a
user-defined type, such as “color” or “number between 0 and 15.”

VHDL provides a broad set of constructs. With VHDL, you can describe
discrete electronic systems of varying complexity (systems, boards, chips,
or modules) with varying levels of abstraction.

Using FPGA Express with VHDL
About VHDL

VHDL language constructs are divided into three categories by their level
of abstraction: behavioral, dataflow, and structural. These categories are
described as follows:

behavioral
The functional or algorithmic aspects of adesign, expressed in a
sequential VHDL process.

dataflow
The view of data as flowing through a design, from input to output. An
operation is defined in terms of a collection of data transformations,
expressed as concurrent statements.

structural
The view closest to hardware; a model where the components of adesign
are interconnected. This view is expressed by component instantiations.

FPGA Express Design Process

FPGA Express performs three functions:
* Translates VHDL to an internal format

» Optimizes the block-level representation through various optimization
methods

« Maps the design’s logical structure for a specific FPGA technology library

FPGAEXxpress synthesizes VHDL descriptions according to the VHDL
synthesis policy defined in Chapter 2, “Description Styles.” The Synopsys
VHDL synthesis policy has three parts: design methodology, design style,
and language constructs. You use the VHDL synthesis policy to produce
high quality VHDL-based designs.

Using FPGA Express with VHDL 1-5
FPGA Express Design Process

1-6

Using FPGA Express to Compile a VHDL Design

When aVHDL design isread into FPGA EXxpress, it is converted to an
internal database format so FPGA Express can synthesize and optimize the
design. When FPGA Express optimizes adesign, it can restructure part or
al the design. Y ou control the degree of restructuring. Options include:

Fully preserving a design’s hierarchy
Allowing full modules to be moved up or down in the hierarchy
Allowing certain modules to be combined with others

Compressing the entire design into one module (ciétening the
design) if it is beneficial

The following section describes the design process that uses ExiEas
with a VHDL simulator.

Using FPGA Express with VHDL
Using FPGA Express to Compile a VHDL Design

Design Methodology

Figure 1-2 shows atypical design process that uses FPGA Express and a
VHDL simulator.

Figure 1-2 Design Flow

@

VHDL
Description

@

VHDL
Callfin D @

Synopsys FPGA
Express

®

FPGA Vendor
Development System

© ®

VHDL VHDL
Simulator Simulator

Simulation N\ Compare Simulation
Output Output Output

These are the stepsin Figure 1-2.

1. Writeadesign descriptionin VHDL. Thisdescription can be acombination
of structural and functional elements (as shown in Chapter 2, “Description
Styles®). This description is used with both FP&%ress and the
Synopsys VHDL simulator.

2. Provide VHDL test drivers for the simulator. For information on writing

Using FPGA Express with VHDL 1-7
Design Methodology

1-8

these drivers, see the appropriate simulator manual. The drivers supply test
vectors for simulation and gather output data.

Simulate the design by usingaVHDL simulator. Verify that the description
is correct.

Use FPGA Expressto synthesize and optimize the VHDL design
description into a gate-level netlist. FPGA Express generates optimized
netlists to satisfy timing constraints for a targeted FPGA architecture.

Use your FPGA devel opment system to link the FPGA technol ogy-specific
version of the design to the VHDL simulator. The development system
includes simulation models and interfaces required for the design flow.

Simulate the technol ogy-specific version of the design with the VHDL
simulator. Y ou can use the original VHDL simulation drivers from Step 2
because module and port definitions are preserved through the translation
and optimization processes.

Compare the output of the gate-level simulation (Step 6) against the output
of the original VHDL description simulation (Step 3) to verify that the
implementation is correct.

Using FPGA Express with VHDL
Design Methodology

Description Styles

The style of your initial VHDL description has a major effect on the
characteristics of the resulting gate-level design synthesized by FPGA
Express. The organization and style of aVHDL description determines the
basic architecture of your design. Because FPGA Express automates most
of the logic-level decisions required in your design, you can concentrate on
architectural tradeoffs.

Y ou can make some of the high-level architectural decisionsthat are needed
by using FPGA Express. Certain VHDL constructs are well suited for
synthesis. To make the decisions and use the constructs, you need to
become familiar with the following concepts:

Design Hierarchy

Data Types

Design Constraints
Register Selection
Asynchronous Designs
Language Constructs

Description Styles

2-2

Design Hierarchy

FPGA Express maintains the hierarchical boundaries you define when
using the structural view in VHDL. These boundaries have two major
effects:

Each design entity specified in your VHDL description is synthesized
separately and is maintained as a distinct design. The constraints for the
design are maintained, and each design entity can be optimized separately
in FPGA Express.

Component instantiationswithin VHDL descriptions are maintained during
input. The instance name you give each user-defined entity is carried
through to the gate-level implementation.

Chapter 3, “Describing Designs,” discusses design entities, and Chapter 7,
“Concurrent Statements,” discusses component instantiations.

Note: FPGA Express does not automatically maintain or create a
hierarchy of other nonstructural VHDL constructs such, as blocks,
processes, loops, functions, and procedures. These elements of a VHDL
description aretranslated in the context of their design. After reading in
aVHDL design, you can group together the logic of a process, function,
or procedure within the FPGA Express | mplementation window.

The choice of hierarchical boundaries has a significant effect on the quality
of the synthesized design. Using FP&x¥ress, you can optimize a design
while preserving these hierarchical boundaries. However, APpress

only partially optimizes logic across hierarchical modules. Full

optimization is possible across those parts of the design hierarchy that are
collapsed in FPGAExpress.

Data Types

In VHDL, you must assign a data type to all ports, signals, and variables.
The data type of an object defines the operations that can be applied to it.
For example, the AND operator is defined for objects of type BIT, but not
for objects of type INTEGER.

Data types are also important when your design is synthesized. The data
type of an object determines its size (bit width) and its bit organization. The
proper choice of data types greatly improves design quality and helps
minimize errors.

See Chapter 4, “Data Types,” for a discussion of VHDL data types.

Description Styles
Design Hierarchy

Design Constraints

Y ou can describe the performance constraints for a design module within
the FPGA Express |mplementation window. Refer to the FPGA Express
online help for further information.

Register Selection

The placement of registers and the clocking scheme are important
architectural decisions. There are two ways to define registers in your
VHDL description. Each method has specific advantages:

You can directly instantiate registers into a VHDL description, selecting
from any element in your FPGA library. Clocking schemes can be
arbitrarily complex. You can choose between a flip-flop and a latch-based
architecture. The major disadvantages of this approach are

The VHDL description is how specific to a given technology because you
choose structural elements from that technology library. However, you can
isolate this portion of your design as a separate entity, which you then
connect to the remainder of the design.

The description is more difficult to write.

You can use the VHDL if and wait statements to direct FIE®gkess to

infer latches and flip-flops from the description. The advantages of this
approach directly counter the disadvantages of the previous approach.
When using register inference, the VHDL description is
technology-independent and is much easier to write. This method allows
FPGAEXxpressto select the type of component inferred, on the basis of
constraints. Therefore, if a specific component is necessary, instantiation
should be used. Some types of registers and latches cannot be inferred.

See Chapter 8, “Register and Three-State Inference,” for a discussion of
register and latch inference.

Asynchronous Designs

You can use FPGEXxpress to construct asynchronous designs with
multiple clocks and gated clocks. However, although these designs are
logically (statically) correct, they might not simulate or operate correctly,
because of race conditions.

Description Styles 2-3
Design Constraints

2-4

Language Constructs

Another component of the VHDL synthesis policy is the set of VHDL
constructs that describe your design, determine its architecture, and give
consistently good results. The remainder of this manual discusses these
constructs and their uses.

The concepts mentioned earlier in this chapter are described in the manual
asfollows:

Design Hierarchy
Chapter 3, “Describing Designs,” describes the use and importance of
hierarchy in VHDL designs. Chapter 7, “Concurrent Statements,”
explains how to instantiate (apply) existing components.

Data Types
Chapter 4, “Data Types,” describes data types and their uses.

Register Selection
You can instantiate registers with the component instantiation statement
discussed in Chapter 3, “Describing Designs,” and Chapter 7,
“Concurrent Statements.” Chapter 6, “Sequential Statements,” and
Chapter 8, “Register and Three-State Inference,” describe register
inference with the VHDL if and wait statements.

Description Styles
Language Constructs

Describing Designs

To describe adesign in VHDL, you need to be familiar with the following
concepts:

VHDL entities
VHDL constructs
Defining designs
Structural designs

VHDL Entities

Designs that are described with VHDL are composed of entitiesntig
represents one level of the design hierarchy and can consist of a complete
design, an existing hardware component, or a VHDL-defined object.

Each design has two parts: the entity specification and the architecture. The
specification of an entity is its external interface. The architecture of an
entity is its internal implementation. A design has only one entity
specification (interface), but it can have multiple architectures
(implementations). When an entity is compiled into a hardware design, a
configuration specifies the architecture to use. An entity’s specification and
architecture can be contained in separate VHDL source files or in one
VHDL source file.

Describing Designs 3-1
VHDL Entities

32

Example 3-1 shows the entity specification of asimplelogic gate (a 2-input
NAND gate).

Example3-1 VHDL Entity Specification

entity NAND2 is

port(A, B: in BIT, -- Two inputs, A and B
Z: out BIT); -- One output, Z = (A and B)’
end NAND2;

Note: In a VHDL description, a comment is prefixed by two hyphens (--).
All characters from the hyphensto the end of theline are ignored by
FPGA Express. The only exceptions to this rule are comments that begin
with -- pragma or -- synopsys, these comments are FPGA Express
directives.

After an entity statement declares an entity specification, that entity can be
used by other entitiesin adesign. The internal architecture of an entity
determinesits function.

Example 3-2, Example 3-3, and Example 3-4 show three different
architectures for the entity NAND2. The three examples define equivalent
implementations of NANDZ2. After optimization and synthesis, each
implementation produces the same circuit, probably a 2-input NAND gate
in the target technology. The architecture description style you use for this
entity depends on your own preferences.

Example 3-2 shows how the entity NANDZ2 can be implemented with two
components from a technology library. The entity inputs A and B are
connected to AND gate UO, producing an intermediate signal |. Signal | is
then connected to inverter U1, producing the entity output Z.

Describing Designs
VHDL Entities

Example 3-2 Structural Architecture for Entity NAND2

architecture STRUCTURAL of NAND2 is
signal |I: BIT;

conponent AND 2 -- From a technol ogy
library
port(l1, 12: in BIT,
Ol: out BIT);
end conponent;

conmponent | NVERT -- From a technol ogy
library
port(l1: in BIT,;
Ol: out BIT);
end conponent;

begi n
Uo: AND 2 port map (11 => A, 12 =>B, O =>1);
Ul: INVERT port map (11 =>1, Ol => 2);

end STRUCTURAL;

Example 3-3 shows how you can define the entity NAND?2 by itslogical
function.

Example 3-3 Dataflow Architecture for Entity NAND2

archi tecture DATAFLOW of NAND2 i s
begi n

Z <= A nand B;
end DATAFLOW

Example 3-4 shows another implementation of NAND2.

Example 3-4 RTL Architecture for Entity NAND2

architecture RTL of NAND2 is

begi n
process(A, B)
begi n
if A="1)and (B ='1") then
Z<="0,
else
Z<="1"
end if;
end process;
end RTL;

Describing Designs
VHDL Entities

34

VHDL Constructs

The top-level VHDL constructs work together to describe adesign. The
description consists of

Entities
The interfaces to other designs.

Architectures
The implementations of design entities. Architectures can specify
connection through instantiation to other entities.

Configurations
The bindings of entities to architectures.

Processes
Collections of sequentially executed statements. Processes are declared
within architectures.

Subprograms
Algorithms that can be used by more than one architecture.

Packages
Collections of declarations used by one or more designs.

Entities

A VHDL design consists of one or more entities. Entities have defined

inputs and outputs, and perform a defined function. Each design has two

parts: an entity specification and an architecture. The entity specification

defines the design’s inputs and outputs, and the architecture determines its
function.

You can describe a VHDL design in one or more files. Each file contains
entities, architectures, or packages. Packages define global information that
can be used by several entities. You can often reuse VHDL design files in
later design projects.

Figure 3-1 shows a block diagram of a VHDL design’s hierarchical
organization into files.

Describing Designs
VHDL Constructs

Figure 3-1 Design Organization

VHDL Design

VHDL Files

Packages

Declare constants, data types, components, and subprograms
used by several designs or entities or both.

Entities Architectures
Declare the interfaces to other Define the implementations of
entities and designs. entities.

Architectures

An architecture determines the function of an entity. Figure 3-2 shows the

organization of an architecture. Not all architectures contain every
construct shown.

Describing Designs 3-5
VHDL Constructs

Figure 3-2 Architecture Organization

Architecture

Declarations

Declare signals used to communicate between concurrent statements,
and between concurrent statements and the interface ports. Declare
types, constants, components, and subprograms used in the architecture.

Concurrent Statements

Blocks Component Instantiations
Collect concurrent statements
together. Create an instance of

another entity.
Signal Assignments
Compute values and assign them to

signals. Processes

Procedure Calls Define a new algorithm.

Invoke a predefined algorithm.

An architecture consists of a declaration section where you declare signals,
types, constants, components, and subprograms, followed by a collection of
concurrent statements.

Signals connect the separate pieces of an architecture (the concurrent
statements) to each other, and to the outside world, through interface ports.
Y ou declare each signa with atype that determines the kind of data it
carries. Types, constants, components, and subprograms declared in an
architecture arelocal to that architecture. To use these declarationsin more
than one entity or architecture, place them in a package, as described under
“Packages” later in this chapter.

Each concurrent statement in an architecture defines a unit of computation
that reads signals, performs a computation that is based on the signal
values, and assigns computed values to signals. Concurrent statements
compute all values simultaneously. Although the order of concurrent
statements has no effect on execution order, the statements often coordinate
their processing by communicating with each other through signals.

3-6 Describing Designs
VHDL Constructs

The five kinds of concurrent statements are blocks, signal assignments,
procedure calls, component instantiations, and processes. They are
described as follows:

blocks
Group together a set of concurrent statements.

signal assignments
Assign computed values to signals or interface ports.

procedure calls
Call algorithms that compute and assign values to signals.

component instantiations
Create an instance of an entity, connecting itsinterface portsto signals or
interface ports of the entity being defined. See “Structural Design” later
in this chapter.

processes
Define sequential algorithms that read the values of signals, and compute
new values to assign to other signals. Processes are discussed in the next
section.

Concurrent statements are described in Chapter 7, “Concurrent
Statements.”

Configurations

A configuration specifies one combination of an entity and its associated
architecture.

Note: FPGA Express supports only configurations that associate one
top-level entity with an architecture.

Processes

Processes contagequential statements that define algorithms. Unlike
concurrent statements, sequential statements are executed in order. The
order allows you to perform step-by-step computations. Processes read and
write signals and interface port values to communicate with the rest of the
architecture and with the enclosing system.

Describing Designs 3-7
VHDL Constructs

3-8

Figure 3-3 shows the organization of constructsin a process. Processes
need not use all the constructs listed.

Processes are unique in that they behave like concurrent statements to the
rest of the design, but they are internally sequential. In addition, only
processes can define variables to hold intermediate values in a sequence of
computations.

Because the statements in a process are sequentially executed, several
constructs are provided to control the order of execution, such asif and

loop statements.

Chapter 6, “Sequential Statements,” describes sequential statements.

Describing Designs
VHDL Constructs

Figure 3-3 Process Organization

Process

Declarations

Internal variables that hold temporary values in the sequence
of computations, as well as types, constants, components, and
subprograms used locally.

Sequential Statements

to signals.

Signal Assignments
Compute values and assign them

loop Statements
Execute statements repeatedly.

Procedure Calls

Invoke predefined algorithms.

next Statements
Skip remainder of a loop.

in variables.

Variable Assignments
Store intermediate values

exit Statements

Terminate the execution
of a loop.

if Statements

Conditionally execute groups of
sequential statements.

wait Statements

Wait for a clock signal.

case Statements

Select a group of sequential
Statements to execute.

null Statements

Perform no action; these are
placeholders.

Subprograms

Subprograms, like processes, use sequential statementsto define algorithms
that compute values. Unlike processes, however, they cannot directly read
or write signals from the rest of the architecture. All communicationis

through the subprogram'’s interface; each subprogram call has its own set of
interface signals.

The two types of subprograrase functions and procedures. A function
returns a single value directly. A procedure returns zero or more values
through its interface. Subprograms are useful because you can use them to
perform repeated calculations, often in different parts of an architecture.

Chapter 6, “Sequential Statements,” describes subprograms.

Describing Designs
VHDL Constructs

3-9

3-10

Packages

Y ou can collect constants, data types, component declarations, and
subprogramsinto a VHDL package that can then be used by more than one
design or entity. Figure 3-4 shows the typical organization of a package.

Figure 3-4 Typical Package Organization

Package
Constant Declarations Type Declarations
Define constant values used Declare the data types used
by designs. by designs.
Component Declarations Subprograms
Declare interfaces for design Declare algorithms used by
entities. designs.

A package must contain at least one of the constructs listed in Figure 3-4.

Constants in packages often declare system-wide parameters, such as
data-path widths.

VHDL data type declarations are often included in a package to define data
types used throughout a design. All entities in a design must use common
interface types; for example, common address bus types.

Component declarations specify the interfaces to entities that can be
instantiated in the design.

Subprograms define algorithms that can be called anywhere in a design.

Packages are often sufficiently general so that you can use them in many
different designs. For example, the std_logic_1164 package defines data
types std_logic and std_logic_vector.

Using a Package
The use statement allows an entity to use the declarations in a package. The
supported syntax of the use statement is

use LI BRARY NAME. PACKAGE _NAME. ALL,

Describing Designs
VHDL Constructs

LIBRARY_NAME isthe name of aVHDL library, and

PACKAGE_NAME isthe name of theincluded package. A use statement is
usually the first statement in a package or entity specification source file.
Synopsys does not support different packages with the same name when
they exist in different libraries. No two packages can have the same hame.

Package Structure
Packages have two parts, the declaration and the body:

package declaration
Holds public information, including constant, type, and
subprogram declarations.

package body
Holds private information, including local types and subprogram
implementations (bodies).

Note: When a package declaration contains subprogram declarations, a
corresponding package body must define the subprogram bodies.

Package Declarations

Package declarations collect information needed by one or more entitiesin
adesign. Thisinformation includes data type declarations, signal
declarations, subprogram declarations, and component declarations.

Note: Signals declared in packages cannot be shared across entities. | f
two entities both use a signal from a given package, each entity hasits
own copy of that signal.

Although you can declare al this information explicitly in each design
entity or architecturein asystem, it is often easier to declare system
information in a separate package. Each design entity in the system can
then use the system’s package.

The syntax of a package declaration is

package package _nane is
{ package decl arative item}
end [package nane | ;

where package_name is the name of this package.

A package_declarative_iteimany of these:
 use clause (to include other packages)
» Type declaration
» Subtype declaration

Describing Designs 3-11
VHDL Constructs

3-12

Constant declaration
Signal declaration
Subprogram declaration
Component declaration

Example 3-5 shows some package declarations.

Example 3-5 Sample Package Declarations

package EXAMPLE is

type BYTE is range 0 to 255;
subt ype NIBBLE is BYTE range 0 to 15;

constant BYTE _FF: BYTE : = 255;
si gnal ADDEND: NI BBLE;

conponent BYTE_ADDER
port (A, B: in BYTE;
C out BYTE;
OVERFLOW out BOOLEAN);
end conponent;

function MY_FUNCTION (A in BYTE) return BYTE;

end EXAMPLE;

To use the example declarations above, add a use statement at the beginning
of your design description as follows:

use WORK. EXAMPLE. ALL;
entity .

architecture .

Package Bodies

Package bodies contain the implementations of subprograms listed in the
package declaration. However, this information is never seen by designs or
entities that use the package. Package bodies can include the
implementations (bodies) of subprograms declared in the package
declaration and in internal support subprograms.

The syntax of a package body is

package body package nane is
{ package body decl arative item}
end [package nane | ;

Describing Designs
VHDL Constructs

where package _name is the name of the associated package.

A package body_declarative itemis any of these:
use clause

Subprogram declaration

Subprogram body

Type declaration

Subtype declaration

Constant declaration

For an example of a package declaration and body, see the std_logic_arith
package supplied with FPG&xpress.

Defining Designs

The high-level constructs discussed earlier in this chapter involve
Entity specifications (interfaces)

Entity architectures (implementations)

Subprograms

Entity Specifications

An entity specification defines the characteristics of an entity that must be
known before that entity can be connected to other entities and
components.

For example, before you can connect a counter to other entities, you must
specify the number and types of its inputs and outputs. The entity
specification defines the ports (inputs and outputs) of an entity.

The syntax of an entity specification is

entity entity nane is
[generic(generic_declarations) ;]
[port(port_declarations) ;]

end [entity _nane | ;

entity_name is the name of the entity, generic_declarations determine local
constants used for sizing or timing the entity, and port_declarations
determine the number and type of inputs and outputs. Other declarations
are not supported in the entity specification.

Describing Designs 3-13
Defining Designs

3-14

Entity Generic Specifications
Generic specifications are entity parameters. Generics can specify the bit
widths of components (such as adders) or provide internal timing values.

A generic can have adefault value. A genericisassighed anondefault value
only when the entity is instantiated (see “Component Instantiation
Statement” later in this chapter) or configured (see “Entity Configurations,
later in this chapter). Inside an entity, a generic is a constant value.

”

The syntax of generic_declarations is

generi c(
[constant _nanme : type [:= value]

{ ; constant_nanme : type [:= value] }

)

constant_name is the name of a generic constant, type is a previously
defined data type, and the optional value is the default value of
constant_name.

Note: FPGA Express supportsonly INTEGER type generics.

Entity Port Specifications
The syntax of port_declarations is
port (

[port_name : node port_type
{ ; port_name : npde port_type}]

’

port_name is the name of a port; mode is either in, out, inout, or buffer; and
port_type is a previously defined data type.

The four port modes are

in
Can only be read.

out
Can only be assigned a value.

inout
Can be read and assigned a value. The value read is that of the port’s
incoming value, not the assigned value (if any).

buffer
Similar to out, but can be read. The value read is the assigned value. It
can have only one driver. For more information on drivers, see “Driving
Signals” in Chapter 7, “Concurrent Statements.”

Describing Designs
Defining Designs

Example 3-6 shows an entity specification for a 2-input N-bit comparator,
with adefault bit width of 8.

Example 3-6 Interface for an N-Bit Counter

-- Define an entity (design) called COW
-- that has 2 N-bit inputs and one output.

entity COWP is
generic(N: |INTEGER : = 8); -- default is 8 bits

port(X, Y. in BIT VECTOR(O to N-1);
EQUAL: out BOOLEAN);
end COWP;

Entity Architectures

Each entity architecture defines one implementation of the entity’s
function. An architecture can range in abstraction from an algorithm (a set
of sequential statements within a process) to a structural netlist (a set of
component instantiations).

The syntax of an architecture is

architecture architecture_name of entity nane is
{ bl ock declarative item}

begin
{ concurrent_statenent }

end [architecture_nane | ;

architecture_name is the name of the architecture, and entity_name is the
name of the entity being implemented.

A block_declarative_item is any of these:
use clause

Subprogram declaration

Subprogram body

Type declaration

Subtype declaration

Constant declaration

Signal declaration

Component declaration

Describing Designs 3-15
Defining Designs

3-16

Concurrent statements are described in Chapter 7, “Concurrent
Statements.”

Example 3-7 shows a complete circuit description for a three-bit counter,
entity specification (COUNTERS3), and an architecture (MY_ARCH). This
example also includes a schematic of the resulting synthesized circuit.

Example 3-7 An Implementation of a Three-Bit Counter

entity COUNTER3 is
port (CLK: in bit;

RESET: in bit;

COUNT: out integer range 0 to 7);
end COUNTERS;

architecture MY_ARCH of COUNTER3 i s
signal COUNT_tnp : integer range 0 to 7;
begin
pr ocess
begi n
wait until (CLK’event and CLK ="1%;
-- wait for the clock
if RESET ="1" or COUNT_tmp =7 then
-- Ck. for RESET or max. count
COUNT _tmp <= 0;
else COUNT _tmp <= COUNT _tmp + 1;
-- Keep counting
end if;

end process;
COUNT <= COUNT _tmp;
end MY_ARCH,;

Describing Designs
Defining Designs

Figure 3-5 Three-Bit Counter Schematic

[COUN

ek [B p—

~COUN

[»COUN

Note: In an architecture, you must not declare constants or signalswith

the same name as any of the entity’s ports. If you declare a constant or
signal with a port's name, the new declaration hides that port name. If
the new declaration is included in the architecture declaration (as shown
in Example 3-8) and not in an inner block, FPGA Express reports an
error.

Describing Designs ~ 3-17
Defining Designs

3-18

Example 3-8 Incorrect Use of a Port Name when Declaring Signals or Constants

entity Xis
port(SIG CONST: in BIT,
ouTl, QUT2: out BIT);
end X

architecture EXAMPLE of X is
si gnal SIG : BIT;

const ant CONST: BIT :="1";
begin

end EXAMPLE;

The error messages generated for Example 3-8 are:
signal SIG : BIT;
N

Error: (VHDL-1872) line 13
lllegal redeclaration of SIG.

constant CONST: BIT :="1’;
N

Error: (VHDL-1872) line 14
lllegal redeclaration of CONST.

Entity Configurations

A configuration defines one combination of an entity and architecture for a
design.

Note: FPGA Express supports only configurations that associate one
top-level entity with an architecture.

The supported syntax for aconfiguration is

configuration configuration_name of entity _nane is
for architecture_nane
end for;
end [configuration _nane | ;

configuration_name is the name of this configuration, entity _name isthe
name of atop-level entity, and architecture_name is the name of the
architecture to use for entity_name.

Example 3-9 shows a configuration for the three-bit counter in Example
3-7. This configuration associates the counter’s entity specification
(COUNTERS3) with an architecture (MY_ARCH).

Describing Designs
Defining Designs

Example 3-9 Configuration of Counter in Example 3-7

configuration MY_CONFI G of COUNTERS3 is
for MY_ARCH
end for;

end MY_CONFI G

Note: If you do not specify a configuration for an entity with multiple
architectures, IEEE VHDL specifiesthat the last architectureread is
used. Thisis determined from the .mra (most recently analyzed) file.

Subprograms

Subprograms describe algorithms that are meant to be used more than once
in adesign. Unlike component instantiation statements, when a subprogram
isused by an entity or another subprogram, a new level of design hierarchy
is not automatically created. However, you can manually define a
subprogram as anew level of design hierarchy in the FPGA Express
Implementation window.

Two types of subprograms, procedures and functions, can contain zero or
more parameters:

procedures
Procedures have no return value, but can return information to their
callers by changing the values of their parameters.

functions
A function has asingle value that it returnsto the caller, but it cannot
change the value of its parameters.

Like an entity, a subprogram has two parts—its declaration and its body:

declaration
Declares the interface to a subprogram: its name, its parameters, and its
return value (if any).

body
Defines an algorithm that gives the subprogram'’s expected results.

When you declare a subprogram in a package, the subprogram declaration
must be in the package declaration, and the subprogram body must be in
the package body. A subprogram defined inside an architecture has a body,
but does not have a corresponding subprogram declaration.

Describing Designs 3-19
Defining Designs

Subprogram Declarations
A subprogram declaration lists the names and types of its parameters and
for functions, the type of its return value.

The syntax of a procedure declaration is
procedure proc_nane [(paraneter_declarations) | ;

proc_nameis the name of the procedure.

The syntax of afunction declarationis
function func_name [(paraneter_decl arations) |
return type_nane ;

func_name is the name of the function, and type_name is the type of the
function’s returned value.

The syntax of parameter_declarations is the same as the syntax of
port_declarations:

[paraneter_nane . node paraneter_type

{ ; paraneter_name : node paraneter_type}]

parameter_name is the name of a parameter; mode is either in, out, inout, or
buffer; and parameter_type is a previously defined data type.

Procedure parameters can use any mode. Function parameters must use
only mode in. Signal parameters of type range cannot be passed to a

subprogram.

Example 3-10 shows sample subprogram declarations for a function and a
procedure.

Example 3-10 Two Subprogram Declarations

type BYTE is array (7 downto 0) of BIT;
type NIBBLE is array (3 downto 0) of BIT;

function I S_ EVEN(NUM in | NTEGER) return BOOLEAN,
-- Returns TRUE if NUMis even.

procedure BYTE _TO N BBLES(B: i n BYTE;
UPPER, LOWER: out NI BBLE);
-- Splits a BYTE into UPPER and LOAER hal ves.

Note: When you call a subprogram, actual parameters are substituted for
the declared formal parameters. Actual parameters are either constant
values or signal, variable, constant, or port names. An actual parameter

3-20 Describing Designs
Defining Designs

must support the formal parameter’s type and mode. For example, an
input port cannot be used as an out actual parameter, and a constant can
be used only as an in actual parameter.

Example 3-11 shows some calls to the subprogram declarations from
Example 3-10.

Example 3-11 Two Subprogram Calls

signal |INT : | NTEGER,
vari abl e EVEN : BOOLEAN,

INT <= 7:
EVEN : = | S _ EVEN(I NT) ;

vari abl e TOP, BOT: N BBLE;

BYTE_TO NI BBLES("00101101", TOP, BOT):

Subprogram Bodies
A subprogram body defines an implementation of a subprogram'’s
algorithm.

The syntax of a procedure body is

procedure procedure_name [(paraneter_decl arations)
] is
{ subprogram decl arative item}
begi n
{ sequential statenent }
end [procedure_nane | ;

The syntax of a function body is

function function _nane [(paraneter_decl arations)]
return type nane is
{ subprogram decl arative_item}
begi n
{ sequential statenent }
end [function_nane | ;

A subprogram_declarative_item is any of these:
use clause

Type declaration

Subtype declaration
Constant declaration

Variable declaration

Describing Designs 3-21
Defining Designs

3-22

Attribute declaration

Attribute specification

Subprogram declaration (for local, or nested, subprograms)
Subprogram body

Example 3-12 shows subprogram bodies for the sample subprogram
declarations in Example 3-10.

Example 3-12 Two Subprogram Bodies

function IS EVEN(NUM in | NTEGER)
return BOOLEAN i s
begi n
return ((NUMrem 2) = 0);
end | S_EVEN,

procedure BYTE TO NI BBLES(B: in BYTE;
UPPER, LOWER: out NI BBLE) is

begi n
UPPER : = NI BBLE(B(7 downto 4));
LONAER : = NI BBLE(B(3 downto 0));

end BYTE_TO NI BBLES;

Subprogram Overloading

You can overload subprograms; more than one subprogram can have the
same name. Each subprogram that uses a given nhame must have a different
parameter profile.

A parameter profile specifies a subprogram’s number and type of
parameters. This information determines which subprogram is called when
more than one subprogram has the same name. Overloaded functions are
also distinguished by the type of their return values.

Example 3-13 shows two subprograms with the same name, but different
parameter profiles.

Describing Designs
Defining Designs

Example 3-13 Subprogram Overloading

type SMALL is range 0 to 100;
type LARGE is range 0 to 10000;

function IS ODD(NUM SMALL) return BOOLEAN,
function IS ODD(NUM LARGE) return BOOLEAN,

si gnal A _NUMBER: SMALL;
si gnal B: BOCLEAN;

B <= IS ODD(A NUMBER): -- Wl call the first
-- function above

Operator Overloading

Predefined operators such as +, and, and mod can al so be overloaded. By
using overloading, you can adapt predefined operators to work with your
own data types.

For example, you can declare new logic types, rather than use the
predefined types BIT and INTEGER. However, you cannot use predefined
operators with these new types unless you declare overloaded operators for
the new logic type.

Example 3-14 shows how some predefined operators are overloaded for a
new logic type.

Example 3-14 Operator Overloading

type NEW_BIT is (0, 'L, 'X’);
-- New logic type

function "and"(11, 12: in NEW_BIT) return NEW_BIT;
function "or" (11, 12: in NEW_BIT) return NEW_BIT,;
-- Declare overloaded operators for new logic type

signal A, B, C: NEW_BIT:

C<=(AandB) or C;

VHDL requires overloaded operator declarations to enclose the operator
name or symbol in double quotation marks, because they are infix operators
(they are used between operands). If you declared the overloaded operators
without quotation marks, aVHDL tool considers them functions rather than
operators.

Describing Designs 3-23
Defining Designs

Type Declarations

Type declarations define the name and characteristics of atype. Types and

type declarations are fully described in Chapter 4, “Data Types.” Atype is a
named set of values, such as the set of integers, or the set (red, green, blue).
An object of a given type, such as a signal, can have any value of that type.

Example 3-14 shows a type declaration for type NEW_BIT, and some
functions and variables of that type.

Type declarations are allowed in architectures, packages, entities, blocks,
processes, and subprograms.

Subtype Declarations

Use subtype declarations to define the name and characteristics of a
constrained subset of another type or subtype. A subtype is fully
compatible with its parent type, but only over the subtype’s range. Subtype
declarations are described in Chapter 4, “Data Types.”

The following subtype declaration (NEW_LOGIC) is a subrange of the
type declaration in Example 3-14.

subtype NEW_LOGIC is NEW_BIT range '0’ to '1’;

Subtype declarations are allowed wherever type declarations are allowed:
in architectures, packages, entities, blocks, processes, and subprograms.

Constant Declarations

Constant declarations create named val ues of agiven type. The value of a
constant can be read but not changed.

Constant declarations are allowed in architectures, packages, entities,
blocks, processes, and subprograms.

Example 3-15 shows some constant declarations.

Example 3-15 Constant Declarations

constant WIDTH: INTEGER := 8§;
constant X :NEW_BIT :="X;

3-24 Describing Designs
Defining Designs

Y ou can use constants in expressions, as described in Chapter 5,
“Expressions,” and as source values in assignment statements, as described
in Chapter 6, “Sequential Statements.”

Signal Declarations

Example 3-16 Signal Declarations

Signal declarations create new nhamed signals (wires) of a given type.
Signals can be given default (initial) values. However, these initial values
are not used for synthesis.

Signals with multiple drivers (signals driven by wired logic) can have
associated resolution functions, as described in the next section.

Example 3-16 shows two signal declarations.

signal A B: BIT,;
signal INIT: INTEGER : = -1;

Note: Ports are also signals, with therestriction that out ports cannot be
read, and in ports cannot be assigned a value. You create signals either by
port declarations or by signal declarations. You create ports only by port
declarations.

You can declare signals in architectures, entities, and blocks, and use them
in processes and subprograms. Processes and subprograms cannot declare
signals for internal use.

You can use signals in expressions, as described in Chapter 5,
“Expressions.” Signals are assigned values by signal assignment
statements, as described in Chapter 6, “Sequential Statements.”

Resolution Functions

Resolution functions are used with signals that can be connected (wired
together). For example, if two drivers are directly connected to a signal, the
resolution function determines whether the signal value is the AND, OR, or
three-state function of the driving values.

Describing Designs 3-25
Defining Designs

3-26

Use resolution functionsto assign the driving value when there are multiple
drivers. For simulation, you can write an arbitrary function to resolve bus
conflicts.

Note: A resolution function might change the value of a resolved signal,
even if all drivers have the same value.

The resolution function for a signal is part of that signal’s subtype
declaration. You create a resolved signal in four steps:

-- Step 1

type SIGNAL_TYPE is ...

-- signal’s base type is SI GNAL_TYPE

-- Step 2

subtype res type is res_function Sl GNAL_ TYPE,

-- name of the subtype is res_type

-- name of function is res_function

-- signal type is res_type (asubtype of Sl GNAL_TYPE)
- Step 3

function res_function(DATA: ARRAY TYPE)
return SIGNAL_TYPE i s

-- declaration of the resolution function

-- ARRAY_TYPE must be an unconstrained array of

Sl GNAL_TYPE

- Step 4
signal resol ved_si gnal _nane: res_t ype;
-- resol ved_si gnal _nane is a resolved signal

The signal’s base type is declared.

The resolved signal’s subtype is declared as a subtype of the base type and
includes the name of the resolution function.

The resolution function itself is declared (and later defined).
Resolved signals are declared as resolved subtypes.

FPGAEXxpress does not support arbitrary resolution functions. Only wired
AND, wired OR, and three-state functions are allowed. FIEg#ess
requires that you mark all resolution functions with a special directive
indicating the kind of resolution performed.

Note: FPGA Express considersthe directive only when creating
hardware. The body of the resolution function is parsed but ignored.
Using unsupported VHDL constructs generates errors.

Do not connect signals that use different resolution functions. FPGA
Express supports only one resolution function per network.

Describing Designs
Defining Designs

The three resol ution function directives are

-- synopsys resolution_method wred _and
-- synopsys resolution_method w red_or

-- synopsys resolution_method three_state

Note: Pre-synthesis and post-synthesis ssimulation results might not
match if the body of the resolution function used by the simulator does
not match the directive used by the synthesizer.

Example 3-17 shows how to create and use resolved signals, and how to
use compiler directives for resolution functions. The signal’s base type is
the predefined type BIT.

Describing Designs ~ 3-27
Defining Designs

Example 3-17 Resolved Signal and Its Resolution Function

package RES PACK is
functi on RES_FUNC(DATA: in BIT_VECTOR) return BIT;
subtype RESOLVED BIT is RES FUNC BIT;

end;

package body RES PACK is
functi on RES_FUNC(DATA: in BIT_VECTOR) return BIT

is
-- pragma resol ution_nethod wred_and
begi n
-- The code in this function is ignored by FPGA
Express

-- but parsed for correct VHDL syntax

for I in DATA'range loop

if DATA(l) =0’ then
return '0’;

end if;

end loop;

return’'l’;

end;
end;

use work.RES_PACK.all;

entity WAND_VHDL is
port(X, Y: in BIT; Z: out RESOLVED_BIT);
end WAND_VHDL;

architecture WAND_VHDL of WAND_VHDL is
begin

Z<=X;

Z<=Y;
end WAND_VHDL;

x [O— AN2
vy [O—

Variable Declarations

Variable declarations define a named value of a given type.

Y ou can use variables in expressions, as described in Chapter 5,
“Expressions.” Variables are assigned values by variable assignment
statements, as described in Chapter 6, “Sequential Statements.”

3-28 Describing Designs
Defining Designs

Example 3-18 Variable Declarations

Example 3-18 shows some variable declarations.

variable A, B: BIT,
variable INIT: NEWBIT,

Note: Variables are declared and used only in processes and
subprograms, because processes and subprograms cannot declare signals
for internal use.

Structural Design

FPGA Express works with one or more designs. Each entity (and
architecture) in a VHDL description is translated to asingle design in
FPGA Express. Designs can also originate from formats other than VHDL,
such as equations, Programmable Logic Arrays (PLAS), state machines,
other HDLSs, or netlists.

A design can contain instances of lower-level designs, connected by nets
(signals) to the lower-level design’s ports. These lower-level designs can
consist of other entities from a VHDL design, designs represented in
another Synopsys format, or cells from a technology library. By
instantiating designs within designs, you create a hierarchy.

Hierarchy in VHDL is specified by using component declarations and
component instantiation statements. To include a design, you must specify
its interface with a component declaration. You can then create an instance
of that design by using the component instantiagiatement.

If your design consists only of VHDL entities, every component

declaration statement corresponds to an entity in the design. If your design
uses designs or technology library cells not described in VHDL, create
component declarations without corresponding entities. You can then use
FPGAEXxpress to associate the VHDL component with the non-VHDL
design or cell.

Note: To simulate your VHDL design, you must provide entity and
architecture descriptions for all component declarations.

Describing Designs ~ 3-29
Structural Design

Using Hardware Components

VHDL includes constructs to use existing hardware components. These
structural constructs can be used to define a netlist of components.

The following sections describe how to use components and how FPGA
Express configures these components.

Component Declaration

Y ou must declare acomponent in an architecture or package before you can
use (instantiate) it. A component declaration statement is similar to the
entity specification statement described earlier, in that it defines the
component’s interface.

The syntax for a component declaration is

component identifier
[generic(generic_declarations)]
[port(port_declarations)]

end conponent ;

where identifier is the name of this type of component, and the syntax of
generic_declarations and port_declarations is the same as defined
previously for entity specifications.

Example 3-19 shows a simple component declaration statement.

Example 3-19 Component Declaration of a Two-Input AND Gate

conponent AND2
port(l1, 12: in BIT,
o1: out BIT);
end conponent;

Example 3-20 shows a component declaration statement that uses a generic
parameter.

3-30 Describing Designs
Structural Design

Example 3-20 Component Declaration of an N-Bit Adder

conponent ADD
generi c(N:. PCSITI VE);

port(X, Y: in BIT VECTOR(N-1 downto 0);
Z: out BIT_VECTOR(N-1 downto 0);
CARRY: out BIT)
end conponent;

Although the component declaration statement is similar to the entity
specification, it serves a different purpose. The component declaration is
required to make the design entity AND2 or ADD usable, or visible, within
an architecture. After acomponent is declared, it can be used in a design.

Sources of Components

A declared component can come from the same VHDL source file, from a
different VHDL source file, from another format such as Electronic Data
Interchange Format (EDIF) or state table, or from atechnology library. If
the component is not in one of the current VHDL sourcefiles, it must
already be compiled by FPGA Express.

When FPGA Express compiles a design that uses components, FPGA
Express searches for previously compiled components by name in the
following order:

In the current design.

In the input source file or filesidentified in the FPGA Express
Implementation window.

3. Inthelibraries of technology-specific FPGA components.

Consistency of Component Ports
FPGA Express checks for consistency among its VHDL entities. For other
entities, the port names are taken from the original design description.

« For components in a technology library, the port names are the input and
output pin names.

« For EDIF designs, the port names are the EDIF port names.

The bit widths of each port must also match. FREXgress verifies

matching for VHDL components, because the port types must be identical.
For components from other sources, FPB@ress checks when linking

the component to the VHDL description.

Describing Designs 3-31
Structural Design

3-32

Component Instantiation Statement

The component instantiation statement instantiates and connects
components to form a netlist (structural) description of a design. A
component instantiation statement can create a new level of design
hierarchy.

The syntax of the component instantiation statement is

i nstance_name : conponent_nane
[generic map (
generic_nanme => expression
{ . generic_nane => expression }

)]
port map (

[port_name =>] expression
{ , [port_name =>] expression }

’

instance_name is the name of thisinstance of component type
component_name.

The optional generic map assigns nondefault values to generics. Each
generic_name is the name of ageneric, exactly as declared in the
corresponding component declaration statement. Each expression eval uates
to an appropriate value.

The port map assigns the component’s ports to connections. Each
port_name is the name of a port, exactly as declared in the corresponding
component declaration statement. Each expression evaluates to a signal
value.

FPGAEXxpress uses the following two rules to decide which entity and
architecture are to be associated with a component instantiation:

Each component declaration must have an entity with the same name: a
VHDL entity, a design from another source (format), or a library
component. This entity is used for each component instantiation associated
with the component declaration.

If a VHDL entity has more than one architecture | éisearchitecture input
is used for each component instantiation associated with that entity. The
.mra file determines the last architecture analyzed.

Mapping Generic Values

When you instantiate a component with generics, you can map generics to
values. A generic without a default value must be instantiated with a
generic map value.

Describing Designs
Structural Design

For example, afour-bit instantiation of the component ADD in Example
3-20 might use the following generic map.

Ul: ADD generic map (N => 4)
port map (X, Y, Z, CARRY...);

The port map assigns component portsto actual signals; it is described in
the next section.

Mapping Port Connections

Y ou can specify port connections in component instantiation statements
with either named or positional notation. With named notation, the
port_name => construct identifies the specific ports of the component. With
positional notation, the expressions for the component ports are simply
listed in the declared port order.

Example 3-21 shows named and positional notation for the U5 component
instantiation statement in Example 3-22.

Example 3-21 Equivaent Named and Positional Association

Us: or2 port map (O =>n6, |1 =>n3, |2 => nl);
-- Naned associ ation

Us: or2 port map (n3, nl, n6);
-- Positional association

Note: When you use positional association, the instantiated port
expressions (signals) must be in the same order as the declared ports.

Example 3-22 shows a structural (netlist) description for the COUNTERS
design entity from Example 3-77.

Describing Designs 3-33
Structural Design

3-34

Example 3-22 Structural Description of a Three-Bit Counter

conponent DFF

port (CLK, DATA: in BIT;

Q out BIT;
end conponent;
conmponent AND2

port(ll, 12: in BIT,

O out BIT);
end conponent;
conponent OR2

port(ll, 12: in BIT,

O out BIT);
end conponent;
conmponent NAND2

port(ll, 12: in BIT,

O out BIT);
end conponent;
conmponent XNOR2

port(ll, 12: in BIT,

O out BIT);
end conponent;
conponent | NV

port(l: in BIT,;

O out BIT);

end conponent;

architecture STRUCTURE of COUNTER3 is

signal N1, N2, N3, N4, N5, N6, N7, N8, N9: BIT,
begi n
ul: DFF port map(CLK, N1, N2);
u2: DFF port map(CLK, N5, N3);
u3: DFF port map(CLK, N9, MN);
ud: INV port map(N2, N1);
u5: OR2 port map(N3, N1, N6);
u6: NAND2 port map(N1l, N3, N7);
u7: NAND2 port map(N6, N7, N5);
u8: XNOR2 port map(N8, N4, N9);
u9: NAND2 port map(N2, N3, N8);

COUNT(0) <= N2;
COUNT(1) <= N3;
COUNT(2) <= M4;

end STRUCTURE;

Technology-Independent Component Instantiation

When you use a structural design style, you might want to instantiate
logical components. Synopsys provides generic technology library GTECH
for this purpose. This generic technology library contains
technology-independent logical components such as:

« AND, OR, and NOR gates (2, 3, 4, 5, and 8)
* one-bit adders and half adders

Describing Designs
Structural Design

» 2-0f-3 majority
» multiplexors
« flip-flops and latches

« multiple-level logic gates, such as AND-NOT, AND-OR,
AND-OR-INVERT

You can use these simple components to create technology-independent
designs.Example 3-23 shows how an N-bit ripple-carry adder can be
created from N one-bit adders.

Example 3-23 Design That Uses Technology-Independent Components

i brary GIECH;
use gtech. gtech_conponents. all;
entity RI PPLE CARRY is

generi c(N: NATURAL);

port (A, B: in BIT_VECTOR(N-1 downto 0);
CARRY_I N: in BIT,
SUM out BI T_VECTOR(N-1 downto 0);

CARRY_QUT: out BIT;);
end RI PPLE_CARRY;

architecture TECH | NDEP of RIPPLE CARRY is
si gnal CARRY: BI T_VECTOR(N downto 0);

begi n
CARRY(0) <= CARRY_IN;

GEN:. for I in O to N1 generate
Ul: GITECH_ADD _ABC port map(

A => A(l),

B = B(1),

C => CARRY(I),
S => SUM 1),

COUT => CARRY(I +1));
end generate GEN,

CARRY_OUT <= CARRY(N):
end TECH | NDEP;

Describing Designs 3-35
Structural Design

3-36 Describing Designs
Structural Design

Data Types

VHDL isastrongly typed language. Every constant, signal, variable,
function, and parameter is declared with atype, such as BOOLEAN or
INTEGER, and can hold or return only avalue of that type.

VHDL predefines abstract data types, such as BOOLEAN, which are part
of most programming languages, and hardware-related types, such as BIT,
found in most hardware languages. Predefined VHDL types are declared in
the STANDARD package, which is supplied with all VHDL
implementations (see Example 4-11). Data type information includes

Enumeration types

Integer types

Array types

Record types

Predefined VHDL data types
Unsupported data types
Synopsys data types
Subtypes

The advantage of strong typing is that VHDL tools can catch many
common design errors, such as assigning an eight-bit value to a
four-bit-wide signal, or incrementing an array index out of its range.

Data Types

4-1

The following example code shows the definition of anew type, BY TE, as
an array of eight bits, and a variable declaration, ADDEND, that uses this

type.
type BYTE is array(7 downto 0) of BIT;

vari abl e ADDEND: BYTE;

The predefined VHDL datatypesare built from the basic VHDL datatypes.
Some VHDL types are not supported for synthesis, such as REAL and
FILE.

The examplesin this chapter show type definitions and associated object
declarations. Although each constant, signal, variable, function, and
parameter is declared with atype, only variable and signal declarations are
shown herein the examples. Constant, function, and parameter declarations
are shown in Chapter 3, “Describing Designs.”

VHDL also providesubtypes, which are defined as subsets of other types.
Anywhere a type definition can appear, a subtype definition can also

appear. The difference between a type and a subtype is that a subtype is a
subset of a previously defined parémtbasé type or subtype. Overlapping
subtypes of a given base type can be compared against and assigned to each
other. All integer types, for example, are technically subtypes of the built-in
integer base type (see “Integer Types,” later in this chapter). Subtypes are
described later in this chapter.

Enumeration Types

An enumeration type is defined by listing (enumerating) all possible values
of that type.

The syntax of an enumeration type definition is

type type nane is (enuneration_literal
{, enuneration literal});

type_name is an identifier, and each enumeration_literal is either an
identifier (enum_6) or aharacter literal ('A”).

An identifier is a sequence of letters, underscores, and numbers. An
identifier must start with a letter and cannot be a VHDL reserved word,
such as TYPE.

A character literal is any value of type CHARACTER, in single quotes.

4-2 Data Types
Enumeration Types

Example 4-1shows two enumeration type definitions and corresponding
variable and signal declarations.

Example4-1 Enumeration Type Definitions

type COLOR i s (BLUE, GREEN, YELLOW RED);
type MY_LOGIC is (0’,'1’,'U’, 'Z");

variable HUE: COLOR;

signal SIG: MY_LOGIC;

HUE ‘= BLUE;
SIG <= 'Z":

Enumeration Overloading

Y ou can overload an enumeration literal by including it in the definition of

two or more enumeration types. When you use such an overloaded

enumeration literal, FPGA Express can usually determine the literal’s type.
However, under certain circumstances determination may be impossible. In
these cases, you must qualify the literal by explicitly stating its type (see
“Qualified Expressions” in Chapter 5, “Expressions”). Example 4-2 shows
how you can qualify an overloaded enumeration literal.

Example4-2 Enumeration Literal Overloading

type COLOR i s (RED, GREEN, YELLON BLUE, VI OLET);
type PRI MARY COLCR is (RED, YELLOW BLUE);

A <= COLOR'(RED);

Enumeration Encoding

Enumeration types are ordered by enumeration value. By default, the first
enumeration literal is assigned the value O, the next enumeration literal is
assigned the value 1, and so forth.

Data Types 4-3
Enumeration Types

4-4

FPGA Express automatically encodes enumeration values into bit vectors

that are based on each value’s position. The length of the encoding bit
vector is the minimum number of bits required to encode the number of
enumerated values. For example, an enumeration type with five values has
a three-bit encoding vector.

Example 4-3 shows the default encoding of an enumeration type with five
values.

Example4-3 Automatic Enumeration Encoding

type COLOR is (RED, GREEN, YELLOW BLUE, VI OLET);

The enumeration values are encoded as follows:

RED g "000"
GREEN 0O "O001"
YELLOW O "010"
BLUE O "011"
VIOLET O "100"

The result is RED < GREEN < YELLOW < BLUE < VIOLET.

You can override the automatic enumeration encodings and specify your
own enumeration encodings with the ENUM_ENCODING attribute. This
interpretation is specific to FPGEBxpress.

A VHDL attribute is defined by its name and type, and is then declared with
a value for the attributed type, as shown in Example 4-4 below.

Note: Several VHDL synthesis-related attributes are declared in the
ATTRIBUTES package supplied with FPGA Express.

The ENUM_ENCODING attribute must be a STRING containing a series
of vectors, one for each enumeration literal in the associated type. The
encoding vector is specified by 0s, 1s, Ds, Us, and Zs separated by blank
spaces. The meaning of these encoding vectors is described in the next
section. The first vector in the attribute string specifies the encoding for the
first enumeration literal, the second vector specifies the encoding for the
second enumeration literal, and so on. The ENUM_ENCODING attribute
must immediately follow the type declaration.

Example 4-4 illustrates how the default encodings from Example 4-3 can
be changed with the ENUM_ENCODING attribute.

Data Types
Enumeration Types

Example 4-4 Using the ENUM_ENCODING Attribute

attri bute ENUM ENCODI NG STRI NG
-- Attribute definition

type COLOR is (RED, CREEN, YELLOW BLUE, VICOLET);
attri bute ENUM ENCODI NG of

COLOR: type is "010 000 011 100 0O1";

-- Attribute declaration

The enumeration values are encoded as follows:

RED = "010"
GREEN = " 000"
YELLOW = " 011"
BLUE = "100"
VI OLET = "001"

The result is GREEN<VIOLET<RED<Y ELLOW<BLUE

Note: Theinterpretation of the ENUM_ENCODING attribute is specific
to FPGA Express. Other VHDL tools, such as simulators, use the
standard encoding (ordering).

Enumeration Encoding Values

The possible encoding values for the ENUM_ENCODING attribute are:

0
Bit value 0

1
Bit value 1

D
Don't-care (can be either 0 or 1).

Unknown. If U appears in the encoding vector for an enumeration, you
cannot use that enumeration literal except as an operand to the = and /=
operators. You can read an enumeration literal encoded with a U from a
variable or signal, but you cannot assign it.

For synthesis, the = operator returns FALSE and the /= operator returns
TRUE when either of the operands is an enumeration literal whose
encoding contains U.

Data Types 4-5
Enumeration Types

4-6

z
High impedance. See “Three-Statelnference” in Chapter 8, “Register
Inference,” for more information.

Integer Types

The maximum range of a VHDL integer type-{@3-1) to 2811
(-2_147_483_647 ..2_147_483_647). Integer types are defined as
subranges of this anonymous built-in type. Multidigit numbers in VHDL
can include underscores () to make them easier to read.

FPGAExpress encodes an integer value as a bit vector whose length is the
minimum necessary to hold the defined range and encodes integer ranges
that include negative numbers as 2’'s-complement bit vectors.

The syntax of an integer type definition is

type type nane is range integer_range ;

type_name is the name of the new integer type, and integer_range is a
subrange of the anonymous integer type.

Example 4-5 shows some integer type definitions.

Example 4-5 Integer Type Definitions

type PERCENT is range -100 to 100;
-- Represented as an 8-bit vector
-- (1 sign bit, 7 value bits)

type INTEGER i s range -2147483647 to 2147483647;
-- Represented as a 32-bit vector
-- This is the definition of the | NTEGER type

Note: You cannot directly access the bits of an INTEGER or explicitly
state the bit width of the type. For these reasons, Synopsys provides
overloaded functions for arithmetic. These functions are defined in the
std_logic package.

Data Types
Integer Types

Array Types

An array isan object that is a collection of elements of the same type.
VHDL supports N-dimensional arrays, but FPGA Express supports only
one-dimensional arrays. Array elements can be of any type. An array hasan
index whose value selects each element. The index range determines how
many elements arein the array and their ordering (low to high, or high
downto low). An index can be of any integer type.

Y ou can declare multidimensional arrays by building one-dimensional

arrays where the element type is another one-dimensional array, as shown
in Example 4-6.

Example 4-6 Declaration of Multidimentional Array

type BYTE is array (7 downto 0) of BIT;
type VECTOR is array (3 downto 0) of BYTE;

VHDL provides both constrained arrays and unconstrained arrays. The
difference between these two arrays comes from the index range in the
array type definition.

Constrained Array

A constrained array’s index range is explicitly defined; for example, an
integer range (1 to 4). When you declare a variable or signal of this type, it
has the same index range.

The syntax of a constrained array type definition is

type array_type_nane is
array (integer_range) of type nane ;

array_type_name is the name of the new constrained array type,
integer_range is a subrange of another integer type, and type_name is the
type of each array element.

Example 4-7 shows a constrained array definition.

Data Types 4-7
Array Types

Example 4-7 Constrained Array Type Definition

type BYTE is array (7 downto 0) of BIT;
-- A constrained array whose index range is
-- (7, 6, 5 4, 3, 2, 1, 0)

Unconstrained Array

You define an unconstrained array’s index rangetggeafor example,
INTEGER. This definition implies that the index range can consist of any
contiguous subset of that type’s values. When you declare an array variable
or signal of this type, you also define its actual index range. Different
declarations can have different index ranges.

The syntax of an unconstrained array type definition is

type array_type_nane is
array (range_type nane range <>)
of el enent_type nane ;

array_type_name is the name of the new unconstrained array type,
range_type_name is the name of an integer type or subtype, and
element_type name is the type of each array element.

Example 4-8 shows an unconstrained array type definition and a
declaration that uses it.

Example 4-8 Unconstrained Array Type Definition

type BIT_VECTOR is array(l NTEGER range <>) of BIT;
-- An unconstrained array definition

variabl e MY _VECTOR : BIT_VECTOR(5 downto -5);

The advantage of using unconstrained arrays is that a VHDL tool
remembers the index range of each declaration. You caarnzse

attributes to determine the range (bounds) of a signal or variable of an
unconstrained array type. With this information, you can write routines that
use variables or signals of an unconstrained array type, independently of
any one array variable’s or signal’s bounds. The next section describes
array attributes and how they are used.

4-8 Data Types
Array Types

Array Attributes

Table4-1 Array Index Attributes

FPGA Express supports the following predefined VHDL attributes for use
with arrays:

left
right
high
low
length
range

reverse_range

These attributes return a value corresponding to part of an array’s range.
Table 4-1 shows the values of the array attributes for the variable
MY_VECTOR in Example 4-8.

Attribute Expression Value

MY_VECTOR’left
MY_VECTOR'right
MY_VECTOR’high
MY_VECTOR’low
MY_VECTOR’length
MY_VECTOR’range

11
(5 down to -5)

MY_VECTOR'reverse_range (-5t0 5)

Example 4-9 shows the use of array attributes in a function that ORs
together all elements of a given BIT_VECTOR (declared in Example 4-8)
and returns that value.

Example4-9 Use of Array Attributes

function OR ALL (X: in BIT_VECTOR) return BIT is
variable R BIT: BIT,
begi n
OR_BIT :='0;
for I in X’range loop
OR_BIT := OR_BIT or X(I);
end loop;

return OR_BIT;
end;

Data Types 4-9
Array Types

4-10

Note that this function worksfor aBIT_VECTOR of any size.

Record Types

A record isaset of named fields of various types, unlike an array, whichis
composed of identical anonymous entries. A record’s field can be of any
previously defined type, including another record type.

Note: Constantsin VHDL of type record are not supported for synthesis
(theinitialization of recordsis not supported).

Example 4-10 shows a record type declaration (BYTE_AND_IX), three
signals of that type, and some assignments.

Example 4-10 Record Type Declaration and Use

constant LEN: | NTEGER : = 8§;
subtype BYTE_VEC is BI T_VECTOR(LEN-1 downto 0);

type BYTE AND I X is

record
BYTE: BYTE_VEC,
I X | NTEGER range 0 to LEN,

end record;
signal X, Y, Z: BYTE_AND | X;

si gnal DATA: BYTE_VEC,
signal NUM | NTEGER,

X. BYTE <= "11110000";
XX <=2

DATA <= Y. BYTE;
NUM <= Y.IX;

Z <= X

As shown in Example 4-10, you can read values from or assign values to
records in two ways:

By individual field name

X. BYTE <= DATA;
X I X <= LEN;

Data Types
Record Types

» From another record object of the same type
Z <= X

Note: A record type object’s individual fields are accessed by the object
name, a period, and a field name: X.BYTE or X.IX. To access an element
of the BYTE field’s array, use the array notation X.BYTE(2).

Predefined VHDL Data Types

IEEE VHDL describes two site-specific packages, each containing a
standard set of types and operations: the STANDARD package and the
TEXTIO package.

The STANDARD package of datatypesisincluded in all VHDL source
filesby an implicit use clause. The TEXTIO package defines types and
operations for communication with a standard programming environment
(terminal and file I/0). This package is not needed for synthesis, and
therefore FPGA Express does not support it.

The FPGA Express implementation of the STANDARD packageislisted
in Example 4-11. This STANDARD package is a subset of the IEEE
VHDL STANDARD package. Differences are described in “Unsupported
Data Types” later in this chapter.

Data Types 4-11
Predefined VHDL Data Types

Example4-11 FPGA Express STANDARD Package

package STANDARD i s
type BOOLEAN i s (FALSE, TRUE);
type BIT is ('0’, '1");

type CHARACTER is (
NUL, SOH, STX, ETX, EOT, ENQ, ACK, BEL,
BS, HT, LF, VT, FF, CR, SO, SI,
DLE, DC1, DC2, DC3, DC4, NAK, SYN, ETB,
CAN, EM, SUB, ESC, FSP, GSP, RSP, USP,

0
’(’ ')’ e T

0,1, ’2’ 3,4, ’5’ ’6’ T,
‘8,9, Y, e
'‘@','A’,'B’,’C",’'D’, 'E', 'F', 'G’,
H,r, YKL, MY N, O
'P,’Q", 'R, S, T, UL VLW
XYz T

woal, b e, d el g

lhl 1i! 1j1 lk! 1|5 1m1 1n1 501
LIRS B s) !ry 1S| ltl !ui ’V W
’X l 1) !{1 !|| l}l 1 DEL)

type INTEGER is range -2147483647 to 2147483647
subtype NATURAL is INTEGER range 0 to 2147483647,
subtype POSITIVE is INTEGER range 1 to 2147483647;

type STRING is array (POSITIVE range <>)
of CHARACTER,;

type BIT_VECTOR is array (NATURAL range <>)
of BIT;

end STANDARD;

BOOLEAN Data Type

The BOOLEAN datatypeisactually an enumerated type with two values,
FALSE and TRUE, where FALSE < TRUE. Logica functions such as
eguality (=) and comparison (<) functions return aBOOLEAN value.

Convert aBIT valueto aBOOLEAN vaue as follows:
BOOLEAN_VAR = (BIT_VAR ="1";

4-12 Data Types
Predefined VHDL Data Types

BIT Data Type

TheBIT datatype represents a binary value as one of two characters, O or 1.
Logical operations, such as and, can take and return BIT val ues.

Convert aBOOLEAN valueto aBIT value asfollows:
i f (BOOLEAN_VAR) then

BIT VAR =1
else

BIT_VAR =0
end if;

CHARACTER Data Type

The CHARACTER data type enumerates the ASCII character set.
Nonprinting characters are represented by athree-letter name, such as NUL
for the null character. Printable characters are represented by themselves, in
single quotation marks, as follows:

variable CHARACTER_VAR: CHARACTER;
CHARACTER_VAR := ‘A’

INTEGER Data Type

The INTEGER data type represents positive and negative whole numbers
and zero.

NATURAL Data Type

The NATURAL datatypeisasubtype of INTEGER that is used to
represent natural (nonnegative) numbers.

POSITIVE Data Type

The POSITIVE datatypeisasubtype of INTEGER that is used to represent
positive (nonzero and nonnegative) numbers.

Data Types 4-13
Predefined VHDL Data Types

4-14

STRING Data Type

The STRING data type is an unconstrained array of CHARACTER data
types. A STRING valueis enclosed in double quotation marks, as follows:.

vari abl e STRING VAR STRING 1 to 7);
STi?I NG_VAR : = "Rosebud";

BIT_VECTOR Data Type

The BIT_VECTOR data type represents an array of BIT values.

Unsupported Data Types

Some data types are either not useful for synthesis or are not supported.
Unsupported types are parsed but ignored by FPGA Express. These types
are listed and described below.

Physical Types

FPGA Express does not support physical types, such as units of measure
(for example, ns). Because physical types are relevant to the simulation
process, FPGA Express alows but ignores physical type declarations.

Floating Point Types

FPGA Express does not support floating point types, such as REAL.
Floating point literals, such as 1.34, are allowed in the definitions of FPGA
Express-recognized attributes.

Access Types

FPGA Express does not support access (pointer) types because no
equivalent hardware construct exists.

Data Types
Unsupported Data Types

File Types

FPGA Express does not support file (disk file) types. A hardwarefileisa
RAM or ROM.

SYNOPSYS Data Types

The std _logic_arith package provides arithmetic operations and numeric
comparisons on array datatypes. The package also defines two major data
types: UNSIGNED and SIGNED. These data types, unlike the predefined
INTEGER type, provide access to the individual bits (wires) of anumeric
value.

Subtypes

A subtypeis asubset of apreviously defined type or subtype. A subtype
definition can appear wherever atype definition is allowed.

Defining subtypesis a powerful way to use VHDL type checking to ensure
valid assignments and meaningful data handling. Subtypes inherit all
operators and subprograms defined for their parent (base) types.

Y ou can also use subtypes for resolved signals to associate a resolution
function with the signal type. (See “Signal Declarations” in Chapter 3,
“Describing Designs,” for more information.)

For example, in Example 4-11, NATURAL and POSITIVE are subtypes of
INTEGER and they can be used with any INTEGER function. These
subtypes can be added, multiplied, compared, and assigned to each other, as
long as the values are within the appropriate subtype’s range. All

INTEGER types and subtypes are actually subtypes of an anonymous
predefined numeric type.

Example 4-12 shows some valid and invalid assignments between
NATURAL and POSITIVE values.

Data Types 4-15
SYNOPSYS Data Types

4-16

Example4-12 Valid and Invalid Assignments between INTEGER Subtypes

vari abl e NAT: NATURAL;
vari abl e POS: POSI Tl VE;

iDOé:=5;

NAT : = PCS + 2;

NAT := 0;

PCS : = NAT,; -- Invalid; out of range

For éxarrpl e, the type BIT VECTOR is defined as
type BIT VECTOR is array(NATURAL range <>) of BIT;

If your design uses only 16-hit vectors, you can define a subtype
MY_VECTOR as

subtype MY_VECTOR is BIT_VECTOR(O0 to 15);

Example 4-13 shows that all functions and attributes that operate on
BIT _VECTOR also operateon MY _VECTOR.

Example 4-13 Attributes and Functions Operating on a Subtype

type BIT_VECTOR is array(NATURAL range <>) of BIT;
subtype MY_VECTOR is BIT_VECTOR(O0 to 15);

signal VECL, VEC2: MY VECTOR;
si gnal SBIT: BIT,
vari abl e UPPER BOUND: | NTEGER,

if (VECL

VEC2)

VECL(4) <= S BIT:
VEC2 <= "0000111100001111"

RIGHT_INDEX := VECI'high:

Data Types
Subtypes

Expressions

Expressions perform arithmetic or logical computations by applying an
operator to one or more operands. Operators specify the computation to be
performed. Operands are the data for the computation.

Expressions are discussed in the following sections:
Operators
Operands

In the following VHDL fragmentA andB are operands; is an operator,
andA + B is an expression.

C:=A+ B, -- Conputes the sumof two val ues

You can use expressions in many places in a design description.
Expressions can be:

Assign to variables or signals or used as the initial values of constants.
Used as operands to other operators.

Used for the return value of functions.

Used for thdN parameters in a subprogram call.

Assigned to th®©UT parameters in a procedure body.

Used to control the actions of statements ilikkop, andcase.

Expressions 5-1

To understand expressions for VHDL, consider the individual components
of operators and operands.

Operators
 Logical operators
» Relational operators
» Adding operators
« Unary (sign) operators
» Multiplying operators
» Miscellaneous arithmetic operators

Operands
e Computable operands
* Literals
* ldentifiers
* Indexed names
 Slice names
* Aggregates
* Attributes
* Function calls
* Qualified expressions
» Type conversions

Operators

A VHDL operator is characterized by

* Name

« Computation (function)

* Number of operands

» Type of operands (such as Boolean or Character)

« Type of result value
You can define new operators, like functions, for any type of operand and
result value. The predefined VHDL operators are listed in Table 5-1.

5-2 Expressions

Operators

Table5-1 Predefined VHDL Operators

Type
Logical
Relational
Adding
Unary (sign)
Multiplying
Miscellaneous

Example5-1 Operator Precedence

Operators Precedence
and or nand nor xor Lowest
= /= < <= > >=
+ &
+ -
* / mod rem
*x abs not Highest

Each row in the table lists operators with the same precedence. Each row’s
operators have greater precedence than those in the row above. An
operator’'s precedence determines whether it is applied before or after
adjoining operators.

Example 5-1 shows several expressions and their interpretations.

A+B*C
not BOOL and (NUM = 4)

A +
(not

(B* Q
BOOL) and (NUM = 4)

VHDL allows existing operators to be overloaded (applied to new types of
operands). For example, the and operator can be overloaded to work with a
new logic type. For more information, see “Operator Overloading” in
Chapter 3, “Describing Designs.”

Logical Operators

Operands of a logical operator must be of the same type. The logical
operators and, or, hand, nor, xor, andataept operands of type BIT, type
BOOLEAN, and one-dimensional arrays of BIT or BOOLEAN. Array
operands must be the same size. A logical operator applied to two array
operands is applied to pairs of the two arrays’ elements.

Example 5-2 shows some logical signal declarations and logical operations
on them.

Expressions 5-3
Operators

54

Example5-2 Logica Operators

signal A B, C Bl T_VECTOR(3 downto 0);
signal D, E, F, G Bl T_VECTOR(1 downto 0);
signal H I, J, K BIT;

signal L, M N, O P: BOOLEAN;

A <= B and C

D<= Eor For G

H <= (I nand J) nand K;

L <= (Mxor N) and (O xor P);

Normally, to use more than two operands in an expression, you must use
parentheses to group the operands. Alternately, you can combine a
seguence of and, or, or xor operators without parentheses, such as

A and B and C and D

However, sequences with different operators do require parentheses, as
shown in this example:

A or B xor C

Example 5-3 uses the declarations from Example 5-2 to show some
Common errors.

Example5-3 Errorsin Using Logical Operators

H<=1 and J or K -- Parent hesis required,
L <= M nand N nand O nand P; -- Parenthesis
required;

A <= B and E; -- Operands nust be the sane size;
H<=1 or L; -- Operands nust be the sane type;

Expressions
Operators

Figure5-1 Circuit for Common Errors Using Logical Operators Example

aral a [>ald]
cral

BI1] ANZ

cril

i

[=ar11

AN
[==arl2]

AL3]

BlZ]
CLZ]

BI3]
cral

@

ElB] D—W?\

Fral -3 1P [>Dral
GBI = f—

El1] b

FI11
GI[11]

Dr11

NI
-

NDZ
= [>H

ANZ
L

T O
|-5

Relational Operators

Relational operators, such as = or >, compare two operands of the same
base type and return a BOOLEAN value.

IEEE VHDL definesthe equality (=) and inequality (/=) operators for all
types. Two operands are equal if they represent the same value. For array
and record types, IEEE VHDL compares corresponding elements of the
operands.

|IEEE VHDL definesthe ordering operators (<, <=, >, and >=) for all
enumerated types, integer types, and one-dimensional arrays of
enumeration or integer types.

The internal order of a type’s values determines the result of the ordering
operators. Integer values are ordered from negative infinity to positive
infinity. Enumerated values are in the same order as they were declared,
unless you have changed the encoding.

Note: If you set the encoding of your enumerated types (see
“Enumeration Encoding” in Chapter 4, “Data Types”), the ordering
operators compare your encoded value ordering, not the declaration

Expressions 5-5
Operators

5-6

ordering. Because thisinterpretation is specific to FPGA Express, a
VHDL simulator continues to use the declaration’s order of enumerated
types.

Arrays are ordered like words in adictionary. The relative order of two

array valuesis determined by comparing each pair of elementsin turn,
beginning from the left bound of each array’s index range. If a pair of array
elements is not equal, the order of the different elements determines the
order of the arrays. For example, bit vector 101011 is less than 1011
because the fourth bit of each vector is different, and O is less than 1.

If the two arrays have different lengths and the shorter array matches the
first part of the longer array, the shorter one is ordered before the longer.
Thus, the bit vector 101 is less than 101000. Arrays are compared from left
to right, regardless of their index ranges (to or downto).

Example 5-4 shows several expressions that evaluate to TRUE.

Example5-4 TRUE Relational Expressions

Example5-5 Relational Operators

111 = 11!

|I101ll = "101"

"1" >"011" -- Array comparison
IIlOlll < “110"

To interpret bit vectors such as 011 as signed or unsigned binary numbers,
use the relational operators defined in the FPGA Express std_logic_arith
package. The third line inExample 5-4evauates to FAL SE if the operands
are of type UNSIGNED.

UNSIGNED™1" < UNSIGNED™011" -- Numeric
comparison

Example 5-5 shows some relational expressions and the resulting
synthesized circuit is shown in Figure 5-2.

signal A, B: BIT_VECTOR(3 downto 0);
signal C, D: BIT_VECTOR(1 downto 0);
signal E, F, G, H, |, J: BOOLEAN;

G <= (A=B);
H <= (C < D);
| <= (C >=D);
J<=(E>F);

Expressions
Operators

Figure5-2 Circuit for Relational Operators Example

ALL] [
Bril [

ALzl o>
Brz1 >

o

arar o
Bral [

arEl [
BrEl [

oril [

cr11 D#I—D—um

cral [|—
;D,._L

I -

F >

EC>

A) o A

I

Ty
?

Y

Adding Operators

Adding operators include arithmetic and concatenation operators.

The arithmetic operators + and - are predefined by FPGA Expressfor all
integer operands. These addition and subtraction operators perform
conventional arithmetic, as shown in Example 5-6. For adders and
subtracters more than four bits wide, a synthetic library component is used
(see Chapter 9, “FPGExpress Directives”).

The concatenation (&) operator is predefined for all one-dimensional array
operands. The concatenation operator builds arrays by combining the
operands. Each operand of & can be an array or an element of an array. Use
& to add a single element to the beginning or end of an array, to combine
two arrays, or to build an array from elements, as shown in Example 5-6.
Figure 5-3 shows the schematic for the resulting circuits.

Expressions 5-7
Operators

5-8

Example 5-6 Adding Operators

Figure5-3 Circuit for Adding Operators Example

signal A D
signal B, C G
signal E:

signal F, H 1I:
signal J, K L:
A <= not B & not
D <= not E & not
G <= not H & not
J <= K + L;

Bl T_VECTOR(3 downto 0);
BI T_VECTOR(1 downto 0);
BIT VECTOR(2 downto 0);
Bl T;

| NTEGER range 0 to 3;

C -- Array & array

F, -- Array & el enent

l; -- Elenment & el enent
-- Sinmple addition

cal > ID: {CxAral
I
Ci O Du [CoAril
I
BIE] [Dc {aAr21
i
Bl > Dc CeAla]
I
FC» Dc Al
I
8] Dc {0011
I
EH Dc {0021
I
£z C» De [Ce031
I
I Dc {T»Gral
I
H [De {60
LIal |:>£
Kla) Co—s
JI11
KI11
LIl

Expressions
Operators

Unary (Sign) Operators

A unary operator has only one operand. FPGA Express predefines unary
operators + and - for all integer types. The + operator has no effect. The -
operator negates its operand. For example,

+5

5
5 = -(-5)

Example 5-7 shows how unary negation is synthesized. Figure 5-4 shows
the resulting circuit.

Example5-7 Unary (Signed) Operators

signal A, B: INTEGER range -8 to 7;
A <= -B;

Figure5-4 Circuit for Unary (Signed) Operators Example

% [>AlB]

\E
] AL
B2l [> = .
BI1T [

OR

Bzl [> =3

BI31 [

Multiplying Operators

FPGA Express predefinesthe multiplying operators (*, /, mod, and rem) for
al integer types.

FPGA Express places some restrictions on the supported values for the
right operands of the multiplying operators, as follows:

Expressions
Operators

5-9

Integer multiplication: no restrictions. A multiplication operator is
implemented as a synthetic library cell.

Integer division: Theright operand must be acomputabl e power of 2 (see
“Computable Operands,” later in this chapter). Neither operand can be
negative. This operator is implemented as a bit shift.

mod
Modulus: Same as /.

rem
Remainder;: Same as /.

Example 5-8 shows some uses of the multiplying operators whose right

operands are all powers of 2. The resulting synthesized circuit is shown in
Figure 5-5.

Example 5-8 Multiplying Operators with Powers of 2

signal A, B, C, D, E F, G H INTECER range 0 to 15;

A <= B * 4;
C<=D/ 4
E <= F nod 4;
G <= Hrem 4;

5-10 Expressions
Operators

Figure5-5 Circuit Multiplying Operators with Powers of 2 Example

G3]
G2]

E[3]
E[Z]
C 3]
CIZ]
ALL]
A LAl

BIA] [[(2]
BL1] Ce—{waldl
C»Biz21

[C»Bia1
el O [Trim
oral Co— i1l

Ceoie:

[Z»oi11
FLB] [Cw——— »Ela]
Fl1l C»—— e

Ceriz:

[Z»Fial
HIB] [C»————[»aial
HI1 C— a1

CHiz]
[CHial

Example 5-9 shows two multiplication operations, one with afour-bit
operand times atwo-bit constant (B * 3), and one with two five-bit
operands (X * Y). Because the synthetic library is enabled by default, these
multiplication operations are implemented as synthetic library cells. Figure
5-6 shows the resulting circuit.

Example5-9 Multiply Operator (*) Using Synthetic Cells

signal A, B: INTEGER range 0 to 15;
signal Y, Z: INTEGER range 0 to 31;
signal X | NTEGER range 0 to 1023;
A<= B* 3

X<=Y* Z

Expressions
Operators

5-11

Figure5-6 Circuit for Multiply Operator (*) Using Synthetic Cells Example

BIA] [ALB)
—>
Br11 [»— ALLI
— =
Brel o A
BrL3] D_ cEa_mu t_n4_D_!l
—— »ara
luqlc,!
1a'¥1¢,1 M
zrel [|
zr11 2] —[sxial
zr21 [| L sxitl
zra1 [| 21
Z”fug?'h_ =13l
] 141
< Il css—muli nfpmesdis)
voan] —=x1m
o1 [w71
vra1 =] s xi81
vra1] > xi1a1
YIa1 DJ—_

Miscellaneous Arithmetic Operators

FPGA Express predefines the absolute value (abs) and exponentiation (**)
operatorsfor all integer types. One FPGA Express restriction placed on **,
asfollows:

**

Exponentiation: Left operand must have a computable value of 2 (see
“Computable Operands,” later in this chapter).

Example 5-10 shows how these operators are used and synthesized. Figure
5-7 shows the resulting circuit.

Example5-10 Miscellaneous Arithmetic Operators

signal A, B: INTEGER range -8 to 7;

signal C | NTEGER range O to 15;
signal D: I NTEGER range 0 to 3;
A <= abs(B);
C<=2** D

5-12 Expressions
Operators

Figure5-7 Circuit for Miscellaneous Arithmetic Operators Example

B8]
BIl1l]

B3]

BIl2]

DI11]

Drgl

=ALB]

y

%A[l]

I ALZ2]
T
£ — e

ANEI’\
[=aAr3]
I

750

—

%CE]

v

NI
crzl
MNR
CrL3]
o

Y

Operands

Operands determine the data used by the operator to compute its value. An
operand is said to return its value to the operator.

There are many categories of operands. The simplest operand is aliterd,
such asthe number 7, or anidentifier, such asavariable or signal name. An
operand itself can be an expression. Y ou create expression operands by
surrounding an expression with parentheses.

The operand categories are

Expressions.(A nand B)

Literals’0’, "101", 435, 16#FF3E#

Identifiers: my_var, my_sig

Indexed names: my_array(7)

Slice names: my_array(7 to 11)

Fields: my_record.a_field

Expressions
Operands

5-13

5-14

Aggregates:my_array_type’(others => 1)

Attributes: my_array’range

Function calls: LOOKUP_VAL(my_var_1, my var_2)
Qualified expressions:BIT_VECTOR'('1’ &'0")

Type conversions: THREE_STATE('0)

The next two sections discuss operand bit widths and explain computable
operands. Subsequent sections describe the operand types listed above.

Operand Bit Width

FPGAEXxpress uses the bit width of the largest operand to determine the bit
width needed to implement an operator in hardware. For example, an
INTEGER operand is 32 bits wide by default. An addition of two
INTEGER operands causes FPGRpress to build a 32-bit adder.

To use hardware resources efficiently, always indicate the bit width of
numeric operands. For example, use a subrange of INTEGER when
declaring types, variables, or signals.

type ENOUGH: | NTECGER range 0 to 255;

vari abl e W DE: | NTEGCER range -1024 to 1023;
si gnal NARROW | NTEGER range 0 to 7;

Note: During optimization, FPGA Expressremoves hardware for unused
bits.

Computable Operands

Some operators, such as the division operator, restrict their operands to be
computable. A computable operand is one whose value can be determined
by FPGAEXxpress. Computability is important because noncomputable
expressions can require logic gates to determine their value.

Following are examples of computable operands:

Literal values

for ... loop parameters, when the loop’s range is computable
Variables assigned a computable expression

Aggregates that contain only computable expressions

Expressions
Operands

Function calls with a computable return value

Expressions with computable operand

Qualified expressions, where the expression is computable
Type conversions, when the expression is computable

Value of theandor nand operators when one of the operands is a
computable 0

Value of theor or nor operators when one of the operands is a computable 1

Additionally, a variable is given a computable value if it is an OUT or
INOUT parameter of a procedure that assigns it a computable value.

Following are examples of noncomputable operands:
Signals
Ports

Variables that are assigned different computable values that depend on a
noncomputable condition

Variables assigned noncomputable values

Example 5-11 shows some definitions and declarations, followed by
several computable and noncomputable expressions.

Expressions 5-15
Operands

Example5-11 Computable and Noncomputable Expressions

signal S BIT,

function MUX(A, B, C. BIT) return BIT is
begi n
if (C ="1") then
return(A);
else
return(B);
end if;
end;

procedure COMP(A: BIT; B: out BIT) is
begin

B = not A,
end;

process(S)
variable VO, V1, V2: BIT;
variable V_INT: INTEGER;

subtype MY_ARRAY is BIT_VECTOR(O to 3);
variable V_ARRAY: MY_ARRAY;

begin
VO :="1"; -- Computable (value is '1")
V1 :=V0; -- Computable (value is '1’)
V2 :=not V1, -- Computable (value is '0")
forl'in 0 to 3 loop
V_INT =1, -- Computable (value depends
end loop; -- on iteration)

V_ARRAY := MY_ARRAY'(V1, V2,°0",'0");

-- Computable ("1000")
V1 := MUX(VO, V1, V2); -- Computable (value is '1’)
COMP(V1, V2);
V1:=V2; -- Computable (value is '0’)
V0 :=S and 0’ -- Computable (value is '0")
V1:=MUX(S, 1, '0’);-- Computable (value is '1")
V1:=MUX(1, 'L, S);-- Computable (value is '1")

if (S="1") then

V2 :='0"; -- Computable (value is '0’)
else

V2 :="1", -- Computable (value is '1")
end if;
VO :=V2; -- Noncomputable; V2 depends

-- onS

V1:=S; -- Noncomputable; S is signal
V2 :=V1; -- Noncomputable; V1 is no

-- longer computable
end process;

5-16 Expressions
Operands

Literals

Example5-12 Numeric Literals

A literal (constant) operand can be a numeric literal, a character literal, an
enumeration litera, or astring literal. The following sections describe these
four kinds of literals.

Numeric Literals

Numeric literals are constant integer values. The two kinds of numeric
literals are decimal and based. A decimal literal iswritten in base 10. A
based literal can be written in abase from 2 to 16 and is composed of the
base number, an octothorpe (#), the value in the given base, and another
octothorpe (#); for example, 2#101# is decimal 5.

Thedigitsin either kind of numeric literal can be separated by an
underscore (_) character. Example 5-12 shows several different numeric
literals, al representing the same value.

170
1.7 0
10#170#
2#1010_1010#
16#AAH

Character Literals

Character literals are single characters enclosed in single quotation marks,
for example, A. Character literals can be used as values for operators and to
define enumerated types, such as CHARACTER and BIT. See Chapter 4,
“Data Types,” for more information about the legal character types.

Enumeration Literals

Enumeration literals are values of enumerated types. The two kinds of
enumeration literals are character literals and identifiers. Character literals
were described previously. Enumeration identifiers are those literals listed
in an enumeration type definition. For example:

type SOVE_ ENUMis (ENUMID 1, ENUMID 2, ENUM ID 3);

Expressions 5-17
Operands

5-18

If two enumerated types use the same literals, those literals are said to be
overloaded. You must qualify overloaded enumeration literals (see
“Qualified Expressions,” later in this chapter) when you use them in an
expression unless their type can be determined from context. See
Chapter 4, “Data Types,” for more information.

Example 5-13 defines two enumerated types and shows some enumeration
literal values.

Example5-13 Enumeration Literals

type ENUM_1 is (AAA, BBB, 'A’, 'B’, ZZZ);
type ENUM_2 is (CCC, DDD, 'C’, 'D’, ZZZ);

AAA -- Enumeration identifier of type ENUM_1
‘B’ -- Character literal of type ENUM_1
CCC -- Enumeration identifier of type ENUM_2
'D’ -- Character literal of type ENUM_2

ENUM_1'(ZZZ) -- Qualified because overloaded

String Literals

String literals are one-dimensional arrays of characters, enclosed in double
guotes ("). The two kinds of string literals are character strings and bit
strings. Character strings are sequences of charactersin double quotes; for
example, "ABCD". Bit strings are similar to character strings, but represent
binary, octal, or hexadecimal values; for example, B"1101", O"15", and
X"D" all represent decimal value 13.

A string value’s type is a one-dimensional array of an enumerated type.
Each of the characters in the string represents one element of the array.

Example 5-14 shows some character-string literals.

Example5-14 Character-String Literals

"10101"
" ABCDEF"

Note: Null string literals (" ") are not supported.

Bit strings, like based numeric literals, are composedoasaspecifier

character, a double quotation mark, a sequence of numbers in the given
base, and another double quotation mark. For example, B"0101" represents
the bit vector 0101. A bit-string literal consists of the base specifier B, O, or

Expressions
Operands

X, followed by astring literal. The bit-string literal isinterpreted as a bit
vector, a one-dimensional array of the predefined type BIT. The base
specifier determines the interpretation of the bit string as follows:

B (binary)

Thevaueisin binary digits (bits, 0 or 1). Each bit in the string represents

one BIT in the generated bit vector (array).

O (octal)
Thevaueisin octal digits (0 to 7). Each octal digit in the string
represents three BITs in the generated bit vector (array).

X (hexadecimal)
Thevalueisin hexadecimal digits (0to 9 and A to F). Each hexadecimal
digit in the string represents four BITs in the generated bit vector (array).

Y ou can separate the digitsin abit-string literal value with underscores ()

for readability. Example 5-15 shows several bit-string literals that represent
the same value.

Example5-15 Bit-String Literals

Xll AAAII
B*1010_1010_1010"

0'5252"
B'101_010_101_010"

Identifiers

Identifiers are probably the most common operand. An identifier isthe
name of a constant, variable, signal, entity, port, subprogram, or parameter
and returns the object’s value to an operand.

Example 5-16 shows several kinds of identifiers and their usage. All
identifiers are shown in boldface.

Expressions 5-19
Operands

5-20

Example 5-16 Identifiers

entity EXAMPLE is
port (/NT_PORT: in | NTEGER,
BI' T_PORT: out BIT);
end;

signal BIT.SIG BIT:
si gnal I NT_SI G | NTEGER,

'IN.T_:SI G <= I NT_PORT, -- Signal assignnment from
port
BIT PORT <= BIT_SIG -- Signal assignnment to port

function FUNQ | NT_PARAM | NTEGER)
return | NTEGER,
end function;

constant CONST: I NTEGER : = 2
vari abl e VAR | NTEGER;
VAR : = FUNQ | NT_PARAM => CONST): -- Function call

Indexed Names

Anindexed name identifies one element of an array variable or signal. Sice
names identify a sequence of elementsin an array variable or signal;
aggregates create array literals by giving avaue to each element of an
instance of an array type. Slice names and aggregates are described in the
next two sections.

The syntax of an indexed nameis
identifier (expression)

identifier must name asignal or variable of an array type. The expression
must return a value within the array’s index range. The value returned to an
operator is the specified array element.

If expression is computable (see “Computable Operands,” earlier in this
chapter), the operand is synthesized directly. If the expression is not
computable, hardware that extracts the specified element from the array is
synthesized.

Example 5-17 shows two indexed hames—one computable and one not
computable.

Expressions
Operands

Example 5-17 Indexed Name Operands

signal A B: BIT_VECTOR(O to 3);
signal 1: I NTEGER range 0 to 3;
signal Y, Z BIT;

Y <= A(l); -- Nonconputable index expression
Z <= B(3); ~-- Conputable index expression

Figure5-8 Circuit for Indexed Name Operands Example

[>B141
[>Br11
ALB] [>Br12]
ALZ] [>
AL1]
[>
AL3] D_ML_L41
Tr1] |:>—‘
Tl [>———
BI31 [> [>z

You can also use indexed hames as assignment targets; see “Indexed Name
Targets” in Chapter 6, “Sequential Statements.”

Slice Names

Slice names return a sequence of elements in an array. The syntax is

identifier (expression direction expression)

identifier must name a signal or variable of an array type. Each expression
must return a value within the array’s index range, and must be computable.
See “Computable Operands,” earlier in this chapter.

The direction must be either to or downto. The direction of a slice must be
the same as the direction of the identifier array type. If the left and right
expressions are equal, define a single element.

The value returned to an operator is a subarray containing the specified
array elements.

Expressions 5-21
Operands

5-22

Example 5-18 Slice Name Operands

Example 5-18 uses slices to assign an eight-bit input to an eight-bit output,
exchanging the lower and upper four bits. Figure 5-9 shows the resulting
circuit.

signal A Z: BIT_VECTOR(O to 7);

Z(0 to 3) <= A(4 to 7);
Z(4 to 7) <= A(O to 3);

Figure5-9 Circuit for Slice Name Operands Example

Al4l [>—1 >71p1
ALST [>—1 >7r111
ALBl [>—1 >712]
AL7] [>—1{ >7131
ARl [>— >7141
A1l [>—1 >7151
ALzl [>—1 >7I1561
AL31 [>— >7171

In Example 5-18, dlices are also used as assignment targets. This usageis
described in “Slice Targets” in Chapter 6, “Sequential Statements.”

Limitations on Null Slices

FPGAEXxpress does not support null slices. A null slice is indicated by a
null range, such as (4 to 3), or a range with the wrong direction, such as
UP_VAR(3 downto 2) when the declared range of UP_VAR is ascending
(Example 5-19).

Example 5-19 shows three null slices and one noncomputable slice.

Expressions
Operands

Example 5-19 Null and Noncomputable Slices

subtype DOMWN i s BI T_VECTOR(4 downto 0);
subtype UP is BIT_VECTOR(O to 7);

variable UP VAR UP:
vari abl e DOAWN_VAR: DOMN;

'UP'_VAR(4 to 3) -- Null slice (null range)
UP_VAR(4 downto 0) -- Null slice (wong direction)
DOM _VAR(O to 1) -- Null slice (wong direction)
variable |I: INTECER range 0 to 7;

'UP._VAR(I to 1+1) -- Nonconput abl e slice

Limitations on Noncomputable Slices
IEEE VHDL does not allow noncomputable slices—slices whose range
contains a noncomputable expression.

Records and Fields

Records are composed of named fields of any type. For more information,
see “Record Types” in Chapter 4, “Data Types.”

In an expression, you can refer to a record as a whole, or you can refer to a
single field. The syntax of field names is

record_nane. field nane

record_name is the name of the record variable or signal, and field_name is
the name of a field in that record type. A field_name is separated from the
record name by a period (.). Note that a record_name is different for each
variable or signal of that record type. A field_name is the field name
defined for that record type.

Example 5-20 shows a record type definition, and record and field access.

Expressions 5-23
Operands

5-24

Example 5-20 Record and Field Access

type BYTE_AND I X is

record
BYTE: BI T_VECTOR(7 downto 0);
| X | NTEGER range O to 7;

end record;

signal X: BYTE_AND I X;

X -- record
X. BYTE -- field: 8-bit array
X I X -- field: integer

A field can be of any type—including an array, record, or aggregate type.
Refer to an element of a field with that type’s notation, for example:

X. BYTE(2) -- one elenent fromarray field
BYTE
X. BYTE(3 downto 0) -- 4-elenent slice of array field
BYTE

Aggregates

Aggregates can be considered array literals, because they specify an array
type and the value of each array element. The syntax is

type _nane'([choi ce =>] expression
{, [choice =>] expression})

Note that the syntax is more restrictive than the syntax in the library
reference manual. type _name must be a constrained array type. The
optional choice specifies an element index, a sequence of indexes, or
others. Each expression provides avalue for the chosen elements, and must
evaluate to a value of the element’s type.

Example 5-21 shows an array type definition and an aggregate representing
a literal of that array type. The two sets of assignments have the same
result.

Expressions
Operands

Example5-21 Simple Aggregate

subtype MY_VECTOR is BIT_VECTOR(1 to 4);

signal X MY_VECTOR;
variable A, B: BIT,

X <=MY_VECTOR'('1l, Anand B, '1’, A or B) -- Aggregate

-- assignment
'>'('(1) <=1’ -- Element
X(2) <= A nand B; -- assignment
X(3) <="1%
X(4) <= AorB;

You can specify an element’s index with either positional or named
notation. With positional notation, each element is given the value of its
expression in order, as shown in Example 5-21.

With named notation, thehoice => construct specifies one or more
elements of the array. The choice can contain an expression (gualo@s
2) =>) to indicate a single element index, or a range (suGhwe®=> or7
downto 0 =>) to indicate a sequence of element indexes.

An aggregate can use both positional and named notation, but positional
expressions must appear before nanebadg) expressions.

It is not necessary to specify all element indexes in an aggregate. All
unassigned values are given a value by includimgs => expression as the
last element of the list.

Example 5-22 shows several aggregates representing the same value.

Example5-22 Equivalent Aggregates

subtype MY_VECTOR is BIT_VECTOR(1 to 4);

MY_VECTOR'(1','1’,’0’, '0’);
MY_VECTOR'(2=>'1,3=>"0",1=>"1", 4 =>"0);
MY_VECTOR'(1’, '1’, others =>'0’);
MY_VECTOR’'(3 =>'0', 4 =>'0’, others =>'1");
MY_VECTOR’(3to 4 =>'0", 2 downto 1 =>"1");

The others expression must be the only expression in the aggregate.
Example 5-23 shows two equivalent aggregates.

Expressions 5-25
Operands

Example 5-23 Equivaent Aggregates Using the others Expression

MY_VECTOR’(others =>"1");
MY_VECTOR'(1,'1’, 'L, '1);

To use an aggregate as the target of an assignment statement, see
“Aggregate Targets” in Chapter 6, “Sequential Statements.”

Attributes

VHDL defines attributes for various types. A VHDL attribute takes a
variable or signal of a given type and returns a value. The syntax of an
attribute is

object’ attribute

FPGA Express supports the following predefined VHDL attributes for use
with arrays, as described under “Array Types” in Chapter 4, “Data Types.”

o left

* right
* high
e low

* length
e range

* reverse_range

FPGAEXxpress also supports the following predefined VHDL attributes for
use with wait and if statements, as described in ChaptRegister and
Three-State Inference”:

* event
» stable

In addition to supporting the predefined VHDL attributes listed above,
FPGAEXxpress has a defined set of synthesis-related attributes. These
FPGAExpress-specific attributes can be placed in your VHDL design
description to direct optimization.

5-26 Expressions
Operands

Function Calls

Example5-24 Function Calls

A function call executes a named function with the given parameter values.
The value returned to an operator is the function’s return value. The syntax
of a function call is

function_name ([paraneter_nane =>] expression
{, [paraneter_nanme =>] expression }

function_name is the name of a defined function. The optional
parameter_name is an expression of formal parameters, as defined by the
function. Each expressiqgrovides a value for its parameter, and must
evaluate to a type appropriate for that parameter.

You can specify parameters in positional or named notation, like aggregate
values.

In positional notation, the parameter_name => construct is omitted. The
first expression provides a value for the function’s fietameter, the
second expression provides a value for the second parameter, and so on.

In named notation, parameter_namreis specified before an expression;
the named parameter gets the value of that expression.

You can mix positional and named expressions in the same function call, as
long as all positional expressions appear before the named parameter
expressions.

Function calls are implemented by logic unless you use the map_to_entity
compiler directive. For more information, see “Mapping Subprograms to
Components” in Chapter 6, “Sequential Statements,” and “Component
Implication Directives” in Chapter 9, “FPGEXxpress Directives.”

Example 5-24 shows a function declaration and several equivalent function
calls.

function FUNC(A, B, C. INTEGER) return BIT;

FUNC(1, 2, 3)
FUNG(B => 2, A => 1, C => 7 nod 4)
FUNC(1, 2, C => -3+6)

Expressions 5-27
Operands

Qualified Expressions

Qualified expressions state the type of an operand to resolve ambiguitiesin
an operand’s type. You cannot use qualified expressiohgfaconversion
(see “Type Conversions” later in this chapter).

The syntax of a qualified expression is
type_nane’(expressi on)

type_name isthe name of a defined type. expression must evaluate to a
value of an appropriate type.

Note: A single quote, or tick, must appear between type name and
(expression). If the single quote is omitted, the construction isinterpreted

as a type conversion (see “Type Conversions” later in this chapter).

Example 5-25 shows a qualified expression that resolves an overloaded
function by qualifying the type of adecimal literal parameter.

Example5-25 A Qualified Decimal Litera

type R1 is range 0 to 10; ~-- Integer 0 to 10
type R2 is range 0 to 20; -- Integer 0 to 20

function FUNC(A: R 1) return BIT,
function FUNC(A: R 2) return BIT,

FUNC(5) -- Anbi guous; could be of type R 1,
-- R 2, or | NTEGER

FUNC(R_1'(5)) -- Unambiguous

Example 5-26 shows how qualified expressions resolve ambiguitiesin
aggregates and enumeration literals.

5-28 Expressions
Operands

Example 5-26 Qualified Aggregates and Enumeration Literals

type ARR 1 is array(0 to 10) of BIT;
type ARR 2 is array(0 to 20) of BIT;

-(other-s =>"'0") -- Ambiguous; could be of
--type ARR_1 or ARR_2

ARR_1’(others =>'0") -- Qualified; unambiguous

type ENUM_1is (A, B);
type ENUM_2 is (B, C);

B -- Ambiguous; could be of
-- type ENUM_1 or ENUM_2

ENUM_1'(B) -- Qualified; unambiguous

Type Conversions

Type conversions change an expression’s type. Type conversions are
different from qualified expressions because they change the type of their
expression; whereas qualified expressions simply reslod/g/pe of an
expression.

The syntax of a type conversion is

t ype_nane(expr essi on)

type _name is the name of a defined type. The expression must evaluate to a
value of a type that can be converted into type type_name.

» Type conversions can convert between integer types or between similar
array types.

« Two array types are similar if they have the same length and if they have
convertible or identical element types.

« Enumerated types cannot be converted.

Example 5-27 shows some type definitions and associated signal
declarations, followed by legal and illegal type conversions.

Expressions 5-29
Operands

Example5-27 Lega and lllegal Type Conversions

type INT_1 is range 0 to 10;
type INT_2 is range 0 to 20;

type ARRAY 1 is array(l to 10) of INT_1;
type ARRAY 2 is array(1l1l to 20) of |NT_2;

subtype MY_BIT_VECTOR is BIT_VECTOR(1 to 10);
type BIT_ARRAY_10 is array(1ll to 20) of BIT;
type BIT _ARRAY 20 is array(0 to 20) of BIT;

signal S _INT: I NT_1;

si gnal S_ARRAY: ARRAY 1;
signal S BIT_VEC. My_BIT_VECTOR;
signal S BIT: BI T;

-- Legal type conversions

I NT_2(S_I NT)
-- Integer type conversion

Bl T_ARRAY_10(S_BI T_VEC)
-- Simlar array type conversion

-- Illegal type conversions

BOOLEAN(S BI T);
-- Can't convert between enumerated types

INT_1(S_BIT);
-- Can't convert enumerated types to other types

BIT_ARRAY_20(S_BIT_VEC);
-- Array lengths not equal

ARRAY_1(S_BIT_VEC);
-- Element types cannot be converted

5-30 Expressions
Operands

Sequential Statements

Sequential statements like A := 3 areinterpreted one after another, in the
order in which they are written. VHDL sequential statements can appear
only in aprocess or subprogram. A VHDL processis a group of sequential
statements; a subprogram is a procedure or function.

To familiarize yourself with sequential statements, consider the following:
» Assignment statements
» Variable assignment statements
 Signal assignment statements
« if statements
+ casestatements
* loop statements
* nextstatements
* exit statements
e Subprograms
* returnstatements
* wait statements
* null statements

Sequential Statements 6-1

6-2

Processes are composed of sequential statements, but processes are

themselves concurrent statements (see Chapter 7, “Concurrent
Statements”). All processes in a design execute concurrently. However, at
any given time only one sequential statement is interpreted within each
process.

A process communicates with the rest of a design by reading or writing
values to and from signals or ports declared outside the process.

Sequential algorithms can be expressed as subprograms and can be called
sequentially (as described in this chapter) or concurrently (as described in
Chapter 7, “Concurrent Statements”).

Sequential statements are

assignment statements
that assign values to variables and signals.

flow control statements
that conditionally execute statements (if and case), repeat statements
(for...loop), and skip statements (next and exit).

subprograms
that define sequential algorithms for repeated use in a design (procedure
and function).

wait statement
to pause until an event occurs (wait).

null statement
to note that no action is necessary (null).

Assignment Statements

An assignment statement assigns a value to a variable or signal. The syntax
is

target := expression; -- Variable assignnent
target <= expression; -- Signal assignnent

target is a variable or signal (or part of a variable or signal, such as a
subarray) that receives the value of the expres$iom expression must
evaluate to the same type as the target. See Chapter 5, “Expressions,” for
more information on expressions.

Sequential Statements
Assignment Statements

The difference in syntax between variable assignments and signal
assignmentsis that variables use := and signals use <=. The basic semantic
differenceisthat variables are local to a process or subprogram, and their
assignments take effect immediately.

Signals need not be local to a process or subprogram, and their assignments
take effect at the end of a process. Signals are the only means of
communication between processes. For more information on semantic
differences, see “Signal Assignment” later in this chapter.

Assignment Targets

Assignment statements have five kinds of targets:
e Simple names, such as my_var
* Indexed names, such as my_array_var(3)
 Slices, such as my_array_var(3 to 6)
« Field names, such as my_record.a_field
e Aggregates, such as (my_varl, my var2)

A assignment target can be either a variable or a signal; the following
descriptions refer to both.

Simple Name Targets

The syntax for an assignment to a simple name target is

identifier := expression, -- Variable assignnment
identifier <= expression; -- Signal assignnment

identifier is the name of a signal or variable. The assigned expression must
have the same type as the signal or variable. For array types, all elements of
the array are assigned values.

Example 6-1 shows some assignments to simple name targets.

Sequential Statements 6-3
Assignment Statements

Example6-1 Simple Name Targets

variable A, B:. BIT;
si gnal C BI T_VECTOR(1 to 4);

-- Target Expr essi on
A :='1"; --Variable A is assigned '1’
B :='0; --Variable B is assigned 0’
C <=-1100" -- Signal array C is assigned
-- -1100"

Indexed Name Targets

The syntax for an assignment to an indexed nametarget is
identifier(index_expression) := expression,
-- Variable assignment

identifier(index_expression) <= expression,
-- Signal assignment

identifier isthe name of an array type signal or variable. index_expression

must evaluate to an index value for the identifier array’s index type and
bounds but does not have to be computable (see “Computable Operands” in
Chapter 5, “Expressions”), but more hardware is synthesized if it is not.

The assigned expression must contain the array’s element type.
In Example 6-2, the elements for array variable A are assigned values as

indexed names.

Example6-2 Indexed Name Targets

variable A BIT_VECTOR(1 to 4);

-- Target Expr essi on;

A() :='1; --Assigns 'l to the first
-- element of array A.

A(2) ='1"; --Assigns’l’ to the second
-- element of array A.

A(3) :='0"; --Assigns 0’ to the third
-- element of array A.

A@4) :='0"; --Assigns 0’ to the fourth
-- element of array A.

Example 6-3 shows two indexed name targets. One of the targetsis
computable and the other is not. Note the differences in the hardware
generated for each assignment.

64 Sequential Statements
Assignment Statements

Example 6-3 Computable and Noncomputable Indexed Name Targets

signal A B: BIT_VECTOR(O to 3);
signal |: INTEGER range 0 to 3;
signal Y, Z BIT;

A <= -0000";

B <= -0000";

A(l) <=Y; -- Nonconmputabl e index expression
B(3) <= Z; -- Computabl e index expression

Figure6-1 Circuit for Computable and Noncomputable Indexed Name Targets

AlB]

T[>

ANB:
I ANS
I01] > AL1]
ANB:
ANB:

ALZ]

i
Itel > >o

Al3]

ltgic_@

BlZ]
BIl1]
BlB]

z[> >BI3]

Slice Targets

The syntax for adlicetargetis

identifier(index _expr_1 direction index_expr_2)

identifier isthe name of an array type signal or variable. Each index_expr
expression must evaluate to an index value for the identifier array’s index
type and bounds. Both index_expr expressions must be computable (see

Sequential Statements 6-5
Assignment Statements

“Computable Operands” in Chapter 5, “Expressions”), and must lie within
the bounds of the array. direction must match the identifier array type’s
direction—either to odownto.

The assigned expression must contain the array’s element type.

In Example 6-4, array variables A and B are assigned the same value.

Example 6-4 Slice Targets

variable A, B: BIT_VECTOR(1 to 4);

-- Target Expr essi on;
A(l to 2) :=-11"; -- Assigns -11" to the first
-- two elenents of array A
A(3to 4) :=-00"; -- Assigns -00" to the | ast
-- two elenents of array A
B(l1 to 4) :=-1100";-- Assigns -1100" to array B

Field Targets

The syntax for a field target is
identifier.field nane

identifier is the name of a record type signal or variable, and field_name is
the name of a field in that record type, preceded by a period (.). The
assigned expression must contain the identified field's type. A field can be
of any type, including an array, record, or aggregate type.

Example 6-5 assigns values to the fields of record variables A and B.

6-6 Sequential Statements
Assignment Statements

Example 6-5 Field Targets

type REC is
record
NUM FI ELD: I NTEGER range -16 to 15;
ARRAY _FIELD: BIT VECTOR(3 to 0);
end record;

vari able A B: REC,

-- Target Expr essi on;
A.NUM_FIELD :=-12; --Assigns-12torecord A's
-- field NUM_FIELD

A.ARRAY_FIELD :=-0011"; -- Assigns -0011" to record
-- A’s field ARRAY_FIELD
A.ARRAY_FIELD(3) :='1"; -- Assigns '1’ to the most-
-- significant bit of record
-- A’s field ARRAY_FIELD

B = A -- Assigns values of record
-- A to corresponding fields
- of B

For more information about field targets see “Record Types” in Chapter 4,

“Data Types.”

Aggregate Targets

The syntax for an assignment to an aggregate target is

([choice =>] identifier
{,[choice =>] identifier}) := array_expression;
-- Variabl e assi gnnent

([choice =>] identifier
{,[choice =>] identifier}) <= array_expression;
-- Signal assignnent

An aggregate assignment assigns array_expression’s element values to one
or more variable or signal identifiers.

Each choice (optional) is an index expression selecting an element or a slice
of the assigned array_expression. Each identifier must have the element

type of array_expression. An identifier can be an array type.

Example 6-6 shows some aggregate targets.

Sequential Statements 6-7
Assignment Statements

Example 6-6 Aggregate Targets

signal A, B, C, Do BIT;
signal S: BIT_VECTOR(1 to 4);

variable E, F: BIT;
variable G BIT_VECTOR(1 to 2);
variable H BIT_VECTOR(1 to 4);

-- Positional notation
S <= (0,'1,'0,'0Y);
(A,B,C,D)<=S; -- Assigns '0' to A
-- Assigns '1'to B
-- Assigns '0'to C
-- Assigns '0' to D

-- Named notation

(3=>E, 4=>F,

2=>G(1), 1=>G(2) =H;
-- Assigns H(1) to G(2)
-- Assigns H(2) to G(1)
-- Assigns H(3) to E
-- Assigns H(4) to F

Y ou can assign array element values to the identifiers by position or by
name. In positional notation, the choice => construct is not used. Identifiers
are assigned array element values in order, from the left array bound to the
right array bound.

In named notation, the choice => construct identifies specific elements of

the assigned array. A choiceindex expression indicates a single el ement,
such as 3. The type of identifier must match the assigned expression’s
element type.

Positional and named notation can be mixed, but positional associations
must appear before named associations.

Variable Assignment Statement

A variable assignment changes the value of a variable. The syntax is

target .= expression;

expression determines the assigned value; its type must be compatible with
target. See Chapter 5, “Expressions,” for further information about
expressions. target names the variables that receive the value of expression.
See “Assignment Targets” earlier in this chapter for a description of

variable assignment targets.

6-8 Sequential Statements
Variable Assignment Statement

When avariable is assigned a value, the assignment takes place
immediately. A variable keeps its assighed vaue until it is assigned a new
value.

Signal Assignment Statement

A signal assignment changes the value being driven on asignal by the
current process. The syntax is

target <= expression;

expression determines the assigned value; its type must be compatible with

target. See Chapter 5, “Expressions,” for further information about
expressions. target names the signals that receive the value of expression.
See “Assignment Targets” earlier in this chapter for a description of signal
assignment targets.

Signals and variables behave differently when they are assigned values. The
differences lie in the way the two kinds of assignments take effect, and how
that affects the values read from either variables or signals.

Variable Assignment

When a variable is assigned a value, the assignment takes place
immediately. A variable keeps its assigned value until it is assigned a new
value.

Signal Assignment

When a signal is assigned a value, the assignment does not necessarily take
effect because the value of a signal is determined by the processes (or other
concurrent statements) that drive it.

« If several values are assigned to a given signal in one process, only the last
assignment is effective. Even if a signal in a process is assigned, read, and
reassigned, the value read (either inside or outside the process) is the last
assignment value.

« If several processes (or other concurrent statements) assign values to one
signal, the drivers are wired together. The resulting circuit depends on the
expressions and the target technology. The circuit might be invalid, wired
AND, wired OR, or a three-state bus. See “Driving Signals” in Chapter 7,
“Concurrent Statements,” for more information.

Sequential Statements 6-9
Signal Assignment Statement

6-10

Example 6-7 shows the different effects of variable and signal assignments.

Example 6-7 Signal and Variable Assignments

signal Sl1, S2: BIT,
signal S_OUT: BI T_VECTOR(1 to 8);

process(S1, S2)
vari able V1, V2: BIT;
begi n
V1 :='1"; -- This sets the value of V1
V2 :='1"; -- This sets the value of V2
S1<="1"; -- This assignment is the driver for S1
S2<="1"; --This has no effect because of the
-- assignment later in this process

S OUT(1) <=V1; -- Assigns '1’, the value assigned above
S_OUT(2) <=V2; -- Assigns '1’, the value assigned above
S_OUT(3) <= S1; -- Assigns '1’, the value assigned above
S_OUT(4) <= S2; -- Assigns '0’, the value assigned bel ow

V1 :='0"; -- This sets the new value of V1

V2 :='0’; -- This sets the new value of V2

S2 <='0"; -- This assignment overri des the
-- previous one since it is the last

- assignment to this signal in this

- process

S_OUT(5) <= V1, -- Assigns '0’, the value assigned above

S_OUT(6) <= V2; -- Assigns '0’, the value assigned above

S_OUT(7) <= S1; -- Assigns '1’, the value assigned above

S OUT(8) <= S2; -- Assigns '0’, the value assigned above
end process;

if Statements

Theif statement executes a sequence of statements. The sequence depends
on the value of one or more conditions. The syntax is

if condition then

{ sequential _statenent }
{ elsif condition then

{ sequential _statenent } }
[else

{ sequential _statenent }]
end if;

Each condition must be a Boolean expression. Each branch of an if
statement can contain one or more sequential_statements.

Sequential Statements
if Statements

Evaluating condition

An if statement eval uates each condition in order. The first (and only the
first) TRUE condition causes the execution of its branch’s statements. The
remainder of the if statement is skipped.

If none of the conditions are TRUE, and the else clause is present, those
statements are executed.

If none of the conditions are TRUE, and no else is present, none of the
statements is executed.

Example 6-8 shows an if statement and a corresponding circuit.

Example 6-8 if Statement

signal A B, C P1, P2, Z: BIT,

if (P1="1") then
Z<=A;

elsif (P2 ='0") then
Z<=B;

else
Z<=C;

end if;

Figure6-2 Circuit for if Statement

5 >

C WZl_—'L
P2 >—‘

A ~ UAZ1

P1

T

Sequential Statements 6-11
if Statements

6-12

Using the if Statement to Imply Registers and Latches

Some forms of the if statement can be used like the wait statement, to test
for signal edges and therefore imply synchronous logic. This usage causes
FPGA Expressto infer registers or latches, as described in Chapter 8,
“Register and Three-State Inference.”

case Statement

The case statement executes one of several sequences of statements,
depending on the value of a single expression. The syntax is
case expression is
when choi ces =>
{ sequential _statenent }
{ when choi ces =>

{ sequential statenent } }
end case;

expression must evaluate to an INTEGER or an enumerated type, or an
array of enumerated types, such as BIT_VECTOR. Each of the choices
must be of the form

choice { | choice }

Each choice can be either a static expression (such as 3) or a static range
(such as 1 to 3). The type of choice_expression determines the type of each
choice. Each value in the range of the choice_expression type must be
covered by one choice.

The final choice can be others, which matches all remaining (unchosen)
values in the range of the expression type. The others choice, if present,
matches expression only if no other choices match.

The case statement evaluates expression and compares that value to each
choice value. The statements following each when clause is evaluated only
if the choice value matches the expression value.

The following restrictions are placed on choices:
No two choices can overlap.

If no others choice is present, all possible values of expression must be
covered by the set of choices.

Sequential Statements
case Statement

Using Different Expression Types

Example 6-9 shows a case statement that selects one of four signal
assignment statements by using an enumerated expression type.

Example 6-9 case Statement That Uses an Enumerated Type

type ENUMis (PICK_A PICK B, PICK C, PICK D);
si gnal VALUE: ENUM

signal A, B, C, D, Z:. BIT;

case VALUE is
when PICK A =>
Z <= A
when PICK B =>
Z <= B;
when PICK C =>
Z <= C
when PICK D =>
Z <= D
end case;

Figure6-3 Circuit for case Statement That Uses an Enumerated Type

A

it
@

D 41

YALUE R D—‘

VALUET1] [>—

Example 6-10 shows a case statement again used to select one of four
signal assignment statements, this time by using an integer expression type
with multiple choices.

Sequential Statements
case Statement

6-13

Example 6-10 case Statement with Integers

signal VALUE is |INTEGER range 0 to 15;
signal Zz1, Zz2, Z3, Z4: BIT,

Z1 <=0}
72 <="'0;
Z3 <=0}
Z4 <=0,

case VALUE is
when 0 => -- Matches 0
Z1<="1",
when 1|3 => -- Matches 1 or 3
72 <="1"
when4to7|2=> --Matches2,4,5,6,0r7
23 <="1"
when others => -- Matches remaining values,
-- 8 through 15
724 <="1"
end case;

Figure6-4 Circuit for case Statement with Integers

N
Z1
WALUE [2] >)
VALUE (1] b

VALUE [@] D%c wza
>

VALUE [3]

Invalid case Statements

Example 6-11 shows four invalid case statements.

6-14 Sequential Statements
case Statement

Example 6-11 Invalid case Statements

signal VALUE: | NTEGER range 0 to 15;
signal QUT_1: BIT,

case VALUE is -- Must have at | east one when
end case; - - cl ause

case VALUE is -- Values 2 to 15 are not
when 0 => -- covered by choices
OUT 1<='1};
when 1 =>
OUT _1<="0};
end case;

case VALUE is -- Choices 5 to 10 overlap
when 0 to 10 =>
OUT_1<="17
when 5 to 15 =>
OUT_1<="0}
end case;

loop Statements

A loop statement repeatedly executes a sequence of statements. The syntax
is
[l abel :] [iteration_schene] | oop

{ sequential _statenent }

{ next [label] [when condition] ; }

{ exit [label] [when condition] ; }
end | oop [/ abel];

The optional label names the loop and is useful for building nested loops.
Each type of iteration_scheme is described in this section.

The next and exit statements are sequential statements used only within
loops. The next statement skips the remainder of the current loop and
continues with the next loop iteration. The exit statement skips the
remainder of the current loop and continues with the next statement after
the exited loop.

VHDL provides three types of loop statements, each with a different
iteration scheme:

loop
The basic loop statement has no iteration scheme. Enclosed statements
are executed repeatedly forever until an exit or next statement is
encountered.

Sequential Statements
loop Statements

6-15

6-16

Caution

while .. loop
Thewhile.. loop statement has a Boolean iteration scheme. If theiteration
condition evaluates to TRUE, enclosed statements are executed once.
The iteration condition is then reevaluated. While the iteration condition
remainstrue, the loop is repeatedly executed. When the iteration
condition evaluates to FAL SE, the loop is skipped, and execution
continues with the next statement after the loop.

for .. loop
Thefor .. loop statement has an integer iteration scheme, where the
number of repetitions is determined by an integer range. Theloop is
executed once for each value in the range. After the last valuein the
iteration range is reached, the loop is skipped, and execution continues
with the next statement after the loop.

Noncomputable loops (loop and while..loop statements) must have at least

one wait statement in each enclosed logic branch. Otherwise, a
combinational feedback loop is created. See “wait Statement” later in this
chapter for more information.

Conversely, computable loopfol..loop statements) must not contaimait
statements. Otherwise, a race condition might result.

loop Statement

The loop statement, with no iteration scheme, repeats enclosed statements
indefinitely. The syntax is
[l abel :] |oop

{ sequential _statenent }
end | oop [/ abel];

The optional label names this loop.

sequential_statement can be any statement described in this chapter. Two
sequential statements are used only with loops: the next statement, which
skips the remainder of the current loop iteration, and the exit statement,

which terminates the loop. These statements are described in the next two

sections.

Note: Aloop statement must have at least owait statement in each
enclosed logic branch. See “wait Statement” later in this chapter for an
example.

Sequential Statements
loop Statements

while .. loop Statement

The while .. loop statement repeats enclosed statements aslong asiits
iteration condition evaluatesto TRUE. The syntax is
[l abel :] while condition |oop

{ sequential _statenent }
end | oop [/abel];

The optional label names this loop. condition is any Boolean expression,
such as (A="1)or (X<Y)).

sequential_statement can be any statement described in this chapter. Two
sequential statements are used only with loops: the next statement, which
skips the remainder of the current loop iteration, and the exit statement,
which terminates the loop. These statements are described in the next two
sections.

Note: A while..loop statement must have at least one wait statement in
each enclosed logic branch. See “wait Statement” later in this chapter for
an example.

for .. loop Statement

Thefor .. loop statement repeats enclosed statements once for each valuein
an integer range. The syntax is

[l abel :] for identifier in range | oop
{ sequential _statenent }
end | oop [/ abel];

The optional label names this loop.

The use of identifier is specific to the for .. loop statement:

« identifier is not declared elsewhere. It is automatically declared by the loop
itself and is local to the loop. A loop identifier overrides any other identifier
with the same name but only within the loop.

« The value of identifier can be read only inside its loop (identifier does not
exist outside the loop). You cannot assign a value to a loop identifier.

FPGAExpress currently requires that range must be a computable integer
range (see “Computable Operands” in Chapter 5, “Expressions”), in either
of two forms:

i nteger_expression to integer_expression

i nteger_expressi on downt o i nteger_expressi on

Sequential Statements 6-17
loop Statements

6-18

Each integer_expression evaluates to an integer.

sequential_statement can be any statement described in this chapter. Two
sequential statements are used only with loops: the next statement, which
skips the remainder of the current loop iteration, and the exit statement,
which terminates the loop. These statements are described in the next two
sections.

Note: A for..loop statement must not contain any wait statements.

A for .. loop statement executes as follows:

1. A new, locdl, integer variable is declared with the nameidentifier.

identifier isassigned the first value of range, and the sequence of statements
is executed once.

identifier is assigned the next value in range, and the sequence of
statements is executed once more.

Step 3 isrepeated until identifier is assigned to the last value in range. The
seguence of statements is then executed for the last time, and execution
continues with the statement following end loop. The loop is then
inaccessible.

Example 6-12 shows two equivalent code fragments.

Example 6-12 for..loop Statement with Equivalent Fragment

variable A, B: BIT_VECTOR(1 to 3);

-- First fragnent is a | oop statenent

for | in1to 3 loop
A(l) <= B(I);
end | oop;

-- Second fragnent is three equival ent statements

A(l) <= B(1);
A(2) <= B(2);
A(3) <= B(3);

Sequential Statements
loop Statements

Figure6-5 Circuit for for..loop Statement with Equivalent Fragment

Bl1l [>—_ >ATl1]
Blzl [>—1 >A12]
Bi3l [>—1 a3

Y ou can use aloop statement to operate on al elements of an array without
explicitly depending on the size of the array. Example 6-13 shows how the
VHDL array attribute 'range can be used—in this case to invert each
element of bit vector A.

Example6-13 for..loop Statement Operating on an Entire Array

variable A, B: BIT_VECTOR(1 to 10);
for 1in A’range loop

A(l) := not B(I);
end loop;

Figure6-6 Circuit for for..loop Statement Operating on an Entire Array

BILl ALL]

BI21 -ALZ]
B3l AL3]
B4 AL4]
BISI ALS]
BIEBI ALE]
BI71 AL7]
BIB] ALE]

BIG] ALE]

YT

Brigl AL1@]

Unconstrained arrays and array attributes are described in “Array Types” in
Chapter 4, “Data Types.”

Sequential Statements 6-19
loop Statements

6-20

next Statements

Example 6-14 next Statement

The next statement terminates the current iteration of aloop, then continues
with the first statement in the loop. The syntax is

next [label] [when condition] ;

A next statement with no label terminates the current iteration of the
innermost enclosing loop. When you specify aloop label, the current
iteration of that named loop is terminated.

The optional when clause executes its next statement when its condition (a
Boolean expression) evaluates to TRUE.

Example 6-14 uses the next statement to copy bits conditionally from bit
vector B to bit vector A only when the next condition evaluatesto TRUE.

signal A, B, COPY_ENABLE: BIT_VECTOR (1 to 8);
A <= -00000000"
. B- is assigned a value, such as -01011011"

-- COPY_ENABLE i s assigned a val ue, such as
-11010011"

for 1 in1to 8 loop
next when COPY_ENABLE(l) ='0’;
A(l) <= B(l);

end loop;

Sequential Statements
next Statements

Figure6-7 Circuit for next Statement

COPY_ENABLE [1]
BI1]

Bl2]
ALZ]
COPY_ENABLE [2]

BIR] [ANZ
[>al3]
COPY_ENABLE 131 [
Bl4]
AL4]
COPY_ENABLE [4]
COPY_ENABLE 51 [ANZ
[>Als5]
BIs1 [>
BIG] [ANZ
[>Al8]
COPY_ENABLE [6] [>
BI7]
AL7]
COPY_ENABLE [7]
COPY_ENABLE [B] [ANZ
[>al8]
BBl [

Example 6-15 showsthe use of nested next statementsin named loops. This
example processes.

» The first element of vector X against the first element of vector Y,

» The second element of vector X against each of the first two elements of
vector Y,

» The third element of vector X against each of the first three elements of
vector Y,

The processing continues in this manner until it is completed.

Example 6-15 Named next Statement

signal X, Y. BIT_VECTOR(O to 7);
A_LOORP: for | in X'range loop
- i3._LOOP: for J in Y'range loop
next A_LOOP when | < J:
ehdnloop B_LOOP;

end loop A_LOOP;

Sequential Statements 6-21
next Statements

6-22

exit Statements

The exit statement terminates a loop. Execution continues with the
statement following end loop. The syntax is

exit [label] [when condition] ;

An exit statement with no label terminates the innermost enclosing loop.
When you identify aloop label, that named loop is terminated, as shown
earlier in Example 6-15.

The optional when clause executes its exit statement when its condition (a
Boolean expression) evaluates to TRUE.

The exit and next statements are equivalent constructs. Both statements use
identical syntax, and both skip the remainder of the enclosing (or named)
loop. The only difference between the two statementsisthat exit terminates
itsloop, and next continues with the next loop iteration (if any).

Example 6-16 compares two bit vectors. An exit statement exits the
comparison loop when a difference is found.

Example6-16 Comparator Using the exit Statement

signal A B Bl T_VECTOR(1 downto 0);
signal A LESS THAN B: Bool ean;

A LESS THAN B <= FALSE;

for 1 in 1 downto O | oop
if (A(I) =’1" and B(l) ='0’) then
A LESS THAN_B <= FALSE;
exit;
elsif (A(l) =’0" and B(l) ='1") then
A_LESS THAN_B <= TRUE;
exit;
else
null; -- Continue comparing
end if;
end loop;

Sequential Statements
exit Statements

Figure6-8 Circuit for Comparator Using the exit Statement

BL11

A_LESS_THAN_B

Subprograms

Subprograms are independent, named algorithms. A subprogram is either a
procedure (zero or more in, inout, or out parameters) or afunction (zero or
more in parameters and one return value). Subprograms are called by name
from anywhere within aVVHDL architecture or a package body.
Subprograms can be called sequentially (as described later in this chapter)
or concurrently (as described in Chapter 7,"Concurrent Statements”).

In hardware terms, a subprogram call is similar to module instantiation,
except that a subprogram call becomes part of the current circuit, whereas
module instantiation adds a level of hierarchy to the design. A synthesized
subprogram is always a combinational circuit (use a process to create a
sequential circuit).

Subprograms, like packages, have subprogram declarations and
subprogram bodies. A subprogram declaration specifies its name,
parameters, and return value (for functions). A subprogram body then
implements the operation you want.

Often, a package contains only type and subprogram declarations for use by
other packages. The bodies of the declared subprograms are then
implemented in the bodies of the declaring packages.

The advantage of the separation between declarations and bodies is that
subprogram interfaces can be declared in public packages during system
development. One group of developers can use the public subprograms as
another group develops the corresponding bodies. You can modify package
bodies, including subprogram bodies, without affecting existing users of
that package’s declarations. You can also define subprograms locally inside
an entity, block, or process.

Sequential Statements 6-23
Subprograms

6-24

FPGA Expressimplements procedure and function calls with

combinational logic, unless you use the map_to_entity compiler directive

(see “Mapping Subprograms to Components” later in this chapter). FPGA
Express does not allow inference of sequential devices, such as latches or
flip-flops, in subprograms.

Example 6-17 shows a package containing some procedure and function
declarations and bodies. The example itself is not synthesizable; it just
creates a template. Designs that instantiate proc&lhmvever, compile
normally.

Example 6-17 Subprogram Declarations and Bodies

package EXAMPLE is
procedure P (A: in INTEGER;, B: inout |NTECER);
-- Declaration of procedure P

function INVERT (A: BIT) return BIT;
-- Declaration of function | NVERT
end EXAMPLE;

package body EXAMPLE i s
procedure P (A: in INTEGER, B: inout INTECER) is
-- Body of procedure P
begi n
B:= A+ B
end;

function INVERT (A: BIT) return BIT is
-- Body of function | NVERT
begi n
return (not A);
end;
end EXAMPLE;

For more information about subprograms, see Chapter 3, “Describing
Designs.”

Subprogram Calls

Subprograms can have zero or more parameters. A subprogram declaration
defines each parameter’s name, mode, and type. These are a subprogram’s
formal parameters. When the subprogram is called, each formal parameter

is given a value, termed tlaetual parameter. Each actual parameter’s

value (of an appropriate type) can come from an expression, a variable, or a
signal.

Sequential Statements
Subprograms

The mode of aparameter specifies whether the actual parameter can beread
from (mode in), written to (mode out), or both read from and written to
(mode inout). Actual parameters that use modes out and inout must be
variables or signals, including indexed names (A (1)) and slices (A(1 to 3)),
but cannot be constants or expressions.

Procedures and functions are two kinds of subprograms:

procedure
Can have multiple parametersthat use modesin, inout, and out. Does not
itself return avalue.

Procedures are used when you want to update some parameters (modes
out and inout), or when you do not need areturn value. An example
might be a procedure with one inout bit vector parameter that inverted
each bit in place.

function
Can have multiple parameters, but only parameters that use modein.
Returnsits own function value. Part of afunction definition specifiesits
return value type (also called the function type).

Functions are used when you do not need to update the parameters and
you want asingle return value. For example, the arithmetic function ABS
returns the absolute value of its parameter.

Procedure Calls
A procedure call executes the named procedure with the given parameters.
The syntax is

procedure_nanme [([nane =>] expression
{ , [nane =>] expression })] ;

Each expression is called an actual parameter; expression is often just an
identifier. If anameis present (positional notation), it isaformal parameter
name associated with the actual parameter’s expression.

Formal parameters are matched to actual parameters by positional or
named notation. Named and positional notation can be mixed, but
positional parameters must appear before named parameters.

Conceptually, a procedure call is performed in three steps. First, the values
of the in and inout actual parameters are assigned to their associated formal
parameters. Second, the procedure is executed. Third, the values of the
inout and out formal parameters are assigned to the actual parameters.

In the synthesized hardware, the procedure’s actual inputs and outputs are
wired to the procedure’s internal logic.

Sequential Statements 6-25
Subprograms

Example 6-18 shows alocal procedure named SWAP that compares two
elements of an array and exchanges these elementsif they are out of order.
SWAP isrepeatedly called to sort an array of three numbers.

Example 6-18 Procedure Call to Sort an Array

package DATA TYPES is

type DATA ELEMENT is range 0 to 3;

type DATA ARRAY is array (1 to 3) of DATA ELEMENT;
end DATA_TYPES;

use WORK. DATA TYPES. ALL;
entity SORT is
port (1 N_ARRAY: i n DATA_ARRAY;
OUT_ARRAY: out DATA ARRAY);
end SORT;

architecture EXAMPLE of SORT is
begi n

process(| N_ARRAY)
procedur e SWAP(DATA: i nout DATA ARRAY;
LON H GHE in INTEGER) is
vari abl e TEMP. DATA ELEMENT;

begi n
i f (DATA(LOW > DATA(HI GH)) then -- Check data
TEMP : = DATA(LOW ;
DATA(LOW : = DATA(H GH); -- Swap data
DATA(H GH) := TEMP;
end if;
end SWAP;

vari abl e MY_ARRAY: DATA ARRAY;

begi n
MY_ARRAY : = | N _ARRAY; -- Read input to variable
-- Pair-wse sort
SWAP(MY_ARRAY, 1, 2); -- Swap first and second
SWAP(MY_ARRAY, 2, 3); -- Swap second and third
- SWAP(MY_ARRAY, 1, 2); -- Swap first and second
again
OUT_ARRAY <= MY_ARRAY; -- Wite result to output
end process;
end EXAMPLE;

6-26 Sequential Statements
Subprograms

Figure6-9 Circuit for Procedure Call

to Sort an Array

T

T

T ARRATCLI CB]

-]
.l
]

=
T ARATLE] (8] [

@q
i
b

AT

’

Example 6-19 Function Call

\

Function Calls

o SRR T41 111

LW RUT_AARATLE] (8]

o CUIT_AAAAYTE] 1]

'-I,—Dwr_rma.ﬂs] m
_D—Dmr_mnm o

A function call issimilar to a procedure call, except that afunction call isa

type of expression because it returns avaue.

Example 6-19 shows a simple function definition and two calls to that

function.

function I NVERT (A : return BIT is
begi n
return (not A);

end;

BI T)

b}bcess
variable V1, V2, V3: BIT;
begi n

end process;

For more information, see “Function Calls” in Chapter 5, “Expressions.”

Sequential Statements
Subprograms

6-27

6-28

return Statements

The return statement terminates a subprogram. This statement isrequired in
function definitions and is optional in procedure definitions. The syntax is

return expression ; -- Functions
return ; -- Procedures

The required expression provides the function’s return value. Every
function must have at least one return statement. The expression’s type
must match the declared function type. A function can have more than one
return statement. Only one return statement is reached by a given function
call.

A procedure can have one or more return statements, but no expression is
allowed. A return statement, if present, is the last statement executed in a
procedure.

In Example 6-20, the function OPERATE returns either the AND or the OR
of its parameters A and B. The return depends on the value of its parameter
OPERATION.

Example 6-20 Use of Multiple return Statements

functi on OPERATE(A, B, OPERATION: BIT) return BIT is
begi n
if (OPERATION ='1") then
return (A and B);
else
return (A or B);
end if;
end OPERATE;

Sequential Statements
return Statements

Figure6-10 Circuit Using Multiple return Statements

| »RETURNED_WALLUE

OFERATION >

Mapping Subprograms to Components (Entities)

In VHDL, entities cannot be invoked from within behaviora code.
Procedures and functions cannot exist as entities (components), but must be
represented by gates. Y ou can overcome this limitation with the compiler
directive map_to_entity, which causes FPGA Expressto implement a
function or procedure as a component instantiation. Procedures and
functions that use map_to_entity are represented as components in designs
in which they are called.

Y ou can also use the FPGA Express Implementation window to create a
new level of hierarchy from aVVHDL subprogram, as described in the
FPGA Expressonline help.

When you add amap_to_entity directive to asubprogram definition, FPGA
Express assumes the existence of an entity with the identified name and the
same interface. FPGA Express does not check this assumption until it links
the parent design. The matching entity must have the same input and output
port names. If the subprogram is a function, you must also provide a
return_port_name directive, where the matching entity has an output port of
the same name.

These two directives are called component implication directives:

-- pragma map_to_entity entity nane
-- pragma return_port_name port_nane

Insert these directives after the function or procedure definition. For

example:
function MUX_ FUNC(A, B: in TWOBIT; C in BIT)
return
TWO BIT is

-- pragma map_to_entity MJX ENTITY
-- pragma return_port_name Z

Sequential Statements ~ 6-29
return Statements

6-30

Caution

When FPGA Express encounters the map_to_entity directive, it parses but
ignores the contents of the subprogram definition. Use

-- pragmatranslate_off and -- pragmatransdate_on to hide simulation-specific
constructsin amap_to_entity subprogram.

Note: The matching entity (entity_name) does not need to be written in
VHDL. It can bein any format that FPGA Express supports.

The behavioral description of the subprogram is not checked against the
functionality of the entity overloading it. Presynthesis and post-synthesis
simulation results might not match if differencesin functionality exist
between the VHDL subprogram and the overloaded entity.

Example 6-21 shows a function that uses the component implication
directives.

Sequential Statements
return Statements

Example 6-21 Using Component Implication Directives on a Function

package MY_PACK is
subtype TWO BIT is BIT_VECTOR(1 to 2);
function MUX_ FUNC(A, B: in TWOBIT; C in BIT)
return
TWO BI T;
end;

package body MY_PACK is

function MUX_ FUNC(A B: in TWOBIT; C in BIT)
return
TWO BIT is

-- pragma map_to_entity MJX ENTITY
-- pragma return_port_name Z

-- contents of this function are ignored but should
-- match the functionality of the nmodul e MUX_ENTITY
-- so pre- and post sinmulation will match
begi n
if(C ='1’) then
return(A);
else
return(B);
end if;
end;

end;
use WORK.MY_PACK.ALL;

entity TEST is

port(A: in TWO_BIT; C: in BIT; TEST_OUT: out
TWO_BIT);
end;

architecture ARCH of TEST is
begin

process

begin

TEST_OUT <= MUX_FUNC(not A, A, C);
-- Component

implication call

end process;
end;
use WORK.MY_PACK.ALL;

-- the following entity 'overloads’ the function
-- MUX_FUNC above

entity MUX_ENTITY is
port(A, B: in TWO_BIT; C: in BIT; Z: out TWO_BIT);
end;

architecture ARCH of MUX_ENTITY is
begin
process

Sequential Statements 6-31
return Statements

begi n
case Cis
when'l'=>Z <= A;
when '0' => Z <= B;
end case;
end process;
end;

Figure6-11 Circuit Using Component Implication Directives on a Function

Alll

ALz MUX_ENFITY ez (1]
{7121

Example 6-22 shows the same design as Example 6-21, but without the
creation of an entity for the function. The compiler directives have been

removed.

6-32 Sequential Statements
return Statements

Example 6-22 Using Gates to Implement a Function

package MY_PACK is
subtype TWO BIT is BIT VECTOR(1 to 2);
function MUX_ FUNC(A B: in TWOBIT; C in BIT)
return TWO BIT;
end;

package body MY_PACK is

function MUX_ FUNC(A B: in TWOBIT; C in BIT)
return TWOBIT is

begi n

if(C ='1’) then
return(A);

else
return(B);

end if;

end;
end;

use WORK.MY_PACK.ALL,;

entity TEST is
port(A: in TWO_BIT; C: in BIT; Z: out TWO_BIT);
end;

architecture ARCH of TEST is
begin
process
begin
Z <= MUX_FUNC(not A, A, C);
end process;
end;

Sequential Statements ~ 6-33
return Statements

6-34

Figure6-12 Circuit Using Gates to Implement a Function

AL1] [
Z[11
c D;. =
AlLZ] ——t
ZEZ]

wait Statements

A wait statement suspends a process until a positive-going edge or
negative-going edge is detected on asignal. The syntax is

wait until signal = value ;
wait until signal’'eventand signal = val ue;

wait until not si gnal 'stable
and signal = val ue ;

signal isthe name of a single-bit signal—a signal of an enumerated type
encoded with one bit (see “Enumeration Encoding” in Chapter 4, “Data
Types”). value must be one of the literals of the enumerated type. If the
signal type is BIT, the awaited value is either '1’ for a positive-going edge
or '0’ for a negative-going edge.

Note: Thethreeforms of thewait statement, a subset of |EEE VHDL, are
specific to the current implementation of FPGA Express.

Inferring Synchronous Logic

A wait statement implies synchronous logic, where signal is usually a clock
signal. The next section describes how FREfress infers and
implements this logic.

Example 6-23 shows three equivalent wait statements (all positive-edge
triggered).

Example 6-23 Equivalent wait Statements

wait until CLK ="1";
wait until CLK’event and CLK ="1";
wait until not CLK’stable and CLK ="1";

Sequential Statements
wait Statements

When acircuit is synthesized, the hardware in the three forms of wait
statements does not differ.

Example 6-24 shows await statement used to suspend a process until the
next positive edge (a 0-to-1 transition) on signal CLK.

Example 6-24 wait for a Positive Edge

signal CLK: BIT;
bkbcess
begi n

wait until CLK’event and CLK ="1";
-- Wait for positive transition (edge)

end process;

Note: IEEE VHDL specifiesthat a process containing a wait statement
must not have a sensitivity list. See “Process Statements” in Chapter 7,
“Concurrent Statements,” for more information.

Example 6-25 shows how a wait statement is used to describe a circuit
where avaue isincremented on each positive clock edge.

Example 6-25 Loop Using await Statement

process
begi n

y <= 0;

wait until (clk’'event and clk ='1");
while (y < MAX) loop

wait until (clk’'event and clk ='1");
X<=Yy,;

y<sy+1

end loop;

end process;

Example 6-26 shows how multiple wait statements describe a multicycle
circuit. The circuit provides an average value of itsinput A over four clock
cycles.

Sequential Statements 6-35
wait Statements

Example 6-26 Using Multiple wait Statements

process

begi n
wait until CLK’event and CLK ="1";
AVE <= A;
wait until CLK’event and CLK ="1";
AVE <= AVE + A;
wait until CLK’'event and CLK ="1";
AVE <= AVE + A;
wait until CLK’event and CLK ="1";
AVE <= (AVE + A)/4;

end process;

Example 6-27 shows two equival ent descriptions. The first description uses
implicit state logic, and the second uses explicit state logic.

6-36 Sequential Statements
wait Statements

Example 6-27 wait Statements and State Logic

-- Inmplicit State Logic
process
begin
wait until CLOCK’event and CLOCK ='"1’;
if (CONDITION) then
X<=A;
else
wait until CLOCK’event and CLOCK ="1";
end if;
end process;

-- Explicit State Logic

type STATE_TYPE is (SO, S1);
variable STATE : STATE_TYPE;

process
begin
wait until CLOCK’event and CLOCK ="1";
case STATE is
when SO =>
if (CONDITION) then
X<=A;
STATE := SO; -- Set STATE here to avoid an
-- extra feedback loop in the
-- synthesized logic.
else
STATE := S1;
end if;
when S1 =>
STATE := SO;
end case;
end process;

Note: wait statements can be used anywhere in a process except in
for..loop statements or subprograms. However, if any path through the
logic contains one or more wait statements, all paths must contain at least
one wait statement.

Example 6-28 shows how acircuit with synchronous reset can be described
with wait statementsin an infinite loop. The reset signal must be checked
immediately after each wait statement. The assignment statementsin
Example 6-28 (X <= A; and Y <= B;) simply represent the sequential
statements used to implement your circuit.

Sequential Statements 6-37
wait Statements

Example 6-28 Synchronous Reset Using wait Statements

process

begi n
RESET _LOOP: | oop
wait until CLOCK’event and CLOCK ="1’;
next RESET_LOOP when (RESET ="1");
X<=A;
wait until CLOCK’event and CLOCK ="1";
next RESET_LOOP when (RESET ="1");
Y <=B;

end loop RESET_LOOP;
end process;

Example 6-29 showstwo invalid uses of wait statements. These limitations
are specific to FPGA Express.

Example 6-29 Invalid Uses of the wait Statement

type COLOR is (RED, GREEN, BLUE);

attribute ENUM_ENCODING : STRING:

attribute ENUM_ENCODING of COLOR : type is -100 010
001"

signal CLK : COLOR;

ic;'rocess
begin
wait until CLK’event and CLK = RED;
-- lllegal: clock type is not encoded with one
bit
end;
process
begin
if (X =) then
wait until CLK’event and CLK ='1";
end if;
-- lllegal: not all paths contain wai t
statements

end;

Combinational vs. Sequential Processes

If aprocess has no wait statements, the process is synthesized with
combinational logic. Computations performed by the process react
immediately to changesin input signals.

6-38 Sequential Statements
wait Statements

If a process uses one or more wait statements, it is synthesized with
sequential logic. The process computations are performed only once for
each specified clock edge (positive or negative edge). The results of these
computations are saved until the next edge by storing them in flip-flops.

The following values are stored in flip-flops:

« Signals driven by the process; see “Signal Assignment Statement” earlier in
this chapter.

 State vector values, where the state vector can be implicit or explicit (as in
Example 6-27).

 Variables thamight be read before they are set.

Note: Like the wait statement, some uses of the if statement can also
imply synchronouslogic, causing FPGA Expressto infer registers or
latches. These methods are described in Chapter 8, “Register and
Three-State Inference.”

Example 6-30 uses await statement to store values across clock cycles. The
example code compares the parity of adata value with a stored value. The
stored value (called CORRECT_PARITY) is set from the
NEW_CORRECT_PARITY signal if the SET_PARITY signal is TRUE.

Example 6-30 Parity Tester Using the wait Statement

signal CLOCK: BIT;
signal SET_PARITY, PARITY_CK: Bool ean;
si gnal NEW CORRECT PARITY: BIT,
signal DATA: BIT _VECTOR(O to 3);
process

vari abl e CORRECT_PARITY, TEWMP. BIT;
begi n
wait until CLOCK’event and CLOCK ="1";

-- Set new correct parity value if requested
if (SET_PARITY) then

CORRECT_PARITY := NEW_CORRECT_PARITY;
end if;

-- Compute parity of DATA

TEMP :='07;

for | in DATA'range loop
TEMP := TEMP xor DATA(l);

end loop;

-- Compare computed parity with the correct value
PARITY_OK <= (TEMP = CORRECT_PARITY);
end process;

Sequential Statements 6-39
wait Statements

Figure 6-13 Circuit for Parity Tester Using the wait Statement

MNEW_CURRECT_FARITY [»—
SET_PARITY [Co»—m—

DATALB] [T

Fll1>

DATALE] [

DATALL] [

DATALZ] o
cLock [

FTl

v
L4

1 »PARITY_OK

Note that two flip-flops are in the synthesized schematic for Exampl e 6-30.
The first (input) flip-flop holds the value of CORRECT_PARITY. A
flip-flop is needed here because CORRECT_PARITY isread (whenitis
compared to TEMP) beforeitisset (if SET_PARITY isFALSE). The
second (output) flip-flop stores the value of PARITY _OK between clock
cycles. The variable TEMP is not given aflip-flop because it is aways set

beforeit isread.

null Statements

Example 6-31 null Statement

The null statement explicitly states that no action is required. The null
statement is often used in case statements because all choices must be
covered, even if some of the choices are ignored. The syntax is

nul | ;

Example 6-31 shows atypical use of the null statement.

CONTROL:
A Z. BIT;

si gnal
si gnal

Z <= A

case CONTROL is
when 0 | 7 => - -
Z <= not A
when ot hers =>
nul | ; - -
end case;

If O or 7,

If not O or

| NTEGER range 0 to 7;

then invert A

7,

then do not hi ng

6-40 Sequential Statements

null Statements

Figure6-14 Circuit for Null Statement

CONTROL [11 [Y§FD
CONTROL [R] D—IJ-)_/

A >

CONTROL [2] -

Y

o, g

Sequential Statements 6-41
null Statements

6-42 Sequential Statements
null Statements

Concurrent Statements

A VHDL architecture contains a set of concurrent statements. Each

concurrent statement defines one of the interconnected blocks or processes

that describe the overall behavior or structure of adesign. Concurrent

statements in a design execute continuously, unlike sequential statements

(see Chapter 6, “Sequential Statements”), which execute one after another.

The two main concurrent statements are

process statement
A process statement defines a process. Processes are composed of
sequential statements (see Chapter 6, “Sequential Statements”), but
processes are themselves concurrent statements. All processes in a
design execute concurrently. However, at any given time only one
sequential statement is interpreted within each process. A process
communicates with the rest of a design by reading or writing values to
and from signals or ports declared outside the process.

block statement
A block statement defines a block. Blocks are named collections of
concurrent statements, optionally using locally defined types, signals,
subprograms, and components.

VHDL provides two concurrent versions of sequential statements:
concurrent procedure calls and concurrent signal assignments.

Concurrent Statements 7-1

-2

The component instantiation statement references a previously defined
hardware component.

Finally, the generate statement creates multiple copies of any concurrent
statement

Concurrent statements consist of
processtatements

block statements

Concurrent procedure calls
Concurrent signal assignments
Component instantiations
generatestatements

process Statements

A process statement contains an ordered set of sequential statements. The
syntax is
[label:]| process [(sensitivity list)]
{ process _declarative item}
begi n
{ sequential _statenent }
end process [label] ;

An optional label names the process. The sensitivity_list is a list of all
signals (including ports) read by the process, in the following format:

signal _nanme {, signal_nane}

The hardware synthesized by FPGXpress is sensitive to all signals read

by the process. To guarantee that a VHDL simulator sees the same results
as the synthesized hardware, a process sensitivity list must contain all
signals whose changes require resimulation of that process. ERB#ss
checks sensitivity lists for completeness and issues warning messages for
any signals that are read inside a process but are not in the sensitivity list.
An error is issued if a clock signal is read as data in a process.

Note: |[EEE VHDL does not allow a sensitivity list if the processincludes
await statement.

A process_declarative_item declares subprograms, types, constants, and
variables local to the process. These items can be any of the following
items:

e use clause

Concurrent Statements
process Statements

Subprogram declaration

Subprogram body

Type declaration

Subtype declaration
Constant declaration

Variable declaration

Each sequential_statement is described in Chapter 6, “Sequential
Statements.”

Conceptually, the behavior of a process is defined by the sequence of its
statements. After the last statement in a process is executed, execution
continues with the first statement. The only exception is during simulation:
if a process has a sensitivity list, the process is suspended (after its last
statement) until a change occurs in one of the signals in the sensitivity list.

If a process has one or more wait statements (and therefore no sensitivity
list), the process is suspended at the first wait statement whose wait
condition is FALSE.

The hardware synthesized for a process is either combinational (not
clocked) or sequential (clocked). If a process includes a wait or

if signhal’event statement, its hardware contains sequential components. The
wait and if statements are described in Chapter 6, “Sequential Statements.”

Note: The process statements provide a hatural means for describing
conceptually sequential algorithms. 1f the values computed in a process
areinherently parallel, consider using concurrent signal assignment
statements (see “Concurrent Signal Assignments” later in this chapter).

Combinational Process Example

Example 7-1 shows a process that implements a simple modul o-10 counter.
The example process is sensitive to (reads) two signals: CLEAR and
IN_COUNT. The process drives one signal, OUT_COUNT. If CLEAR is
"1’ or IN_COUNT is 9, then OUT_COUNT is set to zero. Otherwise,
OUT_COUNT is set to one more than IN_COUNT.

Concurrent Statements 7-3
process Statements

-4

Example 7-1 Modulo-10 Counter Process

entity COUNTER is
port (CLEAR: in BIT,
I N_COUNT: in | NTEGER range 0 to 9;
OUT_COUNT: out INTECER range 0 to 9);
end COUNTER;

architecture EXAMPLE of COUNTER i s
begi n
process(| N_COUNT, CLEAR)
begi n
if (CLEAR ="1" or IN_COUNT = 9) then
OUT_COUNT <= 0;
else
OUT_COUNT <= IN_COUNT + 1;
end if;
end process;
end EXAMPLE;

Figure 7-1 Circuit for Modulo-10 Counter Process Example

TMCOUNTIZ] =
THLCOUNT 8] e

IMCOUNTIL] o

TLCOUNT 3]

CLEAR ol

Sequential Process Example

Because the process in Example 7-1 contains no wait statements, it is
synthesized with combinational logic. An alternate implementation of the
counter isto retain the count value internaly in the process with await
statement.

Concurrent Statements
process Statements

Example 7-2 shows an implementation of a counter as a sequential
(clocked) process. On each 0-to-1 CLOCK transition, if CLEAR is '1’ or

COUNT is 9, COUNT is set to zero; otherwise, COUNT is incremented by
1.

Example 7-2 Modulo-10 Counter Process with wait Statement

entity COUNTER i s
port (CLEAR in BIT,
CLOCK: in BIT,;

COUNT: buffer |INTEGER range 0 to 9);
end COUNTER;

architecture EXAMPLE of COUNTER i s
begi n

process

begi n

wait until CLOCK’event and CLOCK ="1’;

if (CLEAR ="1" or COUNT >= 9) then
COUNT <=0;
else
COUNT <= COUNT + 1;
end if;
end process;
end EXAMPLE;

Concurrent Statements 7-5
process Statements

7-6

Figure 7-2 Circuit for Modulo-10 Counter Process with wait Statement Example

. .
kf {—>COUNT (81

cLocK [

E, h—

::fo [»COUNT (11
A &
1

‘|

r%‘)— :)D—ﬂi oCOUNT (21

S I

In Example 7-2, the value of the variable COUNT is stored in four
flip-flops. These flip-flops are generated because COUNT can be read
beforeit is set, so its value must be maintained from the previous clock
cycle. See “wait Statement” in Chapter 6, “Sequential Statements,” for
more information.

Driving Signals

If a process assigns a value to a signal, the procesisiigaof that signal.
If more than one process or other concurrent statement drives a signal, that
signal hasnultiple drivers.

Example 7-3 shows two three-state buffers driving the same signal (SIG).
Chapter 8, “Register and Three-State Inference,” shows how to describe a
three-state device in technology-independent VHDL, in the “Three-State
Inference” section.

Concurrent Statements
process Statements

Example 7-3 Multiple Drivers of a Signal

A_OUT <= Awhen ENABLE_A else 'Z’;
B_OUT <= B when ENABLE_B else 'Z’;

process(A_OUT)
begin

SIG <= A OUT;
end process;

process(B_OUT)
begin

SIG <=B_OUT;
end process;

Figure 7-3 Circuit for Multiple Drivers of a Signal Example

ENABLE_B
B SIG
ENABLE_A

A

Bus resolution functions assign the value for a multiply-driven signal. See
“Resolution Functions” in Chapter 3, “Describing Designs,” for more
information.

block Statements

A block statement names a set of concurrent statements. Use blocks to
organize concurrent statements hierarchically.

The syntax is

I abel : bl ock
{ bl ock_decl arative_item}
begi n

{ concurrent_statenent }
end block [[abel];

The required label names the block.

A block_declarative_item declares objects local to the block and can be any
of the following items:

Concurrent Statements -7
block Statements

7-8

Example 7-4 Nested Blocks

use clause

Subprogram declaration
Subprogram body

Type declaration
Subtype declaration
Constant declaration
Signal declaration
Component declaration

The order of each concurrent_statement in a block is not significant
because each statement is always active.

Note: FPGA Express does not support guarded blocks.

Objects declared in a block are visible to that block and to all blocks nested
within. When a child block (inside a parent block) declares an object with
the same name as an object in the parent block, the child’s declaration

overrides that of the parent (inside the child block).

Example 7-4 shows the use of nested blocks.

Bl: bl ock
signal S: BIT, -- Declaration of "S" in block Bl
begi n
S<=Aand B, -- "S" fromBl1l
B2: bl ock
signal S: BIT;, -- Declaration of "S" in bl ock B2
begi n
S<=Cand b, -- "S" fromB2
B3: bl ock
begi n
Z <= S -- "S" from B2
end bl ock B3;
end bl ock B2;
Y <= §; -- "S" fromB1l
end bl ock B1;

Concurrent Statements
block Statements

Figure 7-4 Circuit for Nested Blocks Example

o 0O

79 V9

Concurrent Procedure Calls

A concurrent procedure call is a procedure call used as a concurrent
statement; it is used in an architecture or ablock, rather than in aprocess. A
concurrent procedure call is equivalent to a process containing asingle
sequential procedure call. The syntax is the same as that of a sequential
procedure call:

procedure _name [([nanme =>] expression
{ ., [nane =>] expression })] ;

The equivalent processis sensitive to al in and inout parameters of the
procedure. Example 7-5 shows a procedure declaration, then a concurrent
procedure call and its equivalent process.

Example 7-5 Concurrent Procedure Call and Equivalent Process

procedure ADD(signal A, B: in BIT,;
signal SUM out BIT);

ADD(A B, SUM; -- Concurrent procedure call
pr 6cess(A, B) -- The equival ent process
begi n

ADD(A, B, SUM; -- Sequential procedure call

end process;

FPGA Express implements procedure and function calls with logic, unless
you use the map_to_entity compiler directive (see “Mapping Subprograms
to Components (Entities)” in Chapter 6, “Sequential Statements”).

A common use for concurrent procedure calls is to obtain many copies of a
procedure. For example, a class of BIT_VECTOR signals must contain
only one bit with value 1 and the rest of the bits value 0. You have several

Concurrent Statements 7-9
Concurrent Procedure Calls

signals of varying widths that you want monitored at the same time. One
approach isto write a procedure to detect the error inaBIT_VECTOR
signal, then make a concurrent call to that procedure for each signal.

Example 7-6 shows a procedure CHECK that determines whether a given

bit vector contains exactly one element with value '1’; if this is not the case,
CHECK sets its out parameter ERROR to TRUE.

Example 7-6 Procedure Definition for Example 7-7

procedure CHECK(signal A: in BIT_VECTOR,
si gnal ERROR out Boolean) is

vari abl e FOUND_ONE: Bool ean : = FALSE;
-- Set TRUE when a'l’
-- is seen

begin

for I in A'range loop -- Loop across all bits

-- in the vector
if A(l) ="1"then --Found a’'l’
if FOUND_ONE then -- Have we already found one?
ERROR <= TRUE; -- Found two '1’'s

return; -- Terminate procedure
end if;
FOUND_ONE := TRUE; -- Note that we have
end if; -- seena’l’
end loop;

ERROR <= not FOUND_ONE; -- Error will be TRUE
-- ifno 'l found
end;

Example 7-7 shows the CHECK procedure called concurrently for four
different-sized bit vector signals.

7-10 Concurrent Statements
Concurrent Procedure Calls

Example 7-7 Concurrent Procedure Calls

BLK: bl ock
signal Sl1: BIT_VECTOR(O to 0);
signal S2: BIT _VECTOR(O to 1);
signal S3: BIT _VECTOR(O to 2);
signal S4: BIT _VECTOR(O to 3);

signal El, E2, E3, E4: Bool ean;

begin
CHECK(S1, El); -- Concurrent procedure call
CHECK(S2, E2);
CHECK(S3, E3);
CHECK('S4, E4);
end bl ock BLK;

Figure 7-5 Circuit for Concurrent Procedure Calls Example

SZI1]
GZIRI]

53l
53121
s3artl

Concurrent Signal Assignments

A concurrent signal assignment is equivalent to a process containing that
sequential assignment. Thus, each concurrent signal assignment defines a
new driver for the assigned signal. The simplest form of the concurrent
signal assignment is

target <= expression;

Concurrent Statements 7-11
Concurrent Signal Assignments

7-12

target isasignal that receives the value of expression.

Example 7-8 shows the value of the expression A and B concurrently
assigned to signal Z.

Example 7-8 Concurrent Signal Assignment

BLK: bl ock
signal A B, Z BIT;
begi n

Z <= A and B;
end bl ock BLK

The other two forms of concurrent signal assignment are conditional signal
assignment and selected signal assignment.

Conditional Signal Assignment

Another form of concurrent signal assignment is the conditional signal
assignment. The syntax is

target <= { expression when condition else }
expressi on;

target isasignal that receives the value of an expression. The expression
used isthe first one whose Boolean condition is TRUE.

When a conditional signal assignment statement is executed, each
condition is tested in order as written. The first condition that evaluates
TRUE has its expression assigned to target. If no condition is TRUE, the
final expression is assigned to the target. If two or more conditions are
TRUE, only thefirst oneiseffective, just like the first TRUE branch of an if
statement.

Example 7-9 shows a conditional signal assignment, where the target isthe
signal Z. Signal Z isassigned from one of the signals A, B, or C. The signal
depends on the val ue of the expressions ASSIGN_A and ASSIGN_B. Note
that the assignment of A takes precedence over that of B, and the
assignment of B takes precedence over that of C because the first TRUE
condition controls the assignment.

Concurrent Statements
Concurrent Signal Assignments

Example 7-9 Conditional Signal Assignment

Z <= Awhen ASSIGN_A ="1" else
B when ASSIGN_B ="1'" else
G

Figure 7-6 Circuit for Conditional Signal Assignment Example

ASSIGN_A [>

Example 7-10 shows a process equivalent to the conditional signal
assignment in Example 7-9.

Example 7-10 Process Equivalent to Conditional Signal A ssignment

process(A, ASSIGN_A, B, ASSIGN_B, C)
begin
if ASSIGN_A ="1" then
Z<=A;
elsif ASSIGN_B =1’ then
Z <=B;
else
Z<=C;
end if;
end process;

Selected Signal Assignment

The final kind of concurrent signal assignment is the selected signal
assignment. The syntax is

with choi ce_expressi on sel ect
target <= { expression when choi ces, }
expressi on when choi ces;

Concurrent Statements 7-13
Concurrent Signal Assignments

target isasignal that receives the value of an expression. The expression
selected is the first one whose choices include the value of
choice_expression. The syntax of choicesis the same as that of the case
statement:

choice { | choice }

Each choice can be either a static expression (such as 3) or a static range
(such as 1 to 3). Thetype of choice expression determines the type of each
choice. Each valuein therange of the choice expression type must be
covered by one choice.

Thefina choice can be others, which matches all remaining (unchosen)
valuesin the range of the choice_expression type. The others choice, if
present, matches choice_expression only if none of the other choices
match.

The with..select statement evaluates choice_expression and compares that
value to each choice value. The when clause with the matching choice
value has its expression assigned to target.

The following restrictions are placed on choices:
* No two choices can overlap.

* If no others choice is present, all possible values of choice_expression must
be covered by the set of choices.

Example 7-11 shows target Z assigned from A, B, C, or D. The assignment
depends on the current value of CONTROL.

Example 7-11 Selected Signal Assignment

signal A, B, C, D, Z BIT,
signal CONTRCL: bit_vector(1l down to 0);

with CONTROL sel ect
Z <= A when "00",

B when "01",
C when "10",
D when "11"

7-14 Concurrent Statements
Concurrent Signal Assignments

Figure 7-7 Circuit for Selected Signal Assignment Example;

A

0w

Sl

D [> H%41

CONTROL [8] |:>—1

CONTROL[1] [>

Example 7-12 shows the process equivalent to the selected signal
assignment statement in Example 7-11.

Example 7-12 Process Equivalent to Selected Signal Assignment

process(CONTROL, A, B, C, D)

begi n
case CONTROL is
when 0 =>
Z <= A
when 1 =>
Z <= B;
when 2 =>
Z <= C
when 3 =>
Z <= D
end case;

end process;

Component Instantiations

A component instantiation references a previously defined hardware
component, in the current design, at the current level of hierarchy. Y ou can
use component instantiations to define adesign hierarchy. Y ou can also use
parts not defined in VHDL, such as components from an FPGA technol ogy
library, parts defined in the Verilog hardware description language, or the
generic technology library. Component instantiation statements can be used
to build netlistsin VHDL.

A component instantiation statement indicates
< A name for this instance of the component.
« The name of a component to include in the current entity.
< The connection method for a component’s ports.

Concurrent Statements
Component Instantiations

7-15

7-16

The syntax is

i nstance_nane . conponent _nane port map (
[port_nane =>] expression
{, [port_nane =>] expression });

instance_name names this instance of the component type
component_name.

The port map connects each port of thisinstance of component_nameto a
signal-valued expression in the current entity. The value of expression can
be asignal name, an indexed name, a slice name, or an aggregate. If
expression isthe VHDL reserved word open, the corresponding port is left
unconnected.

Y ou can map ports to signals by named or positional notation. Y ou can
include both named and positional connections in the port map, but you
must place all positional connections before any named connections.

Note: For named association, the component port names must exactly
match the declared component’s port names. For positional association,
the actual port expressions must be in the same order as the declared
component’s port order.

Example 7-13 shows a component declaration (a 2-input NAND gate)
followed by three equivalent component instantiation statements.

Example 7-13 Component Declaration and Instantiations

conponent ND2
port(A, B: inBIT, C out BIT);
end conponent;

signal X, Y, Z BIT

UL: ND2 port map(X, Y, 2); -- positional
U2: ND2 port map(A => X, C=>Z, B =>Y);-- naned
U3: ND2 port map(X, Y, C => 2); -- m xed

Example 7-14 shows the component instantiation statement defining a
simple netlist. Thethreeinstances, U1, U2, and U3, areinstantiations of the
2-input NAND gate component declared in Example 7-13.

Concurrent Statements
Component Instantiations

Example 7-14 A Simple Netlist

signal TEMP_1, TEMP2: BIT,;

Ul: ND2 port map(A, B, TEMP 1):
U2: ND2 port map(C, D, TEMP_2);
U3: ND2 port map(TEMP_1, TEMP_ 2, 2);

Figure 7-8 Circuit for Simple Netlist Example

B [> [NDZ
A > NDZ

ND2Z

generate Statements

A generate statement creates zero or more copies of an enclosed set of
concurrent statements. The two kinds of generate statements are

for... generate

the number of copiesis determined by a discrete range
if... generate

Zero or one copy is made, conditionally

for .. generate Statement

The syntax is

label: for identifier in range generate
{ concurrent_statenent }
end generate [[abel | ;

The required label names this statement (useful for nested generate
statements).

The use of the identifier in this construct is similar to that of the for..loop
statement:

identifier is not declared elsewhere. It is automatically declared by the
generate statement itself and is entirely local to the loop. A loop identifier
overrides any other identifier with the same name but only within the loop.

Concurrent Statements 7-17
generate Statements

7-18

» The value of identifier can be read only inside its loop, but you cannot

assign a value to a loop identifier. In addition, the value of identifier cannot
be assigned to any parameter whose mode is out or inout.

FPGAEXpress requires that range must bea@nputable integer range, in
either of these forms:

i nteger_expression to integer_expression
i nteger_expressi on downt o i nteger_expressi on

Each integer_expression evaluates to an integer.

Each concurrent_statement can be any of the statements described in this
chapter, including other generate statements.

A for..generate statement executes as follows:
A new local integer variable is declared with the name identifier.

identifier is assigned the first value of range, and each concurrent statement
is executed once.

identifier is assigned the next value in range, and each concurrent statement
is executed once more.

Step 3 is repeated until identifier is assigned the last value in range. Each
concurrent statement is then executed for the last time, and execution
continues with the statement following end generate. The loop identifier is
deleted.

Example 7-15 shows a code fragment that combines and interleaves two
four-bit arrays A and B into an eight-bit array C.

Example 7-15 for..generate Statement

signal A, B : bit_vector(3 downto 0);

signal C . bit_vector(7 downto 0);
signal X © bit;
CEN_LABEL: for | in 3 dowmto O generate
C(2*1 + 1) <= A(l) nor X
C(2*1) <= B(l) nor X;

end generate GEN_LABEL;

Concurrent Statements
generate Statements

Figure 7-9 Circuit for for..generate Statement Example

0 [>cim
Brol >

O [>cria
ALB)] [

O [>crz
BI1) [

O [>cr3
AL1) >

Br2) >
o [>cr4l

x >4

C [>cri31
ALZ] [

O [>Ci6]

ISAEEeS

BL3] >

O [>ci71

%

AL3] [>

The most common use of the generate statement isto create multiple copies

of components, processes, or blocks. Example 7-16 demonstrates this use

with components. Example 7-17 shows how to generate multiple copies of
processes. Example 7-16 shows VHDL array attribute 'range used with the
for..generate statement to instantiate a set of COMP components that
connect corresponding elements of bit vectors A and B.

Example 7-16 for..generate Statement Operating on an Entire Array

conponent COWP
port (X : in bit;
Y : out bit);

end conponent;

signal A B: BIT_VECTOR(O to 7);

GEN: for | in A'range generate
U: COMP port map (X => A(l),
Y => B(l));
end generate GEN;

Concurrent Statements 7-19
generate Statements

7-20

Figure 7-10 Circuit for for..generate Statement on Array Example

Al [:>4{fff%:}44{:>5[u

Unconstrained arrays and array attributes are described in “Array Types” in
Chapter 4, “Data Types.” Array attributes are shown in Example 4-9.

if . . generate Statement

The syntax is

| abel: if expression generate
{ concurrent_statenent }
end generate [[abel | ;

label identifies (names) this statemeexpression is any expression that
evaluates to a Boolean valuecéhcurrent_statement is any of the statements
described in this chapter, including otlgemerate statements.

Note: Unlike the if statement described in Chapter 6, “Sequential
Statements,” the if..generate statement has no else or elsif branches.

Y ou can use theif..generate statement to generate aregular structure that has
different circuitry at itsends. Use afor..generate statement to iterate over the
desired width of adesign and a set of if..generate statements to define the
beginning, middle, and ending sets of connections.

Example 7-17 shows a technol ogy-independent description of the
following N-bit serial-to-parallel converter. Datais clocked into an N-bit
buffer from right to left. On each clock cycle, each bit in an N-bit buffer is
shifted up one bit, and the incoming DATA bit is moved into the low-order
bit.

Concurrent Statements
generate Statements

Example 7-17 Typical Use of if..generate Statements

entity CONVERTER is
generic(N | NTEGER : = 8);

port (CLK, DATA: in BIT;
CONVERT: buffer BIT_VECTOR(N-1 downto 0));
end CONVERTER,

architecture BEHAVI OR of CONVERTER i s
signal S : BIT_VECTOR(CONVERT'range);
begin

G: for I in CONVERT'range generate

G1: -- Shift (N-1) data bit into high-order bit
if (I = CONVERT left) generate
process begin
wait until (CLK’event and CLK ="1");
CONVERT(l) <= S(I-1);
end process;
end generate G1;

G2: -- Shift middle bits up
if (I > CONVERT'right and
| < CONVERT left) generate

S(I) <= S(I-1) and CONVERT());

process begin
wait until (CLK’event and CLK ="1");
CONVERT(l) <= S(I-1);
end process;
end generate G2;

G3: -- Move DATA into low-order bit
if (I = CONVERTright) generate
process begin
wait until (CLK’event and CLK ="1");
CONVERT(l) <= DATA;
end process;
S(l) <= CONVERT(l);
end generate G3;

end generate G;
end BEHAVIOR,;

Concurrent Statements 7-21
generate Statements

7-22

Figure7-11 Circuit for Typical Use of if..generate Statements Example

DATA [

ous [

—HEEE

CONVERT[8]

CONVERTI1]

CONVERTI2]

CONVERT 31

CONVERT 41

EOMVERT 5]

CONVERTI8]

CONVERTI71

Concurrent Statements
generate Statements

Register and Three-State Inference

Y ou can generally use several different, but logically equivaent, VHDL
descriptions to describe a circuit.

To write VHDL descriptions to produce efficient synthesized circuits,
consider the following topics:

Register Inference
Three-State Inference

You can use VHDL to make your design more efficient in terms of the
synthesized circuit's area and speed, as follows:

A design that needs some, but not all, of its variables or signals stored
during operation can be written to minimize the number of latches or
flip-flops required.

A design that is described more easily with several levels of hierarchy can
be synthesized more efficiently if part of the design hierarchy is collapsed
during synthesis.

Register Inference

FPGAEXxpress providesregister inferencing using the wait and if
statements.

Register and Three-State Inference 8-1
Register Inference

A register isasimple, one-bit memory device, either aflip-flop or alatch. A
flip-flop is an edge-triggered memory device. A latch is alevel-sensitive
memory device.

Use the wait statement to imply flip-flopsin a synthesized circuit. FPGA
Expresscreatesflip-flopsfor all signals, and somevariables assigned values
in aprocess with await statement.

Theif statement can be used to imply registers (flip-flops or latches) for
signals and variablesin the branches of the if statement.

To useregister inferences, describelatches and flip-flops, and learn efficient
use of registers, familiarize yourself with

Using register inference

Describing latches

Describing flip-flops

Efficient use of registers

Using Register Inference

Using register inference involves describing clock signals and using wait
and if statements for register inferencing. Recommended models for
different types of inferred registers and current Synopsys restrictions must
also be considered.

Describing Clocked Signals

FPGAEXxpress can infer asynchronous memory elements from VHDL
descriptions written in a natural style.

Use the wait and if statements to test for the rising or falling edge of a
signal. The most common usages are
process
begi n
wait until (edge);

end'brocess;
process (sensitivity [|ist)
begi n

if (edge)

ena-if;
end process;

8-2 Register and Three-State Inference
Register Inference

Another form is
process (sensitivity [|ist)
begi n

if (...) then

elsif (...)

el si f (edge) then

end-i.f;
end process;

An edge expression tests for the positive or negative edge of asignal. The
syntax of an edge expression is

SIGNAL'event and SIGNAL ='1" --rising edge

NOT SIGNAL'stable and SIGNAL =1’ -- rising edge

SIGNAL'event and SIGNAL ='0" -- falling edge
NOT SIGNAL'stable and SIGNAL =0’ -- falling edge

In await statement, edge can also be

signal =’1" -- rising edge
signal =’0’ -- falling edge

An edge expression must be the only condition of an if or an elsif
statement. Y ou can have only one edge expression in an if statement, and
theif statement must not have an else clause. An edge expression cannot be
part of another logical expression nor used as an argument.

if (edgeand RST ='1")

-- lllegal usage; edge must be only condition
Any function(edge);

-- lllegal usage; edge cannot be an argument
if X > 5 then

sequential_statement;
elsif edge then
sequential_statement;
else
sequenti al _statenent;

end if;

-- lllegal usage; do not use edge as anintermediate
expression.

Theselinesillustrate three incorrect uses of the edge expression. In the first
group, the edge expression is part of alarger Boolean expression. In the
second group, the edge expression is used as an argument. In the third
group, the edge expression is used as an intermediate condition.

Register and Three-State Inference
Register Inference

8-3

84

wait versus if Statements

Sometimes you can use the wait and if statements interchangeably. The if
statement is usually preferred, because it provides greater control over the
inferred register’'s capabilities, as described in the next section.

IEEE VHDL requires that a process with a wait statement must not have a
sensitivity list.

An if edge statement can appear anywhere in a process. The sensitivity list
of the process must contain all signals read in the process, including the
edge signal. In general, the following guidelines apply:

Synchronous processes (processes that compute values only on clock
edges) must be sensitive to the clock signal.

Asynchronous processes (processes that compute values on clock edges
and when asynchronous conditions are TRUE) must be sensitive to the
clock signal (if any), and to inputs that affect asynchronous behavior.

Recommended Use of Register Inference Capabilities

The register inference capability can support styles of description other
than those described here. However, for best results:

Restrict each process to a single type of memory-element inferencing:
latch, latch with asynchronous set or reset, flip-flop, flip-flop with
asynchronous reset, or flip-flop with synchronous reset.

Register and Three-State Inference
Register Inference

» Use the following templates.

LATCH. process(sensitivity Ilist)
begi n
i f LATCH ENABLE t hen

end if; B
end process;

LATCH_ASYNC_SET:
attribute async_set._'r'eset of SET : signal is "true";

process(sensitivity I|ist)
begi n
if SET then
Q<='1%
elsif LATCH_ENABLE then

end |f
end process;

FF: process(CLK)
begin
if edge then

end“if;
end process;

FF_ASYNC_RESET:
process(RESET, CLK)
begin
if RESET then
Q<="0%
elsif edge then
Q<=..
end if;
end process;

FF_SYNC_RESET:
process(RESET, CLK)
begin
if edge then
if RESET then
Q<=07
else
Q<=..
end if;
end if;
end process;

Examples of these templates are provided in “Describing Latches” and
“Describing Flip-Flops,” later in this chapter.

Register and Three-State Inference
Register Inference

8-5

Restrictions on Register Capabilities

Do not use more than one if edge expression in a process.

process(CLK_A, CLK_B)
begin
if(CLK_A’event and CLK_A ="1’) then
A <= B;
end if;

if(CLK_B’event and CLK_B ="1") then --
lllegal
C<=B;
end if;
end process;

Do not assign avalue to avariable or signal on a FAL SE branch of an if
edge statement. This assignment is equivalent to checking for the absence
of aclock edge, which has no hardware counterpart.

process(CLK)
begin
if(CLK’event and CLK ='1") then
SIG <= B;
else
SIG <=C; -- lllegal
end if;
end process;

If avariable is assigned a val ue inside an edge construct, do not read that
variable later in the same process.

process(CLK)
variable EDGE_VAR, ANY_VAR: BIT;

begin
if (CLK’event and CLK ='1") then
EDGE_SIGNAL <= X;
EDGE_VAR :=Y;
ANY_VAR := EDGE_VAR; -- Legal
end if;

ANY_VAR := EDGE_VAR; -- lllegal
end process;

Do not use an edge expression as an operand.
if not(CLK’event and CLK ="1") then -- lllegal

8-6 Register and Three-State Inference
Register Inference

Delays in Registers

Example8-1 Delaysin Registers

If you use delay specifications with values that may be registered, these
values might cause the simulation to behave differently from the logic
synthesized by FPGA Express. For example, the description in Example
8-1 contains delay information that causes FPGA Express to synthesize a
circuit that behaves unexpectedly.

component flip flop (

D, clock: in BIT;
] out BIT;);
end conponent;

process (A, C, D, clock);
signal B: BIT,

begi n

B <= A after 100ns;

F1: flip_flop port map (A, C, clock),
F2: flip_flop port map (B, D, clock);
end process;

In Example 8-1, B changes 100 nanoseconds after A changes. If the clock
period isfewer than 100 nanoseconds, output D is one or more clock cycles
behind output C when the circuit is simulated. However, because FPGA
Expressignores the delay information, A and B change values at the same
time, and so do C and D. This behavior isnot the same as in the smulated
circuit.

When you use delay information in your designs, make sure the delays do
not affect registered values. In general, you can safely include delay
information in your description if it does not change the value that gets
clocked into aflip-flop.

Describing Latches

FPGA Expressinferslatches from incompletely specified conditional
expressions. In Example 8-2, the if statement infers alatch because there is
no else clause:

Register and Three-State Inference
Register Inference

87

Example 8-2 Latch Inference

process(GATE, DATA)

begi n
if (GATE ='1") then
Q <= DATA;
end if;

end process;

Figure 8-1 Latch Inference

DATA [>— —{">0

ok > o]

Theinferred latch uses CLK asits clock and DATA asits datainput, as
shown in Example 8-2.

Automatic Latch Inferencing
A signal or variable that is not driven under all conditions becomes a

latched value. As shown in Example 8-3, TEMP becomes a latched value
becauseit is assigned only when PHI is 1.

Example 8-3 Automatically Inferred Latch

if(PHI ='1’) then
TEMP <= A;
end if;

Figure8-2 Automaticaly Inferred Latch

A > —T">TEMP

PHT -2 o]

To avoid inferred latches, assign a value to the signal under all conditions,
as shown in Example 8-4.

Register and Three-State Inference
Register Inference

Example 8-4 Fully Specified Signal: No Latch Inference

if (PHI ='1’) then
TEMP <= A;
else
TEMP <="0";
end if;

Figure 8-3 Circuit for Fully Specified Signal: No Latch Inference

PHL [_>— ANZ
A >

TEMP

Restrictions on Latch Inference Capabilities
Y ou cannot read a conditionally assigned variable after the if statement in
which it isassigned. A conditionally assigned variable is assigned a new

value under some, but not all, conditions.

Therefore, avariable must always have avalue beforeit is read.

signal X, Y: BIT;
b'récess
variable VALUE: BIT,;
begin
if (condition)then
VALUE = X;
end if;

Y <= VALUE; -- lllegal
end;

In simulation, latch inference occurs because signal s and variables can hold
state over time. A signal or variable holds its value until that valueis
reassigned. FPGA Express inserts alatch to duplicate this holding of state
in hardware.

Variables declared |ocally within a subprogram do not hold their value over
time. Every time a subprogram is used, its variables are reinitialized.
Therefore, FPGA Express does not infer latches for variables declared in
subprograms. In Example 8-5, no latches are inferred.

Register and Three-State Inference
Register Inference

Example 8-5 Function without Inferred Latch

functi on MY_FUNC(DATA, GATE : BIT) return BIT is
vari abl e STATE: BIT,;

begin
i f GATE t hen
STATE : = DATA;
end if;

return STATE;
end;

Q <= MY_FUNC(DATA, GATE):

Figure8-4 Function without Inferred Latch

GATE D
DATA .
>

Example—Design with Two-Phase Clocks

By using the latch inference capability, you can describe network
structures, such as two-phase systemsin a technol ogy-independent manner.
Example 8-6 shows a simple two-phase system with clocks PHI_1 and
PHI_2.

Example 8-6 Two-Phase Clocks

entity LATCH VHDL is
port(PH _1, PH _2, A: in BIT,;
t: out BIT);
end LATCH VHDL;

architecture EXAMPLE of LATCH VHDL is
si gnal TEMP, LOOP_BACK: BIT,;

begi n
process(PH _1, A LOOP_BACK)
begi n
if(PHI_1 ='1") then

TEMP <= A and LOOP_BACK;
end if;
end process;

process(PHI_2, TEMP)

begin
if(PHI_2 ='1") then

LOOP_BACK <= not TEMP;

end if;

end process;

t <= LOOP_BACK;

end EXAMPLE;

8-10 Register and Three-State Inference
Register Inference

Figure8-5 Two-Phase Clocks

AD_i:}

FHI_1 D D

PHI_Z D

FPGA Express does not automatically infer dual-phase latches (devices
with master and slave clocks). To use these devices, you must instantiate
them as components, as described in Chapter 3, “Describing Designs.”

Describing Flip-Flops

Example 8-7 shows how an edge construct creates a flip-flop.

Example 8-7 Inferred Flip-Flop

process(CLK, DATA)
begi n
i f (CLKeventand CLK ='1) t hen
Q <= DATA;
end if;
end process;

Figure 8-6 Inferred Flip-Flop

DATA [>— ——">a

Lk =>—Pp D

Flip-Flop with Asynchronous Reset

Example 8-8 shows how to specify aflip-flop with an asynchronous reset.

Register and Three-State Inference 8-11
Register Inference

8-12

Example 8-8 Inferred Flip-Flop with Asynchronous Reset

process(RESET_LOW CLK, SYNC_DATA)

begi n
if RESET_LOW="0" then
Q<='07
elsif (CLK’event and CLK ='1") t hen
Q <= SYNC_DATA;
end if;

end process;

Figure8-7 Circuit for Inferred Flip-Flop with Asynchronous Reset

SYNC_DATA a
> ——

CLK

b
RESET_LON [~

Note how the flip-flop in Example 8-8 iswired.
« The D input of the flip-flop is wired to SYNC_DATA.

« If the reset condition is computable (see “Computable Operands” in
Chapter 5, “Expressions”), either the SET or CLEAR pin of the flip-flop is
wired to the RESET (or RESET_LOW) signal, as shown in Example 8-8.

« If the reset conditiorﬁANY_SlGNAL in Example 8-9) is not computable,
SET is wired to (ANY_SIGNAL AND ASYNC_DATA) and CLEAR is
wired to (ANY_SIGNAL AND NOT(ASYNC_DATA)), as shown in
Example 8-9.

Example 8-9 shows an inferred flip-flop with an asynchronous reset, where
the reset condition is not computable.

Example 8-9 Inferred Flip-Flop with Asynchronous Set or Clear

process (CLK, ANY_SI GNAL, ASYNC DATA, SYNC DATA)
begi n
if (ANY_SIGNAL) then
Q <= ASYNC _DATA;

el sif (CLK'eventand CLK ='1") t hen
Q <= SYNC_DATA;
end if;

end process;

Register and Three-State Inference
Register Inference

Figure8-8 Circuit for Inferred Flip-Flop with Asynchronous Set or Clear

SYNC_DATA >

ANY_SIGNAL [

ASYNC_DATA D{;—Do—):

e

CLK >

Example—Synchronous Design with Asynchronous Reset

Example 8-10 describes a synchronous finite state machine (FSM) with an

asynchronous reset.

Register and Three-State Inference
Register Inference

8-13

Example 8-10 Synchronous Finite State Machine with Asynchronous Reset

package MY_TYPES is
type STATE_TYPE is (SO, S1, S2, S3);
end MY_TYPES;

use WORK. MY_TYPES. ALL,;

entity STATE_MACHI NE is
port (CLK, INC, A B: in BIT, RESET: in Bool ean;
t: out BIT);
end STATE_MACHI NE;

architecture EXAMPLE of STATE MACHI NE i s

si gnal CURRENT_STATE, NEXT_STATE: STATE_TYPE;
begi n

SYNC: process(CLK, RESET)

begi n

i f (RESET) then
CURRENT_STATE <= S0;
elsif (CLK’event and CLK ="1") then
CURRENT_STATE <= NEXT_STATE;
end if;
end process SYNC;

FSM: process(CURRENT_STATE, A, B)
begin
t<=A; -- Default assignment
NEXT_STATE <= SO; -- Default assignment

if (INC ='1") then
case CURRENT_STATE is
when SO =>
NEXT_STATE <= S1;
when S1 =>
NEXT_STATE <= S2;
t<=B;
when S2 =>
NEXT_STATE <= S3;
when S3 =>
null;
end case;
end if;
end process FSM,;
end EXAMPLE;

8-14 Register and Three-State Inference
Register Inference

Figure8-9 Synchronous Finite State Machine with Asynchronous Reset

CLK -

ING E}-ED:)—

REGET [

8>

(-

Attributes

attribute async_set_reset of signal_nane,.

New attributes used to assist register inference are discussed in this section.
The attributes are defined in aVHDL library called Synopsys
ATTRIBUTES package.

attribute async_set reset string;
attribute sync_set reset string;

attribute async_set _reset | ocal string;
attribute sync_set _reset_| ocal string;
attribute async_set_reset | ocal _all string
attribute sync_set _reset_I| ocal _all string;
attribute one_hot string;

attribute one_cold : string;

async_set_reset

Theasync_set_reset attribute is attached to single-bit signals using the
attribute construct. FPGA Express checks signals with the async_set_reset
attribute set to TRUE to determine whether these sighals asynchronously
set or reset alatch in the entire design.

The syntax of async_set reset is

signal is "true";

Latch with Asynchronous Set or Clear Inputs

The asynchronous clear signal for alatch isinferred by driving the Q pin of
your latch to 0. The asynchronous set signal for alatch isinferred by
driving the Q pin of your latch to 1. Although FPGA Express does not
require that the clear (set) be the first condition in your conditional branch,
it is best to write your VHDL in this manner.

Register and Three-State Inference
Register Inference

8-15

Example 8-11 shows how to specify alatch with an asynchronous clear
input. To specify alatch with an asynchronous set, change the logic as
indicated by the comments.

Example 8-11 Inferred Latch with Asynchronous Clear Input

attribute async_set_reset of clear : signal is

"true";
process(cl ear, gate, a)
begi n
if (clear="1) then
q <: IO! :
elsif (gate ='1’) then
q<=4q
end if;

end process;

Figure8-10 Inferred Latch with Asynchronous Clear

> -

gate E:>>————————LLL B

I
clear

sync_set_reset

The sync_set_reset attribute is attached to single-bit signals with the
attribute constructs. FPGA Express checks signals with the sync_set reset
attribute set to TRUE to determine whether these signals synchronously set
or reset aflip-flop in the entire design.

The syntax of sync_set resetis

attribute sync_set _reset of signal_name,... : signal is "true";

Flip-Flop with Synchronous Reset Input

Example 8-12 shows how to specify a flip-flop with a synchronous reset.

8-16 Register and Three-State Inference
Register Inference

Example 8-12 Inferred Flip-Flop with Synchronous Reset Input

attribute sync_set _reset of RESET, SET : signal is

"true";
process(RESET, CLK)
begi n
i f (CLKeventand CLK ="1")
if RESET="1" then
Q<="0}
else
Q <= DATA_A;
end if;
end if;
end process;

process (SET, CLK)
begin
if (CLK’event and CLK ='1")
if SET="01 t hen

T<="1%
else
T <= DATA_B;
end if;
end if;

end process;

Figure 8-11 Circuit for Inferred Flip-Flop with Synchronous Reset Input

t hen

t hen

RESET
DATA

CLk > D> o]

async_set_reset_local

Theasync_set_reset_|ocal attribute is attached to the label of aprocesswith
avalue of adouble-quoted list of single-bit signals. Every signal in the list
istreated as though it has the async_set_reset attribute attached in the

specified process.

The syntax of async_set _reset local is

attribute async_set_reset_local of process_label :

label is
"signal_name,...";

Register and Three-State Inference
Register Inference

8-17

Example 8-13 Asynchronous Set/Reset on a Single Block

i brary | EEE;

l'ibrary synopsys;

use | EEE. std | ogic_1164. all;
use synopsys.attributes. all;

entity e_async_set _reset_local is

port(reset, set, gate: in std_logic; vy, t: out
std_l ogic);

end e_async_set _reset | ocal;

architecture rtl of e _async_set reset local is

attribute async_set_reset_local of direct_set_reset
| abel

is "reset, set";

begi n

direct_set reset: process (reset, set)
begi n
if (reset ='1’) then
y <='0 -- asynchronous reset
elsif (set ='1") then
y <='1% -- asynchronous set
end if;
end process direct_set_reset;

gated_data: process (gate, reset, set)
begin
if (gate ='1’) then
if (reset ='1") then

t<="0; -- gated data
elsif (set =’1’) then
t<="1; -- gated data
end if;
end if;

end process gated_set_reset;

end rtl;

8-18 Register and Three-State Inference
Register Inference

Figure8-12 Asynchronous Set/Reset on a Single Block

T
e

(24 ><Fj_>°] ,_Dy
o

set

sync_set_reset_local

The sync_set_reset_local attribute is attached to the label of a process with
avalue of adouble-quoted list of single-bit signals. Every signal in the list
istreated as though it has the sync_set_reset attribute attached in the
specified process.

The syntax of sync_set_reset_local is

attribute sync_set_reset_| ocal of process_| abel
| abel is "signal _name,..."

Register and Three-State Inference 8-19
Register Inference

Example 8-14 Synchronous Set/Reset on a Single Block

i brary | EEE;

l'ibrary synopsys;

use | EEE. std | ogic_1164. all;
use synopsys.attributes.all;

entity e_sync_set _reset _local is
port(clk, reset, set, gate : in std_logic; y, t: out std_logic);
end e_sync_set _reset_|ocal;

architecture rtl of e _sync_set reset local is
attribute sync_set _reset |local of clocked set reset : label is "reset, set";
begi n

cl ocked_reset: process (clk, reset, set)
begi n
if (clk’'event and clk = '1") then

if (reset ='1’) then

y <='0} -- synchronous reset
else
y<='1, -- synchronous set
end if;
end if;

end process clocked_set reset;

gated_data: process (clk, gate, reset, set)
begin
if (clk’'event and clk = '1") then
if (gate ='1’) then
if (reset ='1’) then

t<="0, -- gated data
elsif (set ='1") then
t<="1 -- gated data
end if;
end if;
end if;

end process gated_set_reset;

end rtl;

8-20 Register and Three-State Inference
Register Inference

Figure8-13 Synchronous Set/Reset on a Single Block

set

(-
d2 i
reset [—}_} g

cl

el

k
:De =

async_set_reset_local_all

Theasync_set_reset_local_all attribute is attached to a process label. The
attribute async_set_reset_local_all specifiesthat all the signalsin the
process are used to detect an asynchronous set or reset condition for
inferred latches or flip-flops.

The syntax of async_set reset local_all is

attribute async_set _reset _local all of
process label,... : label is "true";

Register and Three-State Inference
Register Inference

8-21

8-22

Example 8-15 Asynchronous Set/Reset on Part of aDesign

i brary | EEE;

l'ibrary synopsys;

use | EEE. std | ogic_1164. all;
use synopsys.attributes.all;

entity e_async_set _reset _local _all is
port(reset, set, gate, gate2: in std_logic; y, t, w out std_logic);
end e_async_set_reset _local _all;

architecture rtl of e _async_set reset local _all is
attribute async_set _reset _local all of
direct _set reset, direct_set reset too: |abel is "true";
begi n
direct _set_reset: process (reset, set)
begi n
if (reset ='1’) then
y <="0’; -- asynchronous reset
elsif (set ='1") then
y <='1, -- asynchronous set
end if;
end process direct_set_reset;

direct_set_reset_too: process (gate, reset, set)
begin
if (gate ='1’) then
if (reset ='1") then

t<="0" -- asynchronous reset
elsif (set ='1") then
t<="1" -- asynchronous set
end if;
end if;

end process direct_set_reset_too;

gated_data: process (gate2, reset, set)
begin
if (gate ='1’) then
if (reset ='1") then

w<='0’ -- gated data
elsif (set =’1’) then
w<="1" -- gated data
end if;
end if;

end process gated_set_reset;

end rtl;

Register and Three-State Inference
Register Inference

Figure8-14 Asynchronous Set/Reset on Part of a Design

gated >

2
S0

I limal
:

rese i |
gatED
—L>
sync_set_reset_local_all
Thesync_set_reset local_all attribute is attached to a process label. The
attribute sync_set_reset_local_all specifiesthat all the signalsin the process
are used to detect a synchronous set or reset condition for inferred latches
or flip-flops.
The syntax of sync_set_reset _loca_dll is
attribute sync_set reset local _all of process label,... : label is "true";

Register and Three-State Inference
Register Inference

8-23

Example 8-16 Synchronous Set/Reset on a Part of a Design

i brary | EEE;

l'ibrary synopsys;

use | EEE. std | ogic_1164. all;
use synopsys.attributes.all;

entity e_sync_set _reset _local _all is
port(clk, reset, set, gate, gate2: in std_logic; vy, t, w out std_logic);
end e_sync_set _reset_local _all;

architecture rtl of e _sync_set reset local _all is
attribute sync_set _reset local _all of

cl ocked _set reset, clocked set reset too: label is "true";
begi n

cl ocked set reset: process (clk, reset, set)
begi n
if (clk’'event and clk = '1") then

if (reset ='1") then

y <='0; -- synchronous reset
elsif (set =’1’) then
y<='1% -- synchronous set
end if;
end if;

end process clocked_set_reset;

clocked_set_reset_too: process (clk, gate, reset, set)
begin
if (clk’'event and clk = '1") then
if (gate ='1’) then
if (reset ='1’) then

t<="0 -- synchronous reset
elsif (set ='1") then
t<="1"; -- synchronous set
end if;
end if;
end if;

end process clocked_set_reset_too;

gated_data: process (clk, gate2, reset, set)
begin
if (clk’'event and clk = '1") then
if (gate ='1’) then
if (reset ='1’) then

w<='0’; -- gated data
elsif (set ='1") then
w<="1% -- gated data
end if;
end if;
end if;

end process gated_set_reset;

end rtl;

8-24 Register and Three-State Inference
Register Inference

Figure8-15 Synchronous Set/Reset on a Part of a Design

L] >
qo be[
resetD—!
>G > [»
oy
ek B>]
Y
setD
— D L

gatEZD

Note: Usetheone_hot and one_cold directives to implement D-type
flip-flops with asynchronous set and reset signals. These two attributes
tell FPGA Express that only one of the objectsin thelist are active at a
time. If you are defining active high signals, use one_hot. For active low,
use one_cold. Each attribute has two objects specified.

one_hot

The one_hot directive takes one argument of a double-quoted list of signals
separated by commas. This attribute indicates that the group of signals are
one_hot (at any time, no more than one signal can have aLogic 1 vaue).

Y ou must make sure that the group of signals arereally one_hot. FPGA
Express does not produce any logic to check this assertion.

The syntax of one_hot is
attribute one_hot signal _nane,... : label is "true";

Register and Three-State Inference
Register Inference

8-25

Example 8-17 Using one_hot for Set and Reset

i brary | EEE;

l'ibrary synopsys;

use | EEE. std | ogic_1164. all;
use synopsys.attributes.all;

entity e_one_hot is

port(reset, set, reset2, set2: in std_logic; y, t: out std_logic);
attribute async_set_reset of reset, set : signal is "true";
attribute async_set reset of reset2, set2 : signal is "true";
attribute one_hot of reset, set : signal is "true";

end e _one_hot;

architecture rtl of e _one_hot is
begi n
direct _set reset: process (reset, set)
begi n
if (reset ='1’) then
y <=0 -- asynchronous reset by "reset"
elsif (set =’1") then
y <=1 -- asynchronous set by "set"
end if;
end process direct_set_reset;
direct_set_reset_too: process (reset2, set2)

begin
if (reset2 ='1’) then
t<="0, -- asynchronous reset by "reset2"
elsif (set2 ='1") then
t<="1, -- asynchronous set by "~reset2 set2"
end if;

end process direct_set_reset_too;

-- synopsys synthesis_off

process (reset, set)

begin

assert not (reset="1" and set="1")

report "One-hot violation"
severity Error;

end process;

-- synopsys synthesis_on

end rtl;

8-26 Register and Three-State Inference
Register Inference

Figure8-16 Using one hot for Set and Reset

o
L r{>'y
c—
O
o
| -,
set2 D’Jt
reset2 D&D

one_cold

The one_cold directive is similar to the one_hot directive. one_cold
indicates that no more than one signal in the group can haveal ogic 0 value
at any time.

The syntax of one_cold is
attribute one_cold signal _nane,... : label is "true";

Register and Three-State Inference 8-27
Register Inference

8-28

Example 8-18 Using one _cold for Set and Reset

library | EEE

l'ibrary synopsys;

use | EEE. std | ogic_1164. al |
use synopsys.attributes. all

entity e_one_cold is

port(reset, set, reset2, set2: in std_logic; vy, t:
is "true";

attribute async_set_reset of reset, set : signal

attribute async_set reset of reset2, set2 : signal

out std_l ogic);

is "true";

attribute one_cold of reset, set : signal is "true";

end e_one_col d;

architecture rtl of e one_cold is
begi n

direct _set reset: process (reset, set)
begi n
if (reset ='0’) then

y <=0 -- asynchronous reset by "not reset"
elsif (set =’0") then

y<="1% -- asynchronous set by "not set"

end process direct_set_reset;

direct_set_reset_too: process (reset2, set2)

begin
if (reset2 ='0’) then
t<="0, -- asynchronous reset by "not reset2"
elsif (set2 ='0") then
t<="1, -- asynchronous set by "(not reset2) (not set2)"
end if;

end process direct_set_reset_too;

-- synopsys synthesis_off

process (reset, set)

begin

assert not (reset="0" and set="0’)

report "One-cold violation”
severity Error;

end process;

-- synopsys synthesis_on

end rtl;

Register and Three-State Inference
Register Inference

Figure8-17 Using one cold for Set and Reset

© \‘
reset D—D_L I_D y
set '_DI |—_
T
e
reset2 D—D_I; .
set? '—DI '

FPGA Express Latch and Flip-Flop Inference

FPGA Expressinfers latches and flip-flops as follows:

« Asynchronous Flip-Flop Resets
FPGAEXxpress reports asynchronous set and reset conditions of flip-flops.

« Asynchronous Latch Resets
FPGAEXxpress interprets each control object of a latch as synchronous. If
you want to asynchronously set or reset a latch, set this variable to TRUE.

* Flip-Flop Feedback Loops
FPGAExpressremoves all flip-flop feedback loops. For example, feedback
loops inferred from a statement such as Q=Q are removed. With the state
feedback removed from a simple D flip-flop, it becomes a synchronous
loaded flip-flop.

Register and Three-State Inference 8-29
Register Inference

8-30

* Flip-Flop Inverted Feedback Loops

FPGAExpressremoves all inverted flip-flop feedback loops. For example,
feedback loops inferred from a statement such as Q=Q are removed and

synthesized as T flip-flops.

» Reporting Inferred Modules

FPGAEXxpress generates a brief report on inferred latches, flip-flops, or

three-state devices.

Efficient Use of Registers

Organize your HDL description so that you build only as many flip-flops as
the design requires. Example 8-19 shows a description where too many

flip-flops are implied.

Example8-19 Circuit with Six Implied Registers

i brary | EEE;
use | EEE. std | ogic_1164. all;
use | EEE. std | ogi c_unsi gned. al | ;

entity ex8_13 is

port (clk , reset : in std_logic;
and bits , or_bits , xor_bits :
)
end ex8_13;
architecture rtl of ex8 13 is
begi n
process

out std_logic

variabl e count : std |ogic_vector (2 downto 0);

begi n
wait until (clk’event and clk = '1’);
if (reset ='1’) then

count :="000";
else count := count + 1;
end if;

and_bits <= count(2) and count(1) and count(0);

or_bits <= count(2) or count(1) or count(0);
xor_bits <= count(2) xor count(1) xor count(0);
end process;
end rtl;

Register and Three-State Inference
Register Inference

Figure8-18 Circuit with Six Implied Registers

I } > AMDLHTTS
Jr

OO e
| T
] e s

werl) e -

O
Lo

—

In Example 8-19, the outputs AND_BITS, OR_BITS, and XOR _BITS
depend solely on the value of COUNT. Because COUNT isregistered, the
three outputs do not need to be registered. To avoid implying extra
registers, assign the outputs from within a process that does not have await
statement. Example 8-20 shows a description with two processes, one with
await statement and one without. This description style lets you choose the
signals that are registered and those that are not.

Register and Three-State Inference 8-31
Register Inference

Example 8-20 Circuit with Three Implied Registers

use work. ARI THMVETIC. al | ;
entity COUNT is
port (CLOCK, RESET: in BIT;
AND BITS, ORBITS, XORBITS : out BIT);
end COUNT;

architecture RTL of COUNT is
signal COUNT : UNSIGNED (2 downto 0);
begin

REG. process -- Registered logic
begi n
wait until CLOCK’event and CLOCK ='1’;
if (RESET ="1’) then
COUNT <= "000";
else
COUNT <= COUNT + 1;
end if;
end process;

COMBIN: process(COUNT) -- Combinational
logic
begin
AND_BITS <= COUNT(2) and COUNT(1) and COUNT(0);
OR_BITS <= COUNT(2) or COUNT(1) or COUNT(0);
XOR_BITS <= COUNT(2) xor COUNT(1) xor COUNT(O0);
end process;
end RTL;

Figure8-19 Circuit with Three Implied Registers

- aces

[°TF
il

CLDEK [+

Thistechnique of separating combinational logic from registered or
sequential logic is useful when describing finite state machines.

Example—Using Synchronous and Asynchronous Processes

Y ou might want to keep some of the values computed by a processin
flip-flops, while alowing other values to change between clock edges.

8-32 Register and Three-State Inference
Register Inference

Y ou can do this by splitting your algorithm between two processes, one
with await statement and one without. Put the registered (synchronous)
assignments into the wait process. Put the other (asynchronous)
assignmentsinto the other process. Use signal's to communicate between
the two processes.

For example, suppose you want to build a design with the following
characteristics:

Inputs A_1, A 2, A 3 and A_4 change asynchronously.
Output tis driven fromone of A 1, A 2, A 3,0r A 4.

Input CONTROL is valid only on the positive edge of CLOCK. The value
at the edge determines which of the four inputs is selected during the next
clock cycle.

Output t must always reflect changes in the value of the currently selected
signal.

The implementation of this design requires two processes. The process with
a wait statement synchronizes the CONTROL value. The other process
multiplexes the output, based on the synchronized control. The signal
SYNC_CONTROL communicates between the two processes.

Example 8-21 shows the code and a schematic of one possible
implementation.

Register and Three-State Inference 8-33
Register Inference

Example 8-21 Two Processes: One Synchronous, One Asynchronous

entity SYNC ASYNC is

port (CLOCK: in BIT;
CONTROL: in INTEGER range 0 to 3;
A in BIT VECTOR(0O to 3);

t: out BIT);
end SYNC_ASYNC,

architecture EXAMPLE of SYNC ASYNC i s
signal SYNC CONTROL: | NTEGER range 0 to 3;
begin

process
begi n
wait until CLOCK’event and CLOCK ="1";
SYNC_CONTROL <= CONTROL;

end process;

process (A, SYNC_CONTROL)
begin
t <= A(SYNC_CONTROL);
end process;
end EXAMPLE;

8-34 Register and Three-State Inference
Register Inference

Figure8-20 Two Processes. One Synchronous, One Asynchronous

CONTROL [1] [»—

CONTROL [B1] >

Ald]

e DDT Z

Aral o> Mux4l

a

cLock [oemEQIs

Three-State Inference

FPGA Express can infer three-state gates (high-impedance output) from
enumeration encoding in VHDL. After inference, FPGA Express maps the
gatesto a specified technology library. See “Enumeration Encoding” in
Chapter 4, “Data Types,” for more information.

When a variable is assigned the value of Z, the output of the three-state gate
is disabled. Example 8-22 shows the VHDL for a three-state gate

Example 8-22 Creating a Three-State Gate in VHDL

signal OUT_ VAL, IN VAL: std_logic;

if (COND) then
OUT VAL <= I N _VAL;
el se
OUT_VAL <="Z"; -- assigns high-impedance
end if;

Y ou can assign a high impedance value to afour-bit wide buswith ZZZZ.

Onethree-state device isinferred from a single process. Example 8-23
infers only one three-state device.

Register and Three-State Inference 8-35
Three-State Inference

Example 8-23 Inferring One Three-State Device from a Single Process

process (sela, a, selb, b) begin

t<="z}
if (sela ='1") then
t<=a;
if (selb ='1") then
t<=b;

end process;

Example 8-24 infers two three-state devices.

Example 8-24 Inferring Two Three-State Devices

process (sela, a) begin
if (sela = ‘1") then
t=a;
elset="7";
end process;

process (selb, b) begin
if (selb =1") then
t=b;
elset="7";
end process;

The VHDL conditional assignment can also be used for three-state
inferencing.

Assigning the Value Z

Assigning variables the value Z is allowed. The value Z can also appear in
function calls, return statements, and aggregates. However, except for
comparisonsto Z, you cannot use Z in an expression. Example 8-25 shows
an incorrect use of Z (in an expression), and Example 8-26 shows a correct
use of Z (in a comparison).

Example 8-25 Incorrect Use of the Vaue Z in an Expression

OUT_VAL <="Z"and IN_VAL,;

8-36 Register and Three-State Inference
Three-State Inference

Example 8-26 Correct Expression Comparing to Z

if IN_VAL ="Z’ then

Caution Expressions comparing to Z are synthesized as though values are not
equal to Z.

For example:
if X ="Z"then

is synthesized as:
if FALSE then

If you use expressions comparing valuesto Z, the presynthesis and
post-synthesis simulation results might differ. For this reason, FPGA
Express issues a warning when it synthesizes such comparisons.

Latched Three-State Variables
When avariableis latched (or registered) in the same processin whichitis

three-stated, the enabl e of the three-state Z is also latched (or registered).
This process is shown in Example 8-27.

Example 8-27 Three-State Inferred with Registered Enable

-- Creates a flip-flop on input and on enable
if (THREESTATE ='0’) then

OUTPUT <="Z};
elsif (CLK’event and CLK ="1") then

if (CONDITION) then

OUTPUT <= INPUT,;

end if;

end if;

Register and Three-State Inference 8-37
Three-State Inference

Figure8-21 Three-State Inferred with Registered Enable

THREESTATE (>

CONDITION D’ikD J!
B> -
OUTRUT
= —s
CLK D % | T
INPUT D
=]

In Example 8-27, the three-state gate has a registered enable signal.
Example 8-28 usestwo processesto instantiate a three-state with aflip-flop
only on the input.

Example 8-28 Latched Three-State with Flip-Flop on Input

entity LATCH 3S is
port (CLK, THREESTATE, |INPUT: in std_| ogic;
OUTPUT: out std logic; COND TION: in Bool ean);
end LATCH 3S;

architecture EXAMPLE of LATCH 3S is
signal TEMP: std_l ogic;

begi n

process(CLK, CONDI TI ON, | NPUT)
begi n -- creates three-state
if (CLK’event and CLK ="1") then

if (CONDITION) then

TEMP <= INPUT;

end if;

end if;

end process;
process(THREESTATE, TEMP)
begin
if (THREESTATE ='0’) then
OUTPUT <="Z};
else
OUTPUT <= TEMP;
end if;
end process;
end EXAMPLE;

8-38 Register and Three-State Inference
Three-State Inference

Figure8-22 Latched Three-State with Flip-Flop on Input

THREESTATE >

cLk [>—FDiks D

INPUT [

CONDITION [

Register and Three-State Inference 8-39
Three-State Inference

8-40 Register and Three-State Inference
Three-State Inference

FPGA Express Directives

Synopsys has defined several methods of providing circuit design
information directly in your VHDL source code.

Using FPGAEXpress directives, you can direct the translation from VHDL
to components with special VHDL comments. These synthetic comments
turn translation on or off, specify one of several hard-wired resolution
methods, and provide a means to map subprograms to hardware
components.

Using Synopsys-defined VHDattributes, you can add synthesis-related
signal and constraint information to ports, components, and entities. This
information is used by FPGExpress during synthesis.

To familiarize yourself with FPGA&Xxpress directives, consider the
following topics:

Notation for FPGAEXxpress Directives
FPGAEXxpress Directives
Synthesis Attributes and Constraints

FPGA Express Directives 9-1

9-2

Notation for FPGA Express Directives

FPGA Expressdirectives are special VHDL comments (synthetic
comments) that affect the actions of FPGA Express. These comments are a
special case of regular VHDL comments, which are ignored by other
VHDL tools. Synthetic comments are used only to direct the actions of
FPGA Express.

Synthetic comments begin with two hyphens (--) like aregular comment. If
the word following these charactersis pragma or synopsys, the remaining
comment text is interpreted by FPGA Express asadirective.

Note: FPGA Express displays a syntax error if an unrecognized directive
isencountered after -- synopsys or -- pragma.

FPGA Express Directives

The three types of directives are
Translation stop and start Directives

-- pragma transl ate off
-- pragma translate_on
-- pragma synt hesis_off
-- pragma synthesis_on

Resolution function directives

-- pragma resolution_nethod wred_and
-- pragma resol ution_nethod wred or
-- pragma resolution_nethod three_state

Component implication directives

-- pragma map_to_entity entity_ name
-- pragme return_port_name port_nane

FPGA Express Directives
Notation for FPGA Express Directives

Translation Stop and Start Directives

Trandation directives stop and start the trandation of a VHDL source file
by FPGA Express.

-- pragma transl ate_of f
-- pragma translate_on

Thetranslate off and translate_on directivesinstruct FPGA Expressto stop
and start parsing VHDL source code. The VHDL code between these two
directivesis completely ignored regardless of syntax.

Trangdlation is enabled at the beginning of each VHDL sourcefile. You can
use trandate_off and translate_on directives anywhere in the text.

The synthesis_off and synthesis_on directives are the recommended
mechanisms for hiding simulation-only constructs from synthesis. Any text
between these directives is checked for syntax, but no corresponding
hardware is synthesized.

Example 9-1 shows how you can use the directives to protect a simulation
driver.

FPGA Express Directives 9-3
FPGA Express Directives

94

Example 9-1 Using synthesis_on and synthesis_off Directives

-- The following test driver for entity EXAVPLE
-- shoul d not be transl ated:

-- pragma synt hesis_off

-- Transl ati on stops

entity DRIVER is
end;

architecture VHDL of DRIVER i s
signal A, B : INTEGER range 0 to 255
signal SUM : |INTEGER range 0 to 511;

conponent EXAMPLE
port (A, B: in INTEGER range 0 to 255;
SUM out |INTEGER range 0 to 511);
end conponent;

begi n
Ul: EXAMPLE port map(A, B, SUM;
process
begi n
for | in O to 255 | oop
for J in O to 255 | oop
A<=1;
B <= J;
wait for 10 ns;
assert SUM= A + B
end | oop;
end | oop;
end process;
end;

-- pragma synthesis_on
- - Code fromhere on is transl ated

entity EXAMPLE is
port (A, B: in INTEGER range 0 to 255;
SUM out |INTEGER range 0 to 511);
end;

architecture VHDL of EXAMPLE is
begi n

SUM <= A + B;
end;

FPGA Express Directives
FPGA Express Directives

Resolution Function Directives

Resolution function directives determine the resolution function associated

with resolved signals (see “Signal Declarations” in Chapter 3, “Describing
Designs”). FPGAEXpress does not currently support arbitrary resolution
functions. It does support the following three methods:

-- pragma resolution_nethod wred_and

-- pragma resol ution_nethod wred_or
-- pragma resolution_nethod three_state

Note: Do not connect signalsthat use different resolution functions.
FPGA Express supports only one resolution function per network.

Component Implication Directives

Component implication directives map VHDL subprograms onto existing
components or VHDL entities. These directives are described under
“Mapping Subprograms to Components” in Chapter 6, “Sequential
Statements”:

-- pragma map_to_entity entity_ name
-- pragma return_port_name port_nane

FPGA Express Directives 9-5
FPGA Express Directives

9-6 FPGA Express Directives
FPGA Express Directives

Synopsys Packages

Three Synopsys packages are included with this rel ease:
std_logic_1164 Package

Defines a standard for designers to use when describing the interconnection
data types used in VHDL modeling.

std_logic_arith Package

Provides a set of arithmetic, conversion, and comparison functions for
SIGNED, UNSIGNED, INTEGER, STD_ULOGIC, STD_LOGIC, and
STD_LOGIC_VECTOR types.

std_logic_misc Package

Defines supplemental types, subtypes, constants, and functions for the
std_logic_1164 package.

To understand the contents of each package, review the following sections.

std _logic_1164 Package

This package defines the IEEE standard for designers to use when
describing the interconnection data types used in VHDL modeling. The
logic system defined in this package might be insufficient for modeling
switched transistors, because such a requirement is out of the scope of this

Synopsys Packages 10-1
std_logic_1164 Package

effort. Furthermore, mathematics, primitives, and timing standards are
considered orthogonal issues asthey relate to this package and are therefore
beyond the scope of this effort.

Thestd logic_ 1164 package contains Synopsys synthesis directives. Three
functions, however, are not currently supported for synthesis: rising_edge,
falling_edge, andis x.

To usethis package in aVHDL source file, include the following lines at
the top of the sourcefile:

I'ibrary | EEE;
use | EEE. std | ogic_1164. all;

When you analyze your VHDL source file, FPGA Express automatically
findsthe IEEE library and the std_logic 1164 package. However, you must
analyze the use packages not contained in the IEEE and Synopsys libraries
before processing a source file that uses them.

std_logic_arith Package

Functions defined in the std_logic_arith package provide conversion to and
from the predefined VHDL datatype INTEGER, and arithmetic,
comparison, and Boolean operations. This package lets you perform
arithmetic operations and numeric comparisons on array data types. The
package defines some arithmetic operators (+, -, *, and abs) and the
relational operators (<, >, <=, >=, =, and /=). Note that IEEE VHDL does
not define arithmetic operators for arrays and defines the comparison
operatorsin amanner inconsistent with an arithmetic interpretation of array
values.

The package a so definestwo major datatypes of its own: UNSIGNED and
SIGNED. Find details in “Data Types” later in this chapter. The
std_logic_arith package is legal VHDL; you can use it for both synthesis
and simulation.

The std_logic_arith package can be configured to work on any array of
single-bit types. You encode single-bit types in one bit with the
ENUM_ENCODING attribute.

You can make the vector type (for example, std_logic_vector) synonymous
with either SIGNED or UNSIGNED. This way, if you plan to use mostly
UNSIGNED numbers, you do not need to convert your vector type to call
UNSIGNED functions. The disadvantage of making your vector type

10-2 Synopsys Packages
std_logic_arith Package

synonymous with either UNSIGNED or SIGNED isthat it causes the
standard VHDL comparison functions (=, /=, <, >, <=, and >=) to be
redefined.

Table 10-1 shows that the standard comparison functions for
BIT_VECTOR do not match the SIGNED and UNSIGNED functions.

Table10-1 UNSIGNED, SIGNED, and BIT_VECTOR Comparison Functions

ARG1
"000"
"00"
"100"
"000"
"00"
"100"

op

AN N A

ARG2 UNSIGNED SIGNED BIT_VECTOR
"000" TRUE TRUE TRUE

"000" TRUE TRUE FALSE
"0100" TRUE FALSE FALSE

"000" FALSE FALSE FALSE

"000" FALSE FALSE TRUE

"0100" FALSE TRUE FALSE

Using the Package

The std_logic_arith package is in the $synopsys/packages/| EEE/src/

std logic_arith.vhd subdirectory of the Synopsysroot directory. To usethis
packagein aVHDL sourcefile, include the following lines at the top of the
source file:

l'ibrary | EEE;
use | EEE. std logic_arith.all;

Synopsys packages are preanalyzed and do not require further analyzing.

Modifying the Package

Thestd logic_arith package iswritten in standard VHDL. Y ou can modify
or add to it. The appropriate hardware is then synthesized.

For example, to convert avector of multivalued logic to an INTEGER, you
can write the function shown in Example 10-1. ThisMVL_TO_INTEGER
function returns the integer value corresponding to the vector when the
vector isinterpreted as an unsigned (natural) number. If unknown values
arein the vector, the return valueis-1.

Synopsys Packages
std_logic_arith Package

10-3

Example 10-1 New Function Based on astd _logic_arith Package Function

i brary | EEE;
use | EEE. std_l ogic_1164. al | ;

function MWL_TO | NTEGER(ARG : ML_VECTOR)
return | NTEGER i s
-- pragma built_in SYN_FEED THRU
variable uns: UNSIGNED (ARG'range);
begin
foriin ARG’range loop
case ARG(i) is
when 0" | 'L’ => uns(i) :='0’;
when 1’ | 'H’ => uns(i) :='1’;
when others =>return -1;
end case;
end loop;
return CONV_| NTEGER(uns);
end;

Note the use of the CONV_INTEGER function in Example 10-1.

FPGA Express performs almost all synthesis directly from the VHDL
descriptions. However, several functions are hard wired for efficiency.
These functions can be identified by the following comment in their
declarations

-- pragma built_in

This statement marks functions as special, causing the body to be ignored.
Modifying the body does not change the synthesized logic unless you
remove the built_in comment. If you want new functionality, use the
built_in functions; this is more efficient than removing the built_in and
modifying the body.

Data Types

The std_logic_arith package defines two data types, UNSIGNED and
SIGNED:
type UNSIGNED is array (natural range <>) of

std_logic;
type SIGNED is array (natural range <>) of std_logic;

These data types are similar to the predefined VHDL type BIT_VECTOR,
but the std_logic_arith package defines the interpretation of variables and

signals of these types as numeric values. With the install_vhdl conversion

script, you can change these data types to arrays of other one-bit types.

104 Synopsys Packages
std_logic_arith Package

UNSIGNED

The UNSIGNED data type represents an unsigned numeric value. FPGA
Expressinterprets the number as a binary representation, with the farthest
left bit being most significant. For example, the decimal number 8 can be
represented as

UNSIGNED’("1000")

When you declare variables or signals of type UNSIGNED, alarger vector
holdsalarger number. A four-bit variable holds values up to decimal 15; an
eight-bit variable holds values up to 255, and so on. By definition, negative
numbers cannot be represented in an UNSIGNED variable. Zero is the
smallest value that can be represented.

Example 10-2 illustrates some UNSIGNED declarations. Note that the

most significant bit is the farthest left array bound, rather than the high or
low range value.

Example 10-2 UNSIGNED Declarations

variable VAR: UNSIGNED (1 to 10);

-- 11-bit number

-- VAR(VAR’left) = VAR(1) is the most significant
bit

signal SIG: UNSIGNED (5 downto 0);

-- 6-bit number

-- SIG(SIG’left) = SIG(5) is the most significant
bit

SIGNED

The SIGNED data type represents a signed numeric value. FPGA Express
interprets the number as a 2's complement binary representation, with the
farthest left bit as the sign bit. For example, you can represent decimal 5
and -5 as

SIGNED’("0101") -- represents +5
SIGNED’("1011") -- represents -5

When you declare SIGNED variables or signals, alarger vector holds a

larger number. A four-bit variable holds values from -8 to 7; an eight-bit
variable holds values from —128 to 127. Note that a SIGNED value cannot
hold as large a value as an UNSIGNED value with the same bit width.

Example 10-3 shows some SIGNED declarations. Note that the sign bit is
the farthest left bit, rather than the highest or lowest.

Synopsys Packages 10-5
std_logic_arith Package

Example 10-3 SIGNED Declarations

variable S VAR SIGNED (1 to 10);
-- 11-bit nunber
-- S VAR(S_VAR'left) = S_VAR(1) is the sign bit

signal S_SIG: SIGNED (5 downto 0);
-- 6-bit number
-- S_SIG(S_SIG'left) = S_SIG(5) is the sign bit

Conversion Functions

The std_logic_arith package provides three sets of functionsto convert
values between its UNSIGNED and SIGNED types, and the predefined
type INTEGER. This package also provides the std_logic_vector.

Example 10-4 shows the declarations of these conversion functions. BIT
and BIT_VECTOR types are shown.

10-6 Synopsys Packages
std_logic_arith Package

Example 10-4 Conversion Functions

subtype SMALL_INT is I NTEGER range 0 to 1;

function CONV_I NTEGER(ARG | NTEGER)

function CONV_I NTEGER(ARG UNSI GNED)

function CONV_I NTEGER(ARG S| GNED)

return | NTEGER;
return | NTEGER;
return | NTEGER;

function CONV_I NTEGER(ARG STD ULOG C) return

SMALL_| NT:

functi on CONV_UNSI GNED({ ARG | NTEGER;
Sl ZE: | NTECER)

return UNSI GNED;

functi on CONV_UNSI GNED(ARG UNSI GNED;

S| ZE: | NTECER)

functi on CONV_UNSI GNED(ARG, S| GNED;

SI ZE: | NTECER)

return UNSI GNED;
return UNSI GNED;

functi on CONV_UNSI GNED(ARG STD _ULOA C,

Sl ZE: | NTECER)

functi on CONV_SI GNED(ARG | NTECER;
S| ZE: | NTEGER)
functi on CONV_SI GNED(ARG UNSI GNED;
S| ZE: | NTEGER)
function CONV_SI GNED(ARG Sl GNED;
S| ZE: | NTEGER)

return UNSI GNED;

return S| GNED;
return Sl GNED;

return Sl GNED;

function CONV_SI GNED(ARG STD_ULOG C;

S| ZE: | NTECGER)

functi on CONV_STD LOd C VECTOR(ARG
S| ZE: | NTEGER)

STD LOd C VECTOR;

function CONV_STD LOG C_VECTOR(ARG
S| ZE: | NTEGER)

STD_LOd C_VECTOR;

functi on CONV_STD LOd C VECTOR(ARG
S| ZE: | NTEGER)

STD LOd C VECTOR;

function CONV_STD LOG C_VECTOR(ARG
SI ZE: | NTEGER)

STD_LOd C_VECTOR;

return S| GNED;

| NTEGER;
return

UNSI GNED,
return

S| GNED;
return

STD _ULOG G
return

Note that there are four versions of each conversion function.

The operator overloading mechanism of VHDL determines the correct
version from the function call’s argument types.

The CONV_INTEGER functions convert an argument of type INTEGER,

UNSIGNED, SIGNED, or STD_ULOGIC to an INTEGER return value.

The CONV_UNSIGNED and CONV_SIGNED functions convert an
argument of type INTEGER, UNSIGNED, SIGNED, or STD_ULOGIC to
an UNSIGNED or SIGNED return value whose bit width is SIZE.

Synopsys Packages
std_logic_arith Package

10-7

10-8

The CONV_INTEGER functions have a limitation on the size of operands.
VHDL defines INTEGER values as between -2147483647 and
2147483647. This range corresponds to a 31-bit UNSIGNED value or a
32-bit SIGNED vaue. Y ou cannot convert an argument outside this range
to an INTEGER.

The CONV_UNSIGNED and CONV_SIGNED functions require two
operands. The first operand is the value converted. The second operand is
an INTEGER that specifies the expected size of the converted result. For
example, the following function call returns a 10-bit UNSIGNED value
representing the valuein sig.

ten_unsi gned_bits := CONV_UNSI GNED(si g, 10);

If the value passed to CONV_UNSIGNED or CONV_SIGNED is smaller
than the expected bit width (such as representing the value 2 in a 24-bit
number), the value is bit-extended appropriately. FPGA Express places
zeros in the more significant (1eft) bits for an UNSIGNED return value and
uses sign extension for a SIGNED return value.

You can use the conversion functions to extend a number’s bit width even if
conversion is not required. For example:

CONV_SIGNED(SIGNED'("110"), 8) % "11111110"

An UNSIGNED or SIGNED return value is truncated when its bit width is
too small to hold the ARG value. For example:

CONV_SIGNED(UNSIGNED’("1101010"), 3) % "010"

Arithmetic Functions

The std_logic_arith package provides arithmetic functions for use with
combinations of Synopsys’ UNSIGNED and SIGNED data tygresthe
predefined types STD_ULOGIC and INTEGER. These functions produce
adders and subtracters.

There are two sets of arithmetic functions: binary functions with two
arguments, such as A+B or A*B, and unary functions with one argument,
such as -A. The declarations for these functions are shown in Example 10-5
and Example 10-6.

Synopsys Packages
std_logic_arith Package

Example 10-5 Binary Arithmetic Functions

function "+"(L: UNSIGNED; R UNSI GNED) return UNSI GNED;
function "+"(L: SI GNED; R SI GNED) return Sl GNED;
function "+"(L: UNSIGNED; R: S| GNED) return Sl GNED;
function "+"(L: SI GNED, R UNSI GNED) return Sl GNED,
function "+"(L: UNSIGNED; R |INTEGER) return UNSIGNED;
function "+"(L: INTEGER, R UNSI GNED) return UNSI GNED;
function "+"(L: SI GNED; R I NTEGER) return Sl GNED,
function "+"(L: INTEGER, R Sl GNED) return Sl GNED;
function "+"(L: UNSIGNED, R STD ULOG C) return UNSI GNED;
function "+"(L: STD ULOG C, R UNSIGNED) return UNSI GNED;
function "+"(L: SI GNED, R STD ULOG C) return Sl GNED,
function "+"(L: STD_ULOA C, R Sl GNED) return Sl GNED;
function "+"(L: UNSIGNED; R UNSIGNED) return STD LOG C VECTOR,
function "+"(L: SIGNED, R SIGNED) return STD LOG C VECTOR,
function "+"(L: UNSIGNED;, R SIGNED) return STD LOG C VECTOR;
function "+"(L: SIGNED, R UNSIGNED) return STD LOG C VECTOR,
function "+"(L: UNSIGNED;, R |NTEGER) return STD LOG C VECTOR
function "+"(L: INTEGER, R UNSIGNED) return STD LOG C VECTOR;
function "+"(L: SIGNED; R |INTEGER) return STD LOG C_VECTOR;
function "+"(L: INTEGER R SIGNED) return STD_LOG C_VECTOR,
function "+"(L: UNSIGNED, R. STD ULOGE C) return

STD_LOGE C_VECTOR;
function "+"(L: STD_ ULOA C, R UNSIGNED) return STD _LOd C_VECTOR;
function "+"(L: SIGNED; R STD ULOG C) return STD LOGE C VECTOR
function "+"(L: STD_ ULOA C, R SIGNED) return STD LOG C VECTOR,
function "-"(L: UNSIGNED; R UNSI GNED) return UNSI GNED;
function "-"(L: SI GNED, R SI GNED) return Sl GNED;
function "-"(L: UNSIGNED; R: S| GNED) return Sl GNED;
function "-"(L: SI GNED; R UNSI GNED) return Sl GNED,
function "-"(L: UNSIGNED; R |INTEGER) return UNSI GNED;
function "-"(L: INTEGER, R UNSI GNED) return UNSI GNED;
function "-"(L: SI GNED, R I NTEGER) return S| GNED,
function "-"(L: INTEGER, R S| GNED) return Sl GNED;
function "-"(L: UNSIGNED, R. STD ULOG C) return UNSI GNED;
function "-"(L: STD ULOG C, R UNSI GNED) return UNSI GNED;
function "-"(L: SI GNED; R STD ULOG C) return Sl GNED;
function "-"(L: STD_ULOA C, R Sl GNED) return Sl GNED;
function "-"(L: UNSIGNED;, R: UNSIGNED) return STD LOG C VECTOR,
function "-"(L: SIGNED, R SIGNED) return STD LOG C VECTOR,
function "-"(L: UNSIGNED;, R SIGNED) return STD LOG C VECTOR,
function "-"(L: SIGNED, R UNSIGNED) return STD _LOG C _VECTOR
function "-"(L: UNSIGNED; R |INTEGER) return STD LOAd C_VECTOR;
function "-"(L: INTEGER, R UNSIGNED) return STD LOGd C _VECTOR;
function "-"(L: SIGNED, R |INTEGER) return STD LOG C_VECTOR,
function "-"(L: INTEGER R SIGNED) return STD LOG C_VECTOR,
function "-"(L: UNSIGNED, R. STD ULOG C) return

STD LCOGE C_ VECTO?
function "-"(L: STD ULOG C, R UNSIGNED) return

STD LCOGE C VECTOR;
function "-" (L: SIGNED, R. STD ULOA C) return STD LOG C VECTOR,
function "-"(L: STD ULOA C, R SIGNED) return STD LOG C VECTOR,
function "*"(L: UNSIGNED; R UNSI GNED) return UNSI GNED;
function "*"(L: SI GNED, R SI GNED) return Sl GNED;
function "*"(L: SI GNED; R UNSI GNED) return Sl GNED,

Synopsys Packages
std_logic_arith Package

10-9

function "*"(L:

UNSI GNED; R SI GNED) return Sl GNED;

Example 10-6 Unary Arithmetic Functions

function "+"(L: UNSIGNED) return UNSI GNED;
function "+"(L: SI GNED) return Sl GNED;
function "-"(L: SI GNED) return Sl GNED;
function "ABS"(L: SIGNED) return S| GNED,

These functions determine the width of their return values as follows;

. When only one UNSIGNED or SIGNED argument is present, the width of

the return value is the same as that argument.

. When both arguments are either UNSIGNED or SIGNED, the width of the

return value isthe larger of the two argument widths. An exception is that
when an UNSIGNED number is added to or subtracted from a SIGNED
number of the same size or smaller, the return value is a SIGNED number
one bit wider than the UNSIGNED argument. This size guarantees that the
return valueislarge enough to hold any (positive) value of the UNSIGNED
argument.

The number of bits returned by + and - isillustrated in Table 10-2.

signal U4: UNSIGNED (3 downto 0);
signal U8: UNSIGNED (7 downto 0);
signal S4: SIGNED (3 downto 0);
signal S8: SIGNED (7 downto 0);

Table10-2 Number of Bits Returned by + and -

+or - us S4 S8
u4 4 8 5 8
us 8 8 9 9
S4 5 9 4 8
S8 8 9 8 8

In some circumstances, you might need to obtain a carry-out bit from the +
or - operation. To do this, extend the larger operand by one bit. The high bit
of the return value isthe carry-out bit, asillustrated in Example 10-7.

10-10 Synopsys Packages
std_logic_arith Package

Example 10-7 Using the Carry-Out Bit

process
variable a, b, sum UNSIGNED (7 downto 0);
variabl e tenp: UNSIGNED (8 downto 0);

variable carry: BIT;

begi n
tenp = CONV_UNSI GNED(a, 9) + b;
sum = tenp(7 downto 0);
carry = tenmp(8);

end process;

Comparison Functions

The std_logic_arith package provides functions to compare UNSIGNED
and SIGNED data types to each other and to the predefined type
INTEGER. FPGA Express compares the numeric values of the arguments,
returning aBoolean value. For exampl e, the following expression evaluates
to TRUE.

UNSIGNED’("001") > SIGNED’("111")

The std_logic_arith comparison functions are similar to the built-in VHDL
comparison functions. The only differenceisthat the std logic_arith
functions accommodate signed humbers and varying bit widths. The
predefined VHDL comparison functions perform bit-wise comparisons and
so do not have the correct semantics for comparing numeric values (see
“Relational Operators” in Chapter 5, “Expressions”).

These functions produce comparators. The function declarations are listed
in two groups, ordering functions (<, <=, >, and >=) and equality functions
(= and /=) in Example 10-8 and Example 10-9.

Synopsys Packages 10-11
std_logic_arith Package

Example 10-8 Ordering Functions

function "<"(L: UNSIGNED; R UNSI GNED) return Bool ean;
function "<"(L: SIGNED; R SI GNED) return Bool ean;
function "<"(L: UNSIGNED; R: S| GNED) return Bool ean;
function "<"(L: SIGNED, R UNSI GNED) return Bool ean;
function "<"(L: UNSIGNED;, R |INTEGER) return Bool ean;
function "<"(L: INTEGER, R UNSI GNED) return Bool ean;
function "<"(L: SI GNED, R I NTEGER) return Bool ean;
function "<"(L: INTEGER, R Sl GNED) return Bool ean;

function "<="(L: UNSI GNED,
function "<="(L: SIGNED;
function "<="(L: UNSI GNED,
function "<="(L: S| GNED
function "<="(L: UNSI GNED,
function "<="(L: | NTECER;
function "<="(L: SIGNED;
function "<="(L: | NTECER;

UNSI GNED) return Bool ean;
S| GNED) return Bool ean;
S| GNED) return Bool ean;
UNSI GNED) return Bool ean;
I NTEGER) return Bool ean;
UNSI GNED) return Bool ean;
| NTEGER) return Bool ean;
S| GNED) return Bool ean;

function functions">">" UNSI GNED;, R UNSI GNED) return Bool ean;
function ">"(L: Sl GNED; R SI GNED) return Bool ean;

function ">"(L: UNSIGNED; R: S| GNED) return Bool ean;
function ">"(L: Sl GNED R UNSI GNED) return Bool ean;
function ">"(L: UNSIGNED;, R |INTEGER) return Bool ean;
function ">"(L: INTEGER, R UNSI GNED) return Bool ean;
function ">"(L: SI GNED, R I NTEGER) return Bool ean;
function ">"(L: INTEGER, R Sl GNED) return Bool ean;
function ="" functions">">="(L: UNSI GNED; R: UNSI GNED) return Bool ean;

function ">="(L: SIGNED; R SI GNED) return Bool ean;
function ">="(L: UNSIGNED;, R S| GNED) return Bool ean;
function ">="(L: S| GNED, UNSI GNED) return Bool ean;
function ">="(L: UNSI GNED, I NTEGER) return Bool ean;
function ">="(L: | NTEGER; UNSI GNED) return Bool ean;
function ">="(L: SIGNED; | NTEGER) return Bool ean;

R
R
R
R
R
function ">="(L: INTECER, R S| GNED) return Bool ean;

10-12 Synopsys Packages
std_logic_arith Package

Example 10-9 Equality Functions

functi
functi
functi
functi
functi
functi
functi
functi

functi
functi
functi
functi
functi
functi
functi
functi

on
on
on
on
on
on
on
on

on
on
on
on
on
on
on
on

"="(L: UNSIGNED;, R UNSI GNED) return Bool ean;
"="(L: SIGNED R: SI GNED) return Bool ean;
"="(L: UNSIGNED; R S| GNED) return Bool ean;
"="(L: SIGNED; R UNSI GNED) return Bool ean;
"="(L: UNSIGNED, R |NTEGER) return Bool ean;
"="(L: INTEGER, R UNSI GNED) return Bool ean;
"="(L: SIGNED, R: I NTEGER) return Bool ean;
"="(L: INTEGER, R Sl GNED) return Bool ean;
"/="(L: UNSIGNED; R UNSIGNED) return Bool ean;
"/="(L: Sl GNED; R Sl GNED) return Bool ean;
"/="(L: UNSIGNED;, R S| GNED) return Bool ean;
"/="(L: SIGNED; R UNSI GNED) return Bool ean;
“/="(L: UNSIGNED, R |NTEGER) return Bool ean;
"/="(L: INTECER;, R UNSIGNED) return Bool ean;
"/="(L: SIGNED; R I NTEGER) return Bool ean;
"/="(L: INTECER, R S| GNED) return Bool ean;

Shift Functions

Example 10-10 Shift Functions

The std _logic_arith package provides functions for shifting the bitsin
SIGNED and UNSIGNED numbers. These functions produce shifters.
Example 10-10 shows the shift function declarations.

function SHL(ARG UNSI GNED;

COUNT: UNSI GNED) return UNSI GNED;
function SHL(ARG S| GNED;

COUNT: UNSI GNED) return Sl GNED;

function SHR(ARG UNSI GNED;

COUNT: UNSI GNED) return UNSI GNED;
functi on SHR(ARG S| GNED;

COUNT: UNSI GNED) return Sl GNED;

The SHL function shifts the bits of its argument ARG to the left by
COUNT bits. The SHR function shifts the bits of its argument ARG to the
right by COUNT hits.

The SHL functions work the same for both UNSIGNED and SIGNED
values of ARG, shifting in zero bits as necessary. The SHR functions treat
UNSIGNED and SIGNED values differently. If ARG isan UNSIGNED
number, vacated bits arefilled with zeros; if ARG isaSIGNED number, the
vacated bits are copied from the sign bit of ARG.

Synopsys Packages 10-13
std_logic_arith Package

Example 10-11 shows some shift function calls and their return values.

Example 10-11 Shift Operations

variable Ul, U2: UNSIGNED (7 downto 0);
variable S1, S2: SIGNED (7 downto 0);
variabl e COUNT: UNSIGNED (1 downto 0);

'Ul. :

= "01101011";
U2 := "11101011";
S1 := "01101011";
S2 = "11101011";

COUNT : = CONV_UNSI GNED(ARG => 3, SIZE => 2);

SHL(ULl, COUNT) = "01011000"
SHL(S1, COUNT) = "01011000"
SHL(U2, COUNT) = "01011000"
SHL(S2, COUNT) = "01011000"
SHR(U1, COUNT) = "00001101"
SHR(S1, COUNT) = "00001101"
SHR(U2, COUNT) = "00011101"
SHR(S2, COUNT) = "11111101"

Multiplication Using Shifts

Y ou can use shift operations for simple multiplication and division of
UNSIGNED numbers, if you multiply or divide by a power of two.

For example, to divide the following UNSIGNED variable U by 4:

variable U UNSIGNED (7 downto 0) := "11010101";
variabl e quarter_U. UNSI GNED (5 downto 0);

quarter U := SHR(U, "01");

ENUM_ENCODING Attribute

Place the synthesis attribute ENUM_ENCODING on your primary logic
type (see “Enumeration Encoding” in Chapter 4, “Data Types.” This
attribute allows FPGAXxpress to interpret your logic correctly.

10-14 Synopsys Packages
std_logic_arith Package

pragma built_in

Label your primary logic functions with the built_in pragma. This pragma
allows FPGA Expressto interpret your logic functions easily. When you
use abuilt_in pragma, FPGA Express parses but ignores the body of the
function. Instead, FPGA Express directly substitutes the appropriate logic
for the function. Y ou need not use built_in pragmas; however using these
pragmas can result in run times that are ten times faster.

Use built_in pragmas by placing a comment in the declaration part of a
function. FPGA Expressinterpretsacomment asadirectiveif thefirst word

of the comment is pragma.

Example 10-12 shows the use of built_in pragmas.

Example 10-12 Using abuilt_in pragma

function "XOR' (L, R STD LOd C_VECTOR) return
STD LOE C_VECTCR i s
-- pragma built_in SYN XOR
begi n
if (L="1") xor (R ="1") then
return '1’;
else
return '0’;
end if;
end "XOR";

Two-Argument Logic Functions

Synopsys provides six built-in functions to perform two-argument logic
functions:

« SYN_AND
« SYN_OR

+ SYN_NAND
« SYN_NOR
« SYN_XOR
« SYN_XNOR

You can use these functions on single-bit arguments or equal-length arrays
of single bits.

Example 10-13 shows a function that generates the logical AND of two
equal-size arrays.

Synopsys Packages 10-15
std_logic_arith Package

Example 10-13 Built-In AND for Arrays

function "AND' (L, R STD LOd C_VECTOR) return
STD LOGE C_VECTCR i s
-- pragma built_in SYN_AND
variable MY_L: STD_LOGIC_VECTOR (L’length-1
downto 0);
variable MY_R: STD_LOGIC_VECTOR (L’length-1
downto 0);
variable RESULT: STD_LOGIC_VECTOR (L’length-1
downto 0);
begin
assert L’length = R’length;
MY _ L :=L;
MY R :=R;
foriin RESULT'range loop
if (MY_L(i) =’1") and (MY_R(i) = '1’) then
RESULT(i) :="1";
else
RESULT(i) :="07;
end if;
end loop;
return RESULT;
end "AND";

One-Argument Logic Functions

Synopsys provides two built-in functions to perform one-argument logic
functions:

SYN_NOT
SYN_BUF

You can use these functions on single-bit arguments or equal-length arrays
of single bits. Example 10-14 shows a function that generates the logical
NOT of an array.

10-16 Synopsys Packages
std_logic_arith Package

Example 10-14 Built-In NOT for Arrays

function "NOT" (L: STD_LOGE C VECTOR) return
STD LOd C_ VECTOR i s
-- pragma built_in SYN _NOT
variable MY_L: STD_LOGIC_VECTOR (L'length-1
downto 0);
variable RESULT: STD_LOGIC_VECTOR (L’length-1
downto 0);
begin
MY_L :=L;
foriin result'range loop
if (MY_L(i) =’0" or MY_L(i) ='L’) then
RESULT(i) :="1";
elsif (MY_L(i) ='1" or MY_L(i) = 'H’) then
RESULT(i) :="0";
else
RESULT(i) :="X’;
end if;
end loop;
return RESULT,;
end "NOT";
end;

Type Conversion

The built-in function SYN_FEED_THRU performs fast type conversion
between unrelated types. The synthesized logic from SYN_FEED THRU
wires the single input of afunction to the return value. This connection can
save the CPU time required to process a complicated conversion function,
as shown in Example 10-15.

Example 10-15 Use of SYN_FEED_THRU

type COLOR is (RED, GREEN, BLUE);

attribute ENUM_ENCODING : STRING;

attribute ENUM_ENCODING of COLOR : type is "01 10
11"

function COLOR_TO_BV (L: COLOR) return BIT_VECTOR is
-- pragma built_in SYN_FEED_THRU
begin
caselLis
when RED => return "01";
when GREEN => return "10";
when BLUE => return "11";
end case;
end COLOR_TO_BV;

Synopsys Packages 10-17
std_logic_arith Package

translate_off Directive

If there are constructs in your “types” package that are not supported for
synthesis, or that produce warning messages, you may need to use the
FPGAExpress directive -- synopsys translate_off. You can make liberal
use of the translate_off directive when you use built_in pragmas because
FPGAEXxpress ignores the body of built_in functions. For examples
showing how to use the translate off directive, see the std_logic_arith.vhd
package.

std_logic_misc Package

The std_logic_misc package resides in the Synopsys libraries directory
($synopsys/packages/IEEE/src/std_logic_misc.vhd). This package declares
the primary data types supported by the Synopsys VSS Family.

Boolean reduction functions use one argument, an array of bits, and return
a single bit. For example, the and-reduction of “101” is “0”, the logical
AND of all three bits.

Several functions in the std_logic_misc package provide Boolean reduction
operations for the predefined type STD_LOGIC_VECTOR. Example
10-16 shows the declarations of these functions.

10-18 Synopsys Packages
std_logic_misc Package

Example 10-16 Boolean Reduction Functions

functi
UX01;
functi
UX01;
functi
UX01;
functi
UX01;
functi
UX01;
functi
UX01;
functi
UX01;
functi
UX01;
functi
UX01;
functi
UX01;
functi
UX01;
functi
UX01;

on

on

on

on

on

on

on

on

on

on

on

on

AND_REDUCE (ARG
NAND_REDUCE (ARG
OR REDUCE (ARG
NOR_REDUCE (ARG
XOR_REDUCE (ARG
XNOR_REDUCE (ARG
AND REDUCE (ARG
NAND_REDUCE (ARG:
OR REDUCE (ARG
NOR_REDUCE (ARG
XOR_REDUCE (ARG

XNOR_REDUCE (ARG

STD_LOG C_VECTOR)
STD_LOG C_VECTOR)
STD_LOG C_VECTOR)
STD_LOG C_VECTOR)
STD_LOG C_VECTOR)
STD_LOG C_VECTOR)
STD_ULOG C_VECTOR)
STD_ULOG C_VECTOR)
STD_ULOG C_VECTOR)
STD_ULOG C_VECTOR)
STD_ULOG C_VECTOR)
STD_ULOG C_VECTOR)

return

return

return

return

return

return

return

return

return

return

return

return

These functions combine the bits of STD_LOGIC VECTOR, as the name
of the function indicates. For example, XOR_REDUCE returns the XOR
value of all bitsin ARG.

Example 10-17 shows some reduction function calls and their return

values.

Synopsys Packages 10-19
std_logic_misc Package

Example 10-17 Boolean Reduction Operations

AND_REDUCE("111") =1
AND_REDUCE("011") =0’

OR_REDUCE("000") =0’
OR_REDUCE("001") ='1’

XOR_REDUCE("100") =1’
XOR_REDUCE("101") =0’

NAND_REDUCE("111") =0’
NAND_REDUCE("011") =1’

NOR_REDUCE("000") =1
NOR_REDUCE("001") =0’

XNOR_REDUCE("100") =0’
XNOR_REDUCE("101") =1

10-20 Synopsys Packages
std_logic_misc Package

VHDL Constructs

Many VHDL language constructs, although useful for simulation and other
stages in the design process, are not relevant to synthesis. Because these
constructs cannot be synthesized, they are not supported by FPGA Express.

This chapter provides alist of all VHDL language constructs with the level
of support for each, followed by alist of VHDL reserved words.

This chapter describes
* VHDL construct support
* VHDL reserved words

VHDL Construct Support

A construct can be fully supported, ignored, or unsupported. Ignored and
unsupported constructs are defined as follows:

« Ignoredmeans that the construct is allowed in the VHDL source, but is
ignored by FPG/AExpress.

» Unsupportedneans that the construct is not allowed in the VHDL source
and that FPG/Axpress flags the construct as an error. If errors are found in
a VHDL description, the description is not translated (synthesized).

VHDL Constructs 11-1
VHDL Construct Support

11-2

Constructs are listed in the following order:
Design units

Data types

Declarations

Specifications

Names

Operators

Operands and expressions
Sequential statements
Concurrent statements
Predefined language environment

Design Units

entity
The entity statement part is ignored.

Generics are supported, but only of type INTEGER.
Default values for ports are ignored.

architecture
Multiple architectures are allowed.

Global signal interaction between architectures is unsupported.

configuration
Configuration declarations and block configurations are supported, but
only to specify the top-level architecture for a top-level entity.

Attribute specifications, use clauses, component configurations, and
nested block configurations are unsupported.

package
Packages are fully supported.

library
Libraries and separate compilation are supported.

VHDL Constructs
VHDL Construct Support

subprogram
Default values for parameters are unsupported. Assigning to indexes and
dlices of unconstrained out parameters is unsupported, unless the actual
parameter is an identifier.

Subprogram recursion is unsupported if the recursion is not bounded by a
static vaue.

Resolution functions are supported for wired-logic and three-state
functions only.

Subprograms can only be declared in packages and in the declaration part
of an architecture.

Data Types

enumeration
Enumeration is fully supported.

integer
Infinite-precision arithmetic is unsupported.
Integer types are automatically converted to bit vectorswhose widthis as
small as possible to accommodate all possible values of the type’s range,
either in unsigned binary for nonnegative ranges, or in 2's-complement
form for ranges that include negative numbers.

physical
Physical type declarations are ignored. The use of physical types is
ignored in delay specifications.

floating
Floating-point type declarations are ignored. The use of floating-point
types is unsupported except for floating-point constants used with
Synopsys-defined attributes (see Chapter 9, “FIE&#ess Directives”).

array
Array ranges and indexes other than integers are unsupported.

Multidimensional arrays are unsupported, but arrays of arrays are
supported.

record
Record data types are fully supported.

access
Access type declarations are ignored, and the use of access types is
unsupported.

VHDL Constructs 11-3
VHDL Construct Support

114

file
File type declarations are ignored, and the use of file typesis
unsupported.

incomplete type declarations
Incompl ete type declarations are unsupported.

Declarations

constant
Constant declarations are supported, except for deferred constant
declarations.

signal
register and bus declarations are unsupported.

Resolution functions are supported for wired and three-state functions
only.

Declarations other than from a globally static type are unsupported.
Initial values are unsupported.

variable
Declarations other than from a globally static type are unsupported.

Initial values are unsupported.

file
File declarations are unsupported.

interface
buffer and linkage are trand ated to out and inout, respectively.

alias
Alias declarations are ignored.

component
Component declarations that list a name other than avalid entity name
are unsupported.

attribute
Attribute declarations are fully supported. However, the use of
user-defined attributes is unsupported.

VHDL Constructs
VHDL Construct Support

Specifications

attribute
others and all are unsupported in attribute specifications.

User-defined attributes can be specified, but the use of user-defined
attributes is unsupported.

configuration
Configuration specifications are unsupported.

disconnection
Disconnection specifications are unsupported.

Attribute declarations are fully supported. However, the use of
user-defined attributes is unsupported.

Names

simple
Simple names are fully supported.

selected
Sdlected (qualified) names outside of a use clause are unsupported.

Overriding the scopes of identifiers is unsupported.

operator symbols
Operator symbols are fully supported.

indexed
Indexed names are fully supported, with one exception. Indexing an
unconstrained out parameter in a procedure is unsupported.

dice
Slice names are fully supported, with one exception. Using a slice of an
unconstrained out parameter in a procedure is unsupported unless the
actual parameter is an identifier.

VHDL Constructs
VHDL Construct Support

11-5

11-6

attribute
Only the following predefined attributes are supported: base, l€eft, right,
high, low, range, reverse_range, and length.

The event and stable attributes are supported only as described with the
wait and if statements (see Chapter 6, “Sequential Statements”).

User-defined attribute names are unsupported.

The use of attributes with selected hames (name.name’attribute) is
unsupported.

Operators

logical
Logical operators are fully supported.

relational
Relational operators are fully supported.

addition
Concatenation and arithmetic operators are both fully supported.

signing
Signing operators are fully supported.

multiplying
The * (multiply) operator is fully supported.

The / (division), mod, and rem operators are supported only when both
operands are constant or when the right operand is a constant power of 2.

miscellaneous
The ** operator is supported only when both operands are constant or
when the left operand is 2.

The abs operator is fully supported.

operator overloading
Operator overloading is fully supported.

short-circuit operations
The short-circuit behavior of operators is not supported.

VHDL Constructs
VHDL Construct Support

Operands and Expressions

based literals
Based literals are fully supported.

null literals
Null slices, null ranges, and null arrays are unsupported.

physical literals
Physical literals are ignored.

strings
Strings are fully supported.

aggregates
The use of types as aggregate choices is unsupported.

Record aggregates are unsupported.

function calls
Function conversions on input ports are not supported, because type
conversions on formal portsin aconnection specification are
unsupported.

qualified expressions
Qualified expressions are fully supported.

type conversion
Type conversion is fully supported.

allocators
Allocators are unsupported.

static expressions
Static expressions are fully supported.

universal expressions
Foating-point expressions are unsupported, except in a
Synopsys-recognized attribute definition.
Infinite-precision expressions are not supported.

Precision islimited to 32 bits; all intermediate results are converted to
integer.

VHDL Constructs 11-7
VHDL Construct Support

Sequential Statements

wait
Thewait statement is unsupported unlessit is of one the following forms:
wait until clock = VALUE
wait until clock’ event and cl/ock = VALUE
wait until not clock stable and c/ock = VALUE

where VALUE is0, 1 or an enumeration literal whose encoding isO or 1.
A wait statement in this form is interpreted to mean “wait until the falling
(VALUE is 0) or rising (VALUE is 1) edge of the signal named clock.”

wait statements cannot be used in subprograms or in for loops.

assertion
assertion statements are ignored.

signal
Guarded signal assignment is unsupported.

transport and after are ignored.

Multiple waveform elements in signal assignment statements are
unsupported.

variable
variable statements are fully supported.

procedure call
Type conversion on formal parameters is unsupported.

Assignment to single bits of vectored ports is unsupported.

if
if statements are fully supported.

case
case statements are fully supported.

loop
for loops are supported, with two constraints: the loop index range must
be globally static, and the loop body must not contain a wait statement.

while loops are supported, but the loop body must contain at least one
wait statement.

loop statements with no iteration scheme (infinite loops) are supported,
but the loop body must contain at least one wait statement.

next
next statements are fully supported.

11-8 VHDL Constructs
VHDL Construct Support

exit
exit statements are fully supported.

return
return statements are fully supported.

null
null statements are fully supported.

Concurrent Statements

block
Guards on block statements are unsupported.

Ports and generics in block statements are unsupported.

process
Sensitivity lists in process statements are ignored.

concurrent procedure call
Concurrent procedure call statements are fully supported.

concurrent assertion
Concurrent assertion statements are ignored.

concurrent signal assignment
The guarded and transport keywords are ignored. Multiple waveforms
are unsupported.

component instantiation
Type conversion on the formal port of a connection specificationis
unsupported.

generate
generate statements are fully supported.

Predefined Language Environment

severity level type
severity_level typeis unsupported.

time type
time type is unsupported.

VHDL Constructs 11-9
VHDL Construct Support

now function
now function is unsupported.

TEXTIO package
The TEXTIO package is unsupported.

predefined attributes
Predefined attributes are unsupported, except for base, |eft, right, high,
low, range, reverse _range, and length.

The event and stable attributes are supported only in the if and wait
statements, as described in Chapter 6, “Sequential Statements.”

11-10 VHDL Constructs
VHDL Construct Support

VHDL Reserved Words

The following words are reserved for the VHDL language and cannot be
used as identifiers:

abs file out
access for package
after function port
alias generat e procedur e
al | generic process
and guar ded range
architecture if record
array in regi ster
assert i nout rem
attribute is report
begi n | abel return
bl ock library sel ect
body I i nkage severity
buf f er | oop si gha
bus map subt ype
case nod t hen
conmponent nand to
configuration new transport
const ant next type

di sconnect nor units
downt o not unti

el se of vari abl e
el sif on wai t

end open when
entity or whil e
exit ot hers

VHDL Constructs 11-11
VHDL Reserved Words

11-12 VHDL Constructs
VHDL Reserved Words

Symbols

-, 57,59
*, 59,512
+,57,59
/,55,59
=55

A

abs (absolute value operator), 5-12
absolute vaue operator, 5-12
abgtraction, 1-5
access (pointer) types, 4-14
actua parameters (to subprograms), 3-20
adding operators, 5-7
agoregetetarget, 6-7
aggregates (array literds), 5-24
agorithms
processes, 3-7
subprograms, 3-19
and (logica operator), 5-3
architecture
concurrent fatements, 3-6
dataflow, 3-3
declarations, 3-6
hardware moddl, 1-4
organization, 3-5
overriding entity port names, 3-17
sgnds, 3-6
Satement, 3-15
dructurd, 3-3
arithmetic operators, 5-7
adding, 5-7
multiplying, 5-9
negation, 5-9
array dtributes, 4-9
RANGE
example, 6-19
using, 4-9
array literds
asaggregates, 5-24
ashit gtrings, 5-19
array ordering, 5-6
array types, 4-7
array dttributes, 4-9
concatenating, 5-7
congraned, 4-7
defining
condrained, 4-7
unconstrained, 4-8
unconstrained, 4-7
gnment
agoregatetarget, 6-7
field target, 6-6
indexed nametarget, 6-4
sgnd, 6-9
smple nametarget, 6-3
dicetarget, 6-5
vaiable, 6-8

assgnment Satements, 6-2
asynch st reset, 8-15
asynch_set reset, seedso hdlin_ff_aways
asynch_set resst
asynchronous processes, 8-4
example, 8-33
asynchronousresdt, 8-11, 8-16
asynchronous sequential element inferencing, 8-1
Attributes, 8-15
attributes
aray, 4-9
asoperands, 5-26
ENUM_ENCODING, 4-4, 10-14

B

behaviora
congtructs, 1-5
binary arithmetic functions
example, 10-9
binary hit sring, 5-19
bit string literd's, 5-18
BIT type, 4-12
bit vectors
ashit grings, 5-19
bit width (of operands), 5-14
BIT_VECTOR type, 4-12, 10-3
block statement, 7-7
blocks, 3-7
Boolean reduction functions, 10-18
BOOLEAN type, 4-12
buffer (port mode), 3-14
built_in directive
logic functions, 10-15
type conversion, 10-17
using, 10-15
built_in pragma
exampleof using, 10-15

C

carry-out bit
exampleof using, 10-11
case statement, 6-12
illega usages, 6-14
caenation operator, 5-7
character literds, 5-17
CHARACTER type, 4-12
combinational processes, 6-38, 7-3
compiler directives, seedso directives)
component declaration, 7-16
component implication, 6-29, 8-30
example, 6-30
latches and regiters, 6-39
regigers, 8-2
three-state, 8-35
component ingtantiation
statement, 7-15
component ingtantiation statement, 3-32
component ingtantiations, 3-7

components

declarations, 3-30

generics, 3-30
in design hierarchy, 3-29
instantiation, 3-32
search order, 3-31

port map, 3-32
computable operands, 5-14
concurrent procedure call, 7-9

equivaent process, 7-9
concurrent sSignal assgnment, 7-11

conditiona signd assgnment, 7-12

sected Sgnd assignment, 7-13
concurrent statements, 7-1

supported, 11-9
conditional signd assgnment, 7-12

equivaent process, 7-13
conditionally-assgned variable, 8-9
congants

declarations, 3-24
condrained array, 4-7
CONV_INTEGER functions, 10-7
CONV_SIGNED functions, 10-7
CONV_UNSIGNED functions, 10-7
conversion functions, 10-8

std logic_arith package, 10-6

D

datatypes
supported, 11-3
dataflow
architecture, 3-3
congructs, 1-5
declarations, 11-4
declaring congtant
incorrect use of port name, 3-18
declaring signdl
incorrect use of port name example, 3-18
description style
datatypes, 2-2
description yles
asynchronous designs, 2-3
design hierarchy, 2-2
language congtructs, 2-4
register selection, 2-3
dedign, 34
files, 3-4
Design Compiler
component ingtantiation, 3-31
designs (VHDL entities), 3-29
restructuring, 1-6
synthessand optimization, 1-6
designflow, 1-7
design gtyles
design condtraints, 2-3
design units, 11-2
designs
hierarchy, 3-29
directives, 9-2

FPGA Express HDL Reference Manual

built_in, 10-4

using, 10-15
component implication, 6-29
map_to_entity, 6-29, 7-9
resolution_method, 3-27
return_port_name, 6-29
trandae off, 9-3,10-18
trandate_on, 9-3

E

edge expresson, 8-3, 8-6
entity
architectures, 3-15
example, 3-3
asdesignin Design Compiler, 3-29
design hierarchy, 3-1
example, 3-16
generic specifications, 3-14
example, 3-15
hardware modd, 1-4
implementation, 3-1
interface, 3-1
overriding port names, 3-17
port specifications, 3-14
specification
example, 3-2
syntax, 3-13
ENUM_ENCODING atribute, 4-4, 10-14
enumerated types
ordering, 5-5
enumeration literds, 4-2, 5-17
enumeration types, 4-2
encoding, 4-3
values, 4-5
ENUM_ENCODING atribute, 4-4
enumeration literds, 4-2
equality functions
example, 10-13
equdity operators, 5-5
examples
asynchronous process, 8-34
case gatement
enumerated type, 6-13
combinational process, 7-4
component implication, 6-31
flip-flop inference
asynchronous reset, 8-11
synchronous rest, 8-16
for..generate, 7-18
function call, 6-27
if tatement, 6-11
inference
flip-flop, 8-11
latch, 8-7
|atch inference, 8-7
processes, 8-34
sequentid processes, 7-4
smulation driver, 9-3
subprograms

component implication, 6-31
declarations, 6-24
function cdl, 6-27
synchronous process, 8-34
three-gtate component, 8-35
registered input, 8-38
two-phase clocked design, 8-10
wait statement
multiplewaits, 6-36
exit satement, 6-22
exponentiation operator, 5-12
expressons, 5-1
supported, 11-7

F

field target, 6-6
filetypes, 4-15
files, 3-4
finite-state machine
examples
synchronous with asynchronous reset, 8-
13
flip-flop inference, 8-29
asynchronousresd, 8-11
example, 8-11
synchronousresst, 8-16
flip-flops, 8-2
floating point types, 4-14
for..generate statement
example, 7-18
syntax, 7-17
for..loop statement, 6-16, 6-17
and exit satement, 6-22
and next satement, 6-20
formad parameters (to subprograms), 3-20
function cdl, 5-27
functiona description, 1-7
functions, 3-19
body
syntax, 3-21
cdling, 6-27
declarations
example, 3-20
syntax, 3-20
description, 6-25
implementations
mapped to component, 6-31
mapped to gates, 6-33
return statement, 6-28

G

generate Satements

for..generate, 7-17

if..generate, 7-17
generic map (component instantiation), 3-32
generics, 3-14

in components, 3-30

H

hardware description languages (HDL.S)
advantages, 1-2
design methodology, 1-2
hdlin_ff_aways asynch set reset, 8-29
HDL s (see hardware description languages), 1-2
hexadecimd bit string, 5-19
high impedance state, 8-35

identifiers, 5-19
enumeration literals, 5-17
if satement, 6-10
cregting registers, 8-2
if..generate Satement
syntax, 7-20
implying regigers, 8-2
in (port mode), 3-14
indexed nametarget, 6-4
indexed names, 5-20
computability, 5-20
using, 5-20
inout (port mode), 3-14
ingtantiation, 3-29
search order, 3-31
INTEGER type, 4-12
and subtypes, 4-13
integer types
defining, 4-6
encoding, 4-6
bit width, 4-6
range, 4-6

K
keywords, 11-11

L

|atch inference, 8-29
automatic, 8-8
example, 8-7
local variables, 8-9
restrictions, 8-9

latches, 8-2

literals
asoperands, 5-17
bit strings, 5-18
character, 5-17
enumeration, 5-17
numeric, 5-17
dring, 5-18

logic optimization, 1-2

logicd operators, 5-3

loop satement, 6-15

FPGA Express HDL Reference Manual

IN-2

M

map_to_entity directive, 6-29, 7-9
mod (multiplying operator), 5-9
multiplication using shifts, 10-14
multiply-driven sgnds, 7-6
multiplying operators, 5-9

N

named notation, 3-33
names, 11-5
atributes, 5-26
field names, 5-23
indexed names, 5-20
qualified, 5-28
record names, 5-23
dice names, 5-21
nand (logica operator), 5-3
NATURAL subtype, 4-12
next statement, 6-20
in named loops, 6-21
non-computable operands, 5-15
nor (logica operator), 5-3
not (logical operator), 5-3
null range, 5-22
null dice, 5-22
null statement, 6-40
numeric literds, 5-17

O

octal hit string, 5-19
operands, 5-1
agoregetes, 5-24
atributes, 5-26
bit width, 5-14
computable, 5-14
fidd, 523
functioncall, 5-27
identifiers, 5-19
indexed names, 5-20
literd, 5-17
character, 5-17
enumeration, 5-17
numeric, 5-17
sring, 5-18
non-computable, 5-15
qualified expressions, 5-28
record, 5-23
dice names, 5-21
supported, 11-7
type conversions, 5-29
operators, 5-1
absolutevalue, 5-12
adding, 5-7
aithmetic
adding, 5-7
multiplying, 5-9
negation, 5-9

aray
caenation, 5-7
relationd, 5-6
caenation, 5-7
defined, 5-2
equdity, 5-5
exponentiation, 5-12
logicd, 5-3
multiplying, 5-9
restrictionson use, 5-9
ordering, 5-5
and array types, 5-6
and enumerated types, 5-5
overloading, 3-23
syntax, 3-23
precedence, 5-3
predefined, 5-2
reationd, 5-5
sgn, 59
supported, 11-6
unary, 59
or (logica operator), 5-3
ordering functions
example, 10-12
ordering operators, 5-5
others (in aggregates), 5-26
others (in case statement), 6-12
out (port mode), 3-14
overloading
enumeration literds, 4-3, 5-18
operators, 3-23
resolving by qudification, 5-28
subprograms, 3-22

P

packages, 3-10
bodies, 3-11

syntax, 3-12
declarations, 3-11
example, 3-12
syntax, 3-11
description, 3-10
names, 3-11
organization, 3-10
structure, 3-11
Synopsys-supplied, 10-1
using, 3-10
parameters
mode, 3-20
profile, 3-22
performance congtraints, 2-3
physicd types, 4-14
port map (component ingantiation), 3-32
port modes, 3-14
ports
assgnds 3-25
positiona notation, 3-33
POSITIVE subtype, 4-12
pragmeas, see dso directives)

predefined attributes
supported, 11-6
predefined language environment, 11-9
predefined VHDL attributes
aray, 4-9
procedure cdls, 3-7
procedures, 3-19
body
syntax, 3-21
cdling, 6-25
declarations
examples, 3-20
syntax, 3-20
process statement, 7-2
processes, 3-7
asdgorithms, 3-7
asynchronous, 8-4
combinationd, 6-38
example, 7-3
declarations, 3-8
description, 3-7
hardware modd, 1-4
organization, 3-8
sengtivity ligts, 7-2
sequentid, 6-39
example, 7-4
sequentid satementsin, 3-7
synchronous, 8-4
wait satement, 6-34

Q

qualified expressions, 5-28

R

record operands, 5-23
record types, 4-10
register inference, 8-2
edgeexpressiong], 8-3
efficient usages, 8-30
example, 8-34
flip-flop, 8-11
if gatement, 8-2
if vs wait, 8-4
latches, 8-7
restrictions, 8-6
sgnd edge, 8-3
templates, 8-5
wait statement, 8-2
waitvs. if, 84
relationd operators, 5-5
rem (multiplying operator), 5-9
reserved words, 11-11
resolution functions, 3-25
cregting, 3-26
resolution_method three_state (directive), 3-27
resolution_method wired_and (directive), 3-27
resolution_method wired_or (directive), 3-27
resolved sgnds, 3-26

FPGA Express HDL Reference Manual

IN-3

return satement, 6-28
return_port_namedirective, 6-29

S

seected Sgnd assignment, 7-13
equivaent process, 7-15

sengtivity ligts, 7-2

sequentid processes, 6-39, 7-4

sequentid statements, 6-1
supported, 11-8

shift functions
example, 10-13

shift operations
example, 10-14

signd assgnments, 3-7

sgnds
assgnments, 6-3, 6-9
can beports, 3-25
concurrent signal assignment, 7-11
conditiond signd assgnment, 7-12
declarations, 3-25
drivers, 7-6
edge detection, 8-3
hardwaremodd, 1-4
in packeges, 3-11
registering, 8-31
resolved, 3-26
selected Sgna assgnment, 7-13
three-sate, 7-6

SIGNED datatype, 10-5

SIGNED type, 10-3
defined, 10-4

smple nametarget, 6-3

smulation, 1-8
driver example, 9-3
placein the design process, 1-8
test vectors, 1-8

dicenames, 5-21
limitations, 5-22

dicetarget, 6-5

STANDARD package, 4-12

sd logic 1164 Package, 10-1

std logic 1164 package, 10-1

std logic_arith Package, 10-1, 10-2

std logic_arith package, 10-1
,10-9,10-12,10-13
_REDUCE functions, 10-19
arithmetic functions, 10-8
Boolean reduction functions, 10-18
built_in functions, 10-4
comparison functions, 10-11
CONV_INTEGER functions, 10-7
CONV_SIGNED functions, 10-7
CONV_UNSIGNED functions, 10-7
conversion functions, 10-8
datatypes, 10-4
modifying the package, 10-3
ordering functions, 10-11
shift functions, 10-13

SYNOPSY Sdatatypes, 4-15
using the package, 10-3
std _logic_misc Package, 10-18
std logic_misc package, 10-1, 10-18
sring literds, 5-18
bit, 5-18
STRING type, 4-12
Structura
architecture, 3-3
componentsin, 3-32
congtructs, 1-5
example, 3-33
structura description, 1-7
subprograms, 3-9
actud parameters, 3-20
bodies, 3-21
examples, 3-22
cdling, 6-24
examples, 3-21
declarations, 3-20
examples, 3-20
parameters, 3-20
syntax, 3-21
defined, 6-23
defining, 6-23
forma parameters, 3-20
mapping to components, 6-29
example, 6-30
overloading, 3-22
parameters
declarations, 3-20
modes, 3-20
profile, 3-22
procedurevs. function, 6-25
procedures and functions, 3-19
Subtype
defining, 4-15
subtypes
declarations, 3-24
SYN_FEED_THRU
exampleof using, 10-17
synch_set reset, 8-16
synch_set reset, seedso hdlin_ff_aways sync
st reset
synchronous processes, 8-4
example, 8-33
synchronous rest, 8-16
SYNOPSY S datatypes
4d logic_arith package, 4-15
Synopsys packages, 10-1
std_logic_misc package, 10-18
synthetic comments, see dso directives)

T

test vectors

smulation, 1-8
TEXTIO package, 4-11
three-gtate

registered input, 8-38

three-state inference, 8-35
three-state signdls, 7-6
trandate off directive, 9-3, 10-18
trandate_on directive, 9-3
two-phasedesign, 8-10
type conversions, 5-29
types
converting, 5-29
declarations, 3-24

U

unary arithmetic functions
example, 10-10

unary operators, 5-9

uncongtrained array, 4-7

UNSIGNED datatype, 10-5

UNSIGNED type, 10-3
defined, 10-4

unsupported types, 4-14

use statement, 3-10

Vv

variable assgnments, 6-3
variables
assgnments, 6-8
conditionaly-assigned, 8-9
declarations, 3-28
verification, of description implementation, 1-8
VHDL
abdraction, 1-5
access (pointer) types, 4-14
aggregates, 5-24
architecture, 1-4
architectures, 3-5, 7-1
aray types, 4-7
assignment Satements, 6-2
BIT type, 4-13
BIT_VECTOR type, 4-14
block statement, 7-7
BOOLEAN type, 4-12
case datement, 6-12
CHARACTER type, 4-13
component implication, 6-29
component ingtantiation, 7-15
components, 1-4, 3-29
declarations, 3-30
ingtantiation, 3-32
concurrent procedure cal, 7-9
concurrent statements, 7-1
supported, 11-9
congtants, 3-24
congructs, 3-4
datatypes
supported, 11-3
declarations, 11-4
defining designs, 3-13
description style, 2-1
design, 34

FPGA Express HDL Reference Manual

IN-4

files, 3-4
design hierarchy, 2-2, 3-29
design units, 11-2
directives, 9-2
entity, 1-4, 3-1
architecture, 3-1
specification, 3-1
enumeration types, 4-2
exit satement, 6-22
expressions, 5-1
upported, 11-7
filetypes, 4-15
floating point types, 4-14

for..loop statement, 6-16, 6-17

functions, 3-19
generate statement, 7-17
generics, 3-14
hardwaremodd, 1-3
identifiers, 5-19

if gatement, 6-10
INTEGER type, 4-13
integer type, 4-6
keywords, 11-11
literds, 5-17

modding hardware, 1-3
names, 11-5
NATURAL subtype, 4-13

sgnds, 1-4,3-25
STANDARD package, 4-12
STRING type, 4-14
subprograms, 3-9, 6-23
subtype, 4-15
subtypes, 3-24, 4-2
synthesis policy
congructs, 2-4
description style, 2-1
TEXTIO package, 4-11
three-gtate components, 8-35
type conversion, 5-29
types, 3-24, 4-1
unsupported types, 4-14
use packages, 3-10
varidble assgnment, 6-9
variables, 3-28
wait satement, 6-34

VHDL Compiler

attributes
supported, 11-6
Synopsys, 11-6
component implication, 6-29
design hierarchy, 2-2
directives, 9-2
resolution_method, 3-27
enumeration encoding, 4-3

next satement, 6-20 operators
null statement, 6-40 supported, 11-6
operands resolution_method directive, 3-27
upported, 11-7 sengtivity ligts, 7-2
operators, 5-1 sourcedirectives, 9-2
precedence, 5-3 wait statement
predefined, 5-2 limitations, 6-38
upported, 11-6 usages, 6-34
overloading
operators, 3-23
subprograms, 3-22
packages, 3-10 wait statement, 6-34
physicd types, 4-14 creating registers, 8-2
port modes, 3-14 example
POSITIVE subtype, 4-13 multiplewaits, 6-36
predefined attributes
supported, 11-6 X
predefined datatypes, 4-11
predefined language environment, 11-9 xor (logica operator), 5-3
predefined operators, 5-3
procedures, 3-19
process statement, 7-2
processes, 1-4, 3-8
qualified expressions, 5-28
record types, 4-10

regigter inference, 2-3
reserved words, 11-11
resolution functions, 3-25
return statement, 6-28
sengtivity lists, 7-2
sequentid statements
supported, 11-8
sgnd assgnment, 6-9

FPGA Express HDL Reference Manual IN-5

	FPGA Express VHDL Reference Manual
	Using FPGA Express with VHDL
	Hardware Description Languages
	Typical Uses for HDLs
	Advantages of HDLs

	About VHDL
	FPGA Express Design Process
	Using FPGA Express to Compile a VHDL Design
	Design Methodology

	Description Styles
	Design Hierarchy
	Data Types
	Design Constraints
	Register Selection
	Asynchronous Designs
	Language Constructs

	Describing Designs
	VHDL Entities
	VHDL Constructs
	Entities
	Architectures
	Configurations
	Processes
	Subprograms
	Packages
	Using a Package
	Package Structure
	Package Declarations
	Package Bodies

	Defining Designs
	Entity Specifications
	Entity Generic Specifications
	Entity Port Specifications

	Entity Architectures
	Entity Configurations
	Subprograms
	Subprogram Declarations
	Subprogram Bodies
	Subprogram Overloading
	Operator Overloading

	Type Declarations
	Subtype Declarations
	Constant Declarations
	Signal Declarations
	Resolution Functions
	Variable Declarations

	Structural Design
	Using Hardware Components
	Component Declaration
	Sources of Components
	Consistency of Component Ports

	Component Instantiation Statement
	Mapping Generic Values
	Mapping Port Connections

	Technology�Independent Component Instantiation

	Data Types
	Enumeration Types
	Enumeration Overloading
	Enumeration Encoding
	Enumeration Encoding Values

	Integer Types
	Array Types
	Constrained Array
	Unconstrained Array
	Array Attributes

	Record Types
	Predefined VHDL Data Types
	BOOLEAN Data Type
	BIT Data Type
	CHARACTER Data Type
	INTEGER Data Type
	NATURAL Data Type
	POSITIVE Data Type
	STRING Data Type
	BIT_VECTOR Data Type

	Unsupported Data Types
	Physical Types
	Floating Point Types
	Access Types
	File Types

	SYNOPSYS Data Types
	Subtypes

	Expressions
	Operators
	Logical Operators
	Relational Operators
	Adding Operators
	Unary (Sign) Operators
	Multiplying Operators
	Miscellaneous Arithmetic Operators

	Operands
	Operand Bit Width
	Computable Operands
	Literals
	Numeric Literals
	Character Literals
	Enumeration Literals
	String Literals

	Identifiers
	Indexed Names
	Slice Names
	Limitations on Null Slices
	Limitations on Noncomputable Slices

	Records and Fields
	Aggregates
	Attributes
	Function Calls
	Qualified Expressions
	Type Conversions

	Sequential Statements
	Assignment Statements
	Assignment Targets
	Simple Name Targets
	Indexed Name Targets
	Slice Targets
	Field Targets
	Aggregate Targets

	Variable Assignment Statement
	Signal Assignment Statement
	Variable Assignment
	Signal Assignment

	if Statements
	Evaluating condition
	Using the if Statement to Imply Registers and Latc...

	case Statement
	Using Different Expression Types
	Invalid case Statements

	loop Statements
	loop Statement
	while .. loop Statement
	for .. loop Statement

	next Statements
	exit Statements
	Subprograms
	Subprogram Calls
	Procedure Calls
	Function Calls

	return Statements
	Mapping Subprograms to Components (Entities)

	wait Statements
	Inferring Synchronous Logic
	Combinational vs. Sequential Processes

	null Statements

	Concurrent Statements
	process Statements
	Combinational Process Example
	Sequential Process Example
	Driving Signals

	block Statements
	Concurrent Procedure Calls
	Concurrent Signal Assignments
	Conditional Signal Assignment
	Selected Signal Assignment

	Component Instantiations
	generate Statements
	for .. generate Statement
	if . . generate Statement

	Register and Three�State Inference
	Register Inference
	Using Register Inference
	Describing Clocked Signals
	wait versus if Statements
	Recommended Use of Register Inference Capabilities...
	Restrictions on Register Capabilities

	Delays in Registers
	Describing Latches
	Automatic Latch Inferencing
	Restrictions on Latch Inference Capabilities
	Example—Design with Two�Phase Clocks

	Describing Flip�Flops
	Flip�Flop with Asynchronous Reset
	Example—Synchronous Design with Asynchronous Reset...

	Attributes
	async_set_reset
	Latch with Asynchronous Set or Clear Inputs
	sync_set_reset
	Flip�Flop with Synchronous Reset Input
	async_set_reset_local
	sync_set_reset_local
	async_set_reset_local_all
	sync_set_reset_local_all
	one_hot
	one_cold

	FPGA Express Latch and Flip�Flop Inference
	Efficient Use of Registers
	Example—Using Synchronous and Asynchronous Process...

	Three�State Inference
	Assigning the Value Z
	Latched Three�State Variables

	FPGA Express Directives
	Notation for FPGA Express Directives
	FPGA Express Directives
	Translation Stop and Start Directives
	Resolution Function Directives
	Component Implication Directives

	Synopsys Packages
	std_logic_1164 Package
	std_logic_arith Package
	Using the Package
	Modifying the Package
	Data Types
	UNSIGNED
	SIGNED

	Conversion Functions
	Arithmetic Functions
	Comparison Functions
	Shift Functions
	Multiplication Using Shifts

	ENUM_ENCODING Attribute
	pragma built_in
	Two�Argument Logic Functions
	One�Argument Logic Functions
	Type Conversion

	translate_off Directive

	std_logic_misc Package

	VHDL Constructs
	VHDL Construct Support
	Design Units
	Data Types
	Declarations
	Specifications
	Names
	Operators
	Operands and Expressions
	Sequential Statements
	Concurrent Statements
	Predefined Language Environment

	VHDL Reserved Words

	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

