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FPGA Express translates and optimizes a VHDL description to an internal 
gate-level equivalent format. This format is then compiled for a given 
FPGA technology.

To work with VHDL, familiarize yourself with the following concepts:

• Hardware Description Languages

• About VHDL

• About FPGA Express

• Using FPGA Express

• A Model of the Design Process

The United States Department of Defense, as part of its Very-High-Spe
Integrated Circuit (VHSIC) program, developed VHSIC HDL (VHDL) in 
1982. VHDL describes the behavior, function, inputs, and outputs of a 
digital circuit design. VHDL is similar in style and syntax to modern 
programming languages, but includes many hardware-specific constru

FPGA Express reads and parses the supported VHDL syntax. Chapter 1
“HDL Constructs,” lists all VHDL constructs and includes the level of 
Synopsys support provided for each construct.
Using FPGA Express with VHDL 1–1
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Hardware Description Languages

Hardware description languages (HDLs) are used to describe the 
architecture and behavior of discrete electronic systems. 

HDLs were developed to deal with increasingly complex designs. An 
analogy is often made to the development of software description 
languages, from machine code (transistors and solder), to assembly 
language (netlists), to high-level languages (HDLs).

Top-down, HDL-based system design is most useful in large projects, 
where several designers or teams of designers are working concurrently. 
HDLs provide structured development. After major architectural decisions 
have been made, and major components and their connections have been 
identified, work can proceed independently on subprojects.

Typical Uses for HDLs

HDLs typically support a mixed-level description, where structural or 
netlist constructs can be mixed with behavioral or algorithmic descriptions. 
With this mixed-level capability, you can describe system architectures at a 
high level of abstraction; then incrementally refine a design into a particular 
component-level or gate-level implementation. Alternatively, you can read 
an HDL design description into FPGA Express, then direct the compiler to 
synthesize a gate-level implementation automatically.

Advantages of HDLs

A design methodology that uses HDLs has several fundamental advantages 
over a traditional gate-level design methodology. Among the advantages 
are the following:

• You can verify design functionality early in the design process and 
immediately simulate a design written as an HDL description. Design 
simulation at this higher level, before implementation at the gate level, 
allows you to test architectural and design decisions.

• FPGA Express provides logic synthesis and optimization, so you can 
automatically convert a VHDL description to a gate-level implementatio
in a given technology. This methodology eliminates the former gate-lev
design bottleneck and reduces circuit design time and errors introduce
when hand-translating a VHDL specification to gates. With FPGA Express 
logic optimization, you can automatically transform a synthesized design
Using FPGA Express with VHDL
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a smaller and faster circuit. You can apply information gained from the 
synthesized and optimized circuits back to the VHDL description, perhaps 
to fine-tune architectural decisions.

• HDL descriptions provide technology-independent documentation of a 
design and its functionality. An HDL description is more easily read and
understood than a netlist or schematic description. Because the initial H
design description is technology-independent, you can later reuse it to
generate the design in a different technology, without having to transla
from the original technology.

• VHDL, like most high-level software languages, provides strong type 
checking. A component that expects a four-bit-wide signal type cannot b
connected to a three- or five-bit-wide signal; this mismatch causes an e
when the HDL description is compiled. If a variable’s range is defined a
to 15, an error results from assigning it a value of 0. Incorrect use of ty
has been shown to be a major source of errors in descriptions. Type 
checking catches this kind of error in the HDL description even before 
design is generated.

About VHDL

VHDL is one of a few HDLs in widespread use today. VHDL is recogniz
as a standard HDL by the Institute of Electrical and Electronics Engine
(IEEE Standard 1076, ratified in 1987) and by the United States 
Department of Defense (MIL-STD-454L). 

VHDL divides entities (components, circuits, or systems) into an externa
or visible part (entity name and connections) and an internal or hidden 
(entity algorithm and implementation). After you define the external 
interface to an entity, other entities can use that entity when they all are
being developed. This concept of internal and external views is central
VHDL view of system design. An entity is defined, relative to other 
entities, by its connections and behavior. You can explore alternate 
implementations (architectures) of an entity without changing the rest of 
the design.

After you define an entity for one design, you can reuse it in other desi
as needed. You can develop libraries of entities for use by many desig
for a family of designs.

The VHDL hardware model is shown in Figure 1-1.
Using FPGA Express with VHDL 1–3
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Figure 1-1 VHDL Hardware Model 

A VHDL entity (design) has one or more input, output, or inout ports that 
are connected (wired) to neighboring systems. An entity is composed of 
interconnected entities, processes, and components, all which operate 
concurrently. Each entity is defined by a particular architecture, which is 
composed of VHDL constructs such as arithmetic, signal assignment, or 
component instantiation statements. 

In VHDL, independent processes model sequential (clocked) circuits, using 
flip-flops and latches, and combinational (unclocked) circuits, using only 
logic gates. Processes can define and call (instantiate) subprograms 
(subdesigns). Processes communicate with each other by signals (wires). 

A signal has a source (driver), one or more destinations (receivers), and a 
user-defined type, such as “color” or “number between 0 and 15.”

VHDL provides a broad set of constructs. With VHDL, you can describ
discrete electronic systems of varying complexity (systems, boards, ch
or modules) with varying levels of abstraction.
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VHDL language constructs are divided into three categories by their level 
of abstraction: behavioral, dataflow, and structural. These categories are 
described as follows:

behavioral
The functional or algorithmic aspects of a design, expressed in a 
sequential VHDL process.

dataflow
The view of data as flowing through a design, from input to output. An 
operation is defined in terms of a collection of data transformations, 
expressed as concurrent statements.

structural
The view closest to hardware; a model where the components of a design 
are interconnected. This view is expressed by component instantiations.

FPGA Express Design Process

FPGA Express performs three functions: 

• Translates VHDL to an internal format

• Optimizes the block-level representation through various optimization 
methods

• Maps the design’s logical structure for a specific FPGA technology libra

FPGA Express synthesizes VHDL descriptions according to the VHDL 
synthesis policy defined in Chapter 2, “Description Styles.” The Synopsy
VHDL synthesis policy has three parts: design methodology, design sty
and language constructs. You use the VHDL synthesis policy to produ
high quality VHDL-based designs. 
Using FPGA Express with VHDL 1–5
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Using FPGA Express to Compile a VHDL Design

When a VHDL design is read into FPGA Express, it is converted to an 
internal database format so FPGA Express can synthesize and optimize the 
design. When FPGA Express optimizes a design, it can restructure part or 
all the design. You control the degree of restructuring. Options include:

• Fully preserving a design’s hierarchy

• Allowing full modules to be moved up or down in the hierarchy

• Allowing certain modules to be combined with others

• Compressing the entire design into one module (called flattening the 
design) if it is beneficial

The following section describes the design process that uses FPGA Express 
with a VHDL simulator.
Using FPGA Express with VHDL
Using FPGA Express to Compile a VHDL Design
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Design Methodology

Figure 1-2 shows a typical design process that uses FPGA Express and a 
VHDL simulator. 

Figure 1-2 Design Flow

These are the steps in Figure 1-2.

1. Write a design description in VHDL. This description can be a combination 
of structural and functional elements (as shown in Chapter 2, “Descript
Styles“). This description is used with both FPGA Express and the 
Synopsys VHDL simulator.

2. Provide VHDL test drivers for the simulator. For information on writing 
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these drivers, see the appropriate simulator manual. The drivers supply test 
vectors for simulation and gather output data.

3. Simulate the design by using a VHDL simulator. Verify that the description 
is correct.

4. Use FPGA Express to synthesize and optimize the VHDL design 
description into a gate-level netlist. FPGA Express generates optimized 
netlists to satisfy timing constraints for a targeted FPGA architecture.

5. Use your FPGA development system to link the FPGA technology-specific 
version of the design to the VHDL simulator. The development system 
includes simulation models and interfaces required for the design flow.

6. Simulate the technology-specific version of the design with the VHDL 
simulator. You can use the original VHDL simulation drivers from Step 2 
because module and port definitions are preserved through the translation 
and optimization processes.

7. Compare the output of the gate-level simulation (Step 6) against the output 
of the original VHDL description simulation (Step 3) to verify that the 
implementation is correct.
Using FPGA Express with VHDL
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Description Styles
The style of your initial VHDL description has a major effect on the 
characteristics of the resulting gate-level design synthesized by FPGA 
Express. The organization and style of a VHDL description determines the 
basic architecture of your design. Because FPGA Express automates most 
of the logic-level decisions required in your design, you can concentrate on 
architectural tradeoffs.

You can make some of the high-level architectural decisions that are needed 
by using FPGA Express. Certain VHDL constructs are well suited for 
synthesis. To make the decisions and use the constructs, you need to 
become familiar with the following concepts:

• Design Hierarchy

• Data Types

• Design Constraints

• Register Selection

• Asynchronous Designs

• Language Constructs
Description Styles 2–1
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Design Hierarchy

FPGA Express maintains the hierarchical boundaries you define when 
using the structural view in VHDL. These boundaries have two major 
effects: 

1. Each design entity specified in your VHDL description is synthesized 
separately and is maintained as a distinct design. The constraints for the 
design are maintained, and each design entity can be optimized separately 
in FPGA Express. 

2. Component instantiations within VHDL descriptions are maintained during 
input. The instance name you give each user-defined entity is carried 
through to the gate-level implementation. 

Chapter 3, “Describing Designs,” discusses design entities, and Chapt
“Concurrent Statements,” discusses component instantiations.

Note: FPGA Express does not automatically maintain or create a 
hierarchy of other nonstructural VHDL constructs such, as blocks, 
processes, loops, functions, and procedures. These elements of a VHDL 
description are translated in the context of their design. After reading in 
a VHDL design, you can group together the logic of a process, function, 
or procedure within the FPGA Express Implementation window.

The choice of hierarchical boundaries has a significant effect on the qu
of the synthesized design. Using FPGA Express, you can optimize a design
while preserving these hierarchical boundaries. However, FPGA Express 
only partially optimizes logic across hierarchical modules. Full 
optimization is possible across those parts of the design hierarchy that
collapsed in FPGA Express.

Data Types

In VHDL, you must assign a data type to all ports, signals, and variable
The data type of an object defines the operations that can be applied to
For example, the AND operator is defined for objects of type BIT, but n
for objects of type INTEGER. 

Data types are also important when your design is synthesized. The da
type of an object determines its size (bit width) and its bit organization. T
proper choice of data types greatly improves design quality and helps 
minimize errors.

See Chapter 4, “Data Types,” for a discussion of VHDL data types.
Description Styles
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Design Constraints

You can describe the performance constraints for a design module within 
the FPGA Express Implementation window. Refer to the FPGA Express 
online help for further information.

Register Selection

The placement of registers and the clocking scheme are important 
architectural decisions. There are two ways to define registers in your 
VHDL description. Each method has specific advantages:

• You can directly instantiate registers into a VHDL description, selecting
from any element in your FPGA library. Clocking schemes can be 
arbitrarily complex. You can choose between a flip-flop and a latch-bas
architecture. The major disadvantages of this approach are

• The VHDL description is now specific to a given technology because y
choose structural elements from that technology library. However, you 
isolate this portion of your design as a separate entity, which you then 
connect to the remainder of the design.

• The description is more difficult to write. 

• You can use the VHDL if and wait statements to direct FPGA Express to 
infer latches and flip-flops from the description. The advantages of this
approach directly counter the disadvantages of the previous approach.
When using register inference, the VHDL description is 
technology-independent and is much easier to write. This method allow
FPGA Express to select the type of component inferred, on the basis of 
constraints. Therefore, if a specific component is necessary, instantiati
should be used. Some types of registers and latches cannot be inferred

See Chapter 8, “Register and Three-State Inference,” for a discussion 
register and latch inference.

Asynchronous Designs

You can use FPGA Express to construct asynchronous designs with 
multiple clocks and gated clocks. However, although these designs are
logically (statically) correct, they might not simulate or operate correctly
because of race conditions. 
Description Styles 2–3
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Language Constructs

Another component of the VHDL synthesis policy is the set of VHDL 
constructs that describe your design, determine its architecture, and give 
consistently good results. The remainder of this manual discusses these 
constructs and their uses. 

The concepts mentioned earlier in this chapter are described in the manual 
as follows:

Design Hierarchy
Chapter 3, “Describing Designs,” describes the use and importance o
hierarchy in VHDL designs. Chapter 7, “Concurrent Statements,” 
explains how to instantiate (apply) existing components.

Data Types
Chapter 4, “Data Types,” describes data types and their uses.

Register Selection
You can instantiate registers with the component instantiation statem
discussed in Chapter 3, “Describing Designs,” and Chapter 7, 
“Concurrent Statements.” Chapter 6, “Sequential Statements,” and 
Chapter 8, “Register and Three-State Inference,” describe register 
inference with the VHDL if and wait statements.
Description Styles
Language Constructs
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To describe a design in VHDL, you need to be familiar with the following 
concepts:

• VHDL entities

• VHDL constructs

• Defining designs

• Structural designs

VHDL Entities

Designs that are described with VHDL are composed of entities. An entity 
represents one level of the design hierarchy and can consist of a comp
design, an existing hardware component, or a VHDL-defined object.

Each design has two parts: the entity specification and the architecture
specification of an entity is its external interface. The architecture of an
entity is its internal implementation. A design has only one entity 
specification (interface), but it can have multiple architectures 
(implementations). When an entity is compiled into a hardware design,
configuration specifies the architecture to use. An entity’s specification 
architecture can be contained in separate VHDL source files or in one 
VHDL source file. 
Describing Designs 3–1
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Example 3-1 shows the entity specification of a simple logic gate (a 2-input 
NAND gate).

Example 3-1 VHDL Entity Specification

entity NAND2 is 
  port(A, B: in BIT;    -- Two inputs, A and B
       Z: out BIT);     -- One output, Z = (A and B)’
end NAND2;

Note: In a VHDL description, a comment is prefixed by two hyphens (--). 
All characters from the hyphens to the end of the line are ignored by 
FPGA Express. The only exceptions to this rule are comments that begin 
with -- pragma or -- synopsys; these comments are FPGA Express 
directives.

After an entity statement declares an entity specification, that entity can be 
used by other entities in a design. The internal architecture of an entity 
determines its function.

Example 3-2, Example 3-3, and Example 3-4 show three different 
architectures for the entity NAND2. The three examples define equivalent 
implementations of NAND2. After optimization and synthesis, each 
implementation produces the same circuit, probably a 2-input NAND gate 
in the target technology. The architecture description style you use for this 
entity depends on your own preferences.

Example 3-2 shows how the entity NAND2 can be implemented with two 
components from a technology library. The entity inputs A and B are 
connected to AND gate U0, producing an intermediate signal I. Signal I is 
then connected to inverter U1, producing the entity output Z.
Describing Designs
VHDL Entities



Example 3-2 Structural Architecture for Entity NAND2

architecture STRUCTURAL of NAND2 is
  signal I:  BIT;

  component AND_2           -- From a technology 
library
      port(I1, I2: in BIT;
           O1: out BIT);
  end component;

  component INVERT          -- From a technology 
library
      port(I1: in BIT;
           O1: out BIT);
  end component;

begin
  U0: AND_2  port map (I1 => A, I2 => B, O1 => I);
  U1: INVERT port map (I1 => I, O1 => Z);
end STRUCTURAL;

Example 3-3 shows how you can define the entity NAND2 by its logical 
function.

Example 3-3 Dataflow Architecture for Entity NAND2 

architecture DATAFLOW of NAND2 is
begin
  Z <= A nand B;
end DATAFLOW;

Example 3-4 shows another implementation of NAND2.

Example 3-4 RTL Architecture for Entity NAND2 

architecture RTL of NAND2 is
begin
  process(A, B)
  begin
    if (A = ’1’) and (B = ’1’) then
      Z <= ’0’;
    else 
      Z <= ’1’;
    end if;
  end process;
end RTL;
Describing Designs 3–3
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VHDL Constructs

The top-level VHDL constructs work together to describe a design. The 
description consists of

Entities
The interfaces to other designs.

Architectures
The implementations of design entities. Architectures can specify 
connection through instantiation to other entities.

Configurations
The bindings of entities to architectures. 

Processes
Collections of sequentially executed statements. Processes are declared 
within architectures.

Subprograms
Algorithms that can be used by more than one architecture.

Packages
Collections of declarations used by one or more designs.

Entities

A VHDL design consists of one or more entities. Entities have defined 
inputs and outputs, and perform a defined function. Each design has two 
parts: an entity specification and an architecture. The entity specification 
defines the design’s inputs and outputs, and the architecture determine
function.

You can describe a VHDL design in one or more files. Each file contain
entities, architectures, or packages. Packages define global information
can be used by several entities. You can often reuse VHDL design file
later design projects.

Figure 3-1 shows a block diagram of a VHDL design’s hierarchical 
organization into files.
Describing Designs
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Figure 3-1 Design Organization

Architectures

An architecture determines the function of an entity. Figure 3-2 shows the 
organization of an architecture. Not all architectures contain every 
construct shown.

VHDL Design

VHDL Files

Entities

Declare the interfaces to other 
entities and designs.

Define the implementations of 
entities.

Architectures

Packages

Declare constants, data types, components, and subprograms 
used by several designs or entities or both.
Describing Designs 3–5
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Figure 3-2 Architecture Organization

An architecture consists of a declaration section where you declare signals, 
types, constants, components, and subprograms, followed by a collection of 
concurrent statements.

Signals connect the separate pieces of an architecture (the concurrent 
statements) to each other, and to the outside world, through interface ports. 
You declare each signal with a type that determines the kind of data it 
carries. Types, constants, components, and subprograms declared in an 
architecture are local to that architecture. To use these declarations in more 
than one entity or architecture, place them in a package, as described under 
“Packages” later in this chapter.

Each concurrent statement in an architecture defines a unit of computa
that reads signals, performs a computation that is based on the signal 
values, and assigns computed values to signals. Concurrent statemen
compute all values simultaneously. Although the order of concurrent 
statements has no effect on execution order, the statements often coord
their processing by communicating with each other through signals.

Architecture

Declarations
Declare signals used to communicate between concurrent statements, 
and between concurrent statements and the interface ports. Declare

Concurrent Statements

Processes

Define a new algorithm.

Blocks

Signal Assignments

Procedure Calls

Component Instantiations
Collect concurrent statements

Compute values and assign them to

together.

signals.

Invoke a predefined algorithm.

Create an instance of
another entity.

types, constants, components, and subprograms used in the architecture.
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The five kinds of concurrent statements are blocks, signal assignments, 
procedure calls, component instantiations, and processes. They are 
described as follows:

blocks
Group together a set of concurrent statements.

signal assignments
Assign computed values to signals or interface ports.

procedure calls
Call algorithms that compute and assign values to signals.

component instantiations
Create an instance of an entity, connecting its interface ports to signals or 
interface ports of the entity being defined. See “Structural Design” la
in this chapter.

processes
Define sequential algorithms that read the values of signals, and com
new values to assign to other signals. Processes are discussed in th
section.

Concurrent statements are described in Chapter 7, “Concurrent 
Statements.”

Configurations

A configuration specifies one combination of an entity and its associate
architecture.

Note: FPGA Express supports only configurations that associate one 
top-level entity with an architecture. 

Processes

Processes contain sequential statements that define algorithms. Unlike 
concurrent statements, sequential statements are executed in order. T
order allows you to perform step-by-step computations. Processes read
write signals and interface port values to communicate with the rest of 
architecture and with the enclosing system.
Describing Designs 3–7
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Figure 3-3 shows the organization of constructs in a process. Processes 
need not use all the constructs listed.

Processes are unique in that they behave like concurrent statements to the 
rest of the design, but they are internally sequential. In addition, only 
processes can define variables to hold intermediate values in a sequence of 
computations.

Because the statements in a process are sequentially executed, several 
constructs are provided to control the order of execution, such as if and 
loop statements.

Chapter 6, “Sequential Statements,” describes sequential statements.
Describing Designs
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Figure 3-3 Process Organization

Subprograms

Subprograms, like processes, use sequential statements to define algorithms 
that compute values. Unlike processes, however, they cannot directly read 
or write signals from the rest of the architecture. All communication is 
through the subprogram’s interface; each subprogram call has its own s
interface signals.

The two types of subprograms are functions and procedures. A function 
returns a single value directly. A procedure returns zero or more values
through its interface. Subprograms are useful because you can use the
perform repeated calculations, often in different parts of an architecture

Chapter 6, “Sequential Statements,” describes subprograms.

Process

Declarations
Internal variables that hold temporary values in the sequence
of computations, as well as types, constants, components, and 
subprograms used locally.

Sequential Statements

loop Statements
Execute statements repeatedly.

Signal Assignments
Compute values and assign them
to signals.

Procedure Calls
Invoke predefined algorithms.

Variable Assignments
Store intermediate values 

if Statements
Conditionally execute groups of
sequential statements.

case Statements
Select a group of sequential
statements to execute.

null Statements
Perform no action; these are
placeholders.

wait Statements

Wait for a clock signal.

next Statements
Skip remainder of a loop.

exit Statements
Terminate the execution 
of a loop.in variables.
Describing Designs 3–9
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Packages

You can collect constants, data types, component declarations, and 
subprograms into a VHDL package that can then be used by more than one 
design or entity. Figure 3-4 shows the typical organization of a package. 

Figure 3-4 Typical Package Organization 

A package must contain at least one of the constructs listed in Figure 3-4.

• Constants in packages often declare system-wide parameters, such as
data-path widths.

• VHDL data type declarations are often included in a package to define 
types used throughout a design. All entities in a design must use comm
interface types; for example, common address bus types.

• Component declarations specify the interfaces to entities that can be 
instantiated in the design.

• Subprograms define algorithms that can be called anywhere in a desig

Packages are often sufficiently general so that you can use them in ma
different designs. For example, the std_logic_1164 package defines da
types std_logic and std_logic_vector. 

Using a Package
The use statement allows an entity to use the declarations in a package
supported syntax of the use statement is

use LIBRARY_NAME.PACKAGE_NAME.ALL;

Package

Constant Declarations

Define constant values used 

Component Declarations

Declare interfaces for design

Subprograms

Declare algorithms used by

Type Declarations

Declare the data types used 
by designs. by designs.

entities. designs.
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LIBRARY_NAME is the name of a VHDL library, and 
PACKAGE_NAME is the name of the included package. A use statement is 
usually the first statement in a package or entity specification source file. 
Synopsys does not support different packages with the same name when 
they exist in different libraries. No two packages can have the same name.

Package Structure
Packages have two parts, the declaration and the body:

package declaration 
Holds public information, including constant, type, and
subprogram declarations.

package body 
Holds private information, including local types and subprogram 
implementations (bodies).

Note: When a package declaration contains subprogram declarations, a 
corresponding package body must define the subprogram bodies.

Package Declarations
Package declarations collect information needed by one or more entities in 
a design. This information includes data type declarations, signal 
declarations, subprogram declarations, and component declarations.

Note: Signals declared in packages cannot be shared across entities. If 
two entities both use a signal from a given package, each entity has its 
own copy of that signal.

Although you can declare all this information explicitly in each design 
entity or architecture in a system, it is often easier to declare system 
information in a separate package. Each design entity in the system can 
then use the system’s package.

The syntax of a package declaration is

package package_name is
  { package_declarative_item }
end [ package_name ] ;

where package_name is the name of this package.

A package_declarative_item is any of these:

• use clause (to include other packages)

• Type declaration

• Subtype declaration
Describing Designs 3–11
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• Constant declaration

• Signal declaration

• Subprogram declaration

• Component declaration

Example 3-5 shows some package declarations. 

Example 3-5 Sample Package Declarations

package EXAMPLE is

  type BYTE is range 0 to 255;
  subtype NIBBLE is BYTE range 0 to 15;

  constant BYTE_FF: BYTE := 255;

  signal ADDEND: NIBBLE;

  component BYTE_ADDER
    port(A, B:      in BYTE;
         C:        out BYTE;
         OVERFLOW: out BOOLEAN);
  end component;

  function MY_FUNCTION (A: in BYTE) return BYTE;

end EXAMPLE;

To use the example declarations above, add a use statement at the beg
of your design description as follows:

use WORK.EXAMPLE.ALL;

entity . . .

architecture . . .

Package Bodies
Package bodies contain the implementations of subprograms listed in 
package declaration. However, this information is never seen by design
entities that use the package. Package bodies can include the 
implementations (bodies) of subprograms declared in the package 
declaration and in internal support subprograms.

The syntax of a package body is

package body package_name is
  { package_body_declarative_item }
end [ package_name ] ;
Describing Designs
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where package_name is the name of the associated package.

A package_body_declarative_item is any of these:

• use clause

• Subprogram declaration

• Subprogram body

• Type declaration

• Subtype declaration

• Constant declaration

For an example of a package declaration and body, see the std_logic_
package supplied with FPGA Express. 

Defining Designs

The high-level constructs discussed earlier in this chapter involve 

• Entity specifications (interfaces)

• Entity architectures (implementations)

• Subprograms

Entity Specifications

An entity specification defines the characteristics of an entity that must b
known before that entity can be connected to other entities and 
components.

For example, before you can connect a counter to other entities, you m
specify the number and types of its inputs and outputs. The entity 
specification defines the ports (inputs and outputs) of an entity. 

The syntax of an entity specification is

entity entity_name is
  [ generic( generic_declarations) ; ]
  [ port( port_declarations) ; ]
end [ entity_name ] ;

entity_name is the name of the entity, generic_declarations determine 
constants used for sizing or timing the entity, and port_declarations 
determine the number and type of inputs and outputs. Other declaratio
are not supported in the entity specification.
Describing Designs 3–13
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Entity Generic Specifications
Generic specifications are entity parameters. Generics can specify the bit 
widths of components (such as adders) or provide internal timing values.

A generic can have a default value. A generic is assigned a nondefault value 
only when the entity is instantiated (see “Component Instantiation 
Statement” later in this chapter) or configured (see “Entity Configuration
later in this chapter). Inside an entity, a generic is a constant value. 

The syntax of generic_declarations is

generic(
[ constant_name : type [ := value ] 
 { ; constant_name : type [ := value ] } 
);

constant_name is the name of a generic constant, type is a previously 
defined data type, and the optional value is the default value of 
constant_name.

Note: FPGA Express supports only INTEGER type generics.

Entity Port Specifications
The syntax of port_declarations is

port(
[ port_name :  mode port_type
 { ; port_name :  mode port_type}]
);

port_name is the name of a port; mode is either in, out, inout, or buffer;
port_type is a previously defined data type.

The four port modes are

in
Can only be read.

out
Can only be assigned a value.

inout
Can be read and assigned a value. The value read is that of the port
incoming value, not the assigned value (if any).

buffer
Similar to out, but can be read. The value read is the assigned value
can have only one driver. For more information on drivers, see “Drivi
Signals” in Chapter 7, “Concurrent Statements.”
Describing Designs
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Example 3-6 shows an entity specification for a 2-input N-bit comparator, 
with a default bit width of 8.

Example 3-6 Interface for an N-Bit Counter

-- Define an entity (design) called COMP
-- that has 2 N-bit inputs and one output.

entity COMP is
  generic(N:  INTEGER := 8);      -- default is 8 bits

  port(X, Y:  in  BIT_VECTOR(0 to N-1);
       EQUAL: out BOOLEAN);
end COMP;

Entity Architectures

Each entity architecture defines one implementation of the entity’s 
function. An architecture can range in abstraction from an algorithm (a
of sequential statements within a process) to a structural netlist (a set o
component instantiations).

The syntax of an architecture is

architecture architecture_name of entity_name is
  { block_declarative_item }
begin
  { concurrent_statement }
end [ architecture_name ] ;

architecture_name is the name of the architecture, and entity_name is
name of the entity being implemented.

A block_declarative_item is any of these:

• use clause

• Subprogram declaration

• Subprogram body

• Type declaration

• Subtype declaration

• Constant declaration

• Signal declaration

• Component declaration
Describing Designs 3–15
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Concurrent statements are described in Chapter 7, “Concurrent 
Statements.”

Example 3-7 shows a complete circuit description for a three-bit counte
entity specification (COUNTER3), and an architecture (MY_ARCH). Th
example also includes a schematic of the resulting synthesized circuit.

Example 3-7 An Implementation of a Three-Bit Counter

entity COUNTER3 is
port ( CLK :  in bit;
       RESET: in bit;
       COUNT: out integer range 0 to 7);
end COUNTER3;

architecture MY_ARCH of COUNTER3 is
signal COUNT_tmp : integer range 0 to 7;
begin
  process
  begin
     wait until (CLK’event and CLK = ’1’);
                     -- wait for the clock
     if RESET = ’1’ or COUNT_tmp = 7 then
                     -- Ck. for RESET or max. count
          COUNT_tmp <= 0;
     else COUNT_tmp <= COUNT_tmp + 1;
                     -- Keep counting
     end if;

  end process;
  COUNT <= COUNT_tmp;
end MY_ARCH;
Describing Designs
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Figure 3-5 Three-Bit Counter Schematic

Note: In an architecture, you must not declare constants or signals with 
the same name as any of the entity’s ports. If you declare a constant o
signal with a port’s name, the new declaration hides that port name. If 
the new declaration is included in the architecture declaration (as show
in Example 3-8) and not in an inner block, FPGA Express reports an 
error.
Describing Designs 3–17
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Example 3-8 Incorrect Use of a Port Name when Declaring Signals or Constants

entity X is 
  port(SIG, CONST: in  BIT;
       OUT1, OUT2: out BIT);
end X;

architecture EXAMPLE of X is
  signal   SIG  : BIT;
  constant CONST: BIT := ’1’;
begin

...
 
end EXAMPLE;

The error messages generated for Example 3-8 are:
  signal   SIG  : BIT;
           ^
Error:  (VHDL-1872) line 13
    Illegal redeclaration of SIG.

  constant CONST: BIT := ’1’;
           ^
Error:  (VHDL-1872) line 14
    Illegal redeclaration of CONST.

Entity Configurations

A configuration defines one combination of an entity and architecture for a 
design.

Note: FPGA Express supports only configurations that associate one 
top-level entity with an architecture. 

The supported syntax for a configuration is

configuration configuration_name of entity_name is
  for architecture_name
  end for;
end [ configuration_name ] ;

configuration_name is the name of this configuration, entity_name is the 
name of a top-level entity, and architecture_name is the name of the 
architecture to use for entity_name.

Example 3-9 shows a configuration for the three-bit counter in Example 
3-7. This configuration associates the counter’s entity specification 
(COUNTER3) with an architecture (MY_ARCH). 
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Example 3-9 Configuration of Counter in Example 3-7

configuration MY_CONFIG of COUNTER3 is
  for MY_ARCH
  end for;
end MY_CONFIG;

Note: If you do not specify a configuration for an entity with multiple 
architectures, IEEE VHDL specifies that the last architecture read is 
used. This is determined from the .mra (most recently analyzed) file.

Subprograms

Subprograms describe algorithms that are meant to be used more than once 
in a design. Unlike component instantiation statements, when a subprogram 
is used by an entity or another subprogram, a new level of design hierarchy 
is not automatically created. However, you can manually define a 
subprogram as a new level of design hierarchy in the FPGA Express 
Implementation window.

Two types of subprograms, procedures and functions, can contain zero or 
more parameters:

procedures
Procedures have no return value, but can return information to their 
callers by changing the values of their parameters.

functions
A function has a single value that it returns to the caller, but it cannot 
change the value of its parameters.

Like an entity, a subprogram has two parts—its declaration and its body:

declaration
Declares the interface to a subprogram: its name, its parameters, and its 
return value (if any).

body
Defines an algorithm that gives the subprogram’s expected results.

When you declare a subprogram in a package, the subprogram declar
must be in the package declaration, and the subprogram body must be
the package body. A subprogram defined inside an architecture has a b
but does not have a corresponding subprogram declaration.
Describing Designs 3–19
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Subprogram Declarations
A subprogram declaration lists the names and types of its parameters and 
for functions, the type of its return value.

The syntax of a procedure declaration is

procedure proc_name [ ( parameter_declarations ) ] ;

proc_name is the name of the procedure.

The syntax of a function declaration is

function func_name [ ( parameter_declarations ) ]
    return type_name ;

func_name is the name of the function, and type_name is the type of the 
function’s returned value. 

The syntax of parameter_declarations is the same as the syntax of 
port_declarations:

[ parameter_name    :  mode  parameter_type
 { ; parameter_name :  mode  parameter_type}]

parameter_name is the name of a parameter; mode is either in, out, ino
buffer; and parameter_type is a previously defined data type. 

Procedure parameters can use any mode. Function parameters must u
only mode in. Signal parameters of type range cannot be passed to a 
subprogram. 

Example 3-10 shows sample subprogram declarations for a function a
procedure.

Example 3-10 Two Subprogram Declarations

type BYTE   is array (7 downto 0) of BIT;
type NIBBLE is array (3 downto 0) of BIT;

function IS_EVEN(NUM: in INTEGER) return BOOLEAN;
  -- Returns TRUE if NUM is even. 

procedure BYTE_TO_NIBBLES(B:             in BYTE;
                          UPPER, LOWER: out NIBBLE);
  -- Splits a BYTE into UPPER and LOWER halves.

Note: When you call a subprogram, actual parameters are substituted for 
the declared formal parameters. Actual parameters are either constant 
values or signal, variable, constant, or port names. An actual parameter 
Describing Designs
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must support the formal parameter’s type and mode. For example, an 
input port cannot be used as an out actual parameter, and a constant c
be used only as an in actual parameter.

Example 3-11 shows some calls to the subprogram declarations from 
Example 3-10.

Example 3-11 Two Subprogram Calls

signal INT : INTEGER;
variable EVEN : BOOLEAN;
. . .
INT <= 7;
EVEN := IS_EVEN(INT);
. . .

variable TOP, BOT: NIBBLE;
. . .
BYTE_TO_NIBBLES("00101101", TOP, BOT);

Subprogram Bodies
A subprogram body defines an implementation of a subprogram’s 
algorithm.

The syntax of a procedure body is

procedure procedure_name [ (parameter_declarations) 
] is
  { subprogram_declarative_item }
begin
  { sequential_statement }
end [ procedure_name ] ;

The syntax of a function body is

function function_name [  (parameter_declarations) ]
    return type_name is
  { subprogram_declarative_item }
begin
  { sequential_statement }
end [ function_name ] ;

A subprogram_declarative_item is any of these:

• use clause

• Type declaration

• Subtype declaration

• Constant declaration

• Variable declaration
Describing Designs 3–21
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• Attribute declaration

• Attribute specification

• Subprogram declaration (for local, or nested, subprograms)

• Subprogram body

Example 3-12 shows subprogram bodies for the sample subprogram 
declarations in Example 3-10.

Example 3-12 Two Subprogram Bodies

function IS_EVEN(NUM: in INTEGER) 
    return BOOLEAN is
begin
  return ((NUM rem 2) = 0);
end IS_EVEN;

procedure BYTE_TO_NIBBLES(B: in BYTE;
                          UPPER, LOWER: out NIBBLE) is
begin
  UPPER := NIBBLE(B(7 downto 4));
  LOWER := NIBBLE(B(3 downto 0));
end BYTE_TO_NIBBLES;

Subprogram Overloading
You can overload subprograms; more than one subprogram can have 
same name. Each subprogram that uses a given name must have a di
parameter profile.

A parameter profile specifies a subprogram’s number and type of 
parameters. This information determines which subprogram is called w
more than one subprogram has the same name. Overloaded functions
also distinguished by the type of their return values.

Example 3-13 shows two subprograms with the same name, but differe
parameter profiles.
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Example 3-13 Subprogram Overloading

type SMALL is range 0 to 100;
type LARGE is range 0 to 10000;

function IS_ODD(NUM: SMALL) return BOOLEAN;
function IS_ODD(NUM: LARGE) return BOOLEAN;

signal A_NUMBER: SMALL;
signal B: BOOLEAN;
. . .
B <= IS_ODD(A_NUMBER); -- Will call the first
                       -- function above

Operator Overloading
Predefined operators such as +, and, and mod can also be overloaded. By 
using overloading, you can adapt predefined operators to work with your 
own data types.

For example, you can declare new logic types, rather than use the 
predefined types BIT and INTEGER. However, you cannot use predefined 
operators with these new types unless you declare overloaded operators for 
the new logic type.

Example 3-14 shows how some predefined operators are overloaded for a 
new logic type.

Example 3-14 Operator Overloading

type NEW_BIT is (’0’, ’1’, ’X’);
  -- New logic type

function "and"(I1, I2: in NEW_BIT) return NEW_BIT;
function "or" (I1, I2: in NEW_BIT) return NEW_BIT;
  -- Declare overloaded operators for new logic type
. . .
signal A, B, C: NEW_BIT;
. . .

C <= (A and B) or C;

VHDL requires overloaded operator declarations to enclose the operator 
name or symbol in double quotation marks, because they are infix operators 
(they are used between operands). If you declared the overloaded operators 
without quotation marks, a VHDL tool considers them functions rather than 
operators.
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Type Declarations 

Type declarations define the name and characteristics of a type. Types and 
type declarations are fully described in Chapter 4, “Data Types.” A type
named set of values, such as the set of integers, or the set (red, green,
An object of a given type, such as a signal, can have any value of that 

Example 3-14 shows a type declaration for type NEW_BIT, and some 
functions and variables of that type.

Type declarations are allowed in architectures, packages, entities, bloc
processes, and subprograms.

Subtype Declarations 

Use subtype declarations to define the name and characteristics of a 
constrained subset of another type or subtype. A subtype is fully 
compatible with its parent type, but only over the subtype’s range. Subt
declarations are described in Chapter 4, “Data Types.”

The following subtype declaration (NEW_LOGIC) is a subrange of the 
type declaration in Example 3-14.

subtype NEW_LOGIC is NEW_BIT range ’0’ to ’1’;

Subtype declarations are allowed wherever type declarations are allowed: 
in architectures, packages, entities, blocks, processes, and subprograms.

Constant Declarations 

Constant declarations create named values of a given type. The value of a 
constant can be read but not changed. 

Constant declarations are allowed in architectures, packages, entities, 
blocks, processes, and subprograms.

Example 3-15 shows some constant declarations.

Example 3-15 Constant Declarations 

constant WIDTH: INTEGER := 8;
constant X    : NEW_BIT := ’X’;
Describing Designs
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You can use constants in expressions, as described in Chapter 5, 
“Expressions,” and as source values in assignment statements, as des
in Chapter 6, “Sequential Statements.”

Signal Declarations 

Signal declarations create new named signals (wires) of a given type. 
Signals can be given default (initial) values. However, these initial valu
are not used for synthesis.

Signals with multiple drivers (signals driven by wired logic) can have 
associated resolution functions, as described in the next section. 

Example 3-16 shows two signal declarations.

Example 3-16 Signal Declarations 

signal A, B: BIT;
signal INIT: INTEGER := -1;

Note: Ports are also signals, with the restriction that out ports cannot be 
read, and in ports cannot be assigned a value. You create signals either by 
port declarations or by signal declarations. You create ports only by port 
declarations.

You can declare signals in architectures, entities, and blocks, and use 
in processes and subprograms. Processes and subprograms cannot d
signals for internal use.

You can use signals in expressions, as described in Chapter 5, 
“Expressions.” Signals are assigned values by signal assignment 
statements, as described in Chapter 6, “Sequential Statements.”

Resolution Functions 

Resolution functions are used with signals that can be connected (wire
together). For example, if two drivers are directly connected to a signal,
resolution function determines whether the signal value is the AND, OR
three-state function of the driving values. 
Describing Designs 3–25
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Use resolution functions to assign the driving value when there are multiple 
drivers. For simulation, you can write an arbitrary function to resolve bus 
conflicts. 

Note: A resolution function might change the value of a resolved signal, 
even if all drivers have the same value.

The resolution function for a signal is part of that signal’s subtype 
declaration. You create a resolved signal in four steps: 

-- Step 1
type SIGNAL_TYPE is ...                             
-- signal’s base type is SIGNAL_TYPE

-- Step 2
subtype res_type is res_function SIGNAL_TYPE;
-- name of the subtype is res_type
-- name of function is res_function
-- signal type is res_type (a subtype of  SIGNAL_TYPE)
...
-- Step 3
function res_function (DATA: ARRAY_TYPE)  
  return SIGNAL_TYPE is
-- declaration of the resolution function
-- ARRAY_TYPE must be an unconstrained array of 
SIGNAL_TYPE
...
-- Step 4
signal resolved_signal_name: res_type;
-- resolved_signal_name is a resolved signal
...

1. The signal’s base type is declared.

2. The resolved signal’s subtype is declared as a subtype of the base typ
includes the name of the resolution function.

3. The resolution function itself is declared (and later defined).

4. Resolved signals are declared as resolved subtypes.

FPGA Express does not support arbitrary resolution functions. Only wire
AND, wired OR, and three-state functions are allowed. FPGA Express 
requires that you mark all resolution functions with a special directive 
indicating the kind of resolution performed. 

Note: FPGA Express considers the directive only when creating 
hardware. The body of the resolution function is parsed but ignored. 
Using unsupported VHDL constructs generates errors.   

Do not connect signals that use different resolution functions.   FPGA 
Express supports only one resolution function per network.
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The three resolution function directives are 

-- synopsys resolution_method wired_and

-- synopsys resolution_method wired_or

-- synopsys resolution_method three_state

Note: Pre-synthesis and post-synthesis simulation results might not 
match if the body of the resolution function used by the simulator does 
not match the directive used by the synthesizer.

Example 3-17 shows how to create and use resolved signals, and how to 
use compiler directives for resolution functions. The signal’s base type
the predefined type BIT.
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Example 3-17 Resolved Signal and Its Resolution Function

package RES_PACK is
  function RES_FUNC(DATA: in BIT_VECTOR) return BIT;
  subtype RESOLVED_BIT is RES_FUNC BIT;
end;

package body RES_PACK is
  function RES_FUNC(DATA: in BIT_VECTOR) return BIT 
is
    -- pragma resolution_method wired_and
  begin
  -- The code in this function is ignored by FPGA 
Express
  -- but parsed for correct VHDL syntax

    for I in DATA’range loop
      if DATA(I) = ’0’ then
         return ’0’;
      end if;
    end loop;
    return ’1’;
  end;
end;

use work.RES_PACK.all;

entity WAND_VHDL is
  port(X, Y: in BIT; Z: out RESOLVED_BIT);
end WAND_VHDL;

architecture WAND_VHDL of WAND_VHDL is
begin
  Z <= X;
  Z <= Y;
end WAND_VHDL;

Variable Declarations 

Variable declarations define a named value of a given type. 

You can use variables in expressions, as described in Chapter 5, 
“Expressions.” Variables are assigned values by variable assignment 
statements, as described in Chapter 6, “Sequential Statements.”

X

Y
Z

AN2
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Example 3-18 shows some variable declarations.

Example 3-18 Variable Declarations 

variable A, B: BIT;
variable INIT: NEW_BIT;

Note: Variables are declared and used only in processes and 
subprograms, because processes and subprograms cannot declare signals 
for internal use.

Structural Design

FPGA Express works with one or more designs. Each entity (and 
architecture) in a VHDL description is translated to a single design in 
FPGA Express. Designs can also originate from formats other than VHDL, 
such as equations, Programmable Logic Arrays (PLAs), state machines, 
other HDLs, or netlists.

A design can contain instances of lower-level designs, connected by nets 
(signals) to the lower-level design’s ports. These lower-level designs ca
consist of other entities from a VHDL design, designs represented in 
another Synopsys format, or cells from a technology library. By 
instantiating designs within designs, you create a hierarchy.

Hierarchy in VHDL is specified by using component declarations and 
component instantiation statements. To include a design, you must spe
its interface with a component declaration. You can then create an inst
of that design by using the component instantiation statement.

If your design consists only of VHDL entities, every component 
declaration statement corresponds to an entity in the design. If your de
uses designs or technology library cells not described in VHDL, create
component declarations without corresponding entities. You can then u
FPGA Express to associate the VHDL component with the non-VHDL 
design or cell. 

Note: To simulate your VHDL design, you must provide entity and 
architecture descriptions for all component declarations.
Describing Designs 3–29
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Using Hardware Components

VHDL includes constructs to use existing hardware components. These 
structural constructs can be used to define a netlist of components.

The following sections describe how to use components and how FPGA 
Express configures these components.

Component Declaration

You must declare a component in an architecture or package before you can 
use (instantiate) it. A component declaration statement is similar to the 
entity specification statement described earlier, in that it defines the 
component’s interface.

The syntax for a component declaration is

component identifier
  [ generic( generic_declarations ) ]
  [ port( port_declarations ) ]
end component ;

where identifier is the name of this type of component, and the syntax 
generic_declarations and port_declarations is the same as defined 
previously for entity specifications.

Example 3-19 shows a simple component declaration statement.

Example 3-19 Component Declaration of a Two-Input AND Gate

component AND2
  port(I1, I2: in BIT;
       O1:     out BIT);
end component;

Example 3-20 shows a component declaration statement that uses a ge
parameter.
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Example 3-20 Component Declaration of an N-Bit Adder

component ADD
  generic(N: POSITIVE);

  port(X, Y:   in  BIT_VECTOR(N-1 downto 0);
       Z:      out BIT_VECTOR(N-1 downto 0);
       CARRY:  out BIT)
end component;

Although the component declaration statement is similar to the entity 
specification, it serves a different purpose. The component declaration is 
required to make the design entity AND2 or ADD usable, or visible, within 
an architecture. After a component is declared, it can be used in a design.

Sources of Components
A declared component can come from the same VHDL source file, from a 
different VHDL source file, from another format such as Electronic Data 
Interchange Format (EDIF) or state table, or from a technology library. If 
the component is not in one of the current VHDL source files, it must 
already be compiled by FPGA Express.

When FPGA Express compiles a design that uses components, FPGA 
Express searches for previously compiled components by name in the 
following order:

1. In the current design.

2. In the input source file or files identified in the FPGA Express 
Implementation window.

3. In the libraries of technology-specific FPGA components.

Consistency of Component Ports 
FPGA Express checks for consistency among its VHDL entities. For other 
entities, the port names are taken from the original design description.

• For components in a technology library, the port names are the input a
output pin names.

• For EDIF designs, the port names are the EDIF port names. 

The bit widths of each port must also match. FPGA Express verifies 
matching for VHDL components, because the port types must be ident
For components from other sources, FPGA Express checks when linking 
the component to the VHDL description.
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Component Instantiation Statement

The component instantiation statement instantiates and connects 
components to form a netlist (structural) description of a design. A 
component instantiation statement can create a new level of design 
hierarchy.

The syntax of the component instantiation statement is

instance_name : component_name 
[ generic map (
   generic_name => expression 
   { , generic_name => expression } 
) ]
port map (
   [ port_name => ] expression 
   { , [ port_name => ] expression } 
);

instance_name is the name of this instance of component type 
component_name.   

The optional generic map assigns nondefault values to generics. Each 
generic_name is the name of a generic, exactly as declared in the 
corresponding component declaration statement. Each expression evaluates 
to an appropriate value.

The port map assigns the component’s ports to connections. Each 
port_name is the name of a port, exactly as declared in the correspond
component declaration statement. Each expression evaluates to a sign
value.

FPGA Express uses the following two rules to decide which entity and 
architecture are to be associated with a component instantiation:

1. Each component declaration must have an entity with the same name:
VHDL entity, a design from another source (format), or a library 
component. This entity is used for each component instantiation assoc
with the component declaration.

2. If a VHDL entity has more than one architecture, the last architecture input 
is used for each component instantiation associated with that entity. Th
.mra file determines the last architecture analyzed.

Mapping Generic Values
When you instantiate a component with generics, you can map generic
values. A generic without a default value must be instantiated with a 
generic map value.
Describing Designs
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For example, a four-bit instantiation of the component ADD in Example 
3-20 might use the following generic map.

U1:  ADD generic map (N => 4) 
         port map (X, Y, Z, CARRY...);

The port map assigns component ports to actual signals; it is described in 
the next section.

Mapping Port Connections 
You can specify port connections in component instantiation statements 
with either named or positional notation. With named notation, the 
port_name => construct identifies the specific ports of the component. With 
positional notation, the expressions for the component ports are simply 
listed in the declared port order.

Example 3-21 shows named and positional notation for the U5 component 
instantiation statement in Example 3-22.

Example 3-21 Equivalent Named and Positional Association

U5: or2 port map (O => n6, I1 => n3, I2 => n1);
  -- Named association

U5: or2 port map (n3, n1, n6);
  -- Positional association

Note: When you use positional association, the instantiated port 
expressions (signals) must be in the same order as the declared ports.

Example 3-22 shows a structural (netlist) description for the COUNTER3 
design entity from Example 3-77.
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Example 3-22 Structural Description of a Three-Bit Counter

architecture STRUCTURE of COUNTER3 is
  component DFF
    port(CLK, DATA: in BIT;
         Q: out BIT);
  end component;
  component AND2
    port(I1, I2: in BIT;
         O: out BIT);
  end component;
  component OR2
    port(I1, I2: in BIT;
         O: out BIT);
  end component;
  component NAND2 
    port(I1, I2: in BIT;
         O: out BIT);
  end component;
  component XNOR2
    port(I1, I2: in BIT;
         O: out BIT);
  end component;
  component INV
    port(I: in BIT;
         O: out BIT);
  end component;

  signal N1, N2, N3, N4, N5, N6, N7, N8, N9: BIT;

begin
  u1: DFF port map(CLK, N1, N2);
  u2: DFF port map(CLK, N5, N3);
  u3: DFF port map(CLK, N9, N4);
  u4: INV port map(N2, N1);
  u5: OR2 port map(N3, N1, N6);
  u6: NAND2 port map(N1, N3, N7);
  u7: NAND2 port map(N6, N7, N5);
  u8: XNOR2 port map(N8, N4, N9);
  u9: NAND2 port map(N2, N3, N8);
  COUNT(0) <= N2;
  COUNT(1) <= N3;
  COUNT(2) <= N4;
end STRUCTURE;

Technology-Independent Component Instantiation

When you use a structural design style, you might want to instantiate 
logical components. Synopsys provides generic technology library GTECH 
for this purpose. This generic technology library contains 
technology-independent logical components such as: 

• AND, OR, and NOR gates (2, 3, 4, 5, and 8)

• one-bit adders and half adders
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• 2-of-3 majority 

• multiplexors

• flip-flops and latches

• multiple-level logic gates, such as AND-NOT, AND-OR, 
AND-OR-INVERT

You can use these simple components to create technology-independe
designs.Example 3-23 shows how an N-bit ripple-carry adder can be 
created from N one-bit adders.

Example 3-23 Design That Uses Technology-Independent Components

library GTECH;
use gtech.gtech_components.all;
entity RIPPLE_CARRY is
  generic(N: NATURAL);

  port(A, B:       in BIT_VECTOR(N-1 downto 0);
       CARRY_IN:   in BIT;
       SUM:       out BIT_VECTOR(N-1 downto 0);
       CARRY_OUT: out BIT;);
end RIPPLE_CARRY;

architecture TECH_INDEP of RIPPLE_CARRY is

  signal CARRY: BIT_VECTOR(N downto 0);

begin
  CARRY(0) <= CARRY_IN;

  GEN: for I in 0 to N-1 generate
    U1: GTECH_ADD_ABC port map(
             A    => A(I), 
             B    => B(I), 
             C    => CARRY(I), 
             S    => SUM(I),
             COUT => CARRY(I+1));

  end generate GEN;

  CARRY_OUT <= CARRY(N);
end TECH_INDEP;
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Data Types
VHDL is a strongly typed language. Every constant, signal, variable, 
function, and parameter is declared with a type, such as BOOLEAN or 
INTEGER, and can hold or return only a value of that type.

VHDL predefines abstract data types, such as BOOLEAN, which are part 
of most programming languages, and hardware-related types, such as BIT, 
found in most hardware languages. Predefined VHDL types are declared in 
the STANDARD package, which is supplied with all VHDL 
implementations (see Example 4-11). Data type information includes

• Enumeration types

• Integer types

• Array types

• Record types 

• Predefined VHDL data types

• Unsupported data types

• Synopsys data types

• Subtypes

The advantage of strong typing is that VHDL tools can catch many 
common design errors, such as assigning an eight-bit value to a 
four-bit-wide signal, or incrementing an array index out of its range.
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The following example code shows the definition of a new type, BYTE, as 
an array of eight bits, and a variable declaration, ADDEND, that uses this 
type.

type BYTE is array(7 downto 0) of BIT;

variable ADDEND: BYTE;

The predefined VHDL data types are built from the basic VHDL data types. 
Some VHDL types are not supported for synthesis, such as REAL and 
FILE. 

The examples in this chapter show type definitions and associated object 
declarations. Although each constant, signal, variable, function, and 
parameter is declared with a type, only variable and signal declarations are 
shown here in the examples. Constant, function, and parameter declarations 
are shown in Chapter 3, “Describing Designs.”

VHDL also provides subtypes, which are defined as subsets of other type
Anywhere a type definition can appear, a subtype definition can also 
appear. The difference between a type and a subtype is that a subtype
subset of a previously defined parent (or base) type or subtype. Overlapping
subtypes of a given base type can be compared against and assigned t
other. All integer types, for example, are technically subtypes of the buil
integer base type (see “Integer Types,” later in this chapter). Subtypes
described later in this chapter.

Enumeration Types

An enumeration type is defined by listing (enumerating) all possible value
of that type.

The syntax of an enumeration type definition is

type type_name is ( enumeration_literal 
                    {, enumeration_literal} );

type_name is an identifier, and each enumeration_literal is either an 
identifier (enum_6) or a character literal (’A’). 

An identifier is a sequence of letters, underscores, and numbers. An 
identifier must start with a letter and cannot be a VHDL reserved word,
such as TYPE. 

A character literal is any value of type CHARACTER, in single quotes.
Data Types
Enumeration Types



. 
e. In 
e 
ws 
Example 4-1shows two enumeration type definitions and corresponding 
variable and signal declarations.

Example 4-1 Enumeration Type Definitions

type COLOR is (BLUE, GREEN, YELLOW, RED);

type MY_LOGIC is (’0’, ’1’, ’U’, ’Z’);

variable HUE: COLOR;

signal SIG: MY_LOGIC;
. . .
HUE := BLUE;
SIG <= ’Z’;

Enumeration Overloading

You can overload an enumeration literal by including it in the definition of 
two or more enumeration types. When you use such an overloaded 
enumeration literal, FPGA Express can usually determine the literal’s type
However, under certain circumstances determination may be impossibl
these cases, you must qualify the literal by explicitly stating its type (se
“Qualified Expressions” in Chapter 5, “Expressions”). Example 4-2 sho
how you can qualify an overloaded enumeration literal.

Example 4-2 Enumeration Literal Overloading

type COLOR is (RED, GREEN, YELLOW, BLUE, VIOLET);
type PRIMARY_COLOR is (RED, YELLOW, BLUE);
...
A <= COLOR’(RED);

Enumeration Encoding

Enumeration types are ordered by enumeration value. By default, the first 
enumeration literal is assigned the value 0, the next enumeration literal is 
assigned the value 1, and so forth.
Data Types 4–3
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FPGA Express automatically encodes enumeration values into bit vectors 
that are based on each value’s position. The length of the encoding bit
vector is the minimum number of bits required to encode the number o
enumerated values. For example, an enumeration type with five values
a three-bit encoding vector.

Example 4-3 shows the default encoding of an enumeration type with f
values.

Example 4-3 Automatic Enumeration Encoding 

type COLOR is (RED, GREEN, YELLOW, BLUE, VIOLET);

The enumeration values are encoded as follows:

RED    ⇒ "000"
GREEN  ⇒ "001"
YELLOW ⇒ "010"
BLUE   ⇒ "011"
VIOLET ⇒ "100"

The result is RED < GREEN < YELLOW < BLUE < VIOLET.

You can override the automatic enumeration encodings and specify yo
own enumeration encodings with the ENUM_ENCODING attribute. Th
interpretation is specific to FPGA Express.

A VHDL attribute is defined by its name and type, and is then declared w
a value for the attributed type, as shown in Example 4-4 below. 

Note: Several VHDL synthesis-related attributes are declared in the 
ATTRIBUTES package supplied with FPGA Express. 

The ENUM_ENCODING attribute must be a STRING containing a seri
of vectors, one for each enumeration literal in the associated type. The
encoding vector is specified by 0s, 1s, Ds, Us, and Zs separated by bla
spaces. The meaning of these encoding vectors is described in the nex
section. The first vector in the attribute string specifies the encoding for
first enumeration literal, the second vector specifies the encoding for th
second enumeration literal, and so on. The ENUM_ENCODING attribu
must immediately follow the type declaration. 

Example 4-4 illustrates how the default encodings from Example 4-3 ca
be changed with the ENUM_ENCODING attribute.
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Enumeration Types



u 
d /= 
m a 

rns 
Example 4-4 Using the ENUM_ENCODING Attribute

attribute ENUM_ENCODING: STRING;
  -- Attribute definition

type COLOR is (RED, GREEN, YELLOW, BLUE, VIOLET);
attribute ENUM_ENCODING of 
  COLOR: type is "010 000 011 100 001";
  -- Attribute declaration

The enumeration values are encoded as follows:

RED    = "010"
GREEN  = "000"
YELLOW = "011"
BLUE   = "100"
VIOLET = "001"

The result is GREEN<VIOLET<RED<YELLOW<BLUE 

Note: The interpretation of the ENUM_ENCODING attribute is specific 
to FPGA Express. Other VHDL tools, such as simulators, use the 
standard encoding (ordering).

Enumeration Encoding Values

The possible encoding values for the ENUM_ENCODING attribute are:

0
Bit value 0

1
Bit value 1

D
Don’t-care (can be either 0 or 1).

U
Unknown. If U appears in the encoding vector for an enumeration, yo
cannot use that enumeration literal except as an operand to the = an
operators. You can read an enumeration literal encoded with a U fro
variable or signal, but you cannot assign it. 

For synthesis, the = operator returns FALSE and the /= operator retu
TRUE when either of the operands is an enumeration literal whose 
encoding contains U. 
Data Types 4–5
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Z
High impedance. See “Three-State Inference”  in Chapter 8, “Register 
Inference,” for more information.

Integer Types

The maximum range of a VHDL integer type is −(231-1) to 231-1 
(-2_147_483_647 .. 2_147_483_647). Integer types are defined as 
subranges of this anonymous built-in type. Multidigit numbers in VHDL
can include underscores (_) to make them easier to read.

FPGA Express encodes an integer value as a bit vector whose length is
minimum necessary to hold the defined range and encodes integer ran
that include negative numbers as 2’s-complement bit vectors.

The syntax of an integer type definition is

type type_name is range integer_range ;

type_name is the name of the new integer type, and integer_range is a
subrange of the anonymous integer type.

Example 4-5 shows some integer type definitions.

Example 4-5 Integer Type Definitions

type PERCENT is range -100 to 100;
  -- Represented as an 8-bit vector
  --   (1 sign bit, 7 value bits)

type INTEGER is range -2147483647 to 2147483647;
  -- Represented as a 32-bit vector
  --   This is the definition of the INTEGER type

Note: You cannot directly access the bits of an INTEGER or explicitly 
state the bit width of the type. For these reasons, Synopsys provides 
overloaded functions for arithmetic. These functions are defined in the 
std_logic package.
Data Types
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Array Types

An array is an object that is a collection of elements of the same type. 
VHDL supports N-dimensional arrays, but FPGA Express supports only 
one-dimensional arrays. Array elements can be of any type. An array has an 
index whose value selects each element. The index range determines how 
many elements are in the array and their ordering (low to high, or high 
downto low). An index can be of any integer type.

You can declare multidimensional arrays by building one-dimensional 
arrays where the element type is another one-dimensional array, as shown 
in Example 4-6.

Example 4-6 Declaration of Multidimentional Array

type BYTE   is array (7 downto 0) of BIT;
type VECTOR is array (3 downto 0) of BYTE;

VHDL provides both constrained arrays and unconstrained arrays. The 
difference between these two arrays comes from the index range in the 
array type definition.

Constrained Array

A constrained array’s index range is explicitly defined; for example, an
integer range (1 to 4). When you declare a variable or signal of this typ
has the same index range.

The syntax of a constrained array type definition is

type array_type_name is 
    array ( integer_range ) of type_name ;

array_type_name is the name of the new constrained array type, 
integer_range is a subrange of another integer type, and type_name is
type of each array element.

Example 4-7 shows a constrained array definition.
Data Types 4–7
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Example 4-7 Constrained Array Type Definition

type BYTE is array (7 downto 0) of BIT;
  -- A constrained array whose index range is
  -- (7, 6, 5, 4, 3, 2, 1, 0)

Unconstrained Array

You define an unconstrained array’s index range as a type, for example, 
INTEGER. This definition implies that the index range can consist of an
contiguous subset of that type’s values. When you declare an array var
or signal of this type, you also define its actual index range. Different 
declarations can have different index ranges.

The syntax of an unconstrained array type definition is

type array_type_name is 
    array (range_type_name range <>) 
        of element_type_name ;

array_type_name is the name of the new unconstrained array type, 
range_type_name is the name of an integer type or subtype, and 
element_type_name is the type of each array element.

Example 4-8 shows an unconstrained array type definition and a 
declaration that uses it.

Example 4-8 Unconstrained Array Type Definition

type BIT_VECTOR is array(INTEGER range <>) of BIT;
  -- An unconstrained array definition
. . .
variable MY_VECTOR : BIT_VECTOR(5 downto -5);

The advantage of using unconstrained arrays is that a VHDL tool 
remembers the index range of each declaration. You can use array 
attributes to determine the range (bounds) of a signal or variable of an 
unconstrained array type. With this information, you can write routines t
use variables or signals of an unconstrained array type, independently
any one array variable’s or signal’s bounds. The next section describes
array attributes and how they are used.
Data Types
Array Types



e. 

-8) 
Array Attributes

FPGA Express supports the following predefined VHDL attributes for use 
with arrays:

• left

• right

• high

• low

• length

• range

• reverse_range

These attributes return a value corresponding to part of an array’s rang
Table 4-1 shows the values of the array attributes for the variable 
MY_VECTOR in Example 4-8.

Table 4-1 Array Index Attributes

Example 4-9 shows the use of array attributes in a function that ORs 
together all elements of a given BIT_VECTOR (declared in Example 4
and returns that value. 

Example 4-9 Use of Array Attributes

function OR_ALL (X: in BIT_VECTOR) return BIT is
  variable OR_BIT: BIT;
  begin
    OR_BIT := ’0’; 
    for I in X’range loop
      OR_BIT := OR_BIT or X(I);
    end loop;

    return OR_BIT;
  end;

Attribute Expression Value

MY_VECTOR’left 5

MY_VECTOR’right -5

MY_VECTOR’high 5

MY_VECTOR’low 5

MY_VECTOR’length 11

MY_VECTOR’range (5 down to -5)

MY_VECTOR’reverse_range (-5 to 5)
Data Types 4–9
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Note that this function works for a BIT_VECTOR of any size.

Record Types

A record is a set of named fields of various types, unlike an array, which is 
composed of identical anonymous entries. A record’s field can be of any 
previously defined type, including another record type.

Note: Constants in VHDL of type record are not supported for synthesis 
(the initialization of records is not supported).

Example 4-10 shows a record type declaration (BYTE_AND_IX), three
signals of that type, and some assignments.

Example 4-10 Record Type Declaration and Use

constant LEN:  INTEGER := 8;

subtype BYTE_VEC is BIT_VECTOR(LEN-1 downto 0);

type BYTE_AND_IX is 
  record
    BYTE: BYTE_VEC;
    IX:   INTEGER range 0 to LEN;
  end record;
 
signal X, Y, Z: BYTE_AND_IX;

signal DATA: BYTE_VEC;
signal NUM:  INTEGER;
. . .

X.BYTE <= "11110000";
X.IX   <= 2;

DATA <= Y.BYTE;
NUM  <= Y.IX;

Z <= X;

As shown in Example 4-10, you can read values from or assign values
records in two ways:

• By individual field name

X.BYTE <= DATA;
X.IX   <= LEN;
Data Types
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• From another record object of the same type

Z <= X;

Note: A record type object’s individual fields are accessed by the objec
name, a period, and a field name: X.BYTE or X.IX. To access an eleme
of the BYTE field’s array, use the array notation X.BYTE(2). 

Predefined VHDL Data Types

IEEE VHDL describes two site-specific packages, each containing a 
standard set of types and operations: the STANDARD package and the 
TEXTIO package.

The STANDARD package of data types is included in all VHDL source 
files by an implicit use clause. The TEXTIO package defines types and 
operations for communication with a standard programming environment 
(terminal and file I/O). This package is not needed for synthesis, and 
therefore FPGA Express does not support it.

The FPGA Express implementation of the STANDARD package is listed 
in Example 4-11. This STANDARD package is a subset of the IEEE 
VHDL STANDARD package. Differences are described in “Unsupported 
Data Types” later in this chapter.
Data Types 4–11
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Example 4-11 FPGA Express STANDARD Package

package STANDARD is

  type BOOLEAN is (FALSE, TRUE);

  type BIT is (’0’, ’1’);

  type CHARACTER is (
    NUL, SOH, STX, ETX, EOT, ENQ, ACK, BEL,
    BS,  HT,  LF,  VT,  FF,  CR,  SO,  SI, 
    DLE, DC1, DC2, DC3, DC4, NAK, SYN, ETB,
    CAN, EM,  SUB, ESC, FSP, GSP, RSP, USP,

    ’ ’, ’!’, ’"’, ’#’, ’$’, ’%’, ’&’, ’’’,
    ’(’, ’)’, ’*’, ’+’, ’,’, ’-’, ’.’, ’/’,
    ’0’, ’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’,
    ’8’, ’9’, ’:’, ’;’, ’<’, ’=’, ’>’, ’?’,

    ’@’, ’A’, ’B’, ’C’, ’D’, ’E’, ’F’, ’G’,
    ’H’, ’I’, ’J’, ’K’, ’L’, ’M’, ’N’, ’O’,
    ’P’, ’Q’, ’R’, ’S’, ’T’, ’U’, ’V’, ’W’,
    ’X’, ’Y’, ’Z’, ’[’, ’\’, ’]’, ’^’, ’_’,

    ’‘’, ’a’, ’b’, ’c’, ’d’, ’e’, ’f’, ’g’, 
    ’h’, ’i’, ’j’, ’k’, ’l’, ’m’, ’n’, ’o’,
    ’p’, ’q’, ’r’, ’s’, ’t’, ’u’, ’v’, ’w’, 
    ’x’, ’y’, ’z’, ’{’, ’|’, ’}’, ’~’, DEL);

  type INTEGER is range -2147483647 to 2147483647;

  subtype NATURAL is INTEGER range 0 to 2147483647;

  subtype POSITIVE is INTEGER range 1 to 2147483647;

  type STRING is array (POSITIVE range <>) 
       of CHARACTER;

  type BIT_VECTOR is array (NATURAL range <>) 
       of BIT;

end STANDARD;

BOOLEAN Data Type 

The BOOLEAN data type is actually an enumerated type with two values, 
FALSE and TRUE, where FALSE < TRUE. Logical functions such as 
equality (=) and comparison (<) functions return a BOOLEAN value.

Convert a BIT value to a BOOLEAN value as follows:

BOOLEAN_VAR := (BIT_VAR = ’1’);
Data Types
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BIT Data Type 

The BIT data type represents a binary value as one of two characters, 0 or 1. 
Logical operations, such as and, can take and return BIT values.

Convert a BOOLEAN value to a BIT value as follows:

if (BOOLEAN_VAR) then
  BIT_VAR := ’1’;
else 
  BIT_VAR := ’0’;
end if;

CHARACTER Data Type 

The CHARACTER data type enumerates the ASCII character set. 
Nonprinting characters are represented by a three-letter name, such as NUL 
for the null character. Printable characters are represented by themselves, in 
single quotation marks, as follows:

variable CHARACTER_VAR: CHARACTER;
. . .
CHARACTER_VAR := ’A’;

INTEGER Data Type 

The INTEGER data type represents positive and negative whole numbers 
and zero.

NATURAL Data Type 

The NATURAL data type is a subtype of INTEGER that is used to 
represent natural (nonnegative) numbers.

POSITIVE Data Type 

The POSITIVE data type is a subtype of INTEGER that is used to represent 
positive (nonzero and nonnegative) numbers.
Data Types 4–13
Predefined VHDL Data Types



4–14
STRING Data Type 

The STRING data type is an unconstrained array of CHARACTER data 
types. A STRING value is enclosed in double quotation marks, as follows:

variable STRING_VAR: STRING(1 to 7);
. . .
STRING_VAR := "Rosebud";

BIT_VECTOR Data Type 

The BIT_VECTOR data type represents an array of BIT values.

Unsupported Data Types

Some data types are either not useful for synthesis or are not supported. 
Unsupported types are parsed but ignored by FPGA Express. These types 
are listed and described below.

Physical Types

FPGA Express does not support physical types, such as units of measure 
(for example, ns). Because physical types are relevant to the simulation 
process, FPGA Express allows but ignores physical type declarations.

Floating Point Types

FPGA Express does not support floating point types, such as REAL. 
Floating point literals, such as 1.34, are allowed in the definitions of FPGA 
Express-recognized attributes.

Access Types

FPGA Express does not support access (pointer) types because no 
equivalent hardware construct exists.
Data Types
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File Types

FPGA Express does not support file (disk file) types. A hardware file is a 
RAM or ROM.

SYNOPSYS Data Types

The std_logic_arith package provides arithmetic operations and numeric 
comparisons on array data types. The package also defines two major data 
types: UNSIGNED and SIGNED. These data types, unlike the predefined 
INTEGER type, provide access to the individual bits (wires) of a numeric 
value. 

Subtypes

A subtype is a subset of a previously defined type or subtype. A subtype 
definition can appear wherever a type definition is allowed.

Defining subtypes is a powerful way to use VHDL type checking to ensure 
valid assignments and meaningful data handling. Subtypes inherit all 
operators and subprograms defined for their parent (base) types.

You can also use subtypes for resolved signals to associate a resolution 
function with the signal type. (See “Signal Declarations” in Chapter 3, 
“Describing Designs,” for more information.)

For example, in Example 4-11, NATURAL and POSITIVE are subtypes
INTEGER and they can be used with any INTEGER function. These 
subtypes can be added, multiplied, compared, and assigned to each oth
long as the values are within the appropriate subtype’s range. All 
INTEGER types and subtypes are actually subtypes of an anonymous 
predefined numeric type.

Example 4-12 shows some valid and invalid assignments between 
NATURAL and POSITIVE values.
Data Types 4–15
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Example 4-12 Valid and Invalid Assignments between INTEGER Subtypes

variable NAT:  NATURAL;
variable POS:  POSITIVE;
. . .
POS := 5;
NAT := POS + 2;
. . .
NAT := 0;
POS := NAT;      -- Invalid; out of range
For example, the type BIT_VECTOR is defined as
type BIT_VECTOR is array(NATURAL range <>) of BIT;

If your design uses only 16-bit vectors, you can define a subtype 
MY_VECTOR as

subtype MY_VECTOR is BIT_VECTOR(0 to 15);

Example 4-13 shows that all functions and attributes that operate on 
BIT_VECTOR also operate on MY_VECTOR.

Example 4-13 Attributes and Functions Operating on a Subtype

type BIT_VECTOR is array(NATURAL range <>) of BIT;
subtype MY_VECTOR is BIT_VECTOR(0 to 15);
. . .
signal   VEC1, VEC2:  MY_VECTOR;
signal   S_BIT:  BIT;
variable UPPER_BOUND: INTEGER;
. . .
if (VEC1 = VEC2)
. . .
VEC1(4) <= S_BIT;
VEC2 <= "0000111100001111";
. . .
RIGHT_INDEX := VEC1’high;
Data Types
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Expressions
.

Expressions perform arithmetic or logical computations by applying an 
operator to one or more operands. Operators specify the computation to be 
performed. Operands are the data for the computation.

Expressions are discussed in the following sections:

• Operators

• Operands

In the following VHDL fragment, A and B are operands, + is an operator, 
and A + B is an expression.

C := A + B;  -- Computes the sum of two values

You can use expressions in many places in a design description. 
Expressions can be:

• Assign to variables or signals or used as the initial values of constants

• Used as operands to other operators.

• Used for the return value of functions.

• Used for the IN parameters in a subprogram call.

• Assigned to the OUT parameters in a procedure body.

• Used to control the actions of statements like if, loop, and case.
Expressions 5–1
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To understand expressions for VHDL, consider the individual components 
of operators and operands.

Operators

• Logical operators

• Relational operators

• Adding operators

• Unary (sign) operators

• Multiplying operators

• Miscellaneous arithmetic operators

Operands

• Computable operands

• Literals

• Identifiers

• Indexed names

• Slice names

• Aggregates

• Attributes

• Function calls

• Qualified expressions

• Type conversions

Operators

A VHDL operator is characterized by

• Name

• Computation (function)

• Number of operands

• Type of operands (such as Boolean or Character)

• Type of result value

You can define new operators, like functions, for any type of operand a
result value. The predefined VHDL operators are listed in Table 5-1.
Expressions
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Table 5-1 Predefined VHDL Operators 

Each row in the table lists operators with the same precedence. Each r
operators have greater precedence than those in the row above. An 
operator’s precedence determines whether it is applied before or after 
adjoining operators.

Example 5-1 shows several expressions and their interpretations. 

Example 5-1 Operator Precedence

A + B * C               =  A + (B * C)
not BOOL and (NUM = 4)  =  (not BOOL) and (NUM = 4)

VHDL allows existing operators to be overloaded (applied to new types
operands). For example, the and operator can be overloaded to work w
new logic type. For more information, see “Operator Overloading” in 
Chapter 3, “Describing Designs.”

Logical Operators 

Operands of a logical operator must be of the same type. The logical 
operators and, or, nand, nor, xor, and not accept operands of type BIT, type
BOOLEAN, and one-dimensional arrays of BIT or BOOLEAN. Array 
operands must be the same size. A logical operator applied to two arra
operands is applied to pairs of the two arrays’ elements.

Example 5-2 shows some logical signal declarations and logical operat
on them.

Type Operators Precedence

Logical and or nand nor xor Lowest

Relational = /= < <= > >=

Adding + - &

Unary (sign) + -

Multiplying * / mod rem

Miscellaneous ** abs not Highest
Expressions 5–3
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Example 5-2 Logical Operators

signal A, B, C:       BIT_VECTOR(3 downto 0);
signal D, E, F, G:    BIT_VECTOR(1 downto 0);
signal H, I, J, K:    BIT;
signal L, M, N, O, P: BOOLEAN;

A <= B and C;
D <= E or F or G;
H <= (I nand J) nand K;
L <= (M xor N) and (O xor P); 

Normally, to use more than two operands in an expression, you must use 
parentheses to group the operands. Alternately, you can combine a 
sequence of and, or, or xor operators without parentheses, such as

A and B and C and D

However, sequences with different operators do require parentheses, as 
shown in this example:

A or B xor C 

Example 5-3 uses the declarations from Example 5-2 to show some 
common errors.

Example 5-3 Errors in Using Logical Operators

H <= I and J or K;            -- Parenthesis required;
L <= M nand N nand O nand P;  -- Parenthesis 
required;
A <= B and E;       -- Operands must be the same size;
H <= I or L;        -- Operands must be the same type;
Expressions
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Figure 5-1 Circuit for Common Errors Using Logical Operators Example

Relational Operators

Relational operators, such as = or >, compare two operands of the same 
base type and return a BOOLEAN value.

IEEE VHDL defines the equality (=) and inequality (/=) operators for all 
types. Two operands are equal if they represent the same value. For array 
and record types, IEEE VHDL compares corresponding elements of the 
operands.

IEEE VHDL defines the ordering operators (<, <=, >, and >=) for all 
enumerated types, integer types, and one-dimensional arrays of 
enumeration or integer types.

The internal order of a type’s values determines the result of the orderi
operators. Integer values are ordered from negative infinity to positive 
infinity. Enumerated values are in the same order as they were declare
unless you have changed the encoding.

Note: If you set the encoding of your enumerated types (see 
“Enumeration Encoding” in Chapter 4, “Data Types”), the ordering 
operators compare your encoded value ordering, not the declaration 
Expressions 5–5
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ordering. Because this interpretation is specific to FPGA Express, a 
VHDL simulator continues to use the declaration’s order of enumerated
types.

Arrays are ordered like words in a dictionary. The relative order of two 
array values is determined by comparing each pair of elements in turn, 
beginning from the left bound of each array’s index range. If a pair of ar
elements is not equal, the order of the different elements determines th
order of the arrays. For example, bit vector 101011 is less than 1011 
because the fourth bit of each vector is different, and 0 is less than 1. 

If the two arrays have different lengths and the shorter array matches t
first part of the longer array, the shorter one is ordered before the longe
Thus, the bit vector 101 is less than 101000. Arrays are compared from
to right, regardless of their index ranges (to or downto).

Example 5-4 shows several expressions that evaluate to TRUE.

Example 5-4 TRUE Relational Expressions

 ’1’  =  ’1’
"101" = "101"
 "1"  > "011"   -- Array comparison
"101" < "110"

To interpret bit vectors such as 011 as signed or unsigned binary numbers, 
use the relational operators defined in the FPGA Express std_logic_arith 
package. The third line inExample 5-4evaluates to FALSE if the operands 
are of type UNSIGNED.

UNSIGNED’"1"  < UNSIGNED’"011"   -- Numeric 
comparison

Example 5-5 shows some relational expressions and the resulting 
synthesized circuit is shown in Figure 5-2.

Example 5-5 Relational Operators

signal A, B: BIT_VECTOR(3 downto 0);
signal C, D: BIT_VECTOR(1 downto 0);
signal E, F, G, H, I, J: BOOLEAN;

G <= (A = B);
H <= (C < D);
I <= (C >= D);
J <= (E > F); 
Expressions
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Figure 5-2 Circuit for Relational Operators Example

Adding Operators

Adding operators include arithmetic and concatenation operators.

The arithmetic operators + and - are predefined by FPGA Express for all 
integer operands. These addition and subtraction operators perform 
conventional arithmetic, as shown in Example 5-6. For adders and 
subtracters more than four bits wide, a synthetic library component is used 
(see Chapter 9, “FPGA Express Directives”).

The concatenation (&) operator is predefined for all one-dimensional a
operands. The concatenation operator builds arrays by combining the 
operands. Each operand of & can be an array or an element of an array
& to add a single element to the beginning or end of an array, to comb
two arrays, or to build an array from elements, as shown in Example 5
Figure 5-3 shows the schematic for the resulting circuits.
Expressions 5–7
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Example 5-6 Adding Operators

signal A, D:    BIT_VECTOR(3 downto 0);
signal B, C, G: BIT_VECTOR(1 downto 0);
signal E:       BIT_VECTOR(2 downto 0);
signal F, H, I: BIT;

signal J, K, L: INTEGER range 0 to 3;

A <= not B & not C;  -- Array & array
D <= not E & not F;  -- Array & element
G <= not H & not I;  -- Element & element 
J <= K + L;          -- Simple addition 

Figure 5-3 Circuit for Adding Operators Example
Expressions
Operators



Unary (Sign) Operators

A unary operator has only one operand. FPGA Express predefines unary 
operators + and - for all integer types. The + operator has no effect. The - 
operator negates its operand. For example,

5 = +5
5 = -(-5)

Example 5-7 shows how unary negation is synthesized. Figure 5-4 shows 
the resulting circuit.

Example 5-7 Unary (Signed) Operators

signal A, B: INTEGER range -8 to 7;

A <= -B;

Figure 5-4 Circuit for Unary (Signed) Operators Example

Multiplying Operators

FPGA Express predefines the multiplying operators (*, /, mod, and rem) for 
all integer types. 

FPGA Express places some restrictions on the supported values for the 
right operands of the multiplying operators, as follows:
Expressions 5–9
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Integer multiplication: no restrictions. A multiplication operator is 
implemented as a synthetic library cell.

/
Integer division: The right operand must be a computable power of 2 (see 
“Computable Operands,” later in this chapter). Neither operand can b
negative. This operator is implemented as a bit shift.

mod
Modulus: Same as /.

rem
Remainder: Same as /.

Example 5-8 shows some uses of the multiplying operators whose righ
operands are all powers of 2. The resulting synthesized circuit is shown
Figure 5-5.

Example 5-8 Multiplying Operators with Powers of 2

signal A, B, C, D, E, F, G, H: INTEGER range 0 to 15;

  A <= B * 4;
  C <= D / 4;
  E <= F mod 4;
  G <= H rem 4;
Expressions
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Figure 5-5 Circuit Multiplying Operators with Powers of 2 Example

Example 5-9 shows two multiplication operations, one with a four-bit 
operand times a two-bit constant (B * 3), and one with two five-bit 
operands (X * Y). Because the synthetic library is enabled by default, these 
multiplication operations are implemented as synthetic library cells. Figure 
5-6 shows the resulting circuit.

Example 5-9 Multiply Operator (* ) Using Synthetic Cells

signal A, B: INTEGER range 0 to 15; 
signal Y, Z: INTEGER range 0 to 31;
signal X:    INTEGER range 0 to 1023;
. . .
  A <= B * 3;
  X <= Y * Z; 
Expressions 5–11
Operators



5–12

igure 
Figure 5-6 Circuit for Multiply Operator (* ) Using Synthetic Cells Example

Miscellaneous Arithmetic Operators

FPGA Express predefines the absolute value (abs) and exponentiation (**) 
operators for all integer types. One FPGA Express restriction placed on **, 
as follows:

**
Exponentiation: Left operand must have a computable value of 2 (see 
“Computable Operands,” later in this chapter).

Example 5-10 shows how these operators are used and synthesized. F
5-7 shows the resulting circuit.

Example 5-10 Miscellaneous Arithmetic Operators

signal A, B: INTEGER range -8 to 7;
signal C:    INTEGER range  0 to 15;
signal D:    INTEGER range  0 to 3;

A <= abs(B);
C <= 2 ** D;
Expressions
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Figure 5-7 Circuit for Miscellaneous Arithmetic Operators Example

Operands

Operands determine the data used by the operator to compute its value. An 
operand is said to return its value to the operator.

There are many categories of operands. The simplest operand is a literal, 
such as the number 7, or an identifier, such as a variable or signal name. An 
operand itself can be an expression. You create expression operands by 
surrounding an expression with parentheses.

The operand categories are

Expressions:(A nand B)

Literals:’0’, "101", 435, 16#FF3E#

Identifiers: my_var, my_sig

Indexed names: my_array(7)

Slice names: my_array(7 to 11)

Fields: my_record.a_field
Expressions 5–13
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Aggregates:my_array_type’(others => 1)

Attributes: my_array’range

Function calls: LOOKUP_VAL(my_var_1, my_var_2)

Qualified expressions:BIT_VECTOR’(’1’ & ’0’)

Type conversions: THREE_STATE(’0’)

The next two sections discuss operand bit widths and explain computa
operands. Subsequent sections describe the operand types listed abov

Operand Bit Width

FPGA Express uses the bit width of the largest operand to determine the
width needed to implement an operator in hardware. For example, an 
INTEGER operand is 32 bits wide by default. An addition of two 
INTEGER operands causes FPGA Express to build a 32-bit adder. 

To use hardware resources efficiently, always indicate the bit width of 
numeric operands. For example, use a subrange of INTEGER when 
declaring types, variables, or signals.

type     ENOUGH:  INTEGER range 0 to 255; 
variable WIDE:    INTEGER range -1024 to 1023; 
signal   NARROW:  INTEGER range 0 to 7; 

Note: During optimization, FPGA Express removes hardware for unused 
bits. 

Computable Operands

Some operators, such as the division operator, restrict their operands t
computable. A computable operand is one whose value can be determi
by FPGA Express. Computability is important because noncomputable 
expressions can require logic gates to determine their value. 

Following are examples of computable operands:

• Literal values

• for ... loop parameters, when the loop’s range is computable

• Variables assigned a computable expression

• Aggregates that contain only computable expressions
Expressions
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• Function calls with a computable return value

• Expressions with computable operand

• Qualified expressions, where the expression is computable

• Type conversions, when the expression is computable

• Value of the and or nand operators when one of the operands is a 
computable 0

• Value of the or or nor operators when one of the operands is a computa

Additionally, a variable is given a computable value if it is an OUT or 
INOUT parameter of a procedure that assigns it a computable value. 

Following are examples of noncomputable operands:

• Signals

• Ports

• Variables that are assigned different computable values that depend o
noncomputable condition

• Variables assigned noncomputable values

Example 5-11 shows some definitions and declarations, followed by 
several computable and noncomputable expressions.
Expressions 5–15
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Example 5-11 Computable and Noncomputable Expressions

signal S: BIT;
. . .
function MUX(A, B, C: BIT) return BIT is
begin
  if (C = ’1’) then 
    return(A);
  else 
    return(B);
  end if;
end;

procedure COMP(A: BIT; B: out BIT) is
begin
  B := not A;
end;

process(S)
  variable V0, V1, V2: BIT;
  variable V_INT:      INTEGER;

  subtype MY_ARRAY is BIT_VECTOR(0 to 3);
  variable V_ARRAY:    MY_ARRAY;
begin
  V0 := ’1’;             -- Computable (value is ’1’)
  V1 := V0;              -- Computable (value is ’1’)
  V2 := not V1;          -- Computable (value is ’0’)

  for I in 0 to 3 loop
    V_INT := I;          -- Computable (value depends
  end loop;              --   on iteration)

  V_ARRAY := MY_ARRAY’(V1, V2, ’0’, ’0’);
                         -- Computable ("1000")
  V1 := MUX(V0, V1, V2); -- Computable (value is ’1’)
  COMP(V1, V2);
  V1 := V2;              -- Computable (value is ’0’)
  V0 := S and ’0’;       -- Computable (value is ’0’)
  V1 := MUX(S, ’1’, ’0’);-- Computable (value is ’1’)
  V1 := MUX(’1’, ’1’, S);-- Computable (value is ’1’)

  if (S = ’1’) then
    V2 := ’0’;           -- Computable (value is ’0’)
  else
    V2 := ’1’;           -- Computable (value is ’1’)
  end if;
  V0 := V2;            -- Noncomputable; V2 depends
                       --   on S
  V1 := S;             -- Noncomputable; S is signal 
  V2 := V1;            -- Noncomputable; V1 is no
                       --   longer computable
end process;
Expressions
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Literals

A literal (constant) operand can be a numeric literal, a character literal, an 
enumeration literal, or a string literal. The following sections describe these 
four kinds of literals.

Numeric Literals
Numeric literals are constant integer values. The two kinds of numeric 
literals are decimal and based. A decimal literal is written in base 10. A 
based literal can be written in a base from 2 to 16 and is composed of the 
base number, an octothorpe (#), the value in the given base, and another 
octothorpe (#); for example, 2#101# is decimal 5.

The digits in either kind of numeric literal can be separated by an 
underscore ( _ ) character. Example 5-12 shows several different numeric 
literals, all representing the same value.

Example 5-12 Numeric Literals

170
1_7_0
10#170#
2#1010_1010#
16#AA#

Character Literals

Character literals are single characters enclosed in single quotation marks, 
for example, A. Character literals can be used as values for operators and to 
define enumerated types, such as CHARACTER and BIT. See Chapter 4, 
“Data Types,” for more information about the legal character types.

Enumeration Literals

Enumeration literals are values of enumerated types. The two kinds of 
enumeration literals are character literals and identifiers. Character lite
were described previously. Enumeration identifiers are those literals lis
in an enumeration type definition. For example:

type SOME_ENUM is ( ENUM_ID_1, ENUM_ID_2, ENUM_ID_3);
Expressions 5–17
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If two enumerated types use the same literals, those literals are said to be 
overloaded. You must qualify overloaded enumeration literals (see 
“Qualified Expressions,” later in this chapter) when you use them in an
expression unless their type can be determined from context. See 
Chapter 4, “Data Types,” for more information.

Example 5-13 defines two enumerated types and shows some enumer
literal values.

Example 5-13 Enumeration Literals

type ENUM_1 is (AAA, BBB, ’A’, ’B’, ZZZ);
type ENUM_2 is (CCC, DDD, ’C’, ’D’, ZZZ);

AAA           -- Enumeration identifier of type ENUM_1
’B’           -- Character literal of type ENUM_1
CCC           -- Enumeration identifier of type ENUM_2
’D’           -- Character literal of type ENUM_2
ENUM_1’(ZZZ)  -- Qualified because overloaded

String Literals

String literals are one-dimensional arrays of characters, enclosed in double 
quotes (" "). The two kinds of string literals are character strings and bit 
strings. Character strings are sequences of characters in double quotes; for 
example, "ABCD". Bit strings are similar to character strings, but represent 
binary, octal, or hexadecimal values; for example, B"1101", O"15", and 
X"D" all represent decimal value 13. 

A string value’s type is a one-dimensional array of an enumerated type
Each of the characters in the string represents one element of the arra

Example 5-14 shows some character-string literals.

Example 5-14 Character-String Literals

"10101"
"ABCDEF"

Note: Null string literals ("") are not supported.

Bit strings, like based numeric literals, are composed of a base specifier 
character, a double quotation mark, a sequence of numbers in the give
base, and another double quotation mark. For example, B"0101" repre
the bit vector 0101. A bit-string literal consists of the base specifier B, O
Expressions
Operands



X, followed by a string literal. The bit-string literal is interpreted as a bit 
vector, a one-dimensional array of the predefined type BIT. The base 
specifier determines the interpretation of the bit string as follows:

B (binary)
The value is in binary digits (bits, 0 or 1). Each bit in the string represents 
one BIT in the generated bit vector (array).

O (octal)
The value is in octal digits (0 to 7). Each octal digit in the string 
represents three BITs in the generated bit vector (array).

X (hexadecimal)
The value is in hexadecimal digits (0 to 9 and A to F). Each hexadecimal 
digit in the string represents four BITs in the generated bit vector (array).

You can separate the digits in a bit-string literal value with underscores (_) 
for readability. Example 5-15 shows several bit-string literals that represent 
the same value.

Example 5-15 Bit-String Literals

X"AAA"
B"1010_1010_1010"

O"5252"
B"101_010_101_010"

Identifiers

Identifiers are probably the most common operand. An identifier is the 
name of a constant, variable, signal, entity, port, subprogram, or parameter 
and returns the object’s value to an operand. 

Example 5-16 shows several kinds of identifiers and their usage. All 
identifiers are shown in boldface.
Expressions 5–19
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Example 5-16 Identifiers

entity EXAMPLE is
  port (INT_PORT:   in INTEGER;
        BIT_PORT:  out BIT);
end;
. . .
signal   BIT_SIG: BIT;
signal   INT_SIG: INTEGER;
. . .
INT_SIG  <= INT_PORT;   -- Signal assignment from 
port
BIT_PORT <= BIT_SIG;    -- Signal assignment to port

function FUNC(INT_PARAM:  INTEGER)
    return INTEGER;
end function;
. . .
constant CONST:   INTEGER := 2;
variable VAR:     INTEGER;
. . .
VAR := FUNC(INT_PARAM => CONST);  -- Function call

Indexed Names

An indexed name identifies one element of an array variable or signal. Slice 
names identify a sequence of elements in an array variable or signal; 
aggregates create array literals by giving a value to each element of an 
instance of an array type. Slice names and aggregates are described in the 
next two sections.

The syntax of an indexed name is

identifier ( expression )

identifier must name a signal or variable of an array type. The expression 
must return a value within the array’s index range. The value returned t
operator is the specified array element.

If expression is computable (see “Computable Operands,” earlier in thi
chapter), the operand is synthesized directly. If the expression is not 
computable, hardware that extracts the specified element from the arra
synthesized. 

Example 5-17 shows two indexed names—one computable and one n
computable.
Expressions
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Example 5-17 Indexed Name Operands

signal A, B: BIT_VECTOR(0 to 3);
signal I:    INTEGER range 0 to 3;
signal Y, Z: BIT;

Y <= A(I);  -- Noncomputable index expression
Z <= B(3);  -- Computable index expression

Figure 5-8 Circuit for Indexed Name Operands Example

You can also use indexed names as assignment targets; see “Indexed 
Targets” in Chapter 6, “Sequential Statements.”

Slice Names

Slice names return a sequence of elements in an array. The syntax is

identifier ( expression direction expression )

identifier must name a signal or variable of an array type. Each expres
must return a value within the array’s index range, and must be comput
See “Computable Operands,” earlier in this chapter.

The direction must be either to or downto. The direction of a slice must
the same as the direction of the identifier array type. If the left and righ
expressions are equal, define a single element.

The value returned to an operator is a subarray containing the specifie
array elements.
Expressions 5–21
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Example 5-18 uses slices to assign an eight-bit input to an eight-bit output, 
exchanging the lower and upper four bits. Figure 5-9 shows the resulting 
circuit.

Example 5-18 Slice Name Operands

signal A, Z: BIT_VECTOR(0 to 7);

Z(0 to 3) <= A(4 to 7);
Z(4 to 7) <= A(0 to 3);

Figure 5-9 Circuit for Slice Name Operands Example

In Example 5-18, slices are also used as assignment targets. This usage is 
described in “Slice Targets” in Chapter 6, “Sequential Statements.”

Limitations on Null Slices 

FPGA Express does not support null slices. A null slice is indicated by a
null range, such as (4 to 3), or a range with the wrong direction, such a
UP_VAR(3 downto 2) when the declared range of UP_VAR is ascendin
(Example 5-19). 

Example 5-19 shows three null slices and one noncomputable slice.
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Example 5-19 Null and Noncomputable Slices

subtype DOWN is BIT_VECTOR(4 downto 0); 
subtype UP   is BIT_VECTOR(0 to 7);
. . .
variable UP_VAR:   UP;
variable DOWN_VAR: DOWN;
. . .
UP_VAR(4 to 3)       -- Null slice (null range)

UP_VAR(4 downto 0)   -- Null slice (wrong direction)
DOWN_VAR(0 to 1)     -- Null slice (wrong direction)
. . .

variable I: INTEGER range 0 to 7;
. . .
UP_VAR(I to I+1)     -- Noncomputable slice

Limitations on Noncomputable Slices
IEEE VHDL does not allow noncomputable slices—slices whose range 
contains a noncomputable expression.

Records and Fields

Records are composed of named fields of any type. For more information, 
see “Record Types” in Chapter 4, “Data Types.” 

In an expression, you can refer to a record as a whole, or you can refe
single field. The syntax of field names is

record_name.field_name

record_name is the name of the record variable or signal, and field_nam
the name of a field in that record type. A field_name is separated from 
record name by a period (.).   Note that a record_name is different for e
variable or signal of that record type. A field_name is the field name 
defined for that record type.

Example 5-20 shows a record type definition, and record and field acce
Expressions 5–23
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Example 5-20 Record and Field Access

type BYTE_AND_IX is 
  record
    BYTE: BIT_VECTOR(7 downto 0);
    IX:   INTEGER range 0 to 7;
  end record;
 
signal X: BYTE_AND_IX;
. . .
X           -- record
X.BYTE      -- field: 8-bit array
X.IX        -- field: integer

A field can be of any type—including an array, record, or aggregate typ
Refer to an element of a field with that type’s notation, for example:

X.BYTE(2)           -- one element from array field 
BYTE
X.BYTE(3 downto 0)  -- 4-element slice of array field 
BYTE

Aggregates

Aggregates can be considered array literals, because they specify an a
type and the value of each array element. The syntax is

type_name’( [choice =>] expression 
           {,  [choice =>] expression})

Note that the syntax is more restrictive than the syntax in the library 
reference manual. type_name must be a constrained array type. The 
optional choice specifies an element index, a sequence of indexes, or 
others. Each expression provides a value for the chosen elements, and must 
evaluate to a value of the element’s type.

Example 5-21 shows an array type definition and an aggregate represe
a literal of that array type. The two sets of assignments have the same
result.
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Example 5-21 Simple Aggregate

subtype MY_VECTOR is BIT_VECTOR(1 to 4);
signal X:      MY_VECTOR;
variable A, B: BIT;

X <= MY_VECTOR’(’1’, A nand B, ’1’, A or B)  -- Aggregate
                                             -- assignment
...
X(1) <= ’1’;                                 -- Element
X(2) <= A nand B;                            -- assignment
X(3) <= ’1’;
X(4) <= A or B;

You can specify an element’s index with either positional or named 
notation. With positional notation, each element is given the value of its
expression in order, as shown in Example 5-21. 

With named notation, the choice => construct specifies one or more 
elements of the array. The choice can contain an expression (such as (I mod 

2) =>) to indicate a single element index, or a range (such as 3 to 5 => or 7 

downto 0 =>) to indicate a sequence of element indexes.

An aggregate can use both positional and named notation, but position
expressions must appear before named (choice) expressions.

It is not necessary to specify all element indexes in an aggregate. All 
unassigned values are given a value by including others => expression as the 
last element of the list.

Example 5-22 shows several aggregates representing the same value.

Example 5-22 Equivalent Aggregates

subtype MY_VECTOR is BIT_VECTOR(1 to 4);

MY_VECTOR’(’1’, ’1’, ’0’, ’0’);
MY_VECTOR’(2 => ’1’, 3 => ’0’, 1 => ’1’, 4 => ’0’);
MY_VECTOR’(’1’, ’1’, others => ’0’);
MY_VECTOR’(3 => ’0’, 4 => ’0’, others => ’1’);
MY_VECTOR’(3 to 4 => ’0’, 2 downto 1 => ’1’);

The others expression must be the only expression in the aggregate. 
Example 5-23 shows two equivalent aggregates.
Expressions 5–25
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Example 5-23 Equivalent Aggregates Using the others Expression

MY_VECTOR’(others => ’1’);
MY_VECTOR’(’1’, ’1’, ’1’, ’1’);

To use an aggregate as the target of an assignment statement, see 
“Aggregate Targets” in Chapter 6, “Sequential Statements.”

Attributes

VHDL defines attributes for various types. A VHDL attribute takes a 
variable or signal of a given type and returns a value. The syntax of an
attribute is

object’ attribute

FPGA Express supports the following predefined VHDL attributes for use 
with arrays, as described under “Array Types” in Chapter 4, “Data Types.”

• left

• right

• high

• low

• length

• range

• reverse_range

FPGA Express also supports the following predefined VHDL attributes fo
use with wait and if statements, as described in Chapter 8, “Register and 
Three-State Inference”:

• event 

• stable

In addition to supporting the predefined VHDL attributes listed above, 
FPGA Express has a defined set of synthesis-related attributes. These 
FPGA Express-specific attributes can be placed in your VHDL design 
description to direct optimization. 
Expressions
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Function Calls

A function call executes a named function with the given parameter values. 
The value returned to an operator is the function’s return value. The sy
of a function call is

function_name ( [parameter_name =>] expression 
                {, [parameter_name =>] expression } 

function_name is the name of a defined function. The optional 
parameter_name is an expression of formal parameters, as defined by
function. Each expression provides a value for its parameter, and must 
evaluate to a type appropriate for that parameter.

You can specify parameters in positional or named notation, like aggre
values.

In positional notation, the parameter_name => construct is omitted. Th
first expression provides a value for the function’s first parameter, the 
second expression provides a value for the second parameter, and so 

In named notation, parameter_name => is specified before an expression;
the named parameter gets the value of that expression.

You can mix positional and named expressions in the same function ca
long as all positional expressions appear before the named parameter
expressions. 

Function calls are implemented by logic unless you use the map_to_en
compiler directive. For more information, see “Mapping Subprograms t
Components” in Chapter 6, “Sequential Statements,” and “Component
Implication Directives” in Chapter 9, “FPGA Express Directives.”

Example 5-24 shows a function declaration and several equivalent func
calls.

Example 5-24 Function Calls

function FUNC(A, B, C: INTEGER) return BIT;
. . .
FUNC(1, 2, 3)
FUNC(B => 2, A => 1, C => 7 mod 4)
FUNC(1, 2, C => -3+6)
Expressions 5–27
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Qualified Expressions

Qualified expressions state the type of an operand to resolve ambiguities in 
an operand’s type. You cannot use qualified expressions for type conversion 
(see “Type Conversions” later in this chapter).

The syntax of a qualified expression is

type_name’( expression)

type_name is the name of a defined type. expression must evaluate to a 
value of an appropriate type. 

Note: A single quote, or tick, must appear between type_name and 
(expression). If the single quote is omitted, the construction is interpreted 
as a type conversion (see “Type Conversions” later in this chapter). 

Example 5-25 shows a qualified expression that resolves an overloaded 
function by qualifying the type of a decimal literal parameter.

Example 5-25 A Qualified Decimal Literal

type R_1 is range 0 to 10;  -- Integer 0 to 10
type R_2 is range 0 to 20;  -- Integer 0 to 20

function FUNC(A: R_1) return BIT;
function FUNC(A: R_2) return BIT;

FUNC(5)         -- Ambiguous; could be of type R_1, 
                --   R_2, or INTEGER

FUNC(R_1’(5))   -- Unambiguous

Example 5-26 shows how qualified expressions resolve ambiguities in 
aggregates and enumeration literals.
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Example 5-26 Qualified Aggregates and Enumeration Literals

type ARR_1 is array(0 to 10) of BIT;
type ARR_2 is array(0 to 20) of BIT;
. . .
(others => ’0’)        -- Ambiguous; could be of
                       -- type ARR_1 or ARR_2

ARR_1’(others => ’0’)  -- Qualified; unambiguous
----------------------------------------------------
--
type ENUM_1 is (A, B);
type ENUM_2 is (B, C);
. . .
B                      -- Ambiguous; could be of 
                       -- type ENUM_1 or ENUM_2

ENUM_1’(B)             -- Qualified; unambiguous

Type Conversions

Type conversions change an expression’s type. Type conversions are 
different from qualified expressions because they change the type of th
expression; whereas qualified expressions simply resolve the type of an 
expression.

The syntax of a type conversion is

type_name(expression)

type_name is the name of a defined type. The expression must evaluat
value of a type that can be converted into type type_name.

• Type conversions can convert between integer types or between simila
array types. 

• Two array types are similar if they have the same length and if they ha
convertible or identical element types. 

• Enumerated types cannot be converted. 

Example 5-27 shows some type definitions and associated signal 
declarations, followed by legal and illegal type conversions.
Expressions 5–29
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Example 5-27 Legal and Illegal Type Conversions

type INT_1 is range 0 to 10;
type INT_2 is range 0 to 20;

type ARRAY_1 is array(1 to 10) of INT_1;
type ARRAY_2 is array(11 to 20) of INT_2;

subtype MY_BIT_VECTOR is BIT_VECTOR(1 to 10);
type BIT_ARRAY_10 is array(11 to 20) of BIT;
type BIT_ARRAY_20 is array(0 to 20) of BIT;

signal S_INT:      INT_1;
signal S_ARRAY:    ARRAY_1;
signal S_BIT_VEC:  MY_BIT_VECTOR;
signal S_BIT:      BIT;

       -- Legal type conversions

INT_2(S_INT)   
  -- Integer type conversion

BIT_ARRAY_10(S_BIT_VEC)
  -- Similar array type conversion

       -- Illegal type conversions

BOOLEAN(S_BIT);  
  -- Can’t convert between enumerated types

INT_1(S_BIT);
  -- Can’t convert enumerated types to other types

BIT_ARRAY_20(S_BIT_VEC); 
  -- Array lengths not equal

ARRAY_1(S_BIT_VEC);  
  -- Element types cannot be converted 
Expressions
Operands
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Sequential Statements
Sequential statements like A := 3 are interpreted one after another, in the 
order in which they are written. VHDL sequential statements can appear 
only in a process or subprogram. A VHDL process is a group of sequential 
statements; a subprogram is a procedure or function.

To familiarize yourself with sequential statements, consider the following:

• Assignment statements

• Variable assignment statements

• Signal assignment statements

• if statements

• case statements

• loop statements

• next statements

• exit statements

• Subprograms

• return statements

• wait statements

• null statements
Sequential Statements 6–1
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Processes are composed of sequential statements, but processes are 
themselves concurrent statements (see Chapter 7, “Concurrent 
Statements”). All processes in a design execute concurrently. Howeve
any given time only one sequential statement is interpreted within each
process. 

A process communicates with the rest of a design by reading or writing
values to and from signals or ports declared outside the process.

Sequential algorithms can be expressed as subprograms and can be c
sequentially (as described in this chapter) or concurrently (as describe
Chapter 7, “Concurrent Statements”).

Sequential statements are

assignment statements
that assign values to variables and signals.

flow control statements
that conditionally execute statements (if and case), repeat statement
(for...loop), and skip statements (next and exit).

subprograms 
that define sequential algorithms for repeated use in a design (proce
and function). 

wait statement 
to pause until an event occurs (wait).

null statement 
to note that no action is necessary (null). 

Assignment Statements

An assignment statement assigns a value to a variable or signal. The s
is

target := expression;  -- Variable assignment
target <= expression;  -- Signal assignment

target is a variable or signal (or part of a variable or signal, such as a 
subarray) that receives the value of the expression. The expression must 
evaluate to the same type as the target. See Chapter 5, “Expressions,”
more information on expressions. 
Sequential Statements
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The difference in syntax between variable assignments and signal 
assignments is that variables use := and signals use <=. The basic semantic 
difference is that variables are local to a process or subprogram, and their 
assignments take effect immediately. 

Signals need not be local to a process or subprogram, and their assignments 
take effect at the end of a process. Signals are the only means of 
communication between processes. For more information on semantic 
differences, see “Signal Assignment” later in this chapter.

Assignment Targets

Assignment statements have five kinds of targets:

• Simple names, such as my_var

• Indexed names, such as my_array_var(3)

• Slices, such as my_array_var(3 to 6)

• Field names, such as my_record.a_field

• Aggregates, such as (my_var1, my_var2)

A assignment target can be either a variable or a signal; the following 
descriptions refer to both.

Simple Name Targets

The syntax for an assignment to a simple name target is

identifier := expression;  -- Variable assignment
identifier <= expression;  -- Signal assignment

identifier is the name of a signal or variable. The assigned expression m
have the same type as the signal or variable. For array types, all eleme
the array are assigned values. 

Example 6-1 shows some assignments to simple name targets.
Sequential Statements 6–3
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Example 6-1 Simple Name Targets

variable A, B: BIT;
signal   C:    BIT_VECTOR(1 to 4);

-- Target    Expression
     A    := ’1’;    -- Variable A is assigned ’1’
     B    := ’0’;    -- Variable B is assigned ’0’
     C    <= -1100"; -- Signal array C is assigned
                     --   -1100"

Indexed Name Targets

The syntax for an assignment to an indexed name target is

identifier(index_expression) := expression;
  -- Variable assignment

identifier(index_expression) <= expression;
  -- Signal assignment

identifier is the name of an array type signal or variable. index_expression 
must evaluate to an index value for the identifier array’s index type and
bounds but does not have to be computable (see “Computable Operan
Chapter 5, “Expressions”), but more hardware is synthesized if it is not

The assigned expression must contain the array’s element type.

In Example 6-2, the elements for array variable A are assigned values 
indexed names.

Example 6-2 Indexed Name Targets

variable A: BIT_VECTOR(1 to 4);

-- Target    Expression;
   A(1)   := ’1’;    -- Assigns ’1’ to the first
                     --   element of array A.
   A(2)   := ’1’;    -- Assigns ’1’ to the second
                     --   element of array A.
   A(3)   := ’0’;    -- Assigns ’0’ to the third
                     --   element of array A.
   A(4)   := ’0’;    -- Assigns ’0’ to the fourth
                     --   element of array A.

Example 6-3 shows two indexed name targets. One of the targets is 
computable and the other is not. Note the differences in the hardware 
generated for each assignment.
Sequential Statements
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Example 6-3 Computable and Noncomputable Indexed Name Targets

signal A, B: BIT_VECTOR(0 to 3);
signal I: INTEGER range 0 to 3;
signal Y, Z: BIT;

A    <= -0000";
B    <= -0000";
A(I) <= Y;  -- Noncomputable index expression
B(3) <= Z;  -- Computable index expression

Figure 6-1 Circuit for Computable and Noncomputable Indexed Name Targets 

Slice Targets

The syntax for a slice target is

identifier(index_expr_1 direction index_expr_2)

identifier is the name of an array type signal or variable. Each index_expr 
expression must evaluate to an index value for the identifier array’s ind
type and bounds. Both index_expr expressions must be computable (s
Sequential Statements 6–5
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“Computable Operands” in Chapter 5, “Expressions”), and must lie with
the bounds of the array. direction must match the identifier array type’s
direction—either to or downto.

The assigned expression must contain the array’s element type.

In Example 6-4, array variables A and B are assigned the same value.

Example 6-4 Slice Targets

variable A, B: BIT_VECTOR(1 to 4);

-- Target       Expression;
   A(1 to 2) := -11";  -- Assigns -11" to the first
                       -- two elements of array A
   A(3 to 4) := -00";  -- Assigns -00" to the last
                       -- two elements of array A
   B(1 to 4) := -1100";-- Assigns -1100" to array B

Field Targets

The syntax for a field target is

identifier.field_name

identifier is the name of a record type signal or variable, and field_nam
the name of a field in that record type, preceded by a period (.). The 
assigned expression must contain the identified field’s type. A field can
of any type, including an array, record, or aggregate type. 

Example 6-5 assigns values to the fields of record variables A and B.
Sequential Statements
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Example 6-5 Field Targets

type REC is 
    record
        NUM_FIELD:   INTEGER range -16 to 15;
        ARRAY_FIELD: BIT_VECTOR(3 to 0);
    end record;

variable A, B: REC;

-- Target        Expression;
   A.NUM_FIELD   := -12;     -- Assigns -12 to record A’s
                             -- field NUM_FIELD 
  
   A.ARRAY_FIELD := -0011";  -- Assigns -0011" to record
                             -- A’s field ARRAY_FIELD
   A.ARRAY_FIELD(3) := ’1’;  -- Assigns ’1’ to the most-
                             -- significant bit of record
                             -- A’s field ARRAY_FIELD

   B             := A;       -- Assigns values of record
                             -- A to corresponding fields
                             -- of B

For more information about field targets see “Record Types” in Chapte
“Data Types.” 

Aggregate Targets

The syntax for an assignment to an aggregate target is

([choice =>] identifier 
 {,[choice =>] identifier}) := array_expression;
  -- Variable assignment

([choice =>] identifier 
 {,[choice =>] identifier}) <= array_expression;
  -- Signal assignment

An aggregate assignment assigns array_expression’s element values 
or more variable or signal identifiers.

Each choice (optional) is an index expression selecting an element or a
of the assigned array_expression. Each identifier must have the eleme
type of array_expression. An identifier can be an array type.

Example 6-6 shows some aggregate targets.
Sequential Statements 6–7
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Example 6-6 Aggregate Targets

signal A, B, C, D: BIT;
signal S: BIT_VECTOR(1 to 4);
. . .
variable E, F:  BIT;
variable G: BIT_VECTOR(1 to 2);
variable H: BIT_VECTOR(1 to 4);

-- Positional notation 
S            <= (’0’, ’1’, ’0’, ’0’);
(A, B, C, D) <= S;      -- Assigns ’0’ to A
                        -- Assigns ’1’ to B
                        -- Assigns ’0’ to C
                        -- Assigns ’0’ to D

-- Named notation
(3 => E,    4 => F, 
 2 => G(1), 1 => G(2)) := H;
                        -- Assigns H(1) to G(2)
                        -- Assigns H(2) to G(1)
                        -- Assigns H(3) to E
                        -- Assigns H(4) to F

You can assign array element values to the identifiers by position or by 
name. In positional notation, the choice => construct is not used. Identifiers 
are assigned array element values in order, from the left array bound to the 
right array bound. 

In named notation, the choice => construct identifies specific elements of 
the assigned array. A choice index expression indicates a single element, 
such as 3. The type of identifier must match the assigned expression’s
element type.

Positional and named notation can be mixed, but positional association
must appear before named associations.

Variable Assignment Statement

A variable assignment changes the value of a variable. The syntax is

target := expression;

expression determines the assigned value; its type must be compatible
target. See Chapter 5, “Expressions,” for further information about 
expressions. target names the variables that receive the value of expre
See “Assignment Targets” earlier in this chapter for a description of 
variable assignment targets.
Sequential Statements
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When a variable is assigned a value, the assignment takes place 
immediately. A variable keeps its assigned value until it is assigned a new 
value.

Signal Assignment Statement

A signal assignment changes the value being driven on a signal by the 
current process. The syntax is

target <= expression;

expression determines the assigned value; its type must be compatible with 
target. See Chapter 5, “Expressions,” for further information about 
expressions. target names the signals that receive the value of express
See “Assignment Targets” earlier in this chapter for a description of sig
assignment targets.

Signals and variables behave differently when they are assigned values
differences lie in the way the two kinds of assignments take effect, and 
that affects the values read from either variables or signals.

Variable Assignment

When a variable is assigned a value, the assignment takes place 
immediately. A variable keeps its assigned value until it is assigned a n
value.

Signal Assignment

When a signal is assigned a value, the assignment does not necessaril
effect because the value of a signal is determined by the processes (or
concurrent statements) that drive it.

• If several values are assigned to a given signal in one process, only th
assignment is effective. Even if a signal in a process is assigned, read,
reassigned, the value read (either inside or outside the process) is the 
assignment value. 

• If several processes (or other concurrent statements) assign values to 
signal, the drivers are wired together. The resulting circuit depends on 
expressions and the target technology. The circuit might be invalid, wir
AND, wired OR, or a three-state bus. See “Driving Signals” in Chapter
“Concurrent Statements,” for more information.
Sequential Statements 6–9
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Example 6-7 shows the different effects of variable and signal assignments.

Example 6-7 Signal and Variable Assignments

signal S1, S2: BIT; 
signal S_OUT:    BIT_VECTOR(1 to 8); 
. . . 
process( S1, S2 ) 
  variable V1, V2: BIT;
begin
  V1 := ’1’;   -- This sets the value of V1
  V2 := ’1’;   -- This sets the value of V2
  S1 <= ’1’;   -- This assignment is the driver for S1
  S2 <= ’1’;   -- This has no effect because of the
               --   assignment later in this process

  S_OUT(1) <= V1; -- Assigns ’1’, the value assigned above
  S_OUT(2) <= V2; -- Assigns ’1’, the value assigned above
  S_OUT(3) <= S1; -- Assigns ’1’, the value assigned above
  S_OUT(4) <= S2; -- Assigns ’0’, the value assigned below
  

  V1 := ’0’;   -- This sets the new value of V1
  V2 := ’0’;   -- This sets the new value of V2
  S2 <= ’0’;   -- This assignment overrides the 
               --   previous one since it is the last 
               --   assignment to this signal in this
               --   process

  S_OUT(5) <= V1; -- Assigns ’0’, the value assigned above
  S_OUT(6) <= V2; -- Assigns ’0’, the value assigned above
  S_OUT(7) <= S1; -- Assigns ’1’, the value assigned above
  S_OUT(8) <= S2; -- Assigns ’0’, the value assigned above
end process;

if Statements

The if statement executes a sequence of statements. The sequence depends 
on the value of one or more conditions. The syntax is

if condition then
     { sequential_statement }
{ elsif condition then
     { sequential_statement } }
[ else
     { sequential_statement } ]
end if;

Each condition must be a Boolean expression. Each branch of an if 
statement can contain one or more sequential_statements.
Sequential Statements
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Evaluating condition

An if statement evaluates each condition in order. The first (and only the 
first) TRUE condition causes the execution of its branch’s statements. 
remainder of the if statement is skipped. 

If none of the conditions are TRUE, and the else clause is present, tho
statements are executed. 

If none of the conditions are TRUE, and no else is present, none of the
statements is executed. 

Example 6-8 shows an if statement and a corresponding circuit.

Example 6-8 if Statement

signal A, B, C, P1, P2, Z: BIT;

if (P1 = ’1’) then
  Z <= A;
elsif (P2 = ’0’) then
  Z <= B;
else
  Z <= C;
end if;

Figure 6-2 Circuit for if Statement
Sequential Statements 6–11
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Using the if Statement to Imply Registers and Latches

Some forms of the if statement can be used like the wait statement, to test 
for signal edges and therefore imply synchronous logic. This usage causes 
FPGA Express to infer registers or latches, as described in Chapter 8, 
“Register and Three-State Inference.”

case Statement

The case statement executes one of several sequences of statements
depending on the value of a single expression. The syntax is

case expression is
     when choices =>
          { sequential_statement }
   { when choices =>
          { sequential_statement } }
end case;

expression must evaluate to an INTEGER or an enumerated type, or a
array of enumerated types, such as BIT_VECTOR. Each of the choice
must be of the form

choice { | choice }

Each choice can be either a static expression (such as 3) or a static ra
(such as 1 to 3). The type of choice_expression determines the type of
choice.   Each value in the range of the choice_expression type must b
covered by one choice. 

The final choice can be others, which matches all remaining (unchosen
values in the range of the expression type. The others choice, if presen
matches expression only if no other choices match.

The case statement evaluates expression and compares that value to 
choice value. The statements following each when clause is evaluated
if the choice value matches the expression value. 

The following restrictions are placed on choices:

• No two choices can overlap.

• If no others choice is present, all possible values of expression must be
covered by the set of choices.
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Using Different Expression Types

Example 6-9 shows a case statement that selects one of four signal 
assignment statements by using an enumerated expression type.

Example 6-9 case Statement That Uses an Enumerated Type

type ENUM is (PICK_A, PICK_B, PICK_C, PICK_D);
signal VALUE: ENUM;

signal A, B, C, D, Z:  BIT;

case VALUE is
  when PICK_A =>
    Z <= A;
  when PICK_B =>
    Z <= B;
  when PICK_C =>
    Z <= C;
  when PICK_D =>
    Z <= D;
end case;

Figure 6-3 Circuit for case Statement That Uses an Enumerated Type 

Example 6-10 shows a case statement again used to select one of four 
signal assignment statements, this time by using an integer expression type 
with multiple choices.
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Example 6-10 case Statement with Integers

signal VALUE is INTEGER range 0 to 15;
signal Z1, Z2, Z3, Z4:  BIT;

Z1 <= ’0’;
Z2 <= ’0’;
Z3 <= ’0’;
Z4 <= ’0’;

case VALUE is
  when 0 =>             -- Matches 0
    Z1 <= ’1’;
  when 1 | 3 =>         -- Matches 1 or 3
    Z2 <= ’1’;
  when 4 to 7 | 2 =>    -- Matches 2, 4, 5, 6, or 7
    Z3 <= ’1’;
  when others =>        -- Matches remaining values,
                        --   8 through 15
    Z4 <= ’1’;
end case;

Figure 6-4 Circuit for case Statement with Integers 

Invalid case Statements

Example 6-11 shows four invalid case statements.
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Example 6-11 Invalid case Statements

signal VALUE:  INTEGER range 0 to 15;
signal OUT_1:  BIT;

case VALUE is          -- Must have at least one when
end case;              --   clause

case VALUE is          -- Values 2 to 15 are not
  when 0 =>            --   covered by choices
    OUT_1 <= ’1’;
  when 1 =>
    OUT_1 <= ’0’;
end case;

case VALUE is           -- Choices 5 to 10 overlap
  when 0 to 10 =>
    OUT_1 <= ’1’;
  when 5 to 15 =>    
    OUT_1 <= ’0’;
end case;

loop Statements

A loop statement repeatedly executes a sequence of statements. The syntax 
is

[label :] [iteration_scheme] loop
    { sequential_statement }
    { next [ label ] [ when condition ] ; }
    { exit [ label ] [ when condition ] ; }
end loop [label];

The optional label names the loop and is useful for building nested loops. 
Each type of iteration_scheme is described in this section.

The next and exit statements are sequential statements used only within 
loops. The next statement skips the remainder of the current loop and 
continues with the next loop iteration. The exit statement skips the 
remainder of the current loop and continues with the next statement after 
the exited loop.

VHDL provides three types of loop statements, each with a different 
iteration scheme:

loop
The basic loop statement has no iteration scheme. Enclosed statements 
are executed repeatedly forever until an exit or next statement is 
encountered.
Sequential Statements 6–15
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while .. loop
The while .. loop statement has a Boolean iteration scheme. If the iteration 
condition evaluates to TRUE, enclosed statements are executed once. 
The iteration condition is then reevaluated. While the iteration condition 
remains true, the loop is repeatedly executed. When the iteration 
condition evaluates to FALSE, the loop is skipped, and execution 
continues with the next statement after the loop.

for .. loop
The for .. loop statement has an integer iteration scheme, where the 
number of repetitions is determined by an integer range. The loop is 
executed once for each value in the range. After the last value in the 
iteration range is reached, the loop is skipped, and execution continues 
with the next statement after the loop.

Caution Noncomputable loops (loop and while..loop statements) must have at least 
one wait statement in each enclosed logic branch. Otherwise, a 
combinational feedback loop is created. See “wait Statement” later in th
chapter for more information.

Conversely, computable loops (for..loop statements) must not contain wait 
statements. Otherwise, a race condition might result.

loop Statement

The loop statement, with no iteration scheme, repeats enclosed statements 
indefinitely. The syntax is

[label :] loop
    { sequential_statement }
end loop [label];

The optional label names this loop.

sequential_statement can be any statement described in this chapter. Two 
sequential statements are used only with loops: the next statement, which 
skips the remainder of the current loop iteration, and the exit statement, 
which terminates the loop. These statements are described in the next two 
sections.

Note: A loop statement must have at least one wait statement in each 
enclosed logic branch. See “wait Statement” later in this chapter for an
example.
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while .. loop Statement

The while .. loop statement repeats enclosed statements as long as its 
iteration condition evaluates to TRUE. The syntax is

[label :] while condition loop
    { sequential_statement }
end loop [label];

The optional label names this loop. condition is any Boolean expression, 
such as ((A = ’1’) or (X < Y)).

sequential_statement can be any statement described in this chapter. 
sequential statements are used only with loops: the next statement, wh
skips the remainder of the current loop iteration, and the exit statemen
which terminates the loop. These statements are described in the next
sections.

Note: A while..loop statement must have at least one wait statement in 
each enclosed logic branch. See “wait Statement” later in this chapter fo
an example.

for .. loop Statement

The for .. loop statement repeats enclosed statements once for each value in 
an integer range. The syntax is

[label :] for identifier in range loop
    { sequential_statement }
end loop [label];

The optional label names this loop.

The use of identifier is specific to the for .. loop statement:

• identifier is not declared elsewhere. It is automatically declared by the l
itself and is local to the loop. A loop identifier overrides any other identif
with the same name but only within the loop. 

• The value of identifier can be read only inside its loop (identifier does n
exist outside the loop). You cannot assign a value to a loop identifier.

FPGA Express currently requires that range must be a computable integ
range (see “Computable Operands” in Chapter 5, “Expressions”), in eit
of two forms:

integer_expression to integer_expression

integer_expression downto integer_expression
Sequential Statements 6–17
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Each integer_expression evaluates to an integer. 

sequential_statement can be any statement described in this chapter. Two 
sequential statements are used only with loops: the next statement, which 
skips the remainder of the current loop iteration, and the exit statement, 
which terminates the loop. These statements are described in the next two 
sections.

Note: A for..loop statement must not contain any wait statements.

A for .. loop statement executes as follows:

1. A new, local, integer variable is declared with the name identifier. 

2. identifier is assigned the first value of range, and the sequence of statements 
is executed once.

3. identifier is assigned the next value in range, and the sequence of 
statements is executed once more.

4. Step 3 is repeated until identifier is assigned to the last value in range. The 
sequence of statements is then executed for the last time, and execution 
continues with the statement following end loop. The loop is then 
inaccessible.

Example 6-12 shows two equivalent code fragments.

Example 6-12 for..loop Statement with Equivalent Fragment

variable A, B: BIT_VECTOR(1 to 3);

-- First fragment is a loop statement
for I in 1 to 3 loop
  A(I) <= B(I);
end loop;

-- Second fragment is three equivalent statements
A(1) <= B(1);
A(2) <= B(2);
A(3) <= B(3);
Sequential Statements
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Figure 6-5 Circuit for for..loop Statement with Equivalent Fragment 

You can use a loop statement to operate on all elements of an array without 
explicitly depending on the size of the array. Example 6-13 shows how the 
VHDL array attribute ’range can be used—in this case to invert each 
element of bit vector A.

Example 6-13 for..loop Statement Operating on an Entire Array

variable A, B: BIT_VECTOR(1 to 10);
. . .
for I in A’range loop
  A(I) := not B(I);
end loop;

Figure 6-6 Circuit for for..loop Statement Operating on an Entire Array 

Unconstrained arrays and array attributes are described in “Array Types” in 
Chapter 4, “Data Types.”
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next Statements

The next statement terminates the current iteration of a loop, then continues 
with the first statement in the loop. The syntax is

next [ label ] [ when condition ] ;

A next statement with no label terminates the current iteration of the 
innermost enclosing loop. When you specify a loop label, the current 
iteration of that named loop is terminated.

The optional when clause executes its next statement when its condition (a 
Boolean expression) evaluates to TRUE.

Example 6-14 uses the next statement to copy bits conditionally from bit 
vector B to bit vector A only when the next condition evaluates to TRUE.

Example 6-14 next Statement

signal A, B, COPY_ENABLE: BIT_VECTOR (1 to 8);
. . .
A <= -00000000";
. . .
-- B is assigned a value, such as -01011011"
-- COPY_ENABLE is assigned a value, such as 
-11010011"
. . .
for I in 1 to 8 loop
  next when COPY_ENABLE(I) = ’0’;
  A(I) <= B(I);
end loop; 
Sequential Statements
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Figure 6-7 Circuit for next Statement

Example 6-15 shows the use of nested next statements in named loops. This 
example processes:

• The first element of vector X against the first element of vector Y, 

• The second element of vector X against each of the first two elements 
vector Y, 

• The third element of vector X against each of the first three elements o
vector Y,

The processing continues in this manner until it is completed.

Example 6-15 Named next Statement

signal X, Y: BIT_VECTOR(0 to 7);

A_LOOP: for I in X’range loop
. . .
  B_LOOP: for J in Y’range loop
    . . .
    next A_LOOP when I < J;
    . . .
  end loop B_LOOP;
. . .
end loop A_LOOP;
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exit Statements

The exit statement terminates a loop. Execution continues with the 
statement following end loop. The syntax is

exit [ label ] [ when condition ] ;

An exit statement with no label terminates the innermost enclosing loop. 
When you identify a loop label, that named loop is terminated, as shown 
earlier in Example 6-15.

The optional when clause executes its exit statement when its condition (a 
Boolean expression) evaluates to TRUE.

The exit and next statements are equivalent constructs. Both statements use 
identical syntax, and both skip the remainder of the enclosing (or named) 
loop. The only difference between the two statements is that exit terminates 
its loop, and next continues with the next loop iteration (if any).

Example 6-16 compares two bit vectors. An exit statement exits the 
comparison loop when a difference is found.

Example 6-16 Comparator Using the exit Statement

signal A, B:          BIT_VECTOR(1 downto 0);
signal A_LESS_THAN_B: Boolean;
. . .
A_LESS_THAN_B <= FALSE;

for I in 1 downto 0 loop
  if (A(I) = ’1’ and B(I) = ’0’) then
    A_LESS_THAN_B <= FALSE;
    exit;
  elsif (A(I) = ’0’ and B(I) = ’1’) then
    A_LESS_THAN_B <= TRUE;
    exit;
  else
    null;      -- Continue comparing
  end if;
end loop;
Sequential Statements
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Figure 6-8 Circuit for Comparator Using the exit Statement 

Subprograms

Subprograms are independent, named algorithms. A subprogram is either a 
procedure (zero or more in, inout, or out parameters) or a function (zero or 
more in parameters and one return value). Subprograms are called by name 
from anywhere within a VHDL architecture or a package body. 
Subprograms can be called sequentially (as described later in this chapter) 
or concurrently (as described in Chapter 7,”Concurrent Statements”). 

In hardware terms, a subprogram call is similar to module instantiation
except that a subprogram call becomes part of the current circuit, wher
module instantiation adds a level of hierarchy to the design. A synthes
subprogram is always a combinational circuit (use a process to create 
sequential circuit).

Subprograms, like packages, have subprogram declarations and 
subprogram bodies. A subprogram declaration specifies its name, 
parameters, and return value (for functions). A subprogram body then 
implements the operation you want. 

Often, a package contains only type and subprogram declarations for u
other packages. The bodies of the declared subprograms are then 
implemented in the bodies of the declaring packages. 

The advantage of the separation between declarations and bodies is th
subprogram interfaces can be declared in public packages during syste
development. One group of developers can use the public subprogram
another group develops the corresponding bodies. You can modify pac
bodies, including subprogram bodies, without affecting existing users o
that package’s declarations. You can also define subprograms locally in
an entity, block, or process.
Sequential Statements 6–23
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FPGA Express implements procedure and function calls with 
combinational logic, unless you use the map_to_entity compiler directive 
(see “Mapping Subprograms to Components” later in this chapter). FPG
Express does not allow inference of sequential devices, such as latches
flip-flops, in subprograms.

Example 6-17 shows a package containing some procedure and functi
declarations and bodies. The example itself is not synthesizable; it just
creates a template. Designs that instantiate procedure P, however, compile 
normally.

Example 6-17 Subprogram Declarations and Bodies

package EXAMPLE is
  procedure P (A: in INTEGER; B: inout INTEGER);
    -- Declaration of procedure P

  function INVERT (A: BIT) return BIT;
    -- Declaration of function INVERT
end EXAMPLE;

package body EXAMPLE is
  procedure P (A: in INTEGER; B: inout INTEGER) is
    -- Body of procedure P
  begin
    B := A + B;
  end; 

  function INVERT (A: BIT) return BIT is
    -- Body of function INVERT
  begin
    return (not A);
  end;
end EXAMPLE;

For more information about subprograms, see Chapter 3, “Describing 
Designs.”

Subprogram Calls

Subprograms can have zero or more parameters. A subprogram decla
defines each parameter’s name, mode, and type. These are a subprog 
formal parameters. When the subprogram is called, each formal param
is given a value, termed the actual parameter. Each actual parameter’s 
value (of an appropriate type) can come from an expression, a variable
signal.
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The mode of a parameter specifies whether the actual parameter can be read 
from (mode in), written to (mode out), or both read from and written to 
(mode inout). Actual parameters that use modes out and inout must be 
variables or signals, including indexed names (A(1)) and slices (A(1 to 3)), 
but cannot be constants or expressions.

Procedures and functions are two kinds of subprograms:

procedure
Can have multiple parameters that use modes in, inout, and out. Does not 
itself return a value.

Procedures are used when you want to update some parameters (modes 
out and inout), or when you do not need a return value. An example 
might be a procedure with one inout bit vector parameter that inverted 
each bit in place.

function
Can have multiple parameters, but only parameters that use mode in. 
Returns its own function value. Part of a function definition specifies its 
return value type (also called the function type).

Functions are used when you do not need to update the parameters and 
you want a single return value. For example, the arithmetic function ABS 
returns the absolute value of its parameter.

Procedure Calls
A procedure call executes the named procedure with the given parameters. 
The syntax is

procedure_name [ ( [ name => ] expression
                 { , [ name => ] expression } ) ] ;

Each expression is called an actual parameter; expression is often just an 
identifier. If a name is present (positional notation), it is a formal parameter 
name associated with the actual parameter’s expression. 

Formal parameters are matched to actual parameters by positional or 
named notation. Named and positional notation can be mixed, but 
positional parameters must appear before named parameters.

Conceptually, a procedure call is performed in three steps. First, the va
of the in and inout actual parameters are assigned to their associated fo
parameters. Second, the procedure is executed. Third, the values of th
inout and out formal parameters are assigned to the actual parameters

In the synthesized hardware, the procedure’s actual inputs and outputs
wired to the procedure’s internal logic.
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Example 6-18 shows a local procedure named SWAP that compares two 
elements of an array and exchanges these elements if they are out of order. 
SWAP is repeatedly called to sort an array of three numbers.

Example 6-18 Procedure Call to Sort an Array

package DATA_TYPES is 
  type DATA_ELEMENT is range 0 to 3;
  type DATA_ARRAY is array (1 to 3) of DATA_ELEMENT;
end DATA_TYPES;

use WORK.DATA_TYPES.ALL;
entity SORT is
  port(IN_ARRAY:   in DATA_ARRAY;
       OUT_ARRAY: out DATA_ARRAY);
end SORT;

architecture EXAMPLE of SORT is
begin

  process(IN_ARRAY)
    procedure SWAP(DATA:   inout DATA_ARRAY;
                   LOW, HIGH: in INTEGER) is
      variable TEMP: DATA_ELEMENT;
    begin
      if(DATA(LOW) > DATA(HIGH)) then  -- Check data
        TEMP := DATA(LOW);       
        DATA(LOW) := DATA(HIGH);       -- Swap data
        DATA(HIGH) := TEMP;
      end if;
    end SWAP;

    variable MY_ARRAY: DATA_ARRAY;

  begin
    MY_ARRAY := IN_ARRAY;   -- Read input to variable

    -- Pair-wise sort
    SWAP(MY_ARRAY, 1, 2);   -- Swap first and second
    SWAP(MY_ARRAY, 2, 3);   -- Swap second and third
    SWAP(MY_ARRAY, 1, 2);   -- Swap first and second 
again
    OUT_ARRAY <= MY_ARRAY;  -- Write result to output
  end process;
end EXAMPLE;
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Figure 6-9 Circuit for Procedure Call to Sort an Array 

Function Calls
A function call is similar to a procedure call, except that a function call is a 
type of expression because it returns a value.

Example 6-19 shows a simple function definition and two calls to that 
function.

Example 6-19 Function Call

function INVERT (A : BIT) return BIT is
  begin
    return (not A);
  end;
...
process
  variable V1, V2, V3: BIT;
begin
  V1 := ’1’;
  V2 := INVERT(V1) xor 1;   
  V3 := INVERT(’0’);  
end process;

For more information, see “Function Calls” in Chapter 5, “Expressions.”
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return Statements

The return statement terminates a subprogram. This statement is required in 
function definitions and is optional in procedure definitions. The syntax is

return expression ;      -- Functions
return ;                 -- Procedures

The required expression provides the function’s return value. Every 
function must have at least one return statement. The expression’s typ
must match the declared function type. A function can have more than
return statement. Only one return statement is reached by a given func
call.

A procedure can have one or more return statements, but no expressio
allowed. A return statement, if present, is the last statement executed i
procedure. 

In Example 6-20, the function OPERATE returns either the AND or the O
of its parameters A and B. The return depends on the value of its param
OPERATION.

Example 6-20 Use of Multiple return Statements

function OPERATE(A, B, OPERATION: BIT) return BIT is
begin
  if (OPERATION = ’1’) then
    return (A and B);
  else
    return (A or B);
  end if;
end OPERATE;
Sequential Statements
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Figure 6-10 Circuit Using Multiple return Statements

Mapping Subprograms to Components (Entities) 

In VHDL, entities cannot be invoked from within behavioral code. 
Procedures and functions cannot exist as entities (components), but must be 
represented by gates. You can overcome this limitation with the compiler 
directive map_to_entity, which causes FPGA Express to implement a 
function or procedure as a component instantiation. Procedures and 
functions that use map_to_entity are represented as components in designs 
in which they are called.

You can also use the FPGA Express Implementation window to create a 
new level of hierarchy from a VHDL subprogram, as described in the 
FPGA Express online help.

When you add a map_to_entity directive to a subprogram definition, FPGA 
Express assumes the existence of an entity with the identified name and the 
same interface. FPGA Express does not check this assumption until it links 
the parent design. The matching entity must have the same input and output 
port names. If the subprogram is a function, you must also provide a 
return_port_name directive, where the matching entity has an output port of 
the same name. 

These two directives are called component implication directives:

-- pragma map_to_entity    entity_name
-- pragma return_port_name port_name 

Insert these directives after the function or procedure definition. For 
example:

  function MUX_FUNC(A,B: in TWO_BIT; C: in BIT) 
return
      TWO_BIT is

  -- pragma map_to_entity MUX_ENTITY
  -- pragma return_port_name Z
...
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When FPGA Express encounters the map_to_entity directive, it parses but 
ignores the contents of the subprogram definition. Use 
-- pragma translate_off and -- pragma translate_on to hide simulation-specific 
constructs in a map_to_entity subprogram. 

Note: The matching entity (entity_name) does not need to be written in 
VHDL. It can be in any format that FPGA Express supports. 

Caution The behavioral description of the subprogram is not checked against the 
functionality of the entity overloading it. Presynthesis and post-synthesis 
simulation results might not match if differences in functionality exist 
between the VHDL subprogram and the overloaded entity.

Example 6-21 shows a function that uses the component implication 
directives.
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Example 6-21 Using Component Implication Directives on a Function 

package MY_PACK is
  subtype TWO_BIT is BIT_VECTOR(1 to 2);
  function MUX_FUNC(A,B: in TWO_BIT; C: in BIT) 
return
      TWO_BIT;
end;

package body MY_PACK is

  function MUX_FUNC(A,B: in TWO_BIT; C: in BIT) 
return
      TWO_BIT is

  -- pragma map_to_entity MUX_ENTITY
  -- pragma return_port_name Z

  -- contents of this function are ignored but should
  -- match the functionality of the module MUX_ENTITY
  -- so pre- and post simulation will match
  begin
    if(C = ’1’) then
      return(A);
    else 
      return(B);
    end if;
  end;

end;

use WORK.MY_PACK.ALL;

entity TEST is
  port(A: in TWO_BIT; C: in BIT; TEST_OUT: out 
TWO_BIT);
end;

architecture ARCH of TEST is
begin
  process
  begin
    TEST_OUT <= MUX_FUNC(not A, A, C); 
                               -- Component 
implication call
  end process;
end;
use WORK.MY_PACK.ALL;

-- the following entity ’overloads’ the function
-- MUX_FUNC above

entity MUX_ENTITY is
  port(A, B: in TWO_BIT; C: in BIT; Z: out TWO_BIT);
end;

architecture ARCH of MUX_ENTITY is
begin
  process
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  begin
      case C is
          when ’1’ => Z <= A;
          when ’0’ => Z <= B;
      end case;
  end process;
end;

Figure 6-11 Circuit Using Component Implication Directives on a Function 

Example 6-22 shows the same design as Example 6-21, but without the 
creation of an entity for the function. The compiler directives have been 
removed.
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Example 6-22 Using Gates to Implement a Function 

package MY_PACK is
  subtype TWO_BIT is BIT_VECTOR(1 to 2);
  function MUX_FUNC(A,B: in TWO_BIT; C: in BIT) 
      return TWO_BIT;
end;

package body MY_PACK is

  function MUX_FUNC(A,B: in TWO_BIT; C: in BIT) 
      return TWO_BIT is
  begin
    if(C = ’1’) then
      return(A);
    else 
      return(B);
    end if;
  end;
end;

use WORK.MY_PACK.ALL;

entity TEST is
  port(A: in TWO_BIT; C: in BIT; Z: out TWO_BIT);
end;

architecture ARCH of TEST is
begin
  process
  begin
    Z <= MUX_FUNC(not A, A, C); 
  end process;
end;
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Figure 6-12 Circuit Using Gates to Implement a Function

wait Statements

A wait statement suspends a process until a positive-going edge or 
negative-going edge is detected on a signal. The syntax is

wait until signal = value ;

wait until signal’event and  signal = value ;

wait until not signal’stable 
           and  signal = value ;

signal is the name of a single-bit signal—a signal of an enumerated type 
encoded with one bit (see “Enumeration Encoding” in Chapter 4, “Data 
Types”). value must be one of the literals of the enumerated type. If the
signal type is BIT, the awaited value is either ’1’ for a positive-going ed
or ’0’ for a negative-going edge.

Note: The three forms of the wait statement, a subset of IEEE VHDL, are 
specific to the current implementation of FPGA Express.

Inferring Synchronous Logic

A wait statement implies synchronous logic, where signal is usually a cl
signal. The next section describes how FPGA Express infers and 
implements this logic.

Example 6-23 shows three equivalent wait statements (all positive-edg
triggered).

Example 6-23 Equivalent wait Statements

wait until CLK = ’1’;
wait until CLK’event and CLK = ’1’;
wait until not CLK’stable and CLK = ’1’;
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When a circuit is synthesized, the hardware in the three forms of wait 
statements does not differ. 

Example 6-24 shows a wait statement used to suspend a process until the 
next positive edge (a 0-to-1 transition) on signal CLK. 

Example 6-24 wait for a Positive Edge

signal CLK: BIT;
...
process
begin
  wait until CLK’event and CLK = ’1’; 
    -- Wait for positive transition (edge)
  ...
end process;

Note: IEEE VHDL specifies that a process containing a wait statement 
must not have a sensitivity list. See “Process Statements” in Chapter 7
“Concurrent Statements,” for more information.

Example 6-25 shows how a wait statement is used to describe a circuit 
where a value is incremented on each positive clock edge.

Example 6-25 Loop Using a wait Statement

process
begin
y <= 0;
wait until (clk’event and clk = ’1’);
while (y < MAX) loop
wait until (clk’event and clk = ’1’);
x <= y ;
y <= y + 1;
end loop;
end process;

Example 6-26 shows how multiple wait statements describe a multicycle 
circuit. The circuit provides an average value of its input A over four clock 
cycles.
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Example 6-26 Using Multiple wait Statements 

process
begin
  wait until CLK’event and CLK = ’1’; 
  AVE <= A;
  wait until CLK’event and CLK = ’1’; 
  AVE <= AVE + A;
  wait until CLK’event and CLK = ’1’; 
  AVE <= AVE + A;
  wait until CLK’event and CLK = ’1’; 
  AVE <= (AVE + A)/4;
end process;

Example 6-27 shows two equivalent descriptions. The first description uses 
implicit state logic, and the second uses explicit state logic. 
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Example 6-27 wait Statements and State Logic

-- Implicit State Logic
process 
begin
  wait until CLOCK’event and CLOCK = ’1’;
  if (CONDITION) then 
    X <= A;
  else 
    wait until CLOCK’event and CLOCK = ’1’;
  end if;
end process;

-- Explicit State Logic
...
type STATE_TYPE is (SO, S1);
variable STATE : STATE_TYPE;
...
process 
begin
  wait until CLOCK’event and CLOCK = ’1’;
  case STATE is
    when S0 =>
      if (CONDITION) then
         X <= A;
         STATE := S0;  -- Set STATE here to avoid an
                       -- extra feedback loop in the 
                       -- synthesized logic.
      else 
         STATE := S1;
      end if;
    when S1 =>
      STATE := S0;
  end case;
end process;

Note: wait statements can be used anywhere in a process except in 
for..loop statements or subprograms. However, if any path through the 
logic contains one or more wait statements, all paths must contain at least 
one wait statement.

Example 6-28 shows how a circuit with synchronous reset can be described 
with wait statements in an infinite loop. The reset signal must be checked 
immediately after each wait statement. The assignment statements in 
Example 6-28 (X <= A; and Y <= B;) simply represent the sequential 
statements used to implement your circuit.
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Example 6-28 Synchronous Reset Using wait Statements

process 
begin
  RESET_LOOP: loop
    wait until CLOCK’event and CLOCK = ’1’;
    next RESET_LOOP when (RESET = ’1’);
    X <= A; 
    wait until CLOCK’event and CLOCK = ’1’;
    next RESET_LOOP when (RESET = ’1’);
    Y <= B;
  end loop RESET_LOOP;
end process;

Example 6-29 shows two invalid uses of wait statements. These limitations 
are specific to FPGA Express.

Example 6-29 Invalid Uses of the wait Statement 

...
type COLOR is (RED, GREEN, BLUE);
attribute ENUM_ENCODING : STRING;
attribute ENUM_ENCODING of COLOR : type is -100 010 
001";
signal CLK : COLOR;
...
process
  begin
    wait until CLK’event and CLK = RED; 
       -- Illegal: clock type is not encoded with one 
bit 
    ...
  end;
...

process
  begin 
    if (X = Y) then
       wait until CLK’event and CLK = ’1’; 
       ...
    end if;
       -- Illegal: not all paths contain wait 
statements
    ...
  end;

Combinational vs. Sequential Processes

If a process has no wait statements, the process is synthesized with 
combinational logic. Computations performed by the process react 
immediately to changes in input signals. 
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If a process uses one or more wait statements, it is synthesized with 
sequential logic. The process computations are performed only once for 
each specified clock edge (positive or negative edge). The results of these 
computations are saved until the next edge by storing them in flip-flops. 

The following values are stored in flip-flops:

• Signals driven by the process; see “Signal Assignment Statement” earli
this chapter.

• State vector values, where the state vector can be implicit or explicit (a
Example 6-27).

• Variables that might be read before they are set.

Note: Like the wait statement, some uses of the if statement can also 
imply synchronous logic, causing FPGA Express to infer registers or 
latches. These methods are described in Chapter 8, “Register and 
Three-State Inference.”

Example 6-30 uses a wait statement to store values across clock cycles. The 
example code compares the parity of a data value with a stored value. The 
stored value (called CORRECT_PARITY) is set from the 
NEW_CORRECT_PARITY signal if the SET_PARITY signal is TRUE.

Example 6-30 Parity Tester Using the wait Statement

signal CLOCK: BIT;
signal SET_PARITY, PARITY_OK: Boolean;
signal NEW_CORRECT_PARITY: BIT;
signal DATA: BIT_VECTOR(0 to 3);
...
process
  variable CORRECT_PARITY, TEMP: BIT;
begin
  wait until CLOCK’event and CLOCK = ’1’;

  -- Set new correct parity value if requested
  if (SET_PARITY) then
    CORRECT_PARITY := NEW_CORRECT_PARITY;
  end if;

  -- Compute parity of DATA
  TEMP := ’0’;
  for I in DATA’range loop
    TEMP := TEMP xor DATA(I);
  end loop;

  -- Compare computed parity with the correct value
  PARITY_OK <= (TEMP = CORRECT_PARITY);
end process;
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Figure 6-13 Circuit for Parity Tester Using the wait Statement

Note that two flip-flops are in the synthesized schematic for Example 6-30. 
The first (input) flip-flop holds the value of CORRECT_PARITY. A 
flip-flop is needed here because CORRECT_PARITY is read (when it is 
compared to TEMP) before it is set (if SET_PARITY is FALSE). The 
second (output) flip-flop stores the value of PARITY_OK between clock 
cycles. The variable TEMP is not given a flip-flop because it is always set 
before it is read.

null Statements

The null statement explicitly states that no action is required. The null 
statement is often used in case statements because all choices must be 
covered, even if some of the choices are ignored. The syntax is

null;

Example 6-31 shows a typical use of the null statement.

Example 6-31 null Statement

signal CONTROL: INTEGER range 0 to 7;
signal A, Z: BIT; 
...
Z <= A;

case CONTROL is      
  when 0 | 7 =>      -- If 0 or 7, then invert A
    Z <= not A;
  when others =>
    null;            -- If not 0 or 7, then do nothing
end case;
Sequential Statements
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A VHDL architecture contains a set of concurrent statements. Each 
concurrent statement defines one of the interconnected blocks or processes 
that describe the overall behavior or structure of a design. Concurrent 
statements in a design execute continuously, unlike sequential statements 
(see Chapter 6, “Sequential Statements”), which execute one after ano

The two main concurrent statements are 

process statement
A process statement defines a process. Processes are composed of
sequential statements (see Chapter 6, “Sequential Statements”), but
processes are themselves concurrent statements. All processes in a
design execute concurrently. However, at any given time only one 
sequential statement is interpreted within each process. A process 
communicates with the rest of a design by reading or writing values t
and from signals or ports declared outside the process.

block statement
A block statement defines a block. Blocks are named collections of 
concurrent statements, optionally using locally defined types, signals
subprograms, and components.

VHDL provides two concurrent versions of sequential statements: 
concurrent procedure calls and concurrent signal assignments. 
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The component instantiation statement references a previously defined 
hardware component. 

Finally, the generate statement creates multiple copies of any concurrent 
statement. 

Concurrent statements consist of

• process statements

• block statements

• Concurrent procedure calls

• Concurrent signal assignments

• Component instantiations

• generate statements

process Statements

A process statement contains an ordered set of sequential statements.
syntax is

[ label: ] process [ ( sensitivity_list ) ]
     { process_declarative_item }
begin
     { sequential_statement }
end process [ label ] ;

An optional label names the process. The sensitivity_list is a list of all 
signals (including ports) read by the process, in the following format:

signal_name {, signal_name} 

The hardware synthesized by FPGA Express is sensitive to all signals read
by the process. To guarantee that a VHDL simulator sees the same re
as the synthesized hardware, a process sensitivity list must contain all 
signals whose changes require resimulation of that process. FPGA Express 
checks sensitivity lists for completeness and issues warning messages
any signals that are read inside a process but are not in the sensitivity 
An error is issued if a clock signal is read as data in a process.

Note: IEEE VHDL does not allow a sensitivity list if the process includes 
a wait statement. 

A process_declarative_item declares subprograms, types, constants, a
variables local to the process. These items can be any of the following
items:

• use clause
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process Statements



its 
n 
on: 
t 
list. 

vity 

. The 
nts.”

.

• Subprogram declaration

• Subprogram body

• Type declaration

• Subtype declaration

• Constant declaration

• Variable declaration

Each sequential_statement is described in Chapter 6, “Sequential 
Statements.”

Conceptually, the behavior of a process is defined by the sequence of 
statements. After the last statement in a process is executed, executio
continues with the first statement. The only exception is during simulati
if a process has a sensitivity list, the process is suspended (after its las
statement) until a change occurs in one of the signals in the sensitivity 

If a process has one or more wait statements (and therefore no sensiti
list), the process is suspended at the first wait statement whose wait 
condition is FALSE.

The hardware synthesized for a process is either combinational (not 
clocked) or sequential (clocked). If a process includes a wait or 
if signal’event statement, its hardware contains sequential components
wait and if statements are described in Chapter 6, “Sequential Stateme

Note: The process statements provide a natural means for describing 
conceptually sequential algorithms. If the values computed in a process 
are inherently parallel, consider using concurrent signal assignment 
statements (see “Concurrent Signal Assignments” later in this chapter)

Combinational Process Example

Example 7-1 shows a process that implements a simple modulo-10 counter. 
The example process is sensitive to (reads) two signals: CLEAR and 
IN_COUNT. The process drives one signal, OUT_COUNT. If CLEAR is 
’1’ or IN_COUNT is 9, then OUT_COUNT is set to zero. Otherwise, 
OUT_COUNT is set to one more than IN_COUNT.
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Example 7-1 Modulo-10 Counter Process

entity COUNTER is 
   port (CLEAR:      in BIT;
         IN_COUNT:   in INTEGER range 0 to 9;
         OUT_COUNT: out INTEGER range 0 to 9);
end COUNTER;

architecture EXAMPLE of COUNTER is
begin
  process(IN_COUNT, CLEAR)
  begin
     if (CLEAR = ’1’ or IN_COUNT = 9) then
        OUT_COUNT <= 0;
     else
        OUT_COUNT <= IN_COUNT + 1;
     end if;
  end process;
end EXAMPLE;

Figure 7-1 Circuit for Modulo-10 Counter Process Example

Sequential Process Example

Because the process in Example 7-1 contains no wait statements, it is 
synthesized with combinational logic. An alternate implementation of the 
counter is to retain the count value internally in the process with a wait 
statement. 
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Example 7-2 shows an implementation of a counter as a sequential 
(clocked) process. On each 0-to-1 CLOCK transition, if CLEAR is ’1’ or
COUNT is 9, COUNT is set to zero; otherwise, COUNT is incremented
1.

Example 7-2 Modulo-10 Counter Process with wait Statement

entity COUNTER is 
   port (CLEAR: in BIT;
         CLOCK: in BIT;
         COUNT: buffer INTEGER range 0 to 9);
end COUNTER;

architecture EXAMPLE of COUNTER is
begin
  process
  begin
     wait until CLOCK’event and CLOCK = ’1’;

     if (CLEAR = ’1’ or COUNT >= 9) then
        COUNT <= 0;
     else
        COUNT <= COUNT + 1;
     end if;
  end process;
end EXAMPLE;
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Figure 7-2 Circuit for Modulo-10 Counter Process with wait Statement Example

In Example 7-2, the value of the variable COUNT is stored in four 
flip-flops. These flip-flops are generated because COUNT can be read 
before it is set, so its value must be maintained from the previous clock 
cycle. See “wait Statement” in Chapter 6, “Sequential Statements,” for 
more information.

Driving Signals

If a process assigns a value to a signal, the process is a driver of that signal. 
If more than one process or other concurrent statement drives a signal
signal has multiple drivers. 

Example 7-3 shows two three-state buffers driving the same signal (SI
Chapter 8, “Register and Three-State Inference,” shows how to describ
three-state device in technology-independent VHDL, in the “Three-Sta
Inference” section.
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Example 7-3 Multiple Drivers of a Signal

A_OUT <= A when ENABLE_A else ’Z’;
B_OUT <= B when ENABLE_B else ’Z’;

process(A_OUT)
begin
   SIG <= A_OUT;
end process;

process(B_OUT)
begin
   SIG <= B_OUT;
end process;

Figure 7-3 Circuit for Multiple Drivers of a Signal Example

Bus resolution functions assign the value for a multiply-driven signal. See 
“Resolution Functions” in Chapter 3, “Describing Designs,” for more 
information.

block Statements

A block statement names a set of concurrent statements. Use blocks to
organize concurrent statements hierarchically. 

The syntax is

label: block
  { block_declarative_item }
begin
  { concurrent_statement }
end block [ label ];

The required label names the block. 

A block_declarative_item declares objects local to the block and can be
of the following items:
Concurrent Statements 7–7
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• use clause

• Subprogram declaration

• Subprogram body

• Type declaration

• Subtype declaration

• Constant declaration

• Signal declaration

• Component declaration

The order of each concurrent_statement in a block is not significant 
because each statement is always active. 

Note: FPGA Express does not support guarded blocks. 

Objects declared in a block are visible to that block and to all blocks ne
within. When a child block (inside a parent block) declares an object w
the same name as an object in the parent block, the child’s declaration
overrides that of the parent (inside the child block).

Example 7-4 shows the use of nested blocks.

Example 7-4 Nested Blocks

B1: block
   signal S: BIT; -- Declaration of "S" in block B1
begin
   S <= A and B;  -- "S" from B1

   B2: block
      signal S: BIT; -- Declaration of "S" in block B2
   begin
      S <= C and D;  -- "S" from B2

      B3: block
      begin
         Z <= S;     -- "S" from B2
      end block B3;
   end block B2;

  Y <= S;         -- "S" from B1
end block B1;
Concurrent Statements
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Figure 7-4 Circuit for Nested Blocks Example

Concurrent Procedure Calls

A concurrent procedure call is a procedure call used as a concurrent 
statement; it is used in an architecture or a block, rather than in a process. A 
concurrent procedure call is equivalent to a process containing a single 
sequential procedure call. The syntax is the same as that of a sequential 
procedure call:

procedure_name [  ( [ name => ] expression
                    { , [ name => ] expression } ) ] ;

The equivalent process is sensitive to all in and inout parameters of the 
procedure. Example 7-5 shows a procedure declaration, then a concurrent 
procedure call and its equivalent process.

Example 7-5 Concurrent Procedure Call and Equivalent Process

procedure ADD(signal A, B: in BIT; 
              signal SUM: out BIT);
...
ADD(A, B, SUM);    -- Concurrent procedure call
...
process(A, B)      -- The equivalent process
begin
   ADD(A, B, SUM); -- Sequential procedure call
end process;

FPGA Express implements procedure and function calls with logic, unless 
you use the map_to_entity compiler directive (see “Mapping Subprograms 
to Components (Entities)” in Chapter 6, “Sequential Statements”).

A common use for concurrent procedure calls is to obtain many copies
procedure.   For example, a class of BIT_VECTOR signals must conta
only one bit with value 1 and the rest of the bits value 0. You have seve
Concurrent Statements 7–9
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signals of varying widths that you want monitored at the same time. One 
approach is to write a procedure to detect the error in a BIT_VECTOR 
signal, then make a concurrent call to that procedure for each signal. 

Example 7-6 shows a procedure CHECK that determines whether a given 
bit vector contains exactly one element with value ’1’; if this is not the ca
CHECK sets its out parameter ERROR to TRUE.

Example 7-6 Procedure Definition for Example 7-7

procedure CHECK(signal A:      in BIT_VECTOR; 
                signal ERROR: out Boolean) is

  variable FOUND_ONE: Boolean := FALSE;
                            -- Set TRUE when a ’1’ 
                            -- is seen
begin
   for I in A’range loop    -- Loop across all bits
                            --   in the vector
      if A(I) = ’1’ then    -- Found a ’1’
         if FOUND_ONE then  -- Have we already found one?
            ERROR <= TRUE;  -- Found two ’1’s
            return;         -- Terminate procedure
         end if;

         FOUND_ONE := TRUE; -- Note that we have
      end if;               --   seen a ’1’
   end loop;

   ERROR <= not FOUND_ONE;  -- Error will be TRUE
                            --   if no ’1’ found
end;

Example 7-7 shows the CHECK procedure called concurrently for four 
different-sized bit vector signals.
Concurrent Statements
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Example 7-7 Concurrent Procedure Calls

BLK: block
  signal S1: BIT_VECTOR(0 to 0);
  signal S2: BIT_VECTOR(0 to 1);
  signal S3: BIT_VECTOR(0 to 2);
  signal S4: BIT_VECTOR(0 to 3);

  signal E1, E2, E3, E4: Boolean;

begin
  CHECK(S1, E1);  -- Concurrent procedure call
  CHECK(S2, E2);
  CHECK(S3, E3);
  CHECK(S4, E4);
end block BLK; 

Figure 7-5 Circuit for Concurrent Procedure Calls Example

Concurrent Signal Assignments

A concurrent signal assignment is equivalent to a process containing that 
sequential assignment. Thus, each concurrent signal assignment defines a 
new driver for the assigned signal. The simplest form of the concurrent 
signal assignment is

target <= expression;
Concurrent Statements 7–11
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target is a signal that receives the value of expression.

Example 7-8 shows the value of the expression A and B concurrently 
assigned to signal Z.

Example 7-8 Concurrent Signal Assignment

BLK: block
  signal A, B, Z: BIT;
begin
  Z <= A and B;
end block BLK;

The other two forms of concurrent signal assignment are conditional signal 
assignment and selected signal assignment.

Conditional Signal Assignment

Another form of concurrent signal assignment is the conditional signal 
assignment. The syntax is

target <= { expression when condition else }
          expression;

target is a signal that receives the value of an expression. The expression 
used is the first one whose Boolean condition is TRUE.

When a conditional signal assignment statement is executed, each 
condition is tested in order as written. The first condition that evaluates 
TRUE has its expression assigned to target. If no condition is TRUE, the 
final expression is assigned to the target. If two or more conditions are 
TRUE, only the first one is effective, just like the first TRUE branch of an if 
statement.

Example 7-9 shows a conditional signal assignment, where the target is the 
signal Z. Signal Z is assigned from one of the signals A, B, or C. The signal 
depends on the value of the expressions ASSIGN_A and ASSIGN_B. Note 
that the assignment of A takes precedence over that of B, and the 
assignment of B takes precedence over that of C because the first TRUE 
condition controls the assignment.
Concurrent Statements
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Example 7-9 Conditional Signal Assignment

  Z <= A when ASSIGN_A = ’1’ else
       B when ASSIGN_B = ’1’ else
       C;

Figure 7-6 Circuit for Conditional Signal Assignment Example

Example 7-10 shows a process equivalent to the conditional signal 
assignment in Example 7-9.

Example 7-10 Process Equivalent to Conditional Signal Assignment

process(A, ASSIGN_A, B, ASSIGN_B, C)
begin
   if ASSIGN_A = ’1’ then
      Z <= A;
   elsif ASSIGN_B = ’1’ then
      Z <= B;
   else
      Z <= C;
   end if;
end process;

Selected Signal Assignment

The final kind of concurrent signal assignment is the selected signal 
assignment. The syntax is

with choice_expression select
   target <= { expression when choices, }
             expression when choices;
Concurrent Statements 7–13
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target is a signal that receives the value of an expression. The expression 
selected is the first one whose choices include the value of 
choice_expression. The syntax of choices is the same as that of the case 
statement:

choice { | choice }

Each choice can be either a static expression (such as 3) or a static range 
(such as 1 to 3). The type of choice_expression determines the type of each 
choice.   Each value in the range of the choice_expression type must be 
covered by one choice. 

The final choice can be others, which matches all remaining (unchosen) 
values in the range of the choice_expression type. The others choice, if 
present, matches choice_expression only if none of the other choices 
match.

The with..select statement evaluates choice_expression and compares that 
value to each choice value. The when clause with the matching choice 
value has its expression assigned to target. 

The following restrictions are placed on choices:

• No two choices can overlap.

• If no others choice is present, all possible values of choice_expression 
be covered by the set of choices.

Example 7-11 shows target Z assigned from A, B, C, or D. The assignm
depends on the current value of CONTROL.

Example 7-11 Selected Signal Assignment

signal A, B, C, D, Z: BIT;
signal CONTROL:  bit_vector(1 down to 0);
. . .
with CONTROL select
   Z <= A when "00",
        B when "01",
        C when "10",
        D when "11"
Concurrent Statements
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Figure 7-7 Circuit for Selected Signal Assignment Example;

Example 7-12 shows the process equivalent to the selected signal 
assignment statement in Example 7-11.

Example 7-12 Process Equivalent to Selected Signal Assignment

process(CONTROL, A, B, C, D)
begin
   case CONTROL is
      when 0 =>
         Z <= A;
      when 1 =>
         Z <= B;
      when 2 =>
         Z <= C;
      when 3 =>
         Z <= D;
    end case;
end process;

Component Instantiations

A component instantiation references a previously defined hardware 
component, in the current design, at the current level of hierarchy. You can 
use component instantiations to define a design hierarchy. You can also use 
parts not defined in VHDL, such as components from an FPGA technology 
library, parts defined in the Verilog hardware description language, or the 
generic technology library. Component instantiation statements can be used 
to build netlists in VHDL. 

A component instantiation statement indicates

• A name for this instance of the component.

• The name of a component to include in the current entity.

• The connection method for a component’s ports.
Concurrent Statements 7–15
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The syntax is

instance_name : component_name port map (
                [ port_name => ] expression
                {, [ port_name => ] expression } );

instance_name names this instance of the component type 
component_name.

The port map connects each port of this instance of component_name to a 
signal-valued expression in the current entity. The value of expression can 
be a signal name, an indexed name, a slice name, or an aggregate. If 
expression is the VHDL reserved word open, the corresponding port is left 
unconnected.

You can map ports to signals by named or positional notation. You can 
include both named and positional connections in the port map, but you 
must place all positional connections before any named connections. 

Note: For named association, the component port names must exactly 
match the declared component’s port names. For positional associatio
the actual port expressions must be in the same order as the declared 
component’s port order.

Example 7-13 shows a component declaration (a 2-input NAND gate) 
followed by three equivalent component instantiation statements.

Example 7-13 Component Declaration and Instantiations

component ND2
   port(A, B: in BIT; C: out BIT);
end component;
. . .
signal X, Y, Z:  BIT;
. . .
U1: ND2 port map(X, Y, Z);               -- positional
U2: ND2 port map(A => X, C => Z, B => Y);-- named
U3: ND2 port map(X, Y, C => Z);          -- mixed

Example 7-14 shows the component instantiation statement defining a 
simple netlist. The three instances, U1, U2, and U3, are instantiations of the 
2-input NAND gate component declared in Example 7-13.
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Example 7-14 A Simple Netlist

signal TEMP_1, TEMP2: BIT;
. . .
  U1: ND2 port map(A, B, TEMP_1);
  U2: ND2 port map(C, D, TEMP_2);
  U3: ND2 port map(TEMP_1, TEMP_2, Z);

Figure 7-8 Circuit for Simple Netlist Example

generate Statements

A generate statement creates zero or more copies of an enclosed set of 
concurrent statements. The two kinds of generate statements are

for... generate 

the number of copies is determined by a discrete range

if... generate 

zero or one copy is made, conditionally

for .. generate Statement

The syntax is

label: for identifier in range generate
     { concurrent_statement }
end generate [ label ] ;

The required label names this statement (useful for nested generate 
statements).

The use of the identifier in this construct is similar to that of the for..loop 
statement:

• identifier is not declared elsewhere. It is automatically declared by the 
generate statement itself and is entirely local to the loop. A loop identif
overrides any other identifier with the same name but only within the lo
Concurrent Statements 7–17
generate Statements



7–18

not 

 this 

ment 

ment 

ch 

r is 

o 
• The value of identifier can be read only inside its loop, but you cannot 
assign a value to a loop identifier. In addition, the value of identifier can
be assigned to any parameter whose mode is out or inout.

FPGA Express requires that range must be a computable integer range, in 
either of these forms:

integer_expression to integer_expression
integer_expression downto integer_expression

Each integer_expression evaluates to an integer. 

Each concurrent_statement can be any of the statements described in
chapter, including other generate statements. 

A for..generate statement executes as follows:

1. A new local integer variable is declared with the name identifier. 

2. identifier is assigned the first value of range, and each concurrent state
is executed once.

3. identifier is assigned the next value in range, and each concurrent state
is executed once more.

4. Step 3 is repeated until identifier is assigned the last value in range. Ea
concurrent statement is then executed for the last time, and execution 
continues with the statement following end generate. The loop identifie
deleted.

Example 7-15 shows a code fragment that combines and interleaves tw
four-bit arrays A and B into an eight-bit array C.

Example 7-15 for..generate Statement

signal A, B : bit_vector(3 downto 0);
signal C    : bit_vector(7 downto 0);
signal X    : bit;
. . .
GEN_LABEL: for I in 3 downto 0 generate
  C(2*I + 1) <= A(I) nor X;
  C(2*I)     <= B(I) nor X;
end generate GEN_LABEL;
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Figure 7-9 Circuit for for..generate Statement Example

The most common use of the generate statement is to create multiple copies 
of components, processes, or blocks. Example 7-16 demonstrates this use 
with components. Example 7-17 shows how to generate multiple copies of 
processes. Example 7-16 shows VHDL array attribute ’range used with
for..generate statement to instantiate a set of COMP components that 
connect corresponding elements of bit vectors A and B.

Example 7-16 for..generate Statement Operating on an Entire Array

component COMP
  port (X :  in bit;
        Y : out bit);
end component;
. . .
signal A, B: BIT_VECTOR(0 to 7);
. . .
GEN: for I in A’range generate
  U: COMP port map (X => A(I), 
                    Y => B(I));
end generate GEN;
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Figure 7-10 Circuit for for..generate Statement on Array Example

Unconstrained arrays and array attributes are described in “Array Types” in 
Chapter 4, “Data Types.” Array attributes are shown in Example 4-9.

 if . . generate Statement

The syntax is

label: if expression generate
     { concurrent_statement }
end generate [ label ] ;

label identifies (names) this statement. expression is any expression that 
evaluates to a Boolean value. A concurrent_statement is any of the statements
described in this chapter, including other generate statements. 

Note: Unlike the if statement described in Chapter 6, “Sequential 
Statements,” the if..generate statement has no else or elsif branches.

You can use the if..generate statement to generate a regular structure that has 
different circuitry at its ends. Use a for..generate statement to iterate over the 
desired width of a design and a set of if..generate statements to define the 
beginning, middle, and ending sets of connections. 

Example 7-17 shows a technology-independent description of the 
following N-bit serial-to-parallel converter. Data is clocked into an N-bit 
buffer from right to left. On each clock cycle, each bit in an N-bit buffer is 
shifted up one bit, and the incoming DATA bit is moved into the low-order 
bit. 
Concurrent Statements
generate Statements



Example 7-17 Typical Use of if..generate Statements

entity CONVERTER is
  generic(N: INTEGER := 8);

  port(CLK, DATA:   in BIT;
       CONVERT: buffer BIT_VECTOR(N-1 downto 0));
end CONVERTER;

architecture BEHAVIOR of CONVERTER is
  signal S : BIT_VECTOR(CONVERT’range);
begin
  
  G: for I in CONVERT’range generate

    G1: -- Shift (N-1) data bit into high-order bit 
      if (I = CONVERT’left) generate
        process begin
          wait until (CLK’event and CLK = ’1’);
          CONVERT(I) <= S(I-1);
        end process;  
    end generate G1;

    G2: -- Shift middle bits up
      if (I > CONVERT’right and 
          I < CONVERT’left) generate

        S(I) <= S(I-1) and CONVERT(I);

        process begin
          wait until (CLK’event and CLK = ’1’);
          CONVERT(I) <= S(I-1);
        end process;
    end generate G2;

    G3:  -- Move DATA into low-order bit
      if (I = CONVERT’right) generate
        process begin
          wait until (CLK’event and CLK = ’1’);
          CONVERT(I) <= DATA;
        end process;
        S(I) <= CONVERT(I);
    end generate G3;

  end generate G;
end BEHAVIOR;
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Figure 7-11 Circuit for Typical Use of if..generate Statements Example
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Register and Three-State Inference
 

can 
ed 
You can generally use several different, but logically equivalent, VHDL 
descriptions to describe a circuit. 

To write VHDL descriptions to produce efficient synthesized circuits, 
consider the following topics:

• Register Inference

• Three-State Inference

You can use VHDL to make your design more efficient in terms of the 
synthesized circuit’s area and speed, as follows:

• A design that needs some, but not all, of its variables or signals stored
during operation can be written to minimize the number of latches or 
flip-flops required.

• A design that is described more easily with several levels of hierarchy 
be synthesized more efficiently if part of the design hierarchy is collaps
during synthesis.

Register Inference

FPGA Express provides register inferencing using the wait and if 
statements.
Register and Three-State Inference 8–1
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A register is a simple, one-bit memory device, either a flip-flop or a latch. A 
flip-flop is an edge-triggered memory device. A latch is a level-sensitive 
memory device.

Use the wait statement to imply flip-flops in a synthesized circuit. FPGA 
Express creates flip-flops for all signals, and some variables assigned values 
in a process with a wait statement. 

The if statement can be used to imply registers (flip-flops or latches) for 
signals and variables in the branches of the if statement. 

To use register inferences, describe latches and flip-flops, and learn efficient 
use of registers, familiarize yourself with

• Using register inference 

• Describing latches

• Describing flip-flops

• Efficient use of registers

Using Register Inference

Using register inference involves describing clock signals and using wa
and if statements for register inferencing. Recommended models for 
different types of inferred registers and current Synopsys restrictions m
also be considered.

Describing Clocked Signals

FPGA Express can infer asynchronous memory elements from VHDL 
descriptions written in a natural style.

Use the wait and if statements to test for the rising or falling edge of a 
signal. The most common usages are

process
begin
  wait until (edge); 
  ...
end process;
...

process (sensitivity_list)
begin
  if (edge) 
    ...
  end if;
end process;
Register and Three-State Inference
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Another form is

process (sensitivity_list)
begin
  if (...) then
    ...
  elsif (...)
    ...
  elsif (edge) then
    ...
  end if;
end process;

An edge expression tests for the positive or negative edge of a signal. The 
syntax of an edge expression is

SIGNAL’event      and SIGNAL = ’1’  -- rising edge
NOT SIGNAL’stable and SIGNAL = ’1’  -- rising edge

SIGNAL’event      and SIGNAL = ’0’  -- falling edge
NOT SIGNAL’stable and SIGNAL = ’0’  -- falling edge

In a wait statement, edge can also be

signal = ’1’  -- rising edge
signal = ’0’  -- falling edge

An edge expression must be the only condition of an if or an elsif 
statement. You can have only one edge expression in an if statement, and 
the if statement must not have an else clause. An edge expression cannot be 
part of another logical expression nor used as an argument.

if ( edge and RST = ’1’) 
  -- Illegal usage; edge must be only condition

Any_function( edge);
  -- Illegal usage; edge cannot be an argument

if X > 5 then
  sequential_statement;
elsif edge then
  sequential_statement;
else
  sequential_statement;
end if;
  -- Illegal usage; do  not  use  edge as an intermediate 
expression.

These lines illustrate three incorrect uses of the edge expression. In the first 
group, the edge expression is part of a larger Boolean expression. In the 
second group, the edge expression is used as an argument. In the third 
group, the edge expression is used as an intermediate condition.
Register and Three-State Inference 8–3
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wait versus if Statements

Sometimes you can use the wait and if statements interchangeably. The if 
statement is usually preferred, because it provides greater control over the 
inferred register’s capabilities, as described in the next section.

IEEE VHDL requires that a process with a wait statement must not hav
sensitivity list. 

An if edge statement can appear anywhere in a process. The sensitivit
of the process must contain all signals read in the process, including th
edge signal. In general, the following guidelines apply:

• Synchronous processes (processes that compute values only on clock
edges) must be sensitive to the clock signal.

• Asynchronous processes (processes that compute values on clock edg
and when asynchronous conditions are TRUE) must be sensitive to the
clock signal (if any), and to inputs that affect asynchronous behavior.

Recommended Use of Register Inference Capabilities

The register inference capability can support styles of description other
than those described here. However, for best results:

• Restrict each process to a single type of memory-element inferencing: 
latch, latch with asynchronous set or reset, flip-flop, flip-flop with 
asynchronous reset, or flip-flop with synchronous reset.
Register and Three-State Inference
Register Inference



• Use the following templates.

LATCH:  process(sensitivity_list)
          begin
            if LATCH_ENABLE then
                   ...
            end if;
          end process;

LATCH_ASYNC_SET:  
                   ...
attribute async_set_reset of SET : signal is "true";
                   ...
        process(sensitivity_list)
          begin
            if SET then
               Q <= ’1’;
            elsif LATCH_ENABLE then
                   ...
            end if;
          end process;

FF:     process(CLK)
          begin
            if edge then
                ...
            end if;
          end process;

FF_ASYNC_RESET:  
        process(RESET, CLK)
          begin
            if RESET then
               Q <= ’0’;
            elsif edge then
               Q <= ...;
            end if;
          end process;

FF_SYNC_RESET:  
        process(RESET, CLK)
          begin
            if edge then
              if RESET then
                Q <= ’0’;
              else
                Q <= ...;
              end if;
            end if;
          end process;

Examples of these templates are provided in “Describing Latches” and 
“Describing Flip-Flops,” later in this chapter.
Register and Three-State Inference 8–5
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Restrictions on Register Capabilities

Do not use more than one if edge expression in a process.

     process(CLK_A, CLK_B)
     begin
       if(CLK_A’event and CLK_A = ’1’) then
         A <= B;
       end if;
     
       if(CLK_B’event and CLK_B = ’1’) then  -- 
Illegal
         C <= B;
       end if;
     end process;

Do not assign a value to a variable or signal on a FALSE branch of an if 
edge statement. This assignment is equivalent to checking for the absence 
of a clock edge, which has no hardware counterpart.

     process(CLK)
     begin
       if(CLK’event and CLK = ’1’) then
         SIG <= B;
       else
         SIG <= C;      -- Illegal 
       end if;
     end process;

If a variable is assigned a value inside an edge construct, do not read that 
variable later in the same process.

process(CLK)
  variable EDGE_VAR, ANY_VAR:  BIT;

begin
  if (CLK’event and CLK = ’1’) then
    EDGE_SIGNAL <= X;
     EDGE_VAR    := Y;
     ANY_VAR     := EDGE_VAR; -- Legal
  end if;

  ANY_VAR := EDGE_VAR;        -- Illegal
end process;

Do not use an edge expression as an operand.

if not(CLK’event and CLK = ’1’) then  -- Illegal
Register and Three-State Inference
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Delays in Registers

If you use delay specifications with values that may be registered, these 
values might cause the simulation to behave differently from the logic 
synthesized by FPGA Express. For example, the description in Example 
8-1 contains delay information that causes FPGA Express to synthesize a 
circuit that behaves unexpectedly.

Example 8-1 Delays in Registers

component flip_flop ( 
    D, clock: in BIT;
    Q:        out BIT;);
end component;

process ( A, C, D, clock );
  signal B: BIT;
begin
B <= A after 100ns;

F1: flip_flop port map ( A, C, clock ),
F2: flip_flop port map ( B, D, clock );
end process;

In Example 8-1, B changes 100 nanoseconds after A changes. If the clock 
period is fewer than 100 nanoseconds, output D is one or more clock cycles 
behind output C when the circuit is simulated. However, because FPGA 
Express ignores the delay information, A and B change values at the same 
time, and so do C and D. This behavior is not the same as in the simulated 
circuit.

When you use delay information in your designs, make sure the delays do 
not affect registered values. In general, you can safely include delay 
information in your description if it does not change the value that gets 
clocked into a flip-flop.

Describing Latches

FPGA Express infers latches from incompletely specified conditional 
expressions. In Example 8-2, the if statement infers a latch because there is 
no else clause:
Register and Three-State Inference 8–7
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Example 8-2 Latch Inference

process(GATE, DATA)
begin
  if (GATE = ’1’) then
    Q <= DATA;
  end if;
end process;

Figure 8-1 Latch Inference 

The inferred latch uses CLK as its clock and DATA as its data input, as 
shown in Example 8-2.

Automatic Latch Inferencing

A signal or variable that is not driven under all conditions becomes a 
latched value. As shown in Example 8-3, TEMP becomes a latched value 
because it is assigned only when PHI is 1.

Example 8-3 Automatically Inferred Latch

if(PHI = ’1’) then
  TEMP <= A;
end if;

Figure 8-2 Automatically Inferred Latch 

To avoid inferred latches, assign a value to the signal under all conditions, 
as shown in Example 8-4.
Register and Three-State Inference
Register Inference



Example 8-4 Fully Specified Signal: No Latch Inference 

if (PHI = ’1’) then
  TEMP <= A;
else
  TEMP <= ’0’;
end if;

Figure 8-3 Circuit for Fully Specified Signal: No Latch Inference

Restrictions on Latch Inference Capabilities

You cannot read a conditionally assigned variable after the if statement in 
which it is assigned. A conditionally assigned variable is assigned a new 
value under some, but not all, conditions.

Therefore, a variable must always have a value before it is read.

signal X, Y: BIT;
. . .
process
  variable VALUE: BIT;
begin

  if ( condition) then
    VALUE := X;
  end if;

  Y <= VALUE;  -- Illegal
end;  

In simulation, latch inference occurs because signals and variables can hold 
state over time. A signal or variable holds its value until that value is 
reassigned. FPGA Express inserts a latch to duplicate this holding of state 
in hardware.

Variables declared locally within a subprogram do not hold their value over 
time. Every time a subprogram is used, its variables are reinitialized. 
Therefore, FPGA Express does not infer latches for variables declared in 
subprograms. In Example 8-5, no latches are inferred.
Register and Three-State Inference 8–9
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Example 8-5 Function without Inferred Latch

function MY_FUNC(DATA, GATE : BIT) return BIT is
     variable STATE: BIT;
begin
     if GATE then
          STATE := DATA;
     end if;
     return STATE;
end;
. . .
Q <= MY_FUNC(DATA, GATE);

Figure 8-4 Function without Inferred Latch 

Example—Design with Two-Phase Clocks

By using the latch inference capability, you can describe network 
structures, such as two-phase systems in a technology-independent manner. 
Example 8-6 shows a simple two-phase system with clocks PHI_1 and 
PHI_2.

Example 8-6 Two-Phase Clocks

entity LATCH_VHDL is
  port(PHI_1, PHI_2, A : in BIT; 
       t: out BIT);
end LATCH_VHDL;

architecture EXAMPLE of LATCH_VHDL is
  signal TEMP, LOOP_BACK: BIT;
begin
  process(PHI_1, A, LOOP_BACK)
  begin
    if(PHI_1 = ’1’) then
      TEMP <= A and LOOP_BACK;
    end if;
  end process;

  process(PHI_2, TEMP)
  begin
    if(PHI_2 = ’1’) then
      LOOP_BACK <= not TEMP;
    end if;
  end process;
  t <= LOOP_BACK;
end EXAMPLE;
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Figure 8-5 Two-Phase Clocks 

FPGA Express does not automatically infer dual-phase latches (devices 
with master and slave clocks). To use these devices, you must instantiate 
them as components, as described in Chapter 3, “Describing Designs.

Describing Flip-Flops

Example 8-7 shows how an edge construct creates a flip-flop.

Example 8-7 Inferred Flip-Flop

process(CLK, DATA)
begin
  if (CLK’event and CLK = ’1’)  then
    Q <= DATA;
  end if;
end process;  

Figure 8-6 Inferred Flip-Flop 

Flip-Flop with Asynchronous Reset

Example 8-8 shows how to specify a flip-flop with an asynchronous reset.
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Example 8-8 Inferred Flip-Flop with Asynchronous Reset

process(RESET_LOW, CLK, SYNC_DATA)
begin
  if RESET_LOW = ’0’  then
    Q <= ’0’;
  elsif (CLK’event and CLK = ’1’)  then
    Q <= SYNC_DATA;
  end if;
end process;  

Figure 8-7 Circuit for Inferred Flip-Flop with Asynchronous Reset

Note how the flip-flop in Example 8-8 is wired.

• The D input of the flip-flop is wired to SYNC_DATA. 

• If the reset condition is computable (see “Computable Operands” in 
Chapter 5, “Expressions”), either the SET or CLEAR pin of the flip-flop 
wired to the RESET (or RESET_LOW) signal, as shown in Example 8-

• If the reset condition (ANY_SIGNAL in Example 8-9) is not computable, 
SET is wired to (ANY_SIGNAL AND ASYNC_DATA) and CLEAR is 
wired to (ANY_SIGNAL AND NOT(ASYNC_DATA)), as shown in 
Example 8-9.

Example 8-9 shows an inferred flip-flop with an asynchronous reset, wh
the reset condition is not computable.

Example 8-9 Inferred Flip-Flop with Asynchronous Set or Clear

process (CLK, ANY_SIGNAL, ASYNC_DATA, SYNC_DATA)
  begin
    if (ANY_SIGNAL) then
      Q <= ASYNC_DATA;
    elsif (CLK’event and CLK = ’1’)  then
      Q <= SYNC_DATA;
    end if;
  end process;
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Figure 8-8 Circuit for Inferred Flip-Flop with Asynchronous Set or Clear

Example—Synchronous Design with Asynchronous Reset

Example 8-10 describes a synchronous finite state machine (FSM) with an 
asynchronous reset.
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Example 8-10 Synchronous Finite State Machine with Asynchronous Reset

package MY_TYPES is
  type STATE_TYPE is (S0, S1, S2, S3);
end MY_TYPES;

use WORK.MY_TYPES.ALL;

entity STATE_MACHINE is
  port(CLK, INC, A, B: in BIT; RESET: in Boolean;
       t: out BIT);
end STATE_MACHINE;

architecture EXAMPLE of STATE_MACHINE is
  signal CURRENT_STATE, NEXT_STATE: STATE_TYPE;
begin
  SYNC: process(CLK, RESET)
  begin
    if (RESET) then
      CURRENT_STATE <= S0;
    elsif (CLK’event and CLK = ’1’) then
      CURRENT_STATE <= NEXT_STATE;
    end if;
  end process SYNC;

  FSM: process(CURRENT_STATE, A, B)
  begin
    t <= A;            -- Default assignment
    NEXT_STATE <= S0;  -- Default assignment

    if (INC = ’1’) then
      case CURRENT_STATE is
        when S0 =>
          NEXT_STATE <= S1;
        when S1 =>
          NEXT_STATE <= S2;
          t <= B;
        when S2 =>
          NEXT_STATE <= S3;
        when S3 =>
          null;
      end case;
    end if;
  end process FSM;
end EXAMPLE;
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Figure 8-9 Synchronous Finite State Machine with Asynchronous Reset 

Attributes

New attributes used to assist register inference are discussed in this section. 
The attributes are defined in a VHDL library called Synopsys 
ATTRIBUTES package.

attribute async_set_reset : string;
attribute sync_set_reset : string;
attribute async_set_reset_local : string;
attribute sync_set_reset_local : string;
attribute async_set_reset_local_all : string;
attribute sync_set_reset_local_all : string;
attribute one_hot : string;
attribute one_cold : string;

async_set_reset

The async_set_reset attribute is attached to single-bit signals using the 
attribute construct. FPGA Express checks signals with the async_set_reset 
attribute set to TRUE to determine whether these signals asynchronously 
set or reset a latch in the entire design. 

The syntax of async_set_reset is 

        attribute async_set_reset of signal_name,. : signal is "true";

Latch with Asynchronous Set or Clear Inputs

The asynchronous clear signal for a latch is inferred by driving the Q pin of 
your latch to 0. The asynchronous set signal for a latch is inferred by 
driving the Q pin of your latch to 1. Although FPGA Express does not 
require that the clear (set) be the first condition in your conditional branch, 
it is best to write your VHDL in this manner. 
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Example 8-11 shows how to specify a latch with an asynchronous clear 
input. To specify a latch with an asynchronous set, change the logic as 
indicated by the comments. 

Example 8-11 Inferred Latch with Asynchronous Clear Input

attribute async_set_reset of clear : signal is 
"true";
process(clear, gate, a)
begin
  if (clear = ’1’ ) then
    q <= ’0’ ;
  elsif (gate = ’1’) then
    q <= a;
  end if;
end process;

Figure 8-10 Inferred Latch with Asynchronous Clear 

sync_set_reset

The sync_set_reset attribute is attached to single-bit signals with the 
attribute constructs. FPGA Express checks signals with the sync_set_reset 
attribute set to TRUE to determine whether these signals synchronously set 
or reset a flip-flop in the entire design. 

The syntax of sync_set_reset is 

            attribute sync_set_reset of  signal_name,... :  signal is "true";

Flip-Flop with Synchronous Reset Input

Example 8-12 shows how to specify a flip-flop with a synchronous reset.
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Example 8-12 Inferred Flip-Flop with Synchronous Reset Input

attribute sync_set_reset of RESET, SET : signal is 
"true";
process(RESET, CLK)
begin
  if (CLK’event and CLK = ’1’)  then
    if RESET = ’1’  then
      Q <= ’0’;
    else
      Q <= DATA_A;
    end if;
  end if;
end process;  

process (SET, CLK)
begin
  if (CLK’event and CLK = ’1’)  then
    if SET = ’1’  then
      T <= ’1’;
    else
      T <= DATA_B;
    end if;
  end if;
end process;

Figure 8-11 Circuit for Inferred Flip-Flop with Synchronous Reset Input

async_set_reset_local

The async_set_reset_local attribute is attached to the label of a process with 
a value of a double-quoted list of single-bit signals. Every signal in the list 
is treated as though it has the async_set_reset attribute attached in the 
specified process. 

The syntax of async_set_reset_local is

attribute async_set_reset_local of process_label : 
label is
 "signal_name,...";
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Example 8-13 Asynchronous Set/Reset on a Single Block

library IEEE;
library synopsys;
use IEEE.std_logic_1164.all;
use synopsys.attributes.all;

entity e_async_set_reset_local is
port(reset, set, gate: in std_logic; y, t: out 
std_logic);
end e_async_set_reset_local;

architecture rtl of e_async_set_reset_local is
attribute async_set_reset_local of direct_set_reset 
: label 
is "reset, set";
begin

  direct_set_reset: process (reset, set)
  begin
    if (reset = ’1’) then
      y <= ’0’;             -- asynchronous reset
    elsif (set = ’1’) then
      y <= ’1’;             -- asynchronous set
    end if;
  end process direct_set_reset;

  gated_data: process (gate, reset, set)
  begin
    if (gate = ’1’) then
      if (reset = ’1’) then
        t <= ’0’;             -- gated data
      elsif (set = ’1’) then
        t <= ’1’;             -- gated data
      end if;
    end if;
  end process gated_set_reset;

end rtl;
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Figure 8-12 Asynchronous Set/Reset on a Single Block 

sync_set_reset_local

The sync_set_reset_local attribute is attached to the label of a process with 
a value of a double-quoted list of single-bit signals. Every signal in the list 
is treated as though it has the sync_set_reset attribute attached in the 
specified process.

The syntax of sync_set_reset_local is 

attribute sync_set_reset_local of process_label : 
label is "signal_name,..."

y

z

reset

set
Register and Three-State Inference 8–19
Register Inference



8–20
Example 8-14 Synchronous Set/Reset on a Single Block

library IEEE;
library synopsys;
use IEEE.std_logic_1164.all;
use synopsys.attributes.all;

entity e_sync_set_reset_local is
port(clk, reset, set, gate : in std_logic; y, t: out std_logic);
end e_sync_set_reset_local;

architecture rtl of e_sync_set_reset_local is
attribute sync_set_reset_local of clocked_set_reset : label is "reset, set";
begin

  clocked_reset: process (clk, reset, set)
  begin
    if (clk’event and clk = ’1’) then
      if (reset = ’1’) then
        y <= ’0’;             -- synchronous reset
      else
        y <= ’1’;               -- synchronous set
      end if;
    end if;
  end process clocked_set_reset;

  gated_data: process (clk, gate, reset, set)
  begin
    if (clk’event and clk = ’1’) then
      if (gate = ’1’) then
        if (reset = ’1’) then
          t <= ’0’;             -- gated data
        elsif (set = ’1’) then
          t <= ’1’;             -- gated data
        end if;
      end if;
    end if;
  end process gated_set_reset;

end rtl;
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Figure 8-13 Synchronous Set/Reset on a Single Block 

async_set_reset_local_all

The async_set_reset_local_all attribute is attached to a process label. The 
attribute async_set_reset_local_all specifies that all the signals in the 
process are used to detect an asynchronous set or reset condition for 
inferred latches or flip-flops. 

The syntax of async_set_reset_local_all is 

attribute async_set_reset_local_all of 
process_label,... : label is "true";

z

y

set

d2

reset

clk

d1
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Example 8-15 Asynchronous Set/Reset on Part of a Design

library IEEE;
library synopsys;
use IEEE.std_logic_1164.all;
use synopsys.attributes.all;

entity e_async_set_reset_local_all is
port(reset, set, gate, gate2: in std_logic; y, t, w: out std_logic);
end e_async_set_reset_local_all;

architecture rtl of e_async_set_reset_local_all is
attribute async_set_reset_local_all of
          direct_set_reset, direct_set_reset_too: label is "true";
begin
  direct_set_reset: process (reset, set)
  begin
    if (reset = ’1’) then
      y <= ’0’;             -- asynchronous reset
    elsif (set = ’1’) then
      y <= ’1’;             -- asynchronous set
    end if;
  end process direct_set_reset;

  direct_set_reset_too: process (gate, reset, set)
  begin
    if (gate = ’1’) then
      if (reset = ’1’) then
        t <= ’0’;             -- asynchronous reset
      elsif (set = ’1’) then
        t <= ’1’;             -- asynchronous set
      end if;
    end if;
  end process direct_set_reset_too;

  gated_data: process (gate2, reset, set)
  begin
    if (gate = ’1’) then
      if (reset = ’1’) then
        w <= ’0’;             -- gated data
      elsif (set = ’1’) then
        w <= ’1’;             -- gated data
      end if;
    end if;
  end process gated_set_reset;

end rtl;
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Figure 8-14 Asynchronous Set/Reset on Part of a Design 

sync_set_reset_local_all

The sync_set_reset_local_all attribute is attached to a process label. The 
attribute sync_set_reset_local_all specifies that all the signals in the process 
are used to detect a synchronous set or reset condition for inferred latches 
or flip-flops.

The syntax of sync_set_reset_local_all is 

attribute sync_set_reset_local_all of process_label,... : label is "true";
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Example 8-16 Synchronous Set/Reset on a Part of a Design

library IEEE;
library synopsys;
use IEEE.std_logic_1164.all;
use synopsys.attributes.all;

entity e_sync_set_reset_local_all is
port(clk, reset, set, gate, gate2: in std_logic; y, t, w: out std_logic);
end e_sync_set_reset_local_all;

architecture rtl of e_sync_set_reset_local_all is
attribute sync_set_reset_local_all of
          clocked_set_reset, clocked_set_reset_too: label is "true";
begin

  clocked_set_reset: process (clk, reset, set)
  begin
    if (clk’event and clk = ’1’) then
      if (reset = ’1’) then
        y <= ’0’;             -- synchronous reset
      elsif (set = ’1’) then
        y <= ’1’;             -- synchronous set
      end if;
    end if;
  end process clocked_set_reset;

  clocked_set_reset_too: process (clk, gate, reset, set)
  begin
    if (clk’event and clk = ’1’) then
      if (gate = ’1’) then
        if (reset = ’1’) then
          t <= ’0’;             -- synchronous reset
        elsif (set = ’1’) then
          t <= ’1’;             -- synchronous set
        end if;
      end if;
    end if;
  end process clocked_set_reset_too;

  gated_data: process (clk, gate2, reset, set)
  begin
    if (clk’event and clk = ’1’) then
      if (gate = ’1’) then
        if (reset = ’1’) then
          w <= ’0’;             -- gated data
        elsif (set = ’1’) then
          w <= ’1’;             -- gated data
        end if;
      end if;
    end if;
  end process gated_set_reset;

end rtl;
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Figure 8-15 Synchronous Set/Reset on a Part of a Design 

Note: Use the one_hot and one_cold directives to implement D-type 
flip-flops with asynchronous set and reset signals. These two attributes 
tell FPGA Express that only one of the objects in the list are active at a 
time. If you are defining active high signals, use one_hot. For active low, 
use one_cold. Each attribute has two objects specified.

one_hot
The one_hot directive takes one argument of a double-quoted list of signals 
separated by commas. This attribute indicates that the group of signals are 
one_hot (at any time, no more than one signal can have a Logic 1 value). 
You must make sure that the group of signals are really one_hot. FPGA 
Express does not produce any logic to check this assertion.

The syntax of one_hot is

attribute one_hot signal_name,... : label is "true";
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Example 8-17 Using one_hot for Set and Reset

library IEEE;
library synopsys;
use IEEE.std_logic_1164.all;
use synopsys.attributes.all;

entity e_one_hot is
port(reset, set, reset2, set2: in std_logic; y, t: out std_logic);
attribute async_set_reset of reset, set : signal is "true";
attribute async_set_reset of reset2, set2 : signal is "true";
attribute one_hot of reset, set : signal is "true";
end e_one_hot;

architecture rtl of e_one_hot is
begin
  direct_set_reset: process (reset, set )
  begin
    if (reset = ’1’) then
      y <= ’0’;             -- asynchronous reset by "reset"
    elsif (set = ’1’) then
      y <= ’1’;             -- asynchronous set by "set"
    end if;
  end process direct_set_reset;
  direct_set_reset_too: process (reset2, set2 )
  begin
    if (reset2 = ’1’) then
      t <= ’0’;             -- asynchronous reset by "reset2"
    elsif (set2 = ’1’) then
      t <= ’1’;             -- asynchronous set by "~reset2 set2"
    end if;
  end process direct_set_reset_too;

-- synopsys synthesis_off
process (reset, set)
begin
  assert not (reset=’1’ and set=’1’)
    report "One-hot violation"
    severity Error;
end process;
-- synopsys synthesis_on
end rtl;
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Figure 8-16 Using one_hot for Set and Reset 

one_cold

The one_cold directive is similar to the one_hot directive. one_cold 
indicates that no more than one signal in the group can have a Logic 0 value 
at any time. 

The syntax of one_cold is

attribute one_cold signal_name,... : label is "true";

y

z

set

reset

set2

reset2
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Example 8-18 Using one_cold for Set and Reset

library IEEE;
library synopsys;
use IEEE.std_logic_1164.all;
use synopsys.attributes.all;

entity e_one_cold is
port(reset, set, reset2, set2: in std_logic; y, t: out std_logic);
attribute async_set_reset of reset, set : signal is "true";
attribute async_set_reset of reset2, set2 : signal is "true";
attribute one_cold of reset, set : signal is "true";
end e_one_cold;

architecture rtl of e_one_cold is
begin

  direct_set_reset: process (reset, set )
  begin
    if (reset = ’0’) then
      y <= ’0’;             -- asynchronous reset by "not reset"
    elsif (set = ’0’) then
      y <= ’1’;             -- asynchronous set by "not set"
    end if;
  end process direct_set_reset;

  direct_set_reset_too: process (reset2, set2 )
  begin
    if (reset2 = ’0’) then
      t <= ’0’;             -- asynchronous reset by "not reset2"
    elsif (set2 = ’0’) then
      t <= ’1’;           -- asynchronous set by "(not reset2) (not set2)"
    end if;
  end process direct_set_reset_too;

-- synopsys synthesis_off
process (reset, set)
begin
  assert not (reset=’0’ and set=’0’)
    report "One-cold violation"
    severity Error;
end process;
-- synopsys synthesis_on

end rtl;
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Figure 8-17 Using one_cold for Set and Reset 

FPGA Express Latch and Flip-Flop Inference

FPGA Express infers latches and flip-flops as follows:

• Asynchronous Flip-Flop Resets
FPGA Express reports asynchronous set and reset conditions of flip-flop

• Asynchronous Latch Resets
FPGA Express interprets each control object of a latch as synchronous. 
you want to asynchronously set or reset a latch, set this variable to TR

• Flip-Flop Feedback Loops
FPGA Express removes all flip-flop feedback loops. For example, feedba
loops inferred from a statement such as Q=Q are removed. With the st
feedback removed from a simple D flip-flop, it becomes a synchronous
loaded flip-flop. 

y

z

reset

set

reset2

set2
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• Flip-Flop Inverted Feedback Loops
FPGA Express removes all inverted flip-flop feedback loops. For exampl
feedback loops inferred from a statement such as Q=Q are removed a
synthesized as T flip-flops.

• Reporting Inferred Modules
FPGA Express generates a brief report on inferred latches, flip-flops, or 
three-state devices. 

Efficient Use of Registers

Organize your HDL description so that you build only as many flip-flops
the design requires. Example 8-19 shows a description where too man
flip-flops are implied.

Example 8-19 Circuit with Six Implied Registers

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity ex8_13 is
port ( clk , reset : in std_logic;
       and_bits , or_bits , xor_bits : out std_logic
);
end ex8_13;

architecture rtl of ex8_13 is
begin
process
variable count : std_logic_vector (2 downto 0);
begin
     wait until (clk’event and clk = ’1’);
     if (reset = ’1’) then
          count := "000";
     else count := count + 1;
     end if;
     and_bits <= count(2) and count(1) and count(0);
     or_bits <= count(2) or count(1) or count(0);
     xor_bits <= count(2) xor count(1) xor count(0);
end process;
end rtl;
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Figure 8-18 Circuit with Six Implied Registers 

In Example 8-19, the outputs AND_BITS, OR_BITS, and XOR_BITS 
depend solely on the value of COUNT. Because COUNT is registered, the 
three outputs do not need to be registered. To avoid implying extra 
registers, assign the outputs from within a process that does not have a wait 
statement. Example 8-20 shows a description with two processes, one with 
a wait statement and one without. This description style lets you choose the 
signals that are registered and those that are not.
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Example 8-20 Circuit with Three Implied Registers

use work.ARITHMETIC.all;
entity COUNT is
  port(CLOCK, RESET: in BIT; 
       AND_BITS, OR_BITS, XOR_BITS : out BIT);
end COUNT;

architecture RTL of COUNT is
  signal COUNT : UNSIGNED (2 downto 0);
begin

  REG: process                  -- Registered logic
  begin
    wait until CLOCK’event and CLOCK = ’1’;
    if (RESET = ’1’) then
       COUNT <= "000";
    else
       COUNT <= COUNT + 1;
    end if;
  end process;

  COMBIN: process(COUNT)        -- Combinational 
logic
  begin
    AND_BITS <= COUNT(2) and COUNT(1) and COUNT(0);
    OR_BITS <= COUNT(2) or COUNT(1) or COUNT(0);
    XOR_BITS <= COUNT(2) xor COUNT(1) xor COUNT(0);
  end process;
end RTL;

Figure 8-19 Circuit with Three Implied Registers 

This technique of separating combinational logic from registered or 
sequential logic is useful when describing finite state machines.

Example—Using Synchronous and Asynchronous Processes

You might want to keep some of the values computed by a process in 
flip-flops, while allowing other values to change between clock edges. 
Register and Three-State Inference
Register Inference



e 
ext 

ted 

 with 
s 
You can do this by splitting your algorithm between two processes, one 
with a wait statement and one without. Put the registered (synchronous) 
assignments into the wait process. Put the other (asynchronous) 
assignments into the other process. Use signals to communicate between 
the two processes. 

For example, suppose you want to build a design with the following 
characteristics:

• Inputs A_1, A_2, A_3 and A_4 change asynchronously.

• Output t is driven from one of A_1, A_2, A_3, or A_4.

• Input CONTROL is valid only on the positive edge of CLOCK. The valu
at the edge determines which of the four inputs is selected during the n
clock cycle.

• Output t must always reflect changes in the value of the currently selec
signal.

The implementation of this design requires two processes. The process
a wait statement synchronizes the CONTROL value. The other proces
multiplexes the output, based on the synchronized control. The signal 
SYNC_CONTROL communicates between the two processes.

Example 8-21 shows the code and a schematic of one possible 
implementation.
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Example 8-21 Two Processes: One Synchronous, One Asynchronous

entity SYNC_ASYNC is
   port (CLOCK:   in BIT;
         CONTROL: in INTEGER range 0 to 3;
         A:       in BIT_VECTOR(0 to 3);
         t:      out BIT);
end SYNC_ASYNC;

architecture EXAMPLE of SYNC_ASYNC is
  signal SYNC_CONTROL: INTEGER range 0 to 3;
begin

  process
  begin
    wait until CLOCK’event and CLOCK = ’1’;
    SYNC_CONTROL <= CONTROL;
  end process;

  process (A, SYNC_CONTROL)
  begin
    t <= A(SYNC_CONTROL);
  end process;
end EXAMPLE;
Register and Three-State Inference
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Figure 8-20 Two Processes: One Synchronous, One Asynchronous 

Three-State Inference

FPGA Express can infer three-state gates (high-impedance output) from 
enumeration encoding in VHDL. After inference, FPGA Express maps the 
gates to a specified technology library. See “Enumeration Encoding” in 
Chapter 4, “Data Types,” for more information.

When a variable is assigned the value of Z, the output of the three-state
is disabled. Example 8-22 shows the VHDL for a three-state gate 

Example 8-22 Creating a Three-State Gate in VHDL

signal OUT_VAL, IN_VAL: std_logic;
...
if (COND) then
    OUT_VAL <= IN_VAL;
else
    OUT_VAL <= ’Z’;     -- assigns high-impedance
end if;

You can assign a high impedance value to a four-bit wide bus with ZZZZ.

One three-state device is inferred from a single process. Example 8-23 
infers only one three-state device.
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Example 8-23 Inferring One Three-State Device from a Single Process

process (sela, a, selb, b) begin
  t <= ’z’;
    if (sela = ’1’) then
      t <= a;
    if (selb = ’1’) then
      t <= b;
end process;

Example 8-24 infers two three-state devices.

Example 8-24 Inferring Two Three-State Devices

process (sela, a) begin
    if (sela = ‘1’) then
      t = a;
    else t = ‘z’;
end process;

process (selb, b) begin
    if (selb = ‘1’) then
      t = b;
    else t = ‘z’;
end process;

The VHDL conditional assignment can also be used for three-state 
inferencing.

Assigning the Value Z

Assigning variables the value Z is allowed. The value Z can also appear in 
function calls, return statements, and aggregates. However, except for 
comparisons to Z, you cannot use Z in an expression. Example 8-25 shows 
an incorrect use of Z (in an expression), and Example 8-26 shows a correct 
use of Z (in a comparison).

Example 8-25 Incorrect Use of the Value Z in an Expression

OUT_VAL <= ’Z’ and IN_VAL;
...
Register and Three-State Inference
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Example 8-26 Correct Expression Comparing to Z

if IN_VAL = ’Z’ then
...

Caution Expressions comparing to Z are synthesized as though values are not 
equal to Z. 

For example:

if X = ’Z’ then
...

is synthesized as:

if FALSE then
...

If you use expressions comparing values to Z, the presynthesis and 
post-synthesis simulation results might differ. For this reason, FPGA 
Express issues a warning when it synthesizes such comparisons.

Latched Three-State Variables

When a variable is latched (or registered) in the same process in which it is 
three-stated, the enable of the three-state Z is also latched (or registered). 
This process is shown in Example 8-27. 

Example 8-27 Three-State Inferred with Registered Enable

-- Creates a flip-flop on input and on enable
if (THREESTATE = ’0’) then
    OUTPUT <= ’Z’;
elsif (CLK’event and CLK = ’1’) then
    if (CONDITION) then
        OUTPUT <= INPUT;
    end if;
end if;
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Figure 8-21 Three-State Inferred with Registered Enable 

In Example 8-27, the three-state gate has a registered enable signal. 
Example 8-28 uses two processes to instantiate a three-state with a flip-flop 
only on the input.

Example 8-28 Latched Three-State with Flip-Flop on Input

entity LATCH_3S is
  port(CLK, THREESTATE, INPUT: in std_logic;
       OUTPUT: out std_logic; CONDITION: in Boolean);
end LATCH_3S;

architecture EXAMPLE of LATCH_3S is
  signal TEMP: std_logic;
begin

  process(CLK, CONDITION, INPUT)
  begin      -- creates three-state
    if (CLK’event and CLK = ’1’) then
      if (CONDITION) then
          TEMP <= INPUT;
      end if;
    end if;
  end process;
  process(THREESTATE, TEMP)
  begin
    if (THREESTATE = ’0’) then
        OUTPUT <= ’Z’;
    else
        OUTPUT <= TEMP;
    end if;
  end process;
end EXAMPLE;
Register and Three-State Inference
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Figure 8-22 Latched Three-State with Flip-Flop on Input 
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Synopsys has defined several methods of providing circuit design 
information directly in your VHDL source code.

• Using FPGA Express directives, you can direct the translation from VHD
to components with special VHDL comments. These synthetic comme
turn translation on or off, specify one of several hard-wired resolution 
methods, and provide a means to map subprograms to hardware 
components.

• Using Synopsys-defined VHDL attributes, you can add synthesis-related
signal and constraint information to ports, components, and entities. Th
information is used by FPGA Express during synthesis.

To familiarize yourself with FPGA Express directives, consider the 
following topics:

• Notation for FPGA Express Directives

• FPGA Express Directives

• Synthesis Attributes and Constraints
FPGA Express Directives 9–1
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Notation for FPGA Express Directives

FPGA Express directives are special VHDL comments (synthetic 
comments) that affect the actions of FPGA Express. These comments are a 
special case of regular VHDL comments, which are ignored by other 
VHDL tools. Synthetic comments are used only to direct the actions of 
FPGA Express.

Synthetic comments begin with two hyphens (--) like a regular comment. If 
the word following these characters is pragma or synopsys, the remaining 
comment text is interpreted by FPGA Express as a directive. 

Note: FPGA Express displays a syntax error if an unrecognized directive 
is encountered after -- synopsys or -- pragma.

FPGA Express Directives

The three types of directives are

• Translation stop and start Directives

-- pragma translate_off
-- pragma translate_on
-- pragma synthesis_off
-- pragma synthesis_on

• Resolution function directives 

-- pragma resolution_method wired_and 
-- pragma resolution_method wired_or 
-- pragma resolution_method three_state 

• Component implication directives

-- pragma map_to_entity entity_name
-- pragma return_port_name port_name
FPGA Express Directives
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Translation Stop and Start Directives

Translation directives stop and start the translation of a VHDL source file 
by FPGA Express.

-- pragma translate_off 
-- pragma translate_on

The translate_off and translate_on directives instruct FPGA Express to stop 
and start parsing VHDL source code. The VHDL code between these two 
directives is completely ignored regardless of syntax. 

Translation is enabled at the beginning of each VHDL source file. You can 
use translate_off and translate_on directives anywhere in the text.

The synthesis_off and synthesis_on directives are the recommended 
mechanisms for hiding simulation-only constructs from synthesis. Any text 
between these directives is checked for syntax, but no corresponding 
hardware is synthesized.

Example 9-1 shows how you can use the directives to protect a simulation 
driver.
FPGA Express Directives 9–3
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Example 9-1 Using synthesis_on and synthesis_off Directives 

-- The following test driver for entity EXAMPLE
--   should not be translated:
--
-- pragma synthesis_off
--   Translation stops

entity DRIVER is
end;

architecture VHDL of DRIVER is
    signal A, B : INTEGER range 0 to 255;
    signal SUM  : INTEGER range 0 to 511;

    component EXAMPLE 
        port (A, B: in INTEGER range 0 to 255;
              SUM: out INTEGER range 0 to 511);
    end component;

begin
    U1: EXAMPLE port map(A, B, SUM);
    process
    begin
        for I in 0 to 255 loop
            for J in 0 to 255 loop
                A <= I;
                B <= J;
                wait for 10 ns;
                assert SUM = A + B;
            end loop;
        end loop;
    end process;
end;

-- pragma synthesis_on
--   Code from here on is translated

entity EXAMPLE is
    port (A, B: in INTEGER range 0 to 255;
          SUM: out INTEGER range 0 to 511);
end;

architecture VHDL of EXAMPLE is
begin
    SUM <= A + B;
end;
FPGA Express Directives
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Resolution Function Directives 

Resolution function directives determine the resolution function associated 
with resolved signals (see “Signal Declarations” in Chapter 3, “Describ
Designs”). FPGA Express does not currently support arbitrary resolution 
functions. It does support the following three methods:

-- pragma resolution_method wired_and 
-- pragma resolution_method wired_or 
-- pragma resolution_method three_state 

Note: Do not connect signals that use different resolution functions. 
FPGA Express supports only one resolution function per network.

Component Implication Directives 

Component implication directives map VHDL subprograms onto existin
components or VHDL entities. These directives are described under 
“Mapping Subprograms to Components” in Chapter 6, “Sequential 
Statements”:

-- pragma map_to_entity entity_name
-- pragma return_port_name port_name
FPGA Express Directives 9–5
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Three Synopsys packages are included with this release:

• std_logic_1164 Package

Defines a standard for designers to use when describing the interconne
data types used in VHDL modeling. 

• std_logic_arith Package

Provides a set of arithmetic, conversion, and comparison functions for 
SIGNED, UNSIGNED, INTEGER, STD_ULOGIC, STD_LOGIC, and 
STD_LOGIC_VECTOR types. 

• std_logic_misc Package

Defines supplemental types, subtypes, constants, and functions for the
std_logic_1164 package. 

To understand the contents of each package, review the following sect

std_logic_1164 Package

This package defines the IEEE standard for designers to use when 
describing the interconnection data types used in VHDL modeling. The
logic system defined in this package might be insufficient for modeling 
switched transistors, because such a requirement is out of the scope o
Synopsys Packages 10–1
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effort. Furthermore, mathematics, primitives, and timing standards are 
considered orthogonal issues as they relate to this package and are therefore 
beyond the scope of this effort.

The std_logic_1164 package contains Synopsys synthesis directives. Three 
functions, however, are not currently supported for synthesis: rising_edge, 
falling_edge, and is_x. 

To use this package in a VHDL source file, include the following lines at 
the top of the source file:

library IEEE;
use IEEE.std_logic_1164.all;

When you analyze your VHDL source file, FPGA Express automatically 
finds the IEEE library and the std_logic_1164 package. However, you must 
analyze the use packages not contained in the IEEE and Synopsys libraries 
before processing a source file that uses them. 

std_logic_arith Package

Functions defined in the std_logic_arith package provide conversion to and 
from the predefined VHDL data type INTEGER, and arithmetic, 
comparison, and Boolean operations. This package lets you perform 
arithmetic operations and numeric comparisons on array data types. The 
package defines some arithmetic operators (+, -, *, and abs) and the 
relational operators (<, >, <=, >=, =, and /=). Note that IEEE VHDL does 
not define arithmetic operators for arrays and defines the comparison 
operators in a manner inconsistent with an arithmetic interpretation of array 
values. 

The package also defines two major data types of its own: UNSIGNED and 
SIGNED. Find details in “Data Types” later in this chapter. The 
std_logic_arith package is legal VHDL; you can use it for both synthesi
and simulation.

The std_logic_arith package can be configured to work on any array of
single-bit types. You encode single-bit types in one bit with the 
ENUM_ENCODING attribute.

You can make the vector type (for example, std_logic_vector) synonym
with either SIGNED or UNSIGNED. This way, if you plan to use mostly
UNSIGNED numbers, you do not need to convert your vector type to c
UNSIGNED functions. The disadvantage of making your vector type 
Synopsys Packages
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synonymous with either UNSIGNED or SIGNED is that it causes the 
standard VHDL comparison functions (=, /=, <, >, <=, and >=) to be 
redefined.

Table 10-1 shows that the standard comparison functions for 
BIT_VECTOR do not match the SIGNED and UNSIGNED functions.

Table 10-1 UNSIGNED, SIGNED, and BIT_VECTOR Comparison Functions

Using the Package

The std_logic_arith package is in the $synopsys/packages/IEEE/src/
std_logic_arith.vhd subdirectory of the Synopsys root directory. To use this 
package in a VHDL source file, include the following lines at the top of the 
source file:

library IEEE;
use IEEE.std_logic_arith.all;

Synopsys packages are preanalyzed and do not require further analyzing. 

Modifying the Package

The std_logic_arith package is written in standard VHDL. You can modify 
or add to it. The appropriate hardware is then synthesized.

For example, to convert a vector of multivalued logic to an INTEGER, you 
can write the function shown in Example 10-1. This MVL_TO_INTEGER 
function returns the integer value corresponding to the vector when the 
vector is interpreted as an unsigned (natural) number. If unknown values 
are in the vector, the return value is -1.

ARG1 op ARG2 UNSIGNED SIGNED BIT_VECTOR

"000" = "000" TRUE TRUE TRUE

"00" = "000" TRUE TRUE FALSE

"100" = "0100" TRUE FALSE FALSE

"000" < "000" FALSE FALSE FALSE

"00" < "000" FALSE FALSE TRUE

"100" < "0100" FALSE TRUE FALSE
Synopsys Packages 10–3
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Example 10-1 New Function Based on a std_logic_arith Package Function

library IEEE;
use IEEE.std_logic_1164.all;

function MVL_TO_INTEGER(ARG : MVL_VECTOR) 
  return INTEGER is
  -- pragma built_in SYN_FEED_THRU
  variable uns: UNSIGNED (ARG’range);
begin
    for i in ARG’range loop
        case ARG(i) is
            when ’0’ | ’L’ => uns(i) := ’0’;
            when ’1’ | ’H’ => uns(i) := ’1’;
            when others    => return -1;
        end case;
    end loop;
    return CONV_INTEGER(uns);
end;

Note the use of the CONV_INTEGER function in Example 10-1.

FPGA Express performs almost all synthesis directly from the VHDL 
descriptions. However, several functions are hard wired for efficiency. 
These functions can be identified by the following comment in their 
declarations

-- pragma built_in

This statement marks functions as special, causing the body to be ignored. 
Modifying the body does not change the synthesized logic unless you 
remove the built_in comment. If you want new functionality, use the 
built_in functions; this is more efficient than removing the built_in and 
modifying the body.

Data Types

The std_logic_arith package defines two data types, UNSIGNED and 
SIGNED:

type UNSIGNED is array (natural range <>) of 
std_logic;
type SIGNED is array (natural range <>) of std_logic;

These data types are similar to the predefined VHDL type BIT_VECTOR, 
but the std_logic_arith package defines the interpretation of variables and 
signals of these types as numeric values. With the install_vhdl conversion 
script, you can change these data types to arrays of other one-bit types. 
Synopsys Packages
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UNSIGNED 
The UNSIGNED data type represents an unsigned numeric value. FPGA 
Express interprets the number as a binary representation, with the farthest 
left bit being most significant. For example, the decimal number 8 can be 
represented as

UNSIGNED’("1000")

When you declare variables or signals of type UNSIGNED, a larger vector 
holds a larger number. A four-bit variable holds values up to decimal 15; an 
eight-bit variable holds values up to 255, and so on. By definition, negative 
numbers cannot be represented in an UNSIGNED variable. Zero is the 
smallest value that can be represented. 

Example 10-2 illustrates some UNSIGNED declarations. Note that the 
most significant bit is the farthest left array bound, rather than the high or 
low range value.

Example 10-2 UNSIGNED Declarations

variable VAR: UNSIGNED (1 to 10);
  -- 11-bit number
  -- VAR(VAR’left) = VAR(1) is the most significant 
bit

signal SIG: UNSIGNED (5 downto 0); 
  -- 6-bit number
  -- SIG(SIG’left) = SIG(5) is the most significant 
bit

SIGNED
The SIGNED data type represents a signed numeric value. FPGA Express 
interprets the number as a 2’s complement binary representation, with
farthest left bit as the sign bit. For example, you can represent decimal
and -5 as

SIGNED’("0101")  -- represents +5
SIGNED’("1011")  -- represents -5

When you declare SIGNED variables or signals, a larger vector holds a 
larger number. A four-bit variable holds values from -8 to 7; an eight-bit 
variable holds values from –128 to 127. Note that a SIGNED value can
hold as large a value as an UNSIGNED value with the same bit width. 

Example 10-3 shows some SIGNED declarations. Note that the sign b
the farthest left bit, rather than the highest or lowest.
Synopsys Packages 10–5
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Example 10-3 SIGNED Declarations

variable S_VAR: SIGNED (1 to 10);  
  -- 11-bit number
  -- S_VAR(S_VAR’left) = S_VAR(1) is the sign bit

signal S_SIG: SIGNED (5 downto 0); 
  -- 6-bit number
  -- S_SIG(S_SIG’left) = S_SIG(5) is the sign bit

Conversion Functions

The std_logic_arith package provides three sets of functions to convert 
values between its UNSIGNED and SIGNED types, and the predefined 
type INTEGER. This package also provides the std_logic_vector.

Example 10-4 shows the declarations of these conversion functions. BIT 
and BIT_VECTOR types are shown.
Synopsys Packages
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Example 10-4 Conversion Functions

subtype SMALL_INT is INTEGER range 0 to 1;

function CONV_INTEGER(ARG: INTEGER)  return INTEGER;
function CONV_INTEGER(ARG: UNSIGNED) return INTEGER;
function CONV_INTEGER(ARG: SIGNED)   return INTEGER;
function CONV_INTEGER(ARG: STD_ULOGIC) return 
SMALL_INT;

function CONV_UNSIGNED(ARG: INTEGER;  
                       SIZE: INTEGER) return UNSIGNED;
function CONV_UNSIGNED(ARG: UNSIGNED;
                       SIZE: INTEGER) return UNSIGNED;
function CONV_UNSIGNED(ARG: SIGNED;  
                       SIZE: INTEGER) return UNSIGNED;
function CONV_UNSIGNED(ARG: STD_ULOGIC;      
                       SIZE: INTEGER) return UNSIGNED;

function CONV_SIGNED(ARG: INTEGER;  
                     SIZE: INTEGER)   return SIGNED;
function CONV_SIGNED(ARG: UNSIGNED; 
                     SIZE: INTEGER)   return SIGNED;
function CONV_SIGNED(ARG: SIGNED;
                     SIZE: INTEGER)   return SIGNED;
function CONV_SIGNED(ARG: STD_ULOGIC;
                     SIZE: INTEGER)   return SIGNED;

function CONV_STD_LOGIC_VECTOR(ARG: INTEGER;  
                     SIZE: INTEGER)   return 
STD_LOGIC_VECTOR;
function CONV_STD_LOGIC_VECTOR(ARG: UNSIGNED; 
                     SIZE: INTEGER)   return 
STD_LOGIC_VECTOR;
function CONV_STD_LOGIC_VECTOR(ARG: SIGNED;
                     SIZE: INTEGER)   return 
STD_LOGIC_VECTOR;
function CONV_STD_LOGIC_VECTOR(ARG: STD_ULOGIC;
                     SIZE: INTEGER)   return 
STD_LOGIC_VECTOR;

Note that there are four versions of each conversion function. 

The operator overloading mechanism of VHDL determines the correct 
version from the function call’s argument types.

The CONV_INTEGER functions convert an argument of type INTEGER
UNSIGNED, SIGNED, or STD_ULOGIC to an INTEGER return value. 
The CONV_UNSIGNED and CONV_SIGNED functions convert an 
argument of type INTEGER, UNSIGNED, SIGNED, or STD_ULOGIC t
an UNSIGNED or SIGNED return value whose bit width is SIZE.
Synopsys Packages 10–7
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The CONV_INTEGER functions have a limitation on the size of operands. 
VHDL defines INTEGER values as between -2147483647 and 
2147483647. This range corresponds to a 31-bit UNSIGNED value or a 
32-bit SIGNED value. You cannot convert an argument outside this range 
to an INTEGER.

The CONV_UNSIGNED and CONV_SIGNED functions require two 
operands. The first operand is the value converted. The second operand is 
an INTEGER that specifies the expected size of the converted result. For 
example, the following function call returns a 10-bit UNSIGNED value 
representing the value in sig.

ten_unsigned_bits := CONV_UNSIGNED(sig, 10);

If the value passed to CONV_UNSIGNED or CONV_SIGNED is smaller 
than the expected bit width (such as representing the value 2 in a 24-bit 
number), the value is bit-extended appropriately. FPGA Express places 
zeros in the more significant (left) bits for an UNSIGNED return value and 
uses sign extension for a SIGNED return value. 

You can use the conversion functions to extend a number’s bit width ev
conversion is not required. For example:

CONV_SIGNED(SIGNED’("110"), 8) % "11111110"

An UNSIGNED or SIGNED return value is truncated when its bit width is 
too small to hold the ARG value. For example:

CONV_SIGNED(UNSIGNED’("1101010"), 3) % "010"

Arithmetic Functions

The std_logic_arith package provides arithmetic functions for use with 
combinations of Synopsys’ UNSIGNED and SIGNED data types and the 
predefined types STD_ULOGIC and INTEGER. These functions produ
adders and subtracters. 

There are two sets of arithmetic functions: binary functions with two 
arguments, such as A+B or A*B, and unary functions with one argume
such as -A. The declarations for these functions are shown in Example 
and Example 10-6.
Synopsys Packages
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Example 10-5 Binary Arithmetic Functions

function "+"(L: UNSIGNED; R: UNSIGNED) return UNSIGNED;
function "+"(L: SIGNED;   R: SIGNED)   return SIGNED;
function "+"(L: UNSIGNED; R: SIGNED)   return SIGNED;
function "+"(L: SIGNED;   R: UNSIGNED) return SIGNED;
function "+"(L: UNSIGNED; R: INTEGER)  return UNSIGNED;
function "+"(L: INTEGER;  R: UNSIGNED) return UNSIGNED;
function "+"(L: SIGNED;   R: INTEGER)  return SIGNED;
function "+"(L: INTEGER;  R: SIGNED)   return SIGNED;
function "+"(L: UNSIGNED; R: STD_ULOGIC) return UNSIGNED;
function "+"(L: STD_ULOGIC; R: UNSIGNED) return UNSIGNED;
function "+"(L: SIGNED;   R: STD_ULOGIC) return SIGNED;
function "+"(L: STD_ULOGIC; R: SIGNED)   return SIGNED;

function "+"(L: UNSIGNED; R: UNSIGNED) return STD_LOGIC_VECTOR;
function "+"(L: SIGNED; R: SIGNED) return STD_LOGIC_VECTOR;
function "+"(L: UNSIGNED; R: SIGNED) return STD_LOGIC_VECTOR;
function "+"(L: SIGNED; R: UNSIGNED) return STD_LOGIC_VECTOR;
function "+"(L: UNSIGNED; R: INTEGER) return STD_LOGIC_VECTOR;
function "+"(L: INTEGER; R: UNSIGNED) return STD_LOGIC_VECTOR;
function "+"(L: SIGNED; R: INTEGER) return STD_LOGIC_VECTOR;
function "+"(L: INTEGER; R: SIGNED) return STD_LOGIC_VECTOR;
function "+"(L: UNSIGNED; R: STD_ULOGIC) return
 STD_LOGIC_VECTOR;
function "+"(L: STD_ULOGIC; R: UNSIGNED) return STD_LOGIC_VECTOR;
function "+"(L: SIGNED; R: STD_ULOGIC) return STD_LOGIC_VECTOR;
function "+"(L: STD_ULOGIC; R: SIGNED) return STD_LOGIC_VECTOR;
function "-"(L: UNSIGNED; R: UNSIGNED) return UNSIGNED;
function "-"(L: SIGNED;   R: SIGNED)   return SIGNED;
function "-"(L: UNSIGNED; R: SIGNED)   return SIGNED;
function "-"(L: SIGNED;   R: UNSIGNED) return SIGNED;
function "-"(L: UNSIGNED; R: INTEGER)  return UNSIGNED;
function "-"(L: INTEGER;  R: UNSIGNED) return UNSIGNED;
function "-"(L: SIGNED;   R: INTEGER)  return SIGNED;
function "-"(L: INTEGER;  R: SIGNED)   return SIGNED;
function "-"(L: UNSIGNED; R: STD_ULOGIC) return UNSIGNED;
function "-"(L: STD_ULOGIC; R: UNSIGNED) return UNSIGNED;
function "-"(L: SIGNED;   R: STD_ULOGIC) return SIGNED;
function "-"(L: STD_ULOGIC; R: SIGNED)   return SIGNED;

function "-"(L: UNSIGNED; R: UNSIGNED) return STD_LOGIC_VECTOR;
function "-"(L: SIGNED; R: SIGNED) return STD_LOGIC_VECTOR;
function "-"(L: UNSIGNED; R: SIGNED) return STD_LOGIC_VECTOR;
function "-"(L: SIGNED; R: UNSIGNED) return STD_LOGIC_VECTOR;
function "-"(L: UNSIGNED; R: INTEGER) return STD_LOGIC_VECTOR;
function "-"(L: INTEGER; R: UNSIGNED) return STD_LOGIC_VECTOR;
function "-"(L: SIGNED; R: INTEGER) return STD_LOGIC_VECTOR;
function "-"(L: INTEGER; R: SIGNED) return STD_LOGIC_VECTOR;
function "-"(L: UNSIGNED; R: STD_ULOGIC) return
 STD_LOGIC_VECTOR;
function "-"(L: STD_ULOGIC; R: UNSIGNED) return
 STD_LOGIC_VECTOR;
function "-"(L: SIGNED; R: STD_ULOGIC) return STD_LOGIC_VECTOR;
function "-"(L: STD_ULOGIC; R: SIGNED) return STD_LOGIC_VECTOR;

function "*"(L: UNSIGNED; R: UNSIGNED) return UNSIGNED;
function "*"(L: SIGNED;   R: SIGNED)   return SIGNED;
function "*"(L: SIGNED;   R: UNSIGNED) return SIGNED;
Synopsys Packages 10–9
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function "*"(L: UNSIGNED; R: SIGNED)   return SIGNED;

Example 10-6 Unary Arithmetic Functions

function "+"(L: UNSIGNED) return UNSIGNED;
function "+"(L: SIGNED)   return SIGNED;
function "-"(L: SIGNED)   return SIGNED;
function "ABS"(L: SIGNED) return SIGNED;

These functions determine the width of their return values as follows:

5. When only one UNSIGNED or SIGNED argument is present, the width of 
the return value is the same as that argument. 

6. When both arguments are either UNSIGNED or SIGNED, the width of the 
return value is the larger of the two argument widths. An exception is that 
when an UNSIGNED number is added to or subtracted from a SIGNED 
number of the same size or smaller, the return value is a SIGNED number 
one bit wider than the UNSIGNED argument. This size guarantees that the 
return value is large enough to hold any (positive) value of the UNSIGNED 
argument. 

The number of bits returned by + and - is illustrated in Table 10-2.

signal U4: UNSIGNED (3 downto 0);
signal U8: UNSIGNED (7 downto 0);
signal S4: SIGNED (3 downto 0);
signal S8: SIGNED (7 downto 0);

Table 10-2 Number of Bits Returned by + and - 

In some circumstances, you might need to obtain a carry-out bit from the + 
or - operation. To do this, extend the larger operand by one bit. The high bit 
of the return value is the carry-out bit, as illustrated in Example 10-7.

+ or -    U4 U8 S4 S8

U4 4 8 5 8

U8 8 8 9 9

S4 5 9 4 8

S8 8 9 8 8
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Example 10-7 Using the Carry-Out Bit

process
    variable a, b, sum: UNSIGNED (7 downto 0);
    variable temp: UNSIGNED (8 downto 0);
    variable carry: BIT;
begin
    temp  := CONV_UNSIGNED(a,9) + b;
    sum   := temp(7 downto 0);
    carry := temp(8);
end process;

Comparison Functions

The std_logic_arith package provides functions to compare UNSIGNED 
and SIGNED data types to each other and to the predefined type 
INTEGER. FPGA Express compares the numeric values of the arguments, 
returning a Boolean value. For example, the following expression evaluates 
to TRUE.

UNSIGNED’("001") > SIGNED’("111")

The std_logic_arith comparison functions are similar to the built-in VHDL 
comparison functions. The only difference is that the std_logic_arith 
functions accommodate signed numbers and varying bit widths. The 
predefined VHDL comparison functions perform bit-wise comparisons and 
so do not have the correct semantics for comparing numeric values (see 
“Relational Operators” in Chapter 5, “Expressions”).

These functions produce comparators. The function declarations are lis
in two groups, ordering functions (<, <=, >, and >=) and equality functio
(= and /=) in Example 10-8 and Example 10-9. 
Synopsys Packages 10–11
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Example 10-8 Ordering Functions

function "<"(L: UNSIGNED; R: UNSIGNED) return Boolean;
function "<"(L: SIGNED;   R: SIGNED)   return Boolean;
function "<"(L: UNSIGNED; R: SIGNED)   return Boolean;
function "<"(L: SIGNED;   R: UNSIGNED) return Boolean;
function "<"(L: UNSIGNED; R: INTEGER)  return Boolean;
function "<"(L: INTEGER;  R: UNSIGNED) return Boolean;
function "<"(L: SIGNED;   R: INTEGER)  return Boolean;
function "<"(L: INTEGER;  R: SIGNED)   return Boolean;

function "<="(L: UNSIGNED; R: UNSIGNED) return Boolean;
function "<="(L: SIGNED;   R: SIGNED)   return Boolean;
function "<="(L: UNSIGNED; R: SIGNED)   return Boolean;
function "<="(L: SIGNED;   R: UNSIGNED) return Boolean;
function "<="(L: UNSIGNED; R: INTEGER)  return Boolean;
function "<="(L: INTEGER;  R: UNSIGNED) return Boolean;
function "<="(L: SIGNED;   R: INTEGER)  return Boolean;
function "<="(L: INTEGER;  R: SIGNED)   return Boolean;

function "" functions">">"(L: UNSIGNED; R: UNSIGNED) return Boolean;
function ">"(L: SIGNED;   R: SIGNED)   return Boolean;
function ">"(L: UNSIGNED; R: SIGNED)   return Boolean;
function ">"(L: SIGNED;   R: UNSIGNED) return Boolean;
function ">"(L: UNSIGNED; R: INTEGER)  return Boolean;
function ">"(L: INTEGER;  R: UNSIGNED) return Boolean;
function ">"(L: SIGNED;   R: INTEGER)  return Boolean;
function ">"(L: INTEGER;  R: SIGNED)   return Boolean;

function ="" functions">">="(L: UNSIGNED; R: UNSIGNED) return Boolean;
function ">="(L: SIGNED;   R: SIGNED)   return Boolean;
function ">="(L: UNSIGNED; R: SIGNED)   return Boolean;
function ">="(L: SIGNED;   R: UNSIGNED) return Boolean;
function ">="(L: UNSIGNED; R: INTEGER)  return Boolean;
function ">="(L: INTEGER;  R: UNSIGNED) return Boolean;
function ">="(L: SIGNED;   R: INTEGER)  return Boolean;
function ">="(L: INTEGER;  R: SIGNED)   return Boolean;
Synopsys Packages
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Example 10-9 Equality Functions

function "="(L: UNSIGNED; R: UNSIGNED) return Boolean;
function "="(L: SIGNED;   R: SIGNED)   return Boolean;
function "="(L: UNSIGNED; R: SIGNED)   return Boolean;
function "="(L: SIGNED;   R: UNSIGNED) return Boolean;
function "="(L: UNSIGNED; R: INTEGER)  return Boolean;
function "="(L: INTEGER;  R: UNSIGNED) return Boolean;
function "="(L: SIGNED;   R: INTEGER)  return Boolean;
function "="(L: INTEGER;  R: SIGNED)   return Boolean;

function "/="(L: UNSIGNED; R: UNSIGNED) return Boolean;
function "/="(L: SIGNED;   R: SIGNED)   return Boolean;
function "/="(L: UNSIGNED; R: SIGNED)   return Boolean;
function "/="(L: SIGNED;   R: UNSIGNED) return Boolean;
function "/="(L: UNSIGNED; R: INTEGER)  return Boolean;
function "/="(L: INTEGER;  R: UNSIGNED) return Boolean;
function "/="(L: SIGNED;   R: INTEGER)  return Boolean;
function "/="(L: INTEGER;  R: SIGNED)   return Boolean;

Shift Functions

The std_logic_arith package provides functions for shifting the bits in 
SIGNED and UNSIGNED numbers. These functions produce shifters. 
Example 10-10 shows the shift function declarations.

Example 10-10 Shift Functions

function SHL(ARG: UNSIGNED; 
             COUNT: UNSIGNED)  return UNSIGNED;
function SHL(ARG: SIGNED;
             COUNT: UNSIGNED)  return SIGNED;

function SHR(ARG: UNSIGNED; 
             COUNT: UNSIGNED)  return UNSIGNED;
function SHR(ARG: SIGNED;
             COUNT: UNSIGNED)  return SIGNED;

The SHL function shifts the bits of its argument ARG to the left by 
COUNT bits. The SHR function shifts the bits of its argument ARG to the 
right by COUNT bits. 

The SHL functions work the same for both UNSIGNED and SIGNED 
values of ARG, shifting in zero bits as necessary. The SHR functions treat 
UNSIGNED and SIGNED values differently. If ARG is an UNSIGNED 
number, vacated bits are filled with zeros; if ARG is a SIGNED number, the 
vacated bits are copied from the sign bit of ARG. 
Synopsys Packages 10–13
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Example 10-11 shows some shift function calls and their return values.

Example 10-11 Shift Operations

variable U1, U2: UNSIGNED (7 downto 0);
variable S1, S2: SIGNED   (7 downto 0);
variable COUNT:  UNSIGNED (1 downto 0);
. . .
U1 := "01101011";   
U2 := "11101011";

S1 := "01101011";   
S2 := "11101011";

COUNT := CONV_UNSIGNED(ARG => 3, SIZE => 2);
. . .
SHL(U1, COUNT) = "01011000"
SHL(S1, COUNT) = "01011000"
SHL(U2, COUNT) = "01011000"
SHL(S2, COUNT) = "01011000"

SHR(U1, COUNT) = "00001101"
SHR(S1, COUNT) = "00001101"
SHR(U2, COUNT) = "00011101"
SHR(S2, COUNT) = "11111101"

Multiplication Using Shifts

You can use shift operations for simple multiplication and division of 
UNSIGNED numbers, if you multiply or divide by a power of two.

For example, to divide the following UNSIGNED variable U by 4:

variable U: UNSIGNED (7 downto 0) := "11010101";
variable quarter_U: UNSIGNED (5 downto 0);

quarter_U := SHR(U, "01");

ENUM_ENCODING Attribute

Place the synthesis attribute ENUM_ENCODING on your primary logic 
type (see “Enumeration Encoding” in Chapter 4, “Data Types.” This 
attribute allows FPGA Express to interpret your logic correctly.
Synopsys Packages
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pragma built_in

Label your primary logic functions with the built_in pragma. This pragma 
allows FPGA Express to interpret your logic functions easily. When you 
use a built_in pragma, FPGA Express parses but ignores the body of the 
function. Instead, FPGA Express directly substitutes the appropriate logic 
for the function. You need not use built_in pragmas; however using these 
pragmas can result in run times that are ten times faster.

Use built_in pragmas by placing a comment in the declaration part of a 
function. FPGA Express interprets a comment as a directive if the first word 
of the comment is pragma. 

Example 10-12 shows the use of built_in pragmas.

Example 10-12 Using a built_in pragma

function "XOR" (L, R: STD_LOGIC_VECTOR) return 
STD_LOGIC_VECTOR is
  -- pragma built_in SYN_XOR
    begin
        if (L = ’1’) xor (R = ’1’) then
            return ’1’;
        else 
            return ’0’;
        end if;
end "XOR";

Two-Argument Logic Functions

Synopsys provides six built-in functions to perform two-argument logic 
functions:

• SYN_AND

• SYN_OR

• SYN_NAND

• SYN_NOR

• SYN_XOR

• SYN_XNOR

You can use these functions on single-bit arguments or equal-length a
of single bits. 

Example 10-13 shows a function that generates the logical AND of two
equal-size arrays.
Synopsys Packages 10–15
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Example 10-13 Built-In AND for Arrays

function "AND" (L, R: STD_LOGIC_VECTOR) return 
STD_LOGIC_VECTOR is
  -- pragma built_in SYN_AND
    variable MY_L: STD_LOGIC_VECTOR (L’length-1 
downto 0);
    variable MY_R: STD_LOGIC_VECTOR (L’length-1 
downto 0);
    variable RESULT: STD_LOGIC_VECTOR (L’length-1 
downto 0);
begin
    assert L’length = R’length;
    MY_L := L;
    MY_R := R;
    for i in RESULT’range loop
        if (MY_L(i) = ’1’) and (MY_R(i) = ’1’) then
            RESULT(i) := ’1’;
        else
            RESULT(i) := ’0’;
        end if;
    end loop;
    return RESULT;
end "AND";

One-Argument Logic Functions

Synopsys provides two built-in functions to perform one-argument logic 
functions: 

• SYN_NOT

• SYN_BUF

You can use these functions on single-bit arguments or equal-length a
of single bits. Example 10-14 shows a function that generates the logic
NOT of an array.
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Example 10-14 Built-In NOT for Arrays

function "NOT" (L: STD_LOGIC_VECTOR) return 
STD_LOGIC_VECTOR is
  -- pragma built_in SYN_NOT
     variable MY_L: STD_LOGIC_VECTOR (L’length-1 
downto 0);
     variable RESULT: STD_LOGIC_VECTOR (L’length-1 
downto 0);
begin
    MY_L := L;
    for i in result’range loop
        if (MY_L(i) = ’0’ or MY_L(i) = ’L’) then
            RESULT(i) := ’1’;
        elsif (MY_L(i) = ’1’ or MY_L(i) = ’H’) then
            RESULT(i) := ’0’;
        else
            RESULT(i) := ’X’;
        end if;
    end loop;
    return RESULT;
end "NOT";
end;

Type Conversion

The built-in function SYN_FEED_THRU performs fast type conversion 
between unrelated types. The synthesized logic from SYN_FEED_THRU 
wires the single input of a function to the return value. This connection can 
save the CPU time required to process a complicated conversion function, 
as shown in Example 10-15.

Example 10-15 Use of SYN_FEED_THRU

type COLOR is (RED, GREEN, BLUE);
attribute ENUM_ENCODING : STRING;
attribute ENUM_ENCODING of COLOR : type is "01 10 
11";
...

function COLOR_TO_BV (L: COLOR) return BIT_VECTOR is
  -- pragma built_in SYN_FEED_THRU
begin
    case L is
       when RED   => return "01";
       when GREEN => return "10";
       when BLUE  => return "11";
    end case;
end COLOR_TO_BV;
Synopsys Packages 10–17
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translate_off Directive

If there are constructs in your “types” package that are not supported fo
synthesis, or that produce warning messages, you may need to use th
FPGA Express directive  -- synopsys translate_off. You can make libera
use of the translate_off directive when you use built_in pragmas becau
FPGA Express ignores the body of built_in functions. For examples 
showing how to use the translate_off directive, see the std_logic_arith.
package.

std_logic_misc Package

The std_logic_misc package resides in the Synopsys libraries directory
($synopsys/packages/IEEE/src/std_logic_misc.vhd). This package dec
the primary data types supported by the Synopsys VSS Family. 

Boolean reduction functions use one argument, an array of bits, and re
a single bit. For example, the and-reduction of “101” is “0”, the logical 
AND of all three bits. 

Several functions in the std_logic_misc package provide Boolean reduc
operations for the predefined type STD_LOGIC_VECTOR. Example 
10-16 shows the declarations of these functions.
Synopsys Packages
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Example 10-16 Boolean Reduction Functions

function AND_REDUCE  (ARG: STD_LOGIC_VECTOR) return 
UX01;
function NAND_REDUCE (ARG: STD_LOGIC_VECTOR) return 
UX01;
function OR_REDUCE   (ARG: STD_LOGIC_VECTOR) return 
UX01;
function NOR_REDUCE  (ARG: STD_LOGIC_VECTOR) return 
UX01;
function XOR_REDUCE  (ARG: STD_LOGIC_VECTOR) return 
UX01;
function XNOR_REDUCE (ARG: STD_LOGIC_VECTOR) return 
UX01;
function AND_REDUCE  (ARG: STD_ULOGIC_VECTOR) return 
UX01;
function NAND_REDUCE (ARG: STD_ULOGIC_VECTOR) return 
UX01;
function OR_REDUCE   (ARG: STD_ULOGIC_VECTOR) return 
UX01;
function NOR_REDUCE  (ARG: STD_ULOGIC_VECTOR) return 
UX01;
function XOR_REDUCE  (ARG: STD_ULOGIC_VECTOR) return 
UX01;
function XNOR_REDUCE (ARG: STD_ULOGIC_VECTOR) return 
UX01;

These functions combine the bits of STD_LOGIC_VECTOR, as the name 
of the function indicates. For example, XOR_REDUCE returns the XOR 
value of all bits in ARG.

Example 10-17 shows some reduction function calls and their return 
values.
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Example 10-17 Boolean Reduction Operations

AND_REDUCE("111") = ’1’
AND_REDUCE("011") = ’0’

OR_REDUCE("000")  = ’0’
OR_REDUCE("001")  = ’1’

XOR_REDUCE("100") = ’1’
XOR_REDUCE("101") = ’0’

NAND_REDUCE("111") = ’0’
NAND_REDUCE("011") = ’1’

NOR_REDUCE("000") = ’1’
NOR_REDUCE("001") = ’0’

XNOR_REDUCE("100") = ’0’
XNOR_REDUCE("101") = ’1’ 
Synopsys Packages
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Many VHDL language constructs, although useful for simulation and other 
stages in the design process, are not relevant to synthesis. Because these 
constructs cannot be synthesized, they are not supported by FPGA Express.

This chapter provides a list of all VHDL language constructs with the level 
of support for each, followed by a list of VHDL reserved words. 

This chapter describes

• VHDL construct support

• VHDL reserved words

VHDL Construct Support

A construct can be fully supported, ignored, or unsupported. Ignored a
unsupported constructs are defined as follows:

• Ignored means that the construct is allowed in the VHDL source, but is 
ignored by FPGA Express.

• Unsupported means that the construct is not allowed in the VHDL sourc
and that FPGA Express flags the construct as an error. If errors are found
a VHDL description, the description is not translated (synthesized).
VHDL Constructs 11–1
VHDL Construct Support



11–2

ut 

 

Constructs are listed in the following order:

• Design units

• Data types

• Declarations

• Specifications

• Names

• Operators

• Operands and expressions

• Sequential statements

• Concurrent statements

• Predefined language environment

Design Units

entity
The entity statement part is ignored.

Generics are supported, but only of type INTEGER.

Default values for ports are ignored.

architecture
Multiple architectures are allowed. 

Global signal interaction between architectures is unsupported.

configuration
Configuration declarations and block configurations are supported, b
only to specify the top-level architecture for a top-level entity. 

Attribute specifications, use clauses, component configurations, and
nested block configurations are unsupported.

package
Packages are fully supported.

library
Libraries and separate compilation are supported. 
VHDL Constructs
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subprogram
Default values for parameters are unsupported. Assigning to indexes and 
slices of unconstrained out parameters is unsupported, unless the actual 
parameter is an identifier.

Subprogram recursion is unsupported if the recursion is not bounded by a 
static value. 

Resolution functions are supported for wired-logic and three-state 
functions only.

Subprograms can only be declared in packages and in the declaration part 
of an architecture.

Data Types

enumeration
Enumeration is fully supported.

integer
Infinite-precision arithmetic is unsupported. 

Integer types are automatically converted to bit vectors whose width is as 
small as possible to accommodate all possible values of the type’s ra
either in unsigned binary for nonnegative ranges, or in 2’s-compleme
form for ranges that include negative numbers.

physical
Physical type declarations are ignored. The use of physical types is 
ignored in delay specifications.

floating
Floating-point type declarations are ignored. The use of floating-poin
types is unsupported except for floating-point constants used with 
Synopsys-defined attributes (see Chapter 9, “FPGA Express Directives”).

array
Array ranges and indexes other than integers are unsupported.

Multidimensional arrays are unsupported, but arrays of arrays are 
supported.

record
Record data types are fully supported.

access
Access type declarations are ignored, and the use of access types is
unsupported.
VHDL Constructs 11–3
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file
File type declarations are ignored, and the use of file types is 
unsupported.

incomplete type declarations
Incomplete type declarations are unsupported.

Declarations

constant
Constant declarations are supported, except for deferred constant 
declarations.

signal
register and bus declarations are unsupported. 

Resolution functions are supported for wired and three-state functions 
only.

Declarations other than from a globally static type are unsupported.

Initial values are unsupported.

variable
Declarations other than from a globally static type are unsupported.

Initial values are unsupported.

file
File declarations are unsupported.

interface
buffer and linkage are translated to out and inout, respectively.

alias
Alias declarations are ignored.

component
Component declarations that list a name other than a valid entity name 
are unsupported.

attribute
Attribute declarations are fully supported. However, the use of 
user-defined attributes is unsupported.
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Specifications

attribute
others and all are unsupported in attribute specifications.

User-defined attributes can be specified, but the use of user-defined 
attributes is unsupported.

configuration
Configuration specifications are unsupported. 

disconnection
Disconnection specifications are unsupported.

Attribute declarations are fully supported. However, the use of 
user-defined attributes is unsupported.

Names

simple
Simple names are fully supported.

selected
Selected (qualified) names outside of a use clause are unsupported.

Overriding the scopes of identifiers is unsupported.

operator symbols
Operator symbols are fully supported.

indexed
Indexed names are fully supported, with one exception. Indexing an 
unconstrained out parameter in a procedure is unsupported.

slice
Slice names are fully supported, with one exception. Using a slice of an 
unconstrained out parameter in a procedure is unsupported unless the 
actual parameter is an identifier.
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attribute
Only the following predefined attributes are supported: base, left, right, 
high, low, range, reverse_range, and length.

The event and stable attributes are supported only as described with the 
wait and if statements (see Chapter 6, “Sequential Statements”).

User-defined attribute names are unsupported.

The use of attributes with selected names (name.name’attribute) is 
unsupported.

Operators

logical
Logical operators are fully supported.

relational
Relational operators are fully supported.

addition
Concatenation and arithmetic operators are both fully supported.

signing
Signing operators are fully supported.

multiplying
The * (multiply) operator is fully supported.

The / (division), mod, and rem operators are supported only when bo
operands are constant or when the right operand is a constant powe

miscellaneous
The ** operator is supported only when both operands are constant o
when the left operand is 2.

The abs operator is fully supported.

operator overloading
Operator overloading is fully supported.

short-circuit operations
The short-circuit behavior of operators is not supported.
VHDL Constructs
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Operands and Expressions

based literals
Based literals are fully supported.

null literals
Null slices, null ranges, and null arrays are unsupported.

physical literals
Physical literals are ignored.

strings
Strings are fully supported.

aggregates
The use of types as aggregate choices is unsupported.

Record aggregates are unsupported.

function calls
Function conversions on input ports are not supported, because type 
conversions on formal ports in a connection specification are 
unsupported.

qualified expressions
Qualified expressions are fully supported.

type conversion
Type conversion is fully supported.

allocators
Allocators are unsupported.

static expressions
Static expressions are fully supported.

universal expressions
Floating-point expressions are unsupported, except in a 
Synopsys-recognized attribute definition.

Infinite-precision expressions are not supported. 

Precision is limited to 32 bits; all intermediate results are converted to 
integer.
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Sequential Statements

wait
The wait statement is unsupported unless it is of one the following forms:

wait until                      clock = VALUE;
wait until     clock’ event  and clock = VALUE;
wait until not clock’ stable and clock = VALUE;

where VALUE is 0, 1 or an enumeration literal whose encoding is 0 or 1. 
A wait statement in this form is interpreted to mean “wait until the fallin
(VALUE is 0) or rising (VALUE is 1) edge of the signal named clock.”

wait statements cannot be used in subprograms or in for loops.

assertion
assertion statements are ignored.

signal
Guarded signal assignment is unsupported. 

transport and after are ignored. 

Multiple waveform elements in signal assignment statements are 
unsupported.

variable
variable statements are fully supported.

procedure call
Type conversion on formal parameters is unsupported. 

Assignment to single bits of vectored ports is unsupported.

if
if statements are fully supported.

case
case statements are fully supported.

loop
for loops are supported, with two constraints: the loop index range m
be globally static, and the loop body must not contain a wait stateme

while loops are supported, but the loop body must contain at least on
wait statement. 

loop statements with no iteration scheme (infinite loops) are supporte
but the loop body must contain at least one wait statement. 

next
next statements are fully supported.
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exit
exit statements are fully supported.

return
return statements are fully supported.

null
null statements are fully supported.

Concurrent Statements

block
Guards on block statements are unsupported. 

Ports and generics in block statements are unsupported.

process
Sensitivity lists in process statements are ignored.

concurrent procedure call
Concurrent procedure call statements are fully supported.

concurrent assertion
Concurrent assertion statements are ignored.

concurrent signal assignment
The guarded and transport keywords are ignored. Multiple waveforms 
are unsupported.

component instantiation
Type conversion on the formal port of a connection specification is 
unsupported. 

generate
generate statements are fully supported.

Predefined Language Environment

severity_level type
severity_level type is unsupported.

time type
time type is unsupported.
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now function
now function is unsupported.

TEXTIO package
The TEXTIO package is unsupported.

predefined attributes
Predefined attributes are unsupported, except for base, left, right, high, 
low, range, reverse_range, and length. 

The event and stable attributes are supported only in the if and wait 
statements, as described in Chapter 6, “Sequential Statements.”
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VHDL Reserved Words

The following words are reserved for the VHDL language and cannot be 
used as identifiers:

abs file out

access for package

after function port

alias generate procedure

all generic process

and guarded range

architecture if record

array in register

assert inout rem

attribute is report

begin label return

block library select

body linkage severity

buffer loop signal

bus map subtype

case mod then

component nand to

configuration new transport

constant next type

disconnect nor units

downto not until

else of variable

elsif on wait

end open when

entity or while

exit others
VHDL Constructs 11–11
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Symbols
-, 5-7, 5-9
*, 5-9, 5-12
+, 5-7, 5-9
/, 5-5, 5-9
=, 5-5

A
abs (absolute value operator), 5-12
absolute value operator, 5-12
abstraction, 1-5
access (pointer) types, 4-14
actual parameters (to subprograms), 3-20
adding operators, 5-7
aggregate target, 6-7
aggregates (array literals), 5-24
algorithms

processes, 3-7
subprograms, 3-19

and (logical operator), 5-3
architecture

concurrent statements, 3-6
dataflow, 3-3
declarations, 3-6
hardware model, 1-4
organization, 3-5
overriding entity port names, 3-17
signals, 3-6
statement, 3-15
structural, 3-3

arithmetic operators, 5-7
adding, 5-7
multiplying, 5-9
negation, 5-9

array attributes, 4-9
RANGE

example, 6-19
using, 4-9

array literals
as aggregates, 5-24
as bit strings, 5-19

array ordering, 5-6
array types, 4-7

array attributes, 4-9
concatenating, 5-7
constrained, 4-7
defining

constrained, 4-7
unconstrained, 4-8

unconstrained, 4-7
assignment

aggregate target, 6-7
field target, 6-6
indexed name target, 6-4
signal, 6-9
simple name target, 6-3
slice target, 6-5
variable, 6-8

assignment statements, 6-2
asynch_set_reset, 8-15
asynch_set_reset, see also hdlin_ff_always_

asynch_set_reset
asynchronous processes, 8-4

example, 8-33
asynchronous reset, 8-11, 8-16
asynchronous sequential element inferencing, 8-1
Attributes, 8-15
attributes

array, 4-9
as operands, 5-26
ENUM_ENCODING, 4-4, 10-14

B
behavioral

constructs, 1-5
binary arithmetic functions

example, 10-9
binary bit string, 5-19
bit string literals, 5-18
BIT type, 4-12
bit vectors

as bit strings, 5-19
bit width (of operands), 5-14
BIT_VECTOR type, 4-12, 10-3
block statement, 7-7
blocks, 3-7
Boolean reduction functions, 10-18
BOOLEAN type, 4-12
buffer (port mode), 3-14
built_in directive

logic functions, 10-15
type conversion, 10-17
using, 10-15

built_in pragma
example of using, 10-15

C
carry-out bit

example of using, 10-11
case statement, 6-12

illegal usages, 6-14
catenation operator, 5-7
character literals, 5-17
CHARACTER type, 4-12
combinational processes, 6-38, 7-3
compiler directives, see also directives)
component declaration, 7-16
component implication, 6-29, 8-30

example, 6-30
latches and registers, 6-39
registers, 8-2
three-state, 8-35

component instantiation
statement, 7-15

component instantiation statement, 3-32
component instantiations, 3-7

components
declarations, 3-30

generics, 3-30
in design hierarchy, 3-29
instantiation, 3-32

search order, 3-31
port map, 3-32

computable operands, 5-14
concurrent procedure call, 7-9

equivalent process, 7-9
concurrent signal assignment, 7-11

conditional signal assignment, 7-12
selected signal assignment, 7-13

concurrent statements, 7-1
supported, 11-9

conditional signal assignment, 7-12
equivalent process, 7-13

conditionally-assigned variable, 8-9
constants

declarations, 3-24
constrained array, 4-7
CONV_INTEGER functions, 10-7
CONV_SIGNED functions, 10-7
CONV_UNSIGNED functions, 10-7
conversion functions, 10-8

std_logic_arith package, 10-6

D
data types

supported, 11-3
dataflow

architecture, 3-3
constructs, 1-5

declarations, 11-4
declaring constant

incorrect use of port name, 3-18
declaring signal

incorrect use of port name example, 3-18
description style

data types, 2-2
description styles

asynchronous designs, 2-3
design hierarchy, 2-2
language constructs, 2-4
register selection, 2-3

design, 3-4
files, 3-4

Design Compiler
component instantiation, 3-31
designs (VHDL entities), 3-29
restructuring, 1-6
synthesis and optimization, 1-6

design flow, 1-7
design styles

design constraints, 2-3
design units, 11-2
designs

hierarchy, 3-29
directives, 9-2
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built_in, 10-4
using, 10-15

component implication, 6-29
map_to_entity, 6-29, 7-9
resolution_method, 3-27
return_port_name, 6-29
translate_off, 9-3, 10-18
translate_on, 9-3

E
edge expression, 8-3, 8-6
entity

architectures, 3-15
example, 3-3

as design in Design Compiler, 3-29
design hierarchy, 3-1
example, 3-16
generic specifications, 3-14

example, 3-15
hardware model, 1-4
implementation, 3-1
interface, 3-1
overriding port names, 3-17
port specifications, 3-14
specification

example, 3-2
syntax, 3-13

ENUM_ENCODING attribute, 4-4, 10-14
enumerated types

ordering, 5-5
enumeration literals, 4-2, 5-17
enumeration types, 4-2

encoding, 4-3
values, 4-5

ENUM_ENCODING attribute, 4-4
enumeration literals, 4-2

equality functions
example, 10-13

equality operators, 5-5
examples

asynchronous process, 8-34
case statement

enumerated type, 6-13
combinational process, 7-4
component implication, 6-31
flip-flop inference

asynchronous reset, 8-11
synchronous reset, 8-16

for..generate, 7-18
function call, 6-27
if statement, 6-11
inference

flip-flop, 8-11
latch, 8-7

latch inference, 8-7
processes, 8-34
sequential processes, 7-4
simulation driver, 9-3
subprograms

component implication, 6-31
declarations, 6-24
function call, 6-27

synchronous process, 8-34
three-state component, 8-35

registered input, 8-38
two-phase clocked design, 8-10
wait statement

multiple waits, 6-36
exit statement, 6-22
exponentiation operator, 5-12
expressions, 5-1

supported, 11-7

F
field target, 6-6
file types, 4-15
files, 3-4
finite-state machine

examples
synchronous with asynchronous reset, 8-

13
flip-flop inference, 8-29

asynchronous reset, 8-11
example, 8-11
synchronous reset, 8-16

flip-flops, 8-2
floating point types, 4-14
for..generate statement

example, 7-18
syntax, 7-17

for..loop statement, 6-16, 6-17
and exit statement, 6-22
and next statement, 6-20

formal parameters (to subprograms), 3-20
function call, 5-27
functional description, 1-7
functions, 3-19

body
syntax, 3-21

calling, 6-27
declarations

example, 3-20
syntax, 3-20

description, 6-25
implementations

mapped to component, 6-31
mapped to gates, 6-33

return statement, 6-28

G
generate statements

for..generate, 7-17
if..generate, 7-17

generic map (component instantiation), 3-32
generics, 3-14

in components, 3-30

H
hardware description languages (HDLs)

advantages, 1-2
design methodology, 1-2

hdlin_ff_always_asynch_set_reset, 8-29
HDLs (see hardware description languages), 1-2
hexadecimal bit string, 5-19
high impedance state, 8-35

I
identifiers, 5-19

enumeration literals, 5-17
if statement, 6-10

creating registers, 8-2
if..generate statement

syntax, 7-20
implying registers, 8-2
in (port mode), 3-14
indexed name target, 6-4
indexed names, 5-20

computability, 5-20
using, 5-20

inout (port mode), 3-14
instantiation, 3-29

search order, 3-31
INTEGER type, 4-12

and subtypes, 4-13
integer types

defining, 4-6
encoding, 4-6

bit width, 4-6
range, 4-6

K
keywords, 11-11

L
latch inference, 8-29

automatic, 8-8
example, 8-7
local variables, 8-9
restrictions, 8-9

latches, 8-2
literals

as operands, 5-17
bit strings, 5-18
character, 5-17
enumeration, 5-17
numeric, 5-17
string, 5-18

logic optimization, 1-2
logical operators, 5-3
loop statement, 6-15
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M
map_to_entity directive, 6-29, 7-9
mod (multiplying operator), 5-9
multiplication using shifts, 10-14
multiply-driven signals, 7-6
multiplying operators, 5-9

N
named notation, 3-33
names, 11-5

attributes, 5-26
field names, 5-23
indexed names, 5-20
qualified, 5-28
record names, 5-23
slice names, 5-21

nand (logical operator), 5-3
NATURAL subtype, 4-12
next statement, 6-20

in named loops, 6-21
non-computable operands, 5-15
nor (logical operator), 5-3
not (logical operator), 5-3
null range, 5-22
null slice, 5-22
null statement, 6-40
numeric literals, 5-17

O
octal bit string, 5-19
operands, 5-1

aggregates, 5-24
attributes, 5-26
bit width, 5-14
computable, 5-14
field, 5-23
function call, 5-27
identifiers, 5-19
indexed names, 5-20
literal, 5-17

character, 5-17
enumeration, 5-17
numeric, 5-17
string, 5-18

non-computable, 5-15
qualified expressions, 5-28
record, 5-23
slice names, 5-21
supported, 11-7
type conversions, 5-29

operators, 5-1
absolute value, 5-12
adding, 5-7
arithmetic

adding, 5-7
multiplying, 5-9
negation, 5-9

array
catenation, 5-7
relational, 5-6

catenation, 5-7
defined, 5-2
equality, 5-5
exponentiation, 5-12
logical, 5-3
multiplying, 5-9

restrictions on use, 5-9
ordering, 5-5

and array types, 5-6
and enumerated types, 5-5

overloading, 3-23
syntax, 3-23

precedence, 5-3
predefined, 5-2
relational, 5-5
sign, 5-9
supported, 11-6
unary, 5-9

or (logical operator), 5-3
ordering functions

example, 10-12
ordering operators, 5-5
others (in aggregates), 5-26
others (in case statement), 6-12
out (port mode), 3-14
overloading

enumeration literals, 4-3, 5-18
operators, 3-23
resolving by qualification, 5-28
subprograms, 3-22

P
packages, 3-10

bodies, 3-11
syntax, 3-12

declarations, 3-11
example, 3-12
syntax, 3-11

description, 3-10
names, 3-11
organization, 3-10
structure, 3-11
Synopsys-supplied, 10-1
using, 3-10

parameters
mode, 3-20
profile, 3-22

performance constraints, 2-3
physical types, 4-14
port map (component instantiation), 3-32
port modes, 3-14
ports

as signals, 3-25
positional notation, 3-33
POSITIVE subtype, 4-12
pragmas, see also directives)

predefined attributes
supported, 11-6

predefined language environment, 11-9
predefined VHDL attributes

array, 4-9
procedure calls, 3-7
procedures, 3-19

body
syntax, 3-21

calling, 6-25
declarations

examples, 3-20
syntax, 3-20

process statement, 7-2
processes, 3-7

as algorithms, 3-7
asynchronous, 8-4
combinational, 6-38

example, 7-3
declarations, 3-8
description, 3-7
hardware model, 1-4
organization, 3-8
sensitivity lists, 7-2
sequential, 6-39

example, 7-4
sequential statements in, 3-7
synchronous, 8-4
wait statement, 6-34

Q
qualified expressions, 5-28

R
record operands, 5-23
record types, 4-10
register inference, 8-2

edge expressions], 8-3
efficient usages, 8-30
example, 8-34
flip-flop, 8-11
if statement, 8-2
if vs. wait, 8-4
latches, 8-7
restrictions, 8-6
signal edge, 8-3
templates, 8-5
wait statement, 8-2
wait vs. if, 8-4

relational operators, 5-5
rem (multiplying operator), 5-9
reserved words, 11-11
resolution functions, 3-25

creating, 3-26
resolution_method three_state (directive), 3-27
resolution_method wired_and (directive), 3-27
resolution_method wired_or (directive), 3-27
resolved signals, 3-26
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return statement, 6-28
return_port_name directive, 6-29

S
selected signal assignment, 7-13

equivalent process, 7-15
sensitivity lists, 7-2
sequential processes, 6-39, 7-4
sequential statements, 6-1

supported, 11-8
shift functions

example, 10-13
shift operations

example, 10-14
signal assignments, 3-7
signals

assignments, 6-3, 6-9
can be ports, 3-25
concurrent signal assignment, 7-11
conditional signal assignment, 7-12
declarations, 3-25
drivers, 7-6
edge detection, 8-3
hardware model, 1-4
in packages, 3-11
registering, 8-31
resolved, 3-26
selected signal assignment, 7-13
three-state, 7-6

SIGNED data type, 10-5
SIGNED type, 10-3

defined, 10-4
simple name target, 6-3
simulation, 1-8

driver example, 9-3
place in the design process, 1-8
test vectors, 1-8

slice names, 5-21
limitations, 5-22

slice target, 6-5
STANDARD package, 4-12
std_logic_1164 Package, 10-1
std_logic_1164 package, 10-1
std_logic_arith Package, 10-1, 10-2
std_logic_arith package, 10-1

, 10-9, 10-12, 10-13
_REDUCE functions, 10-19
arithmetic functions, 10-8
Boolean reduction functions, 10-18
built_in functions, 10-4
comparison functions, 10-11
CONV_INTEGER functions, 10-7
CONV_SIGNED functions, 10-7
CONV_UNSIGNED functions, 10-7
conversion functions, 10-8
data types, 10-4
modifying the package, 10-3
ordering functions, 10-11
shift functions, 10-13

SYNOPSYS data types, 4-15
using the package, 10-3

std_logic_misc Package, 10-18
std_logic_misc package, 10-1, 10-18
string literals, 5-18

bit, 5-18
STRING type, 4-12
structural

architecture, 3-3
components in, 3-32
constructs, 1-5
example, 3-33

structural description, 1-7
subprograms, 3-9

actual parameters, 3-20
bodies, 3-21

examples, 3-22
calling, 6-24

examples, 3-21
declarations, 3-20

examples, 3-20
parameters, 3-20
syntax, 3-21

defined, 6-23
defining, 6-23
formal parameters, 3-20
mapping to components, 6-29

example, 6-30
overloading, 3-22
parameters

declarations, 3-20
modes, 3-20
profile, 3-22

procedure vs. function, 6-25
procedures and functions, 3-19

subtype
defining, 4-15

subtypes
declarations, 3-24

SYN_FEED_THRU
example of using, 10-17

synch_set_reset, 8-16
synch_set_reset, see also hdlin_ff_always_sync_

set_reset
synchronous processes, 8-4

example, 8-33
synchronous reset, 8-16
SYNOPSYS data types

std_logic_arith package, 4-15
Synopsys packages, 10-1

std_logic_misc package, 10-18
synthetic comments, see also directives)

T
test vectors

simulation, 1-8
TEXTIO package, 4-11
three-state

registered input, 8-38

three-state inference, 8-35
three-state signals, 7-6
translate_off directive, 9-3, 10-18
translate_on directive, 9-3
two-phase design, 8-10
type conversions, 5-29
types

converting, 5-29
declarations, 3-24

U
unary arithmetic functions

example, 10-10
unary operators, 5-9
unconstrained array, 4-7
UNSIGNED data type, 10-5
UNSIGNED type, 10-3

defined, 10-4
unsupported types, 4-14
use statement, 3-10

V
variable assignments, 6-3
variables

assignments, 6-8
conditionally-assigned, 8-9
declarations, 3-28

verification, of description implementation, 1-8
VHDL

abstraction, 1-5
access (pointer) types, 4-14
aggregates, 5-24
architecture, 1-4
architectures, 3-5, 7-1
array types, 4-7
assignment statements, 6-2
BIT type, 4-13
BIT_VECTOR type, 4-14
block statement, 7-7
BOOLEAN type, 4-12
case statement, 6-12
CHARACTER type, 4-13
component implication, 6-29
component instantiation, 7-15
components, 1-4, 3-29

declarations, 3-30
instantiation, 3-32

concurrent procedure call, 7-9
concurrent statements, 7-1

supported, 11-9
constants, 3-24
constructs, 3-4
data types

supported, 11-3
declarations, 11-4
defining designs, 3-13
description style, 2-1
design, 3-4
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files, 3-4
design hierarchy, 2-2, 3-29
design units, 11-2
directives, 9-2
entity, 1-4, 3-1

architecture, 3-1
specification, 3-1

enumeration types, 4-2
exit statement, 6-22
expressions, 5-1

supported, 11-7
file types, 4-15
floating point types, 4-14
for..loop statement, 6-16, 6-17
functions, 3-19
generate statement, 7-17
generics, 3-14
hardware model, 1-3
identifiers, 5-19
if statement, 6-10
INTEGER type, 4-13
integer type, 4-6
keywords, 11-11
literals, 5-17
modeling hardware, 1-3
names, 11-5
NATURAL subtype, 4-13
next statement, 6-20
null statement, 6-40
operands

supported, 11-7
operators, 5-1

precedence, 5-3
predefined, 5-2
supported, 11-6

overloading
operators, 3-23
subprograms, 3-22

packages, 3-10
physical types, 4-14
port modes, 3-14
POSITIVE subtype, 4-13
predefined attributes

supported, 11-6
predefined data types, 4-11
predefined language environment, 11-9
predefined operators, 5-3
procedures, 3-19
process statement, 7-2
processes, 1-4, 3-8
qualified expressions, 5-28
record types, 4-10
register inference, 2-3
reserved words, 11-11
resolution functions, 3-25
return statement, 6-28
sensitivity lists, 7-2
sequential statements

supported, 11-8
signal assignment, 6-9

signals, 1-4, 3-25
STANDARD package, 4-12
STRING type, 4-14
subprograms, 3-9, 6-23
subtype, 4-15
subtypes, 3-24, 4-2
synthesis policy

constructs, 2-4
description style, 2-1

TEXTIO package, 4-11
three-state components, 8-35
type conversion, 5-29
types, 3-24, 4-1
unsupported types, 4-14
use packages, 3-10
variable assignment, 6-9
variables, 3-28
wait statement, 6-34

VHDL Compiler
attributes

supported, 11-6
Synopsys, 11-6

component implication, 6-29
design hierarchy, 2-2
directives, 9-2

resolution_method, 3-27
enumeration encoding, 4-3
operators

supported, 11-6
resolution_method directive, 3-27
sensitivity lists, 7-2
source directives, 9-2
wait statement

limitations, 6-38
usages, 6-34

W
wait statement, 6-34

creating registers, 8-2
example

multiple waits, 6-36

X
xor (logical operator), 5-3
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