Essential VHDL for ASICs

A brief introduction to design with VHDL for ASIC design.
Roger Traylor
9/7/01
Version 0.1

All rights reserved. No part of this publication may be reproduced, without t
prior written permission of the author.

Copyrightd 2001, Roger Traylor

he

Essential VHDL for ASICs 1

Revision Record

rev 0.1 : Initial rough entry of material. 9/7/01 RLT

Essential VHDL for ASICs

HDL Design

Traditionally, digital design was done with schematic entry.

In today’s very competitive business environment, building cost-
effective products in an quick fashion is best done with a top down
methodology utilizing hardware description languages and
synthesis.

shift_register:
PROCESS (clk_50, reset_n, data_ena, serial_data, parallel_data)
BEGIN
IF (reset_n="0") THEN
parallel_data <= "00000000";
ELSIF (clk_50'EVENT AND clk_50 ='1") THEN
IF (data_ena ='1") THEN
parallel_data(7) <= serial_data; --input gets input data
FORiINOTO 6 LOOP
parallel_data(i) <= parallel_data(i+1); --all other bits shift down
END LOOP;
ELSE
parallel_data <= parallel_data;
END IF;
END IF;
END PROCESS shift_register;

synthesi

Essential VHDL for ASICs

HDLs - Motivation

Increased productivity
shorter development cycles, more features, but........
still shorter time-to-market, 10-20K gates/day/engineer

Flexible modeling capabilities.
can represent designs of gates or systems
description can be very abstract or very structural
top-down, bottom-up, complexity hiding (abstraction)

Design reuse is enabled.
packages, libraries, support reusable, portable code

Design changes are fast and easily done
convert a 8-bit reqgister to 64-bits........
four key strokes, and its done!
exploration of alternative architectures can be done quickly

Use of various design methodologies.
top-down, bottom-up, complexity hiding (abstraction)

Technology and vendor independence.
same code can be targeted to CMOS, ECL, GaAs
same code for: Tl, NEC, LSI, TMSC....no changes!

Enables use of logic synthesis which allows a investigation of the
area and timing space.
ripple adder or CLA?, How many stages of look ahead?

HDLs can leverage software design environment tools.
source code control, make files

Using a standard language promotes clear communication of
ideas and designs.
schematic standards?... what's that... a tower of Babel.

Essential VHDL for ASICs 4

HDLs - What are they? How do we use them?

A Hardware Description Language (HDL) is a programming
language used to model the intended operation of a piece of
hardware.

An HDL can facilitate:
abstract behavioral modeling
-no structural or design aspect involved
hardware structure modeling
-a hardware structure is explicitly implied

In this class we will use an HDL to describe the structure of a
hardware design.

When we use an HDL, we will do so at what is called tHeegister
Transfer Language level (RTL)At this level we are implying
certain hardware structures when we understand apriori.

When programming at the RTL level, we are not describing an
algorithm which some hardware will execute, we are describing a
hardware structure.

Without knowing beforehand what the structure is we want to
build, use of an HDL will probably produce a steaming pile (think
manure) of gates which may or may not function as desired.

You must know what you want to buildbefore you describe it in
an HDL.

Knowing an HDL does not relieve you of thoroughly
understanding digital design.

Essential VHDL for ASICs

HDL's- VHDL or Verilog

We will use VHDL as our HDL.

VHDL
more capable in modeling abstract behavior
more difficult to learn
strongly typed
85% of FPGA designs done in VHDL

Verilog
easier and simpler to learn
weakly typed
85% of ASIC designs done with Verilog (1993)

The choice of which to use is not based solely on technical
capability, but on:

personal preferences

EDA tool availability

commercial business and marketing issues

We use VHDL because
strong typing keeps students from getting into trouble
if you know VHDL, Verilog can be picked up in few weeks
If you know Verilog, learning VHDL can take several month

The Bottom line...Either language is viable.

S

Essential VHDL for ASICs 6

VHDL - Origins

Roots of VHDL are in the Very High Speed Integrated Circuit
(VHSIC) Program launched in 1980 by the US Department of

Defense (DOD).

The VHSIC program was an initiative by the DOD to extend
integration levels and performance capabilities for military integrated circuits
to meet or exceed those available in commercial ICs.

The project was successful in that very large, high-speed circuits were
able to be fabricated successfully. However, it became clear that there was a
need for a standard programming language to describe and document the
function and structure of these very complex digital circuits.

Therefore, under the VHSIC program, the DOD launched another
program to create a standard hardware description language. The result was the
VHSIC hardware description language or VHDL.

The rest is history...

In 1983, IBM, Tl and Intermetrics were awarded the contract to
develop VHDL.

In 1985, VHDL V7.2 released to government.
In 1987, VHDL became IEEE Standard 1076-1987.

In 1993, VHDL restandardized to clarify and enhance the
language resulting in VHDL Standard 1076-1993.

In 1993, development began on the analog extension to VHDL,
(VHDL-AMS).

Extends VHDL to non-digital devices and micro electromechanical
components. This includes synthesis of analog circuits.

Essential VHDL for ASICs 7

Some Facts of Life (For ASIC designers)

The majority of costs are determined by decisions made early in
the design process.

“Hurry up and make all the mistakes. Get them out of the way!”
“Typical” ASIC project: concept to first silicon about 9 months.
95% of designs work as the specification states.

60% of designs fail when integrated into the system.
The design was not the right one, but it “works”.

Technology is changing so fast, the only competitive advantage is
to learn faster than your competitors.

To design more “stuff” faster, your level of abstraction in design
must increase.

Using HDLs will help to make digital designers successful. (and
employed!)

Essential VHDL for ASICs 8

VHDL Modeling

A VHDL models consist of anEntity Declarationand a
Architecture Body

The entity defines theinterface, the architecture defines the
function.

The entity declaration names the entity and defines the interface
to its environment.

Entity Declaration Format:

ENTITY entity_name IS
[GENERIC (generic_list);]
[PORT (port_list);]

END ENTITY [entity _name];

There is a direct correspondence between a ENTITY and a block
diagram symbol. For example:

ENTITY nand_gate IS
PORT(
a:in std_logic;
b:in std _logic;
c:in std _logic;
z . out std_logic);
END ENTITY nand_gate;
nand_gate

—.a

Essential VHDL for ASICs 9

Port Statement

The entitiesport statement identifies the ports used by the entity
to communicate with its environment

Port Statement Format:

PORT(
name_list : mode type;
name_list : mode type;
name_list : mode type;
name_list : mode type);

This is legal but poor form:

ENTITY nand_gate IS
PORT(a,d,e,f: in std_logic;
b,j,q.,l,y,v : in std_logic;
w,k :in std_logic;
z . out: std_logic);
END nand_gate;

This is much less error prone:

Use one line per signal. This allows adequate comments.
Capitalize reserved names.

ENTITY nand_gate IS
PORT(
a:IN STD _LOGIC; --ainput
b:IN STD_LOGIC; --binput
c:IN STD LOGIC; --cinput
z . OUT STD_LOGIC); --nand output
END ENTITY nand_gate;

Essential VHDL for ASICs

10

Port Mode:

All ports must have an identified mode.

Allowable Modes:

(mode: inout)

- data -

L

|dentifies the direction of data flow through the port.

(mode:out)
ram_wr_n

« IN Flow is into the entity

« OUT Flow is out of the entity

« INOUT Flow may be either in or out

- BUFFER An OUTPUT that can be read from

bobs_block
_>
.>
(mode: in)
clock o | o

(mode: buffer)
state 0

The PORT statement is optional. At the top level, none is needed.

Essential VHDL for ASICs

11

Architecture Body

The architecture body describes the operation of the component.

Format:

ARCHITECTURE body name OF entity name IS
--this is the ->declarative area<-
--declare signals, variables, components,
--subprograms

BEGIN
--this is the ->statement area<-

--in here go statements that describe

--organization or functional operation of

--the component

--this is the “execution part” of the model
END [body name]

The entity_name in the architecture statement must be the same
as the entity declaration that describes the interface to the outside
world.

ENTITY entity name IS

\

ARCHITECTURE body name OF entity nhame 1S

The “body _name” is a user-defined name that should uniquely
describe the particular architecture model.

ARCHITECTURE beh OF nand_gate IS
ARCHITECTURE struct OF nand_gate IS

Note: multiple architectures are allowed.

Essential VHDL for ASICs 12

Commenting Code

A double hyphen (--) indicates everything from that point on in
that line is to be treated as a comment.

ARCHITECTURE example OF xor_gate IS
--The following is a silly example of how

--to write comments in VHDL.

BEGIN
--comment from the beginning of a line
a <= b XOR c; --or...comment from here on
--each line must have its own
--comment marker unlike “C”

END [body name]

--this is the end and there ain’'t no more!

Comments can be put anywhere except in the middle of a line of
code.

Important Note: The tool used to prepare this document sometimes changes the first
of a pair of quotes. In VHDL, only the quote marks that lean to the right or don't lean at
all are used. For examplé,’ should only have single quotes that lean to the right like
the second one does. The quote mark we use is on the same key as the double quo

D

~—t
®

Essential VHDL for ASICs 13

Entity and Architecture for a NAND gate Model

--the following is a behavioral description of
--a three input NAND gate.

ENTITY nand3 IS
PORT(

a :IN std _logic;

b :IN std logic;

c :IN std_logic;

z . OUT std_logic);
END ENTITY nands3;

ARCHITECTURE beh OF nand3 IS
BEGIN
z <=1 WHEN a="0" AND b=0’ ELSE

‘1" WHEN a="0' AND b=1’ ELSE
‘1’ WHEN a='1" AND b=‘0’ ELSE
‘0 WHEN a="1" AND b='1" ELSE
X

END ARCHITECTURE beh;

You can create VHDL source code in any directory.

VHDL source code file may be anything......but,
Use the name of the design entity with the extensionvhd’

The above example would be in the file: nand3.vhd

Question: Why the ‘X’ in the above code?

Essential VHDL for ASICs

14

Signal Assignment

The assignment operator (<=) is used to assign a waveform value
to asignal.

Format:

target_object <= waveform,;

Examples:

my_signal <= ‘0’; --ties my_signal to “ground”
his_signal <= my_signal; --connects two wires

--vector signal assignment

data bus <= “0010"; -- note double quote
bigger bus <= X"a5"; -- hexadecimal numbers

Essential VHDL for ASICs 15

Declaring Objects

Declaration Format:
OBJECT_CLASS identifier: TYPE [:=init_val];

Examples:

CONSTANT delay : TIME:=10ns;
CONSTANT size : REAL:=5.25;
VARIABLE sum : REAL;
VARIABLE voltage : INTEGER:=0;
SIGNAL clock : BIT,;

SIGNAL spam : std logic:="X’;

Objects in the port statement are classified as signals by default.

Objects may be initialized at declaration time.

If an object is not initialized, it assumes the left-most or minimum
value for the type

Essential VHDL for ASICs

16

Naming Objects

Valid characters:

« alpha characters (a-z)

« numeric characters (0-9)
« underscore ()

Names must consist of any number of alpha, numeric, or
underline characters.

Underscore must be proceeded and followed by alpha or numeric
characters.

The underscore can be used to separate adjacent digits in bit
strings:

CONSTANT big 0: STD _LOGIC VECTOR(15 DOWNTO 0) :=
B"0000_0000 0000 _0000";

Names are not case sensitive. (be consistent!, use lowercase!)

Coding hints:

Use good names that are meaningful to others. If your code is good,
somebody else will want to read it.

Name signals by their function. For example, if you have a multiplexor
select line that selects addresses, give it a name éilldress_select ”
instead of Sel 32a”

Name blocks by their function. If a block generates control signals for a
DRAM controller, call the blockdram_ctl ” not something obscure like
“block_d .

Essential VHDL for ASICs 17

A Simple Example to Recap

--and-or-invert gate model
--Jane Engineer

--3/13/01

--version 0.5

LIBRARY ieee;

USE ieee.std logic_1164.ALL;

ENTITY aoi4 IS

PORT(
a :IN std _logic;
b :IN std _logic;
c :IN std logic;
d :IN std logic;
z : OUT std _logic);

END ENTITY aoi4;

ARCHITECTURE data_flow OF aoi4 IS
SIGNAL templ, temp2 : std _logic;
BEGIN

templ <=a AND b;
temp2 <=c AND d;
z <=templ NOR temp2;

END ARCHITECTURE data_flow;

Essential VHDL for ASICs

18

Simulating VHDL code

The Simulator

The simulator we will be using is the Model TechnologMedelSim It will
be referred to agsim Vsim is a full featured VHDL and/or Verilog simulator
with best-in-class VHDL simulation. It is also very easy to learn and use.

VHDL Libraries

Before a VHDL design can be simulated, it must be compiled into a machine
executable form. The compiled image is placed into a library where the
simulator expects to find the executable image. Therefore we must first create a
special directory called “work”.

The Library work

The library named work has special attributes within vsim; it is predefined in
the compiler. It is also the library name used by the compiler as the defaul
destination of compiled design units. In other words the work library is the
working library.

—t

Creating work
At the desired location in your directory tree, type:
vlib work

You will see a directory work created. You cannot create work with the UN|X
mkdir command.

Essential VHDL for ASICs 19

Simulating VHDL Code (cont.)

Compile the code

Suppose our example code is in a file cabei4.vhd At the level at which you
can see the directowyork with anls command, simply type:

vcom -93 aoi4.vhd

Then you will see:

brilthor.ECE.ORST.EDU:vcom -93 src/aoi4.vhd

Model Technology ModelSim SE/EE vcom 5.4c Compiler 2000.08 Jul 29 2000
-- Loading package standard

-- Loading package std_logic_1164

-- Compiling entity aoi4

-- Compiling architecture data_flow of aoi4

brilthor.ECE.ORST.EDU:

If you look in the work directory, you will see a subdirectory in work with the
entity nameaoi4. In there are the files necessary to simulate the design.

With a clean compilation, we are ready to simulate.

Essential VHDL for ASICs 20

Simulating VHDL Code (cont.)

Simulate the design

Invoke the simulator by typingsimat the UNIX prompt. You will see the
Load Desigrwindow open over the mawrsimwindow.

Edit Design Miew RBun Macro Options Window

E

anid

clockgen
comparator_n
core_testhench
dff

fa

fifo_module
mu=¢_1_17wide
mu=¢_1_1Ewide

save Settings...

Essential VHDL for ASICs

21

Simulating VHDL code (cont.)

TheDesign Unitis the name of the entity you want to load into the simulatar.
In this example, there are many other entities in the work directory, each
corresponding to a different entity/architecture pair.

To load the design, click aami4 and therLoad Note thatoi4 this is not the
file name, but the entity name.

The design will then load. To run a simulation, first type view * in the
ModelSim window. This will open all the windows available for the
simulation. You will probably want to close all but the wave, signals, source
and structure windows.

(D

To observe the signals, in tBegnalswindow select:
View > Wave > Signals in Region
All the signals in the design are then visible in the Wave window.

To provide stimulation to our model we can just force the input signals and run
for a short time. To do this, in the ModelSim window we can type:

forcea O
forceb O
forcecO
forced O
run 100

forceal
forceb 1
run 100

According to our model we should see the z output assert to a zero when either
a and b or c and d both become true. We can see the correct behavior in the
wave window.

HW: make 2-3 complex algebraic equations and implement them in VHDL.
Students simulate and check them. Synthesize them and recheck with VHDL
simulator. Print out gate level schematics.

Essential VHDL for ASICs 22

Simulating VHDL Code

The output from the wave window looks like this:

wave — default

ile Edit Cursor Zoom Format Window

fanidsa
fanidsh
fanidsc
fanidsd

fanidiz

fanidAemp
fanidfemps

We will make heavy usage of tkeimsimulator. You are encouraged to
explore and discover the different options and way to operate the simulatar.

For example, the force commands may be applied from a “do file”. This is
text file containing all the force and run commands. Try to use a force file t
exhaustively test the aoi4 design.

The documentation for the Model Technology tools may be found at:
http://www.ece.orst.edu/comp/doc/tools/mti/mti_documentation.htmi

Essential VHDL for ASICs 23

What about this Synthesis thing?

Simulation is great, but one of the foremost advantages of an HDL
IS its ability to create gate level designs thorough a different flavor
compilation....synthesis.

We can take the previous example, and synthesize the VHDL code
into a gate level design and represent it at a new structural VHDL
netlist or a schematic.

We will not go into the details of how synthesis is done but lets see
what happens anyway.

We usually synthesize VHDL designs using a script to direct the
synthesis tool. Using a GUI to do this would be very time
consuming.

Helpful Hint: Running a CAD tool is not like running a web
browser. Learn to use scripts and command line interfaces.

Essential VHDL for ASICs 24

What about this “Synthesis” thing? (cont.)

Here is a simple synthesis script foelsyn(a synthesis tool) that
synthesizes our behavioral design for the aoi4 gate.

#simple synthesis script

set vhdl_write_component_package FALSE

set vhdl_write_use_packages {library ieee,adk; use
ieee.std_logic_1164.all; use adk.all;}

set edifout_power_ground_style_is_net TRUE

set sdf write flat_netlist TRUE

set force_user_load values TRUE

set max_fanout_load 10

load_library amiO5_typ

analyze src/aoi4.vhd -format vhdl -work work
elaborate aoi4 -architecture data_flow -work work
optimize -ta amiO5_typ -effort standard -macro -area

write ./edif/aoi4.edf -format edif
write ./vhdlout/aoi4.vhd -format vhdl|

#to make a schematic do this in the edif directory
#edif2eddm aoi4.edf data_flow

What's important to understand here?

load_library amiO5_typ

The synthesis tool needs a known library of logic cells (gates) to build the

synthesized design from.

analyze src/aoi4.vhd -format vhdl -work work
Analyze (compile) the VHDL code and do initial processing.

elaborate aoi4 -architecture data_flow -work work
Create a generic gate description of the design.

optimize -ta ami05__typ -effort standard -macro -area _ _ _
Map the generic gates to the “best” ones in the library ami05.

write ./edif/aoi4.edf -format edif
write ./vhdlout/aoi4.vhd -format vhdl

Write out the results in EDIF and VHDL formats.

Essential VHDL for ASICs

25

How is the synthesis invoked?

The script is saved in a file called script_simple.
A work directory (if not already created) is created to put the
compiled images by typing:

vlib work

Create the edif and vhdlout directories where the edif and VHDL
netlist will be put.

mkdir edif
mldir vhdlout

Then, from the command line type:

elsyn

Eventually you get the prompt:
LEONARDO{1}:

Then type:

source script_simple

The tool elsynreads the script file and executes the commands in
the script.

Essential VHDL for ASICs 26

What does the output look like?

The synthesis tool puts a synthesized version of the design in two
directories, the vhdlout and edif directories. In the vhdlout
directory:

-- Definition of aoi4
-~ Wed Jul 18 12:31:05 2001
-- Leonardo Spectrum Level 3, v20001a2.72

library ieee,adk; use ieee.std logic_1164.all; use adk.all;

entity aoi4 is
port (

a : IN std_logic ;

b : IN std_logic ;

c : IN std_logic ;

d : IN std_logic ;

z : OUT std_logic) ;
end aoi4 ;

architecture data_flow of aoi4 is
component aoi22
port (
Y : OUT std_logic ;
AO : IN std_logic ;
Al : IN std_logic;
BO : IN std_logic ;
B1:IN std_logic) ;
end component ;
begin
iXx13 : aoi22 port map (Y=>z, AO=>a, A1=>b, BO=>c, B1=>d);
end data_flow ;

Essential VHDL for ASICs 27

Examine the gate level VHDL

We see that the synthesized aoi4 looks much like what we initially
wrote. The entity is exactly the same.

The architecture description isdifferent. The design aoi4 is now
described in a different way.

Under the architecture declarative section, a gate (aoi22) from the
library was declared:

component aoi22
port (
Y : OUT std_logic ;
AO : IN std_logic ;
Al : IN std_logic;
BO : IN std_logic ;
B1:IN std_logic) ;
end component ;

In the statement area, we see this gate is connected to the ports o
the entity with a component instantiation statement.

ix13 : aoi22 port map (Y=>z, AO=>a, Al=>b, BO=>c, B1=>d);
We will study component instantiation in more detail later.

Note also, the intermediate signals templ and temp2 have
optimized away.

f

Essential VHDL for ASICs 28

Examine the schematic created by synthesis

The EDIF netlist is converted to a Mentor schematic by executing

the command (in the edif directory):
edif2eddm aoi4.edf data_flow

When design architect is invoked upon the design we see the
following:

Schematic#2 aoid sheet Fiduup -

Here we can see the direct correspondence between the gate pin

and the entity pins in the statement:
ix13 : aoi22 port map (Y=>z, AO=>a, Al=>b, BO=>c, B1=>d);

The instance nameig13) is also evident.

Essential VHDL for ASICs

29

S

What you say is not what you get. (sometimes)

Looking at the VHDL code, one might expect something different.

BEGIN

templ <=a AND Db;

temp2 <= c AND d;

z <=templ NOR temp2;
END data_flow;

This code seems to imply two AND gates feeding a NOR gate.
However this is not the case. This description is a behavioral one.
It does not in any way dictate what gates to use.

Two AND gates and a NOR gate would be a fine implementation,
except for the fact that it isslower bigger and consumes more
powerthan the single aoi22 gate.

The synthesis tool finds the “best” implementation by trying most
possible implementations and choosing the optimum one.

What is a “best” implementation? Size, speed?

Essential VHDL for ASICs

30

Data Types

Data types identify a set of values an object may assume and the
operations that may be performed on it.

VHDL data type classifications:

« Scalar: numeric, enumeration and physical objects

« Composite: Arrays and records

« Access: Value sets that point to dynamic variables

 File: Collection of data objects outside the model

Certain scalar data types are predefined in packagecalled “std’
(standard) and do not require a type declaration statement.
Examples:

« boolean(true, false)

 bit (‘0, ‘1)

 integer (-2147483648 to 2147483647)

 real (-1.0E38 to 1.0E38)

« character (ascii character set)

« time (-2147483647 to 2147483647)

Type declarations are used through constructs calleplackages

We will use the package callegtd logic 1164n our class. It
contains the common types, procedures and functions we
normally need.

A packageis a group of related declarations and subprograms
that serve a common purpose and can be reused in different parts
of many models.

Essential VHDL for ASICs 31

Using std _logic_1164

The packagestd logic_1164s the package standardized by the
IEEE that represents a nine-state logic value system known as
MVLO.

To use the package we say:

LIBRARY ieee;
USE ieee.std logic_1164.ALL,;

The library clause makes a selected library containing desired
packages “visible” to a model.

The useclause makes the library packages visible to the model.

USE clause format:

USE symbolic_library.pkg _name.elements _to use

The nameieeeis asymbolicname. It is “mapped to:
/usr/local/apps/mti/current/modeltech/ieee

using the MTI utility vmap

You can see all the currently active mappings by typingZmap

We do not have to declare a library work. Its existence and
location “./work” is understood.

Essential VHDL for ASICs

32

Using std _logic_1164

The nine states of std_logic_1164:

(/usr/local/apps/mti/current/modeltech/vhdl_src/ieee/stdlogic.vhd)

PACKAGE std_logic 1164 IS

TYPE std_ulogic IS (
‘U’, -- Uninitialized; the default value
‘X’, -- Forcing Unknown; bus contention
‘0, -- Forcing O; logic zero
‘1’, -- Forcing 1; logic one
‘Z’, -- High Impedance; 3-state buffer
‘W', -- Weak Unknown; bus terminator
‘L’, -- Weak 0; pull down resistor
‘H’, -- Weak 1; pull up resistor

- -- Don’t care; used for synthesis);

Why would we want all these values for signals?

Essential VHDL for ASICs

33

VHDL Operators

Object type also identifies the operations that may be performed
on an object.

Operators defined for predefined data types in decreasing order
of precedence:

« Miscellaneous: **, ABS, NOT

« Multiplying Operators: *, /, MOD, REM

e Sign: +, -

- Adding Operators: +, -,&

« Shift Operators: ROL, ROR, SLA, SLL, SRA, SRL

- Relational Operators: =, /=, <, <=, >, >=

« Logical Operators: AND, OR, NAND, NOR, XOR, XNOR

Not all these operators are synthesizable.

Essential VHDL for ASICs

Overloading

Overloading allows standard operators to be applied to other
user-defined data types.

An example of overloading is the function “AND”, defined as:
(/usr/local/apps/mti/current/modeltech/vhdl_src/ieee/stdlogic.vhd)

FUNCTION “and” (I : std_logic; r : std_logic)
RETURN UXO01;

FUNCTION “and” (I, r: std_logic_vector)
RETURN std_logic_vector;

For Examples

SIGNAL resultO, signall, signal2 : std_logic;

SIGNAL resultl : std logic_vector(31 DOWNTO 0);
SIGNAL signal3 : std _logic_vector(31 DOWNTO 0);
SIGNAL signal4 : std logic_vector(31 DOWNTO 0);

BEGIN

resultO <= signall AND signal2; -- simple AND
resultl <= signal3 AND signal4; -- many ANDs
END;

If we synthesize this code, what gate realization will we get?

Essential VHDL for ASICs 35

Concurrency

To model reality, VHDL processes certain statements
concurrently.

Example:
a n N\
" > outl
0
T - > out?2
0
b .
) . > out3
/ 0

)) : . > outd
. | /JO ou

ARCHITETURE example of concurrent IS
BEGIN

outl <= a AND b;

out2 <= a NOR b;

out3 <=b OR ¢;

out4 <= b XOR c;
END example;

Essential VHDL for ASICs

36

Statement Activation

Signals connect concurrent statements.

Concurrent statements activate or “fire” when there is an event on
a signal “entering” the statement.

Example:

a C

0 o :> outl
H 0

ARCHITECTURE example OF concurrent IS
SIGNAL ¢ : std_logic;
BEGIN
c <=a NAND b; --nand gate
outl <= ¢ XOR b; --xor gate
END example;

o

The NAND statement is activated by a change on eitherthe aorb
inputs.

The XOR statement is activated by a change on either the b input
or signal c.

Note that additional signals (those not defined in the PORT
clause) are defined in the architecture’s declarative area.

Essential VHDL for ASICs 37

Concurrency Again

VHDL is inherently a concurrent language.
All VHDL processes execute concurrently.

Basic granularity of concurrency is theprocess

c <=aNANDb; --"one line process”
outl <=c XOR b; --"one line process”

VHDL statements execute sequentiallyvithin a process
ARCHITECTURE example OF concurrency IS

BEGIN
hmmm: PROCESS (a,b,c)
BEGIN
c <=aNAND b; --"do sequentially”
outl <=c¢ XOR b; --"do sequentially”

END PROCESS hmmm:

How much time did it take to do the stuff in the process
statement?

Concurrent signal assignments as actually one-line processes.

Essential VHDL for ASICs

38

Concurrency

The body of the ARCHITECTURE area is composed of one or
more concurrent statements. The concurrent statements we will
use are;:

« Process - the basic unit of concurrency
Assertion - a reporting mechanism

Signal Assignment - communication between processes
Component Instantiations - creating instances
Generate Statements - creating structures

Only concurrent statements may be in the body of the
architecture area.

ARCHITECTURE showoff OF concurrency_stmts IS
BEGIN

--BLOCK

--PROCESS

--ASSERT

--a <= NOT b;

--PROCEDURE

--Ul:nandl PORT MAP(X,y,z); --instantiation
--GENERATE

END showoff;

Essential VHDL for ASICs 39

Concurrent Statements - Signal Assignment

Signal assignment
We have seen the simple signal assignment statement
sig_a <= input_a AND input_b;

VHDL provides both a concurrent and a sequential signal assignment
statement. The two statements can have the same syntax, but they differ injhow
they execute.

Essential VHDL for ASICs 40

Signal Assignment with Busses

A bus is a collection of wires related in some way by function or
clock domain. Examples would be an address bus or data bus.

In VHDL we refer to busses as a vector. For example:

--8-bit bus consisting of 8 wires carrying signals of

-- type std_logic

--all these wires may be referred to by the name big_bus
SIGNAL big_bus : STD_LOGIC_VECTOR(7 DOWNTO 0);

This creates:
big_bus

big_bus(0)

When we define a bus as above, the width of the bus is defined by
“7 DOWNTO 0”. The position of the MSB is to the left of the
DOWNTO keyword. The LSB bit is to the right of DOWNTO.

The usual convention is to use DOWNTO. We will use this
convention. UPTO is seldom used.

Essential VHDL for ASICs 41

Signal Assignment with Busses (cont.)
Individual bits of a bus may be referred to like this:

SIGNAL one_bit: STD_LOGIC;

SIGNAL big_bus : STD_LOGIC_VECTOR(7 DOWNTO 0);
BEGIN

--wire called one_bit is connected to bit 6 of bus big_bus
one_bit <= big_bus(6); -- bus ripping example

Consider the following declarations and how they can be used.

SIGNAL back_seat, front_seat: STD LOGIC;
SIGNAL red_bus, yellow_bus, shift_bus

SIGNAL short_bus, tall_bus, : STD_LOGIC_VECTOR(3 DOWNTO 0);

red_bus
7:0\ Yyellow_bus , ,
— red_bus <= yellow_bus; -- connecting same size busses

red_bus

7:4 short_bus red bus <= short_bus & tall_bus: -- bus concatenation

--“&” is the concatenation operator

3.0 tall_bus -- MSB’s of red_bus come from left most signal

red_bus
2\ front_seat

_\—— front_seat <= red_bus(2); -- bus ripping
red_bus

7:4 \ short_bus short_bus <= red_bus(7 DOWNTO 4); -- bus to bus ripping

shift_bus red_bus

shift_bus <= red_bus(3 DOWNTO 0) & “0000";
-- one bus created from ripping of one bus and

-- concatenation of signals connected to ground
-- shift bus is red_bus multiplied by 16

. STD_LOGIC_VECTOR(7 DOWNTO 0);

Essential VHDL for ASICs

42

Bit Vector Usage

As we have seen the in the following examples VHDL has a convenient way
represent busses. A bit string literal allows us to specify the value of a bit
vector. For example, the number 2g@ould be represented as:

Binary format: B”"11111010”" B"1111 1010”
Hexadecimal format: X"FA”
Octal format: 0"372"

The binary format may include underscores to increase readability. The
underscores do not effect the value.

Values of bit string literals are inclosed in double quotes. For example: “1101”

Values of bit literals are inclosed in single quotes. For example: ‘Z’

Essential VHDL for ASICs 43

Conditional Concurrent Signal Assignment

The conditional concurrent signal assignment statement is
modeled after the “if statement” in software programming
languages.

The general format for this statement is:

target_signal <=valuel WHEN conditionl ELSE
value2 WHEN condition2 ELSE
value3 WHEN condition3 ELSE

valueN;

When one or more of the signals on the right-hand side change value, the
statement executes, evaluating the condition clauses in textual order from|top
to bottom. If a condition is found to be true, the corresponding expression s
executed and the values is assigned to the target signal.

The conditions must evaluate to a boolean value. i.e, True or False

Example:

z out<= a_input WHEN (select = “00”) ELSE
b_input WHEN (select = “01") ELSE
c_input WHEN (select = “10”) ELSE
d_input WHEN (select = “11") ELSE
‘X’; -- what am 1?

Essential VHDL for ASICs 44

Conditional Concurrent Signal Assignment

What happens when we don’t completely specify all the choices?

First, lets do it right.

--5:1 mux, 1 bit wide
LIBRARY ieee;
USE ieee.std _logic_1164.ALL;

ENTITY mux5 1 1wide IS
PORT(
a_input :IN STD_LOGIC; --inputa
b_input :IN STD_LOGIC; --inputb
c_input :IN STD_LOGIC; --inputc
d_input :IN STD_LOGIC; --inputd
e_input :IN STD_LOGIC; --input e
sel :IN STD_LOGIC_VECTOR(2 DOWNTO 0); --sel input
z out :OUTSTD_LOGIC --data out
);
END mux5_1 1wide;
ARCHITECTURE beh OF mux5_1 1wide IS
BEGIN
Zz_out <= a_input WHEN (sel = “000") ELSE
b_input WHEN (sel = “001") ELSE
c_input WHEN (sel = “010") ELSE
d_input WHEN (sel = “011") ELSE
e_input WHEN (sel = “100”) ELSE
NG
END beh;

When synthesized, we get:

a_input [———
b i nput C————

2=
¥ , == out

e_input =

Essential VHDL for ASICs 45

Conditional Concurrent Signal Assignment

Now let's incompletely specify the choices.

ARCHITECTURE noelse OF mux5 1 l1wide IS
BEGIN
z_out <= a_input WHEN (sel = “000") ELSE
b_input WHEN (sel = “001") ELSE
c_input WHEN (sel = “010”) ELSE
d_input WHEN (sel = “011") ELSE
e_input WHEN (sel = “100"); -- no ending else
END beh;

When synthesized:

P 2
b imput - L

=

latch, not FF

4

=z ot

%jf
o
=

e_input[C>

What happened?

- How does a transparent latch operate?
- What is the truth table for the decoder to the latch “clk” pin?

sel(2:0) latch enable pin behavior
000 1 latch is transparent
001 1 ditto
010 1 ditto
011 1 ditto
100 1 ditto
101 0 latch is in “hold” state
110 0 hold state
111 0 hold state

Essential VHDL for ASICs 46

Selected Concurrent Signal Assignment

The selected concurrent signal assignment statement is modeled
after the “case statement” in software programming languages.

The general form of this statement:

WITH discriminant SELECT
target_signal <= valuel WHEN choicel,
value2 WHEN choice?2,
value3 WHEN choice3,

valueN WHEN choiceN;
[default_value WHEN OTHERS];

This statement executes when any the discriminant, value or choice
expressions changes value. When it does execute, the choice clauses are
evaluated. The target signal is assigned the value corresponding to the choice
that matches the discriminant.

Important points for this statement:

- The discriminant must have finite discrete values. (can be enumerated).
ERROR: Expression must return a discrete value.

- You must use or list all possible values for “choice”.
ERROR: Case statement only covers 5 out of 729 cases.

- Only one of the choices can match the discriminant.
ERROR: Case choice has already been specified on line 32

About “OTHERS”

The keywordOTHERS can be powerfully used in many situations. In genera
it is used to allow matching to an unspecified number of possible values of a
variable. There ay be only one alternative that uses the others choice and |if
included in a list, it must be the last choice. In essence, it says, if a match has
not yet been found and the value of the variable is within range of its type, then
match withOTHERS.

We will see several other uses@fHERS in the future.

Essential VHDL for ASICs 47

Selected Concurrent Signal Assignment

An example from “SPAM”

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY mux2_1_16wide IS

PORT(
in_a :IN STD_LOGIC VECTOR(15 DOWNTO 0); --input a
in_b :IN STD_LOGIC_VECTOR(15 DOWNTO 0); --input b
sel :IN STD_LOGIC; --select input
output : OUT STD_LOGIC_VECTOR(15 DOWNTO 0) --data output
)i

END mux2_1 16wide;

ARCHITECTURE beh OF mux2_1_16wide IS
BEGIN
WITH sel SELECT
output <=in_a WHEN ‘0’,
in_b WHEN ‘1",
(OTHERS => ‘X') WHEN OTHERS;
END beh;

OTHERS again

Here we se®THERS used to match cases where sel is not ‘1’ or ‘O’ in the
WHEN OTHERS clause. i.e.:
(OTHERS => ‘X’) WHEN OTHERS;

OTHERS is also used to provide a shorthand method of saying, “make allthe
bits of the target signal ‘X” for however many bits are in target signal.
(OTHERS => ‘X") WHEN OTHERS;

Why was ‘X ‘assigned to output when sel was neither ‘O’ or ‘1'?

Essential VHDL for ASICs 48

Selected Concurrent Signal Assignment

A more simple example with synthesis results.

--5:1 mux, 1 bit wide
LIBRARY ieee;
USE ieee.std _logic_1164.ALL;

ENTITY mux5 1 1wide IS
PORT(
a_input :IN STD_LOGIC; --inputa
b_input :IN STD_LOGIC; --inputb
c_input :IN STD_LOGIC; --inputc
d_input :IN STD_LOGIC; --inputd
e_input :IN STD_LOGIC; --input e
sel :IN STD_LOGIC_VECTOR(2 DOWNTO 0); --sel input
z out :OUTSTD_LOGIC --data out
);
END mux5_1 1wide;
ARCHITECTURE beh OF mux5_1 1wide IS
BEGIN
WITH sel SELECT
Zz_out <= a_input WHEN “000”,
b_input WHEN “001”,
c_input WHEN “010”,
d_input WHEN “011",
e_input WHEN “100”,
‘X’ WHEN OTHERS,; --if sel could be be 110, 1117 correct?
END beh;

a_input [
b_input /MM

e_ ihput

ggTE%r?Hfj

v E)% [= z_out

a_input =

How will this circuit react to sel(2:0) values greater than “100"?

Essential VHDL for ASICs

49

Making Choices

When we want the same target signal assignment to happen for several
discriminant choices how do we specify it? Lets alter the function of our mux
example as follows. The entity declaration is identical to before.

ARCHITECTURE beh OF mux5_1 1wide IS
BEGIN
WITH sel SELECT
Z_out <= a_input WHEN “000” | “001” | “111",
b_input WHEN “011” | “101",
c_input WHEN “010”,
d_input WHEN “100”,
e_input WHEN “110",
‘X" WHEN OTHERS;
END beh;

The signal z_out gets the value of a_input when sel is equal to “000”, “001”|or
“111”. Signal z_out gets the value of b_input when sel is equal to “011” or
“101". The synthesized version of this mux looks like this:

wirmt [el
(200 .-‘L—_
Birat [
ks |
L
l xod
-.irnJ-.J =
g
& ;_E. -
it _ L kil

As you can see, once a model is synthesized it can be hard to figure
out how it works.

v

Essential VHDL for ASICs 50

Concurrent Statements - Component
Instantiation

Another concurrent statement is known axomponent
instantiation. Component instantiation can be used to connect
circuit elements at a very low level or most frequently at the top
level of a design.

VHDL written in this form is known as Structural VHDL.

The instantiation statement connects a declared component to
signals in the architecture.

The instantiation has 3 key parts:

« Label- Identifies unigue instance of component

« Component Type Select the desired declared component

« Port Map- Connect component to signals in the architecture

Example:

ul: regl PORT MAP(d=>dO0,clk=>clk,g=>q0);

Ifz\vel \ the pin “clk” on reglf

wire that pin “clock” is connected to
component type

When instantiating components:
- Local and actual must be of same data type.
« Local and actual must be of compatible modes.

Locally declared signals do not have an associated mode and car
connect to a local port of any mode.

Essential VHDL for ASICs 51

Labels

Labels are used to provide internal documentation.

May be used with:

« Concurrent Assertion Statements
Concurrent Signal Assignments
Process Statements

Loop Statements

Generate Statements

Must be used with:
« Component Instantiation Statements

Essential VHDL for ASICs

52

Component Instantiation

5:1 mux using component instantiaion:

--5:1 mux, 1 bit wide
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

LIBRARY adk;
USE adk.all;

ENTITY mux5_1 1wide IS
PORT(

a_input :IN STD_LOGIC; --input a
b_input :IN STD_LOGIC; --inputb
c_input :IN STD_LOGIC; --inputc
d_input :IN STD_LOGIC; --inputd
e_input :IN STD_LOGIC; --inpute
sel :IN STD_LOGIC_VECTOR(2 DOWNTO 0); --sel input
z out :OUTSTD_LOGIC --data out
);

END mux5_1 1wide;

ARCHITECTURE beh OF mux5_1 1wide IS

SIGNAL temp0, templ, temp2, temp3 : STD_LOGIC,;

COMPONENT mux21 PORT(a0,al,s0:IN STD_LOGIC;
y : OUT STD_LOGIC); END COMPONENT;
COMPONENT inv01 PORT(a:IN STD_LOGIC;
y : OUT STD_LOGIC); END COMPONENT;
BEGIN
Ul : mux21 PORT MAP(a0 =>a_input,
al =>Db_input,
sO0 => sel(0),
y =>temp0);
U2 : mux21 PORT MAP(a0 => c_input,
al =>d_input,
sO0 => sel(0),
y =>templ);
U3 : mux21 PORT MAP(a0 => tempO,
al =>templ,
s0 => sel(1),
y =>temp2);
U4 : mux21 PORT MAP(a0 =>temp2,
al =>e_input,
sO0 =>sel(2),
y =>temp3);
U5 :inv0l PORT MAP(a =>temp3,
y =>z out);
END beh;

Essential VHDL for ASICs

53

The synthesized structural 5:1 mux

The synthesized mux is a faithful representation of our structural VHDL. (it
better be!) Actually the synthesis tools “hands” are tied. The structural VHDL
told exactly how the components were to be wired. It also specified exactly
what logic cells were to be used. The synthesis tool actually had nothing to do
except make the edif netlist and schematic.

a_input Co———
b_ input C—

u%;*lﬂ _Eﬁ;{: [= z_out

a_input [

Essential VHDL for ASICs 54

Component Instantiation (cont.)

A few notes about the structural 5:1 mux code:

The logic cells used here were in a library calstk To access these cells the
declaration of this library was necessary at the top of the file.

LIBRARY adk;
USE adk.all;

Before we can use the cells in an instantiation statement, we must declare
them. This is seen in the statements:
COMPONENT mux21 PORT(a0,a1,s0 : IN STD_LOGIC;

y 1 OUT STD_LOGIC); END COMPONENT;

COMPONENT inv01 PORT(a:IN STD_LOGIC;
y : OUT STD_LOGIC); END COMPONENT;

To wire the mux21 cells together, temporary signempQ templ temp2and
temp3were declared.

SIGNAL temp0, templ, temp2, temp3 : STD_LOGIC,;

Finally, the component instantiations stitch the design together.

Ul : mux21 PORT MAP(a0 => a_input,
al =>Db_input,
sO0 => sel(0),
y =>temp0);

The PORT MAP statement describes the connections between pins of the cell
and the signals. The connections are described by the format:

pin_on_module => signal_name,

The first name is the module pin name, the second is the name of the signal the
pin is to be connected to. This format is calkedned association

With named association, the order of associations is not required to be in the
same order as port declaration in the component.

Essential VHDL for ASICs 55

Named vs. Positional Association

As previously mentioned, pin/signal pairs used with a PORT MAP may be
associated by position. For example,

Ul : mux21 PORT MAP(a_input,b_input,sel(0),temp0);

This form is not preferred because any change in the port list (it often happens
in the design phase) will be difficult to incorporate. Try doing it for entities
with 50 or more signals and you’ll begin to appreciate the point.

For example, some real code.......

Essential VHDL for ASICs 56

Sample PORT MAP (w/named association)

dramfifo_0: dramfifo

PORT MAP(reg_data
dram_state_ps

dram_cnt_ps

dram_cycle_type

addr_adv
line_shift
cycle_start
done
any_rdgnt
any_wrgnt
test_mode
scl_ratio_ack
y_wrptrlo_wen
y_wrptrhi_wen
u_wrptrlo_wen
u_wrptrhi_wen
v_wrptrlo_wen
v_wrptrhi_wen
wrcntrlo_wen
wrentrhi_wen
y_rdptrlo_wen
y_rdptrhi_wen
u_rdptrlo_wen
u_rdptrhi_wen
v_rdptrlo_wen
v_rdptrhi_wen
rdcntrlo_wen
rdcntrhi_wen
yeol_cntr_wen
ueol_cntr_wen
veol_cntr_wen

line_length_wen

=> reg_data ,

=> dram_state_ps
=> dram_cnt_ps

=> addr_adv
=> line_shift
=> cycle_start
=> done

=> any_rdgnt

=> any_wrgnt

=> test_mode

=> dram_cycle_type ,

1

=> scl_ratio_ack ,
=> y wrptrlo_wen
=> y wrptrhi_wen ,
=> u_wrptrlo_wen
=> u_wrptrhi_wen
=> v_wrptrlo_wen ,
=> v_wrptrhi_wen ,
=> wrcntrlo_wen
=> wrcntrhi_wen
=> y rdptrlo_wen
=> y rdptrhi_wen
=> u_rdptrlo_wen
=> u_rdptrhi_wen
=> v_rdptrlo_wen ,
=> v_rdptrhi_wen ,
=> rdcntrlo_wen
=> rdcntrhi_wen
=> yeol_cntr_wen ,
=> ueol_cntr_wen ,
=> veol_cntr_wen ,

=> line_length_wen ,

ptr_rollbit_wen => ptr_rollbit_wen ,
clk_24 => clk_24 ,

clk 48 => clk_48 ,
rst_24 => rst 24 ,
rst_48 => rst_48 ,
s_capt_en => s_capt_en ,
vsync => vsync ,
even_fld => even_fld ,
qual_hsync => qual_hsync ,
sr_sel => sr_sel ,
current_sr => current_sr ,
allow_rdreq => allow_rdreq ,
allow_wrreq => allow_wrreq ,
wr_addr => wr_addr ,
rd_addr => rd_addr ,

last_line_segment => last_line_segment,
start_of video => start_of video ,

end_of_video => end_of video ,
line_length_rback => line_length_rback,
dcu_status => dcu_status);

Essential VHDL for ASICs

57

Same PORT MAP (w/positional association)

-- dram fifo address control

dramfifo_0: dramfifo

PORT MAP(reg_data, dram_state_ps, dram_cnt_ps, dram_cycle_type,
addr_adv, line_shift, cycle_start, done, any_rdgnt, any_wrgnt,
test_mode, scl_ratio_ack, y_wrptrlo_wen, y_wrptrhi_wen, u_wrptrlo_wen,
u_wrptrhi_wen, v_wrptrlo_wen, v_wrptrhi_wen, wrcntrlo_wen,
wrentrhi_wen, y_rdptrlo_wen, y_rdptrhi_wen, u_rdptrlo_wen,
u_rdptrhi_wen, v_rdptrlo_wen, v_rdptrhi_wen, rdcntrlo_wen,
rdcntrhi_wen, yeol_cntr_wen, ueol_cntr_wen, veol_cntr_wen,
line_length_wen, ptr_rollbit_wen, clk_24, clk_48, rst_24, rst_48,
s_capt_en, vsync, even_fld, qual_hsync, sr_sel, current_sr,
allow_rdreq, allow_wrreq, wr_addr, rd_addr, last_line_segment,
start_of video, end_of video, line_length_rback, dcu_status);

Now, lets say you need to add an extra signal in the modhamfifa You want
to put it just afteueol_cntr_wen But let’s say your signals do not necessarily
have the same names as the pins. This means you would have to manually
count through the list of signals to find out where to put the new one in the port
map in exactly the same order. How would you know for sure its in the right
position? Count through the list again! Do you have time to do this?

The Moral of the StorylJse named association.

Essential VHDL for ASICs 58

Association lists - Some last items...

Suppose you have a module that is a four to one mux, but you only need three
inputs. What do you do with the unused input? What about unused outputs?

If the module you are instantiating has a defigefdult port valuethe

keywordOPEN can be used to allow the input to be assigned the default port

value. Thus the entity for a 4:1 mux with a defined default port value would

look like this:

ENTITY mux41 IS
PORT(

a0 :INSTD_LOGIC:
al :INSTD_LOGIC:

‘0’; --input a0 can be left OPEN
‘0’; --input al can be left OPEN
a2 :INSTD_LOGIC :='0’; --input a2 can be left OPEN
a3 :INSTD_LOGIC :='0’; --input a3 can be left OPEN
sel :INSTD_LOGIC VECTOR(1 DOWNTO 0); --sel input
z out: OUT STD_LOGIC --data out

);
END mux21;

The initalization expression “:= ‘0" in the port declaration states that the input
signalsa_input, b_input c_inputandd_inputwill take on the default value’0’
if they are left unconnected by a component instantiation.

Thus we could instantiate the 4:1 mux as follows:

Ul: mux4l PORT MAP(a0 =>a_input,
al =>b_input,
a2 =>c_input,
a3 =>OPEN, --a3is assigned the value ‘0’
sel =>sel_input),
z_out =>data_out);

Unconnected output ports are also designated by using the keyword OPEN.
However, the associated design entity does not have to supply a default port
value. Here is an adder with a unused carry output.
Ul7 : adder PORT MAP(a_in => a_data,

b in =>b_data,

sum => output,
carry_out => OPEN);,

Essential VHDL for ASICs 59

Association lists - Some last items...

What about inputs to a module that are tied constantly high or low?

As usual with VHDL there are several solutions.

--four to one mux with one input tied low
logic_zero <="'0"; --a ground signal
Ul : mux41l PORT MAP(a0 => a_input,
al =>b_input,
a2 =>c_input,
a3 =>logic_zero,
sel => select,
y =>temp0);

This is a little cleaner:

--four to one mux with one input tied low
logic_zero <="'0"; --a ground signal
Ul : mux41l PORT MAP(a0 => a_input,
al =>Db_input,
a2 =>c_input,
a3 =>'0’,
sel => select,
y =>temp0);

However, you cannot do this:

--four to one mux with one input tied low
Ul : mux41l PORT MAP(a0 => a_input,
al =>Db_input,
a2 =>c_input,
a3 => (a_input AND c_input),
sel => select,
y =>temp0);

The expressions supplied as connections to the module or cell pins must
constant values only.

Essential VHDL for ASICs 60

Concurrent Statements - GENERATE

VHDL provides the GENERATE statement to create well-
patterned structures easily.

Any VHDL concurrent statement can be included in a
GENERATE statement, including another GENERATE
statement.

Two ways to apply
« FOR scheme
« |F scheme

FOR Scheme Format:

label : FOR identifier IN range GENERATE
concurrent_statements;
END GENERATE [label];

Essential VHDL for ASICs

61

Generate Statement - FOR scheme

ARCHITECTURE test OF test IS
COMPONENT and02
PORT(a0 : IN std_logic;
al:IN std_logic;
y : OUT std_logic);
END COMPONENT and02;

BEGIN
G1: FOR nIN (length-1) DOWNTO 0 GENERATE
and_gate:and02
PORT MAP(a0 => sig1(n),
al =>sig2(n),
y =>1z(n));
END GENERATE G1;
END test;

sig1(7:0)

sig2(7:0)

e FXYIYYG G

With the FOR scheme
« All objects created are similar.

« The GENERATE parameter must be discrete and is undefined
outside the GENERATE statement.

« Loop cannot be terminated early

Note: This structure could have been created by:

sig3 <=sigl AND sig2;

provided the AND operator was overloaded for vector operations.

Essential VHDL for ASICs

62

Generate Statement - IF scheme

Allows for conditional creation of components.
Can’t use ELSE or ELSIF clauses.

IF Scheme Format:

label : IF (boolean_expression) GENERATE
concurrent_statements;
END GENERATE [label];

The next slide will show how we can use both FOR and IF
schemes.

Essential VHDL for ASICs

63

shift

Use of GENERATE - An example

d(0)

d(1)

d(2)

Suppose we want to build an 8-bit shift register.

d(7)

scan_in

LY

v

v

Y

ena%i(e

D

>CLK

g, gqn

Z

E 0

b

D
~SCLK
E Q

D
>CLK

o)

E 0

a0

. IN std_logic;

. IN std_logic;

D
—>CLK

E Q

q(g)

Suppose furthermore that we had previously defined the following
components:

ENTITY dff IS

PORT(d, clk, en
: OUT std_logic);
END ENTITY dff;

ENTITY mux21 IS
PORT(a, b, sel

: OUT std_logic);

END ENTITY mux21;

Essential VHDL for ASICs

64

Using GENERATE

From the block diagram we know what the entity should look like.

ENTITY sr8 IS
PORT(
din :IN std_logic_vector(7 DOWNTO 0);
sel :IN std_logic;
shift : IN std_logic;
scan_in : IN std_logic;
clk :IN sed_logic;
enable : IN std_logic;
dout : OUT std_logic_vector(7 DOWNTO 0));

Within the architecture statement we have to declare the
components within the declaration region before using them. This
is done as follows:

ARCHITECTURE example OF sr8 IS
--declare components in declaration area
COMPONENT dff IS
PORT(d, clk, en :IN std_logic;
g, gn : OUT std_logic);
END COMPONENT;
COMPONENT mux21 IS
PORT(a, b, sel : IN std_logic;
z : OUT std_logic);
END COMPONENT;

Component declarations look just like entity clauses, except
COMPONENT replaces ENTITY. Use cut and paste to prevent
mistakes!

Essential VHDL for ASICs

65

Using Generate

After the component declarations, we declare the internal signal.
SIGNAL mux_out : IN std_logic_vector(7 DOWNTO 0);

With loop and generate statements, instantiate muxes and dff’s.

BEGIN
OUTERLOOP: FOR i IN 0 TO 7 GENERATE
INNERLOOPL1: IF (i = 0) GENERATE
MUX: mux21 PORT MAP(a => d(i),
b => scan_in,
z => mux_out(i));
FLOP: dff PORT MAP(d => mux_out(i),
clk => clk,
en =>enable,
g => dout(i)); --gn not listed
END GENERATE INNERLOOP1;
INNERLOOP2: IF (i > 0) GENERATE
MUX: mux21 PORT MAP(a => d(i),
b => dout(i-1),
z => mux_out(i));
FLOP: dff PORT MAP(d => mux_out(i),
clk => clk,
en =>enable,
g =>dout(i),
gn => OPEN); --gn listed as OPEN
END GENERATE INNERLOOPZ2;
END GENERATE OUTERLOOP;
END example;

Essential VHDL for ASICs 66

Concurrent Statements - ASSERT

The assertion statement checks a condition and reports a message
with a severity level if the condition isnot true.

Format:
ASSERT condition:

ASSERT condition REPORT “message”
ASSERT condition SEVERITY level;

ASSERT condition REPORT “message” SEVERITY
level;

Example:

ASSERT signal_input = ‘1’
REPORT “Input signal_input is not 1”
SEVERITY WARNING;

Severity levels are:

- Note - general information

« Warning - undesirable condition

« Error - task completed, result wrong
« Failure - task not completed

Simulators stop when the severity level matches or exceeds the
specified severity level.

Simulators generally default to a severity level of “failure”

Essential VHDL for ASICs 67

\V

Assert Statements

Assert statements may appear within:
e concurrent statement areas
« sequential statement areas
« statement area of entity declaration

Example:

ENTITY rs_flip_flop IS
PORT(r,s : IN std_logic;
g, gn : OUT std_logic);
END rs_flip_flop;

ARCHITECTURE behav OF rs_flip_flop IS
BEGIN
ASSERT NOT (r=1"AND s ='1’)
REPORT “race condition!”
SEVERITY FAILURE;
*

*

*

END behav;

Remember, the ASSERT statement triggers when the specified
condition is false

Essential VHDL for ASICs

Concurrent Statements - Process Statement

The PROCESS statement encloses a setsefjquentially executed
statements. Statements within the process are executed in the
order they are written. However, when viewed from the “outside”
from the “outside”, a process is a single concurrent statement.

Format:

label:
PROCESS (sensitivity_list) IS
--declarative statements
BEGIN
--sequential activity statements
--only sequential statements go in here

END PROCESS [label];

Example:

ARCHITECTURE example OF nand_gate IS
BEGIN
nand_gate: PROCESS (a,b)
BEGIN
IFa='1AND b =1 THEN
z <=0
ELSE
z<="1,
END IF;
END PROCESS nand_gate;

Why use a process? Some behavior is easier and more natural to
describe in a sequential manner. The next state decoder in a state
machine is an example.

Essential VHDL for ASICs 69

Process Sensitivity List

The processsensitivity listlists the signals that will cause the
process statement to be executed.

Any transition on any of the signals in the signal sensitivity list will
cause the process to execute.

Example:

ARCHITECTURE example OF nand_gate IS
BEGIN
bozo: PROCESS (a,b)
-- wake up process if a and/or b changes
BEGIN
IFa=1AND b =‘1 THEN
z <="'0"
ELSE
z <="'1"
END IF;
END PROCESS bozo;
END example;

Signals to put in the sensitivity list:
« Signals on the right hand side of assignment statements.
« Signals used in conditional expressions

What happens if a signal is left out of the sensitivity list?
What does the synthesis tool do with the sensitivity list?

Avoid problems with sensitivity list omissions by compiling with “sythesis
check” on. Like this:

vcom -93 -check_synthesis test.vhd

Essential VHDL for ASICs

70

What about Delay?

Note that so far we haven’'t mentioned delay. Why not?

Both propagation delay and wiring delay is a real-world problem that must be
eventually dealt with. However, at the model creation stage, it is helpful to |not
have to consider delay. Instead, the emphasis is to create correct functional
behavior.

However, this does not mean the designer can go about designing with no
concern about delay. When writing HDL code, you must have a very good idea
what the structure you are creating will look like in a schematic sense.
Otherwise, the synthesized circuit may have excessive delays, preventing|its
operation at the desired speed.

VHDL does have statements for representing several different kinds of delay.
However, when describing a circuit to be synthesized, we never use them
because the synthesis tool ignores them on purpose.

The aspect of delay is added to a synthesized netlist after the functionality has
been proven correct. When real delays are inserted into your design (this is
done automatically) often a whole world of problems crop up.

The basic idea is to make a model work, and then make it work at the desjred
speed. Only experience will help you determine how fast your HDL code will
eventually run.

Essential VHDL for ASICs 71

Delay Types

VHDL signal assignment statements prescribe an amount of time
that must transpire before a signal assumes its new value.
This prescribed delay can be in one of three forms:

« Transport:
propagation delay only

« Inertial:
minimum input pulse width and propagation delay

« Delta:
the default if no delay time is explicitly specified

input output

Signal assignment is actually achedulingfor a future value to be
placed on the signal.

Signals maintain their original value until the time for the
scheduled update to occur.

Any signal assignment will incur a delay of one of the three types
above.

Essential VHDL for ASICs

72

Delay Types - Transport

Delay must be explicitly specified by the user by the keyword
TRANSPORT.

The signal

Example:

will assume the new value after specified delay.

output <= TRANSPORT buffer(input) AFTER 10ns;

input

output

N

[1 L

0

1 | | | | | | | | | | |
5 10 15 20 25 30 35 40 45

Transport delay is like a infinite bandwidth transmission line.

Essential VHDL for ASICs

Delay Types - Inertial

Inertial delay is the default in VHDL statements which contain
the “AFTER” clause.

Inertial delay provides for specification of input pulse width, i.e.
‘inertia’ of output, and propagation delay.

Format:

target <= [REJECT time_expr] INERTIAL waveform
AFTER time

Example (most common):
output <= buffer(input) AFTER 10ns;

input _I_l I I
output I I_

| | | | | | | | |
1 | | | | | | | | | | |
O 5 10 15 20 25 30 35 40 45

When not used, the REJECT clause defaults to the value of the
AFTER clause.

Inertial delay acts like a real gate. It “eats” pulses narrower in
width than the propagation delay.

Essential VHDL for ASICs

74

Delay Types - Inertial

Example of gate with “inertia” smaller than propagation delay:

This shows a buffer that has a prop delay of 10ns, but passes pulses greater
than 5ns.

output <= REJECT 5ns INERTIAL buffer(input)
AFTER 10ns;

input _I_I_”_I I
output I_l | I_

| | | | | | | | |
1 | | 1 | | | | | | | |
O 5 10 15 20 25 30 35 40 45

REJECT can be used only with the keyword INERTIAL.

Essential VHDL for ASICs 75

Delay Types - Delta Delay

Delta delayis the signal assignment propagation delay if none is
explicitly prescribed.

A delta time is an infinitesimal, but quantized unit of time.
An infinite number of delta times equalszero simulator time.

The delta delay mechanism provides a minimum delay so that the
simulation cycle can operate correctly when no delays are stated
explicitly. That is:

« all active processes to execute in the same simulation cycle
« each active process will suspend at soma&iit statement

« when all processes are suspended, simulation is advanced the
minimum time step necessary so that some signals can take on
their new values

« processes then determine if the new signal values satisfy the
conditions to proceed again from the wait condition

Essential VHDL for ASICs 76

Sequential Operations

Statements within processes are executed in the order in which
they are written.

The sequential statements we will look at are:
« Variable Assignment

 Signal Assignment*

- |f Statement

« Case Statement

- Loops

« Next Statement

« EXxit Statement

e Return Statement

« Null Statement

« Procedure Call

« Assertion Statement*

*Have both a sequential and concurrent form.

Essential VHDL for ASICs

Variable Declaration and Assignment

Variables can be used only within sequential areas.

Format:

VARIABLE var_name : type [:= initial_value];

Example:
VARIABLE spam : std_logic :=‘0’;

ARCHITECTURE example OF funny gate IS
SIGNAL ¢ : STD_LOGIC;
BEGIN
funny: PROCESS (a,b,c)
VARIABLE temp : std_logic;
BEGIN
temp :=a AND b;
z <=temp OR ¢;
END PROCESS funny;
END ARCHITECTURE example;

Variables assume value instantly.

Variables simulate more quickly since they have no time
dimension.

Remember, variables and signals have different assignment
operators:

a <= new_value; --signal assignment
a := new_value; --variable assignment

Essential VHDL for ASICs

78

Sequential Operations - IF Statement

Provides conditional control of sequential statements.
Condition in statement must evaluate to a Boolean value.
Statements execute if boolean evaluates to TRUE.

Formats:

IF condition THEN --simple IF (latch)
-- seguential statements
END IF;

IF condition THEN --IF-ELSE
-- seguential statements

ELSE

-- segquential statements

END IF;

IF condition THEN --IF-ELSIF-ELSE
-- segquential statements

ELSIF condition THEN

-- seguential statements

ELSE

-- seguential statements

END IF;

Essential VHDL for ASICs

79

Sequential Operations - IF Statement

Examples:

--enabled latch

IF (a='1"AND b =‘0") THEN
spud <= potato;

END IF;

--a very simple “gate”
IF (lucky = ‘1) THEN
buy_lottery tickets <= '1’;
ELSE
buy lottery tickets <= ‘0’;
END IF;

--a edge triggered 4-bit counter with enable
--and asynchronous reset
IF (reset =‘1") THEN
cnt <= “00007
ELSIF (clkEVENT AND clk =‘1") THEN
IF enable = ‘1’ THEN
cnt<=cnt + 1;
END IF;
END IF;

A Hint: Only IF.....
need&ND IF

Essential VHDL for ASICs

80

Synthesized example from previous page

Lucky = = sl by Lobbary-k ickat =
&l —E;': :I'“' »
b= o
pob ek o I L zpud

=] cnk (201
L
arabla [i %
=]

___IE
p o
.-__IE
P
ez ' I i
p o
___IE
P

Essential VHDL for ASICs

81

IF Implies Priority

The if statement implies a priority in how signals are assigned to the logic
synthesized. See the code segment below and the synthesized gates.

ARCHITECTURE tuesday OF example IS
BEGIN
wow: PROCESS (a, b, c, d, potato, carrot, beet, spinach, radish)
BEGIN
IF (a="1) THEN
vegatable <= potato;
ELSIF (b ='1") THEN
vegatable <= carrot;
ELSIF (c ='1") THEN
vegatable <= beet;
ELSIF (d ='1’) THEN
vegatable <= spinach;
ELSE
vegatable <= radish;
END IF;
END PROCESS wow;
END ARCHITECTURE tuesday;

pot &t o= al
al= " X

vegat sl e

ket =
() -

what are the delays for each path?

Note how signal with the smallest gate delay through the logic was the first ¢
listed. You can use such behavior to your advantage. Note that use of
excessively nestdéF statements can yield logic with lots of gate delay.

Beyond about four levels &fF statement, th€ ASE statement will typically
yield a faster implementation of the circuit.

Essential VHDL for ASICs 82

hne

Area and delay of nested IF statement

We can put reporting statements in our synthesis script to tell us the numbe
gate equivalents and the delays through all the paths in the circuit. For this

example, we included the two statements:

report_area -cell area_report.txt
report_delay -show_nets delay_report.txt

In area_report.txf we see:

kkkkkkkkkkkkkhkkkhkkkkhkkhkhkkhkhkkkhkkhkkhhkkkkhkkhhkkkkhkkhhkkkkkkhkkkkk

Cell: example View: tuesday Library: work

kkkkkkkkkkkkkkkkkkkkkkkkkkkkhkhkhkkkkhkkkkkkkkkkkkkkkkkkkkk
Cell Library References Total Area
ao2l amio5 typ 2x 1 2gates
mux21l amiO5 typ 2x 2 4 gates
nor02 amiO5_typ 2x 1 2gates

Number of gates : 8

The delay_report.txthas the delay information:

Critical Path Report
Critical path #1 spinach to vegatable 3.42ns
Critical path #2 radish to vegatable 3.41ns
Critical path #3 d to vegatable 3.31ns
Critical path #4 c¢ to vegatable 2.88ns
Critical path #5 ¢ to vegatable 2.57ns
Critical path #6 beet to vegatable 2.48ns
Critical path #7 carrot to vegatable 1.63ns
Critical path #8 b to vegatable 1.52ns
Critical path #9 a to vegatable 1.08ns
Critical path #10 a to vegatable 1.46ns

r of

Essential VHDL for ASICs

83

If implies priority (cont.)

The order in which the IF’s conditional statement are evaluated also makes a
difference in how the outputs value is assigned. For example, the first check is
for (a = ‘1"). If this statement evaluates true, the output vegetable is assigned
“potato” for any input combination where a= ‘1",

If the first check fails, the possibilities narrow. If the second check (b= 1) is
true, then any combination where a is ‘0’ an b is ‘1’ will assign carrot to
vegetable.

If all prior checks fail, an ending ELSE catches all other possibilities.

Essential VHDL for ASICs 84

Relational Operators

The IF statement uses relational operators extensively.

Relational operators return Boolean values (true, false) as their
result.

OperatorOperation

= equal

/= not equal

< less than

<= less than or equal

> greater than

>= greater than or equal

The expression for signal assignment and less than or equal are
the same. They are distinguished by the usage context.

Essential VHDL for ASICs

85

CASE Statement

Controls execution of one or more sequential statements.

Format:

CASE expression IS
WHEN expression_valueO => sequential_stmt;
WHEN expression_valuel => sequential_stmt;
END CASE;

Example:

--a four to one mux
mux: PROCESS (sel, a, b, c, d)
BEGIN
CASE sel IS
WHEN “00” => out <= a;
WHEN “01” => out <= b;
WHEN “10” => out <=c;
WHEN “11” => out <= d;
WHEN OTHERS => out <= ‘X’;
END CASE ;
END PROCESS mux;

Either every possible value oexpression_valuenust be

enumerated, or the last choicenust contain an OTHERS clause.

Essential VHDL for ASICs

86

CASE Implies equal priority

The CASE statement implies equal priority to how the signals are assigned to
the circuit. For example, we will repeat the previdbsexample usingCASE.
To do so, we combine the selection signals into a bus and make the outpu
selection on the bus value as shown below.

~—+

ARCHITECTURE tuesday OF example IS
SIGNAL select_bus : STD_LOGIC_VECTOR(3 DOWNTO 0);
BEGIN
select_bus <= (d & ¢ & b & a); --make the select bus
wow: PROCESS (select_bus, potato, carrot, beet, spinach, radish)
BEGIN
CASE select_bus IS
WHEN "0001" => vegatable <= potato;
WHEN "0010" => vegatable <= carrot;
WHEN "0100" => vegatable <= beet;
WHEN "1000" => vegatable <= radish;
WHEN OTHERS => vegatable <= spinach;
END CASE;
END PROCESS wow;
END ARCHITECTURE tuesday;

\irmch [

= ! >, 9:
:g—i e Dl

ot [

Ftiﬂl:\-\-'- |

i Th[

With the exception of spinach, the number of gate delays from each signa
input to output is four. The gate delays in lheexample varied from 1 to 8
gate delays. However, this function for CASE could be coded better.

Essential VHDL for ASICs 87

Using CASE more effectively

In the previous example, there were 5 choices to choose from. We can encode
this more fully by using 3 bits. What we are creating now is a mux. Lets see
how this example can be coded more efficiently:

ARCHITECTURE tuesday OF example IS
BEGIN
wow: PROCESS (select_bus, potato, carrot, beet, spinach, radish)
BEGIN
CASE select_bus IS
WHEN "000" => vegatable <= potato;
WHEN "001" => vegatable <= carrot;
WHEN "010" => vegatable <= beet;
WHEN "011" => vegatable <= radish;
WHEN "100" => vegatable <= spinach;
WHEN OTHERS => vegatable <="X’;
END CASE;
END PROCESS wow;
END ARCHITECTURE tuesday;

The synthesized circuit looks like this:

potato E:F%mm
carrot C—~HpT

beet [
radish =

vegatab[eé

=pinach =
select _busd2 0 [_

P

This encoding of the desired function is much cleaner, faster and smaller. |Its
seldom you get all three, so take it when you can. Examining the area and
delay numbers between this and lRemplementation shows the superiority
of CASE for this situation.

Be careful however, sometim€ASE may loose depending upon the
circumstances! Blanket statements about synthesis results with different
constructs should not be made. Examine each situation individually, and

THINK !

Essential VHDL for ASICs 88

Delay and area report: efficient CASE example

From area_report.txt:

kkk

Cell: example View: tuesday Library: work

kkkkkkkkkkkkkkkkkkkhkkkkhkkkhkkkkkkkkkkhkkkhkkkhkkkkkkkkhkkhkkkkhkkkkk

Cell Library References Total Area
inv02 ami05_typ 1x 1 1gates
mux21 amiO5_typ 4x 2 8gates

Total accumulated area :
Number of gates: 8

From delay_report.txt

Critical Path Report

Critical path #1, potato to vegatable 1.83
Critical path #2, beet to vegatable 1.83
Critical path #3, carrot to vegatable 1.82
Critical path #4, radish to vegatable 1.81
Critical path #5, select_bus(0) to vegatable 1.72
Critical path #6, select_bus(0) to vegatable 1.72
Critical path #7, select_bus(1) to vegatable 1.19
Critical path #8, spinach to vegatable 0.74
Critical path #9, select_bus(2) to vegatable 0.64

The comparison betwed¢lh andCASE for this example:

IF: area 8 gates, delay 3.42ns (worst path)
CASE: area 8 gates, delay 1.83ns (worst path)

Essential VHDL for ASICs

89

Use of OTHERS in MUXes

In the former example, tl@THERS clause assigned the output value of ‘X’
for inputs other than those explicitly stated. There are two main reasons for|the
use of ‘X'

Simulation and debugging

Remember that we are using the 9 level logic type STD_LOGIC_1164. This
type specifies that a signal can take on a “real world” set of values;
0,1,H,L,Z,X,W,U,-. All these values are included so that we simulate the
behavior or “real” circuits such as resistive pullups and pulldowns, tri-state
buffers and even initialized logic. An example of an uninitialized cell would be
a flip flop output just after power is applied. Its output is considered unknown
or ‘U’ by the simulator while if its setup or hold time is violated, the flip flop’s
output becomes unknown or ‘X’ immediately after the clock edge.

t

-

If a setup violation occurs during the simulation of a circuit, a flip flop’s outpt
will go ‘X'. If the flip flop’s output forms the select input to a mux, what input
signal will be propagated to the output? In other words, ifdbkect busignal
becomes “0X1”, what input signal value wilegatableake on. This is known
in polite circles as th& propagation issue

If we chose another valid input for the OTHERS clause, the error (‘X’ output
from a flip flop) in the simulation will not be propagated to downstream logic.
It will stop or be lost at the mux input because the select_bus value “0X1”
maps to a valid input. At the next clock cycle the flip flop may transition to a
valid state, the simulation will continue and the error will go unnoticed. We
would rather have the ‘X’ propagate thorough the logic and “blow up” the
simulation so we can catch the error.

The code below is valid and wouldt propagate the ‘X’ condition. It also
represents an “overly specified” circuit. It is overly specified in the sense that
surely all the possible values s¥lect bushould not map tpotata Giving
some degree of freedom actually produces a smaller gate realization.

Essential VHDL for ASICs 90

Use of OTHERS (cont.)

--overly specified mux

CASE select_bus IS
WHEN "000" => vegatable <= potato;
WHEN "001" => vegatable <= carrot;
WHEN "010" => vegatable <= beet;
WHEN "011" => vegatable <= radish;
WHEN "100" => vegatable <= spinach;
-- output potato for all other cases
WHEN OTHERS => vegatable <= potato;

END CASE;

If we synthesize this circuit we get the following:

et [x

— =
pat st o[— rﬁmf
rad T] .

4| |

select b 200
i mac

j: - venat abile

The gate realization of this overly specified mux is obviously a little messy
This also seen in the reports from synthesis.

The worst case path from the delay_report.txt gives us:
Critical path #1, beet to vegatable, 2.17ns

The gate count from area_report.txt gives us:
Number of gates: 11

This less than optimal solution leads to the second reason for the use of
here; logic minimization.

Essential VHDL for ASICs 91

Use of OTHERS (cont.)

Logic minimization

The synthesis tool must choose from a library of cells to create the circuit
described by the HDL code. In the case of using the statement:

WHEN OTHERS => vegatable <="X’;

What does the synthesis tool do? There is no gate that can produce a ‘X’ output
except when malfunctioning. How can it make a set of gates to produce an|'X’
output? The answer is that it doesn't.

Thesynthesizetreats the ‘X’ in this case agdan’t care This is just like the
don’t care in a Karnough map. It allow the synthesis to optimize (reduce) the

gate count if possible. The simulator treats the X as a value to be propagated in
simulation if an error happens.

In fact, we can use another value in the mux statement; the don’t care value, ‘-
'. So we could have coded the mux as follows:

--don’t do this!

CASE select_bus IS
WHEN "000" => vegatable <= potato;
WHEN "001" => vegatable <= carrot;
WHEN "010" => vegatable <= beet;
WHEN "011" => vegatable <= radish;
WHEN "100" => vegatable <= spinach;
WHEN OTHERS => vegatable <="-’;

END CASE;

This would allow the same optimizations as the ‘X’ for the OTHERS case but
the behavior of the simulation in the case of a ‘-’ being propagated could be
library and simulator dependent. This woNO@T be a be a good way to code
a mux even though the synthesized circuit is identical to the mux with the
OTHERS statement using ‘X'.

Essential VHDL for ASICs 92

Use of OTHERS (conclusion)

By using the statement:
WHEN OTHERS => vegatable <='X;

the synthesizer can create a small, fast circuit that behaves properly.

One basic premise of how we want to code our designs is that we want the
simulation of our code to act exactly as the gate implementatiotf.a real

mux had a metastable (think ‘X’) input, the output would be metastable (X)
not some valid (O or 1) state.

The proper use of the don’t care operator is found in creating complex
combinatorial logic and in state machine state assignments. In that context; the
don’t care operator really shines. We will see some examples of this soon,

Essential VHDL for ASICs 93

Loops

Sequences of statements that are executed repeatedly.

Types of loops:

« For (most common usage)

- While

« Loop with exit construct (we skip this)

General Format;

[loop label:]
iteration_scheme --FOR, WHILE
LOOP

--sequence_of statements;
END LOOPJloop_label];

Essential VHDL for ASICs

94

For Loop

Statements are executed once for each value in the loop
parameter’s range

Loop parameter is implicitly declared and may not be modified
from within loop or used outside loop.

Format:

[label:] FOR loop_parameter IN discrete_range
LOOP
--sequential_statements

END LOOPIJlabel];

Example:

PROCESS (ray_in)

BEGIN
--connect wires in a two busses
label: FOR index INO TO 7
LOOP

ray out(index) <= ray_in(index);

END LOOP label;

END PROCESS;

Essential VHDL for ASICs

95

While Loop

Execution of statements within loop is controlled by Boolean
condition.

Condition is evaluated before each repetition of loop.

Format:

WHILE boolean_expression
LOOP
--sequential_expressions
END LOOP;

Example:

pl:
PROCESS (ray_in)
VARIABLE index : integer := 0;
BEGIN
from_in_to_out:
WHILE index < 8
LOOP
ray_out(index) <= ray_in(index);
index :=index + 1;
END LOOP from_in_to_out;
END PROCESS pl;

Essential VHDL for ASICs

96

Attributes

Attributes specify “extra” information about some aspect of a
VHDL model.

There are a number of predefined attributes provide a way to
guery arrays, bit, and bit vectors.

Additional attributes may be defined by the user.
Format:

object_name’attribute designator

The ““ " is referred to as “tick”.

Example:

ELSIF (clkEVENT AND clk = ‘1") THEN

Essential VHDL for ASICs

97

Predefined Signal Attributes

signalEVENT - returns value “TRUE” or “FALSE” if event
occurred in present delta time period.

signal’ ACTIVE - returns value “TRUE” or “FALSE” if activity
occurred in present delta time period.

signal’'STABLE - returns a signal value “TRUE” or “FALSE”
based on event in (t) time units.

signal’ QUIET - returns a signal value “TRUE” or “FALSE”
based on activity in (t) time units.

sighal TRANSACTION - returns an event whenever there is
activity on the signal.

signal DELAYED(t) - returns a signal delayed (t) time units.
signallLAST_EVENT - returns amount of time since last event.
signal’LAST_ACTIVE - returns amount of time since last activity.

signal’LAST_VALUE - returns value equal to previous value.

Essential VHDL for ASICs 98

Using Attributes

Rising clock edge:
clkkEVENT and clk =1’

OR:
NOT clk’'STABLE AND clk =1’

Falling clock edge:
clkEVENT AND clk = ‘O’

Checking for too short pulse width:

ASSERT (reset’'LAST _EVENT >= 3ns)
REPORT *“reset pulse too short!”;

Checking stability of a signal:
signal’'STABLE(10ns)

Essential VHDL for ASICs

99

Generic Clause

Generics may be used for readability, maintenance and
configuration.

They allow a component to be customized by creating a
parameter to be passed on to the architecture.

Format:

GENERIC (generic_name:type[:= default_value]);

If default_value is missing, it must be present when the
component is instantiated.

Example:

ENTITY half_adder IS
GENERIC(
tpd_result : delay := 4ns;
tpd_carry : delay := 3ns);
PORT(
x IN : std_logic;
y IN : std _logic;
z OUT : std_ulogic);
END nand_gate;

ARCHITECTURE dataflow OF half _adder
BEGIN
| result <= x XOR y AFTER tpd_result;
carry <=x AND y AFTER tpd_carry;
END dataflow;

Essential VHDL for ASICs

100

Inferring Storage Elements

In our designs, we usually use flip-flops as our storage elements. Sometimes
we use latches, but not often. Latches are smaller in size, but create special,
often difficult situations for testing and static timing analysis.

Latches are inferred in VHDL by using the IF statement without its matching
ELSE. This causes the synthesis to make the logical decision to “hold” the
value of a signal when not told to do anything else with it.

The inferred latch is a transparent latch. That is, for as long as enable is high,
the q output “sees” the d input transparently.

--infer 4-bit wide latch

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

USE ieee.std_logic_vector_arith.ALL;

ENTITY storage IS

PORT (
data_in :IN STD_LOGIC_VECTOR(3 DOWNTO 0);
data_out: OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
enable :IN STD_LOGIC);

END storage;

ARCHITECTURE wed OF storage IS
BEGIN
infer_latch:
PROCESS (enable, data_in)
BEGIN
IF enable = ‘1’ THEN
data_out <= data_in;
END IF; --look ma, no else!
END PROCESS infer_latch;
END ARCHITECTURE wed;

When synthesized, we see the following structure:

Essential VHDL for ASICs 101

Latch Inference

enable [Lk
data_inC3 00

[= data_out (300

CLE

CLE

LE

In our library, the enable is shown as going to the “CLK” input of the latch.

This is misleading as the input should properly be called “EN” or something

like that. If | find the time maybe I'll change these someday.

The small size of the latches is reflected in the area report:

Cell Library References Total Area
latch amiO5_typ 4x 2 10gates

Number of gates : 10

This is of course relative to the size of a 2-input NAND gate. In other words,

the area of each latch is about the same as 2, 2-input NAND gates!

When we synthesized, the transcript told of the impending latch inference;

-- Compiling root entity storage(wed)
"Infs/guille/ul/t/traylor/ece574/src/storage.vhd" line 8: Warning,
data_out is not always assigned. latches could be needed.

Always watch tool transcripts. They can be very informative. Sometime the

can save your bacon.

L4

Essential VHDL for ASICs 102

y

Inferring D-type Flip Flops

Usually, we want to infer D-type, edge triggered flip flops. Here’s how.

LIBRARY ieee;
USE ieee.std_logic_1164.ALL,;
USE ieee.std_logic_vector_arith.ALL;

ENTITY storage IS

PORT (
data_in :IN STD_LOGIC_VECTOR(3 DOWNTO 0);
data_out : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
clock :IN STD_LOGIC);

END storage;

ARCHITECTURE wed OF storage IS
BEGIN
infer_dff:
PROCESS (clock, data_in)
BEGIN
IF (clock EVENT AND clock = ‘1") THEN
data_out <= data_in;
END IF; --look ma, still no else!.... what gives?
END PROCESS infer_dff;
END ARCHITECTURE wed;

clock [= —LLE O N [> data_out (300
data_in{3 100 [Qe
CLE D—i\‘
W= ey
LK n—,\‘
QB
Lk o—)
[QB>

Essential VHDL for ASICs

103

Sometime back we stated that IF with ELSE infers a latch. Well... that is
usually true. Here is an exception. The line:

IF (clock EVENT AND clock = ‘1") THEN

Is special to the synthesis tool. The conditional statement for the IF uses the
attribute which looks for a change in the sigtlatk (clock EVENT). This is
ANDed with the condition thatlockis now ‘1’ (AND clock = ‘1’). The
conditional is looking for a rising edge of the sigdalck

Therefore, if there is a rising edge, the statement under the IF will be executed
and at no other time. So when the clock rises, data_out will get the value
present at data_in. Since a D flip-flop is the only cell that can satisfy this
condition and can hold the value once it is acquired it is used to implement the
circuit. The conditional(clockEVENT AND clock = ‘1" really forms the
recipe for a D-type rising edge flip flop.

A ELSE clause could be added to the IF statement that explicitly tells the old
value to be held. This is not at all harmful, but is redundant and is ignored by
the synthesis tool. An example of this is shown below:

infer_dff:
PROCESS (clock, data_in)
BEGIN
IF (clockEVENT AND clock = ‘1") THEN
data_out <= data_in; --get new value
ELSE
data_out <= data_out; --hold old value...UNNECESSARY
END IF;
END PROCESS infer_dff;

Essential VHDL for ASICs 104

Adding an Asynchronous Reset

out a reset. Here is how to code a flip flop with a asynchronous reset:

ARCHITECTURE wed OF storage IS
BEGIN
infer_dff:
PROCESS (reset_n, clock, data_in)
BEGIN
IF (reset_n =0") THEN
data_out <= “0000"; --aysnc reset
ELSIF (clockEVENT AND clock = ‘1") THEN
data_out <= data_in;
END IF;
END PROCESS infer_dff;
END ARCHITECTURE wed;

When synthesized, we get:

— Eb{ [—
resat _n[= E:XD 4

clock [» n ~J { = data_out (300
dat a_in(3:0) [% R
E
» L
i
¥ O
.=
=
[(N
.
¥ o
2
T
\—F N:

We almost never want a flip flop without a reset. Without a reset, how can
simulator determine initial state? It cannot. It is very rare to find flip-flops wit

the
h

Essential VHDL for ASICs

105

How big is a flip flop/latch?

From the area_report.txt file we see:

Cell Library References Total Area
dffr amiO5 typ 4x 6 24 gates
inv02 amiO5 typ 1x 1 1gates
Number of gates : 24

This looks a little fishy. 24 + 1 = 24? At any rate, (assuming round off error
the flip flops are roughly 6 gates a piece.

So to summarize the relative sizes of latches and flip flops

CASE CELL SIZE

latch no reset latch 2 gates
latch with reset latchr 3 gates
flip flop with no reset dff 5 gates
flip flop with reset dffr 6 gates

These numbers are valid only for our library. Other libraries will vary.
However, the relative sizes are consistent with most any CMOS library.

Essential VHDL for ASICs 106

 —

State Machines in VHDL

Implementing state machines in VHDL is fun and easy provided you stick to
some fairly well established forms. These styles for state machine coding given
here is not intended to be especially clever. They are intended to be portable,
easily understandable, clean, and give consistent results with almost any
synthesis tool.

The format for coding state machines follows the general structure for a state
machine. Lets look at the basic Moore machine structure.

present_state

L next state LIERIEL QJ—VOUTIDUt signals
decode logi¢
INPULS =
R
clock ([D

reset

The Moore state machine consists of two basic blocks, next state decode (or
steering) logic, and some state storage usually (always for our case) D-type flip
flops. Inputs are applied to the next state decode block along with the present
state to create the next state output. The flip flops simply hold the value of the
present state. In the example above, the only output signals are the outputs of
the state flip flops. Alternatively, the flip flop outputs could be decoded to
create the output signals.

For a first example we will look at the state machine in TAS which holds the
state of what type of header is being receivalting or temp_pktFirst we
look at the state diagram.

Essential VHDL for ASICs 107

State Diagram for header _type sm

header_type sm

outputs: state only byte assembled*
byte_cnt_ps = header*
ab or _c3
reset

byte assembled*
byte cnt_ps = byted

All your state machines should be documented in roughly this fashion. The
name of the process holding the code for the state machine is the name of the
state machine. In this case ihisader_type_sm.

Every state machine has an arc from “reset”. This indicates what state the state
machine goes to when a reset is applied. The diagram is worthless without
knowing what the initial state is.

Each state in this example is given a name. In this case we are using a type for
the states that is an enumerated state type. We will see what this means to the
code later. For now, it provides a easy way to understand and to talk about what
and how the state machine works.

Each possible transition between states is shown via an arc with the condition
for the transition to occur shown. The condition need not be in VHDL syntax
but should be understandable to the reader. Typically (highly recommended)
logic expressions are given with active high assertion assumed.

It should be understood that all transitions occur on the clock edge.

Outputs from the state machine should be listed. The only outputs from this
state machine are its present state. Most likely, some other state machine|is
watching this one’s state to determine its next state.

Essential VHDL for ASICs 108

State Machines (cont.)

To use the enumerated state types in our example, we need to declare what they
are. This would be done in the declarative area of the architecture as shown.

ARCHITECTURE beh OF ctrl_blk_50m IS
--declare signals and enumerated types for state machines

--further down we see.......

TYPE header_type_type IS (waiting, temp_pkt);
SIGNAL header_type ps, header_type ns: header_type_type;

--bla, bla, bla.....

BEGIN

The TYPE declaration states that we have a type cdfledder type typand
that the two only states for this type araiting andtemp_pktHaving done
this we can declare two signals for our present state and next state vectors
calledheader_type pandheader_type nd\ote that the vectors get their
names from the state machine they are apart of plugd®m nsto
distinguish present or next state vectors.

This style of state machine state coding is called enumerated state encoding. It
Is flexible in the sense that the synthesis tool is left to make the decision about
how to assign a bit pattern to each state. More about this later.

Now using these state declarations, lets make the process that creates the stat
machine.

Essential VHDL for ASICs 109

State Machine Process Body

Below we see the body of the process that creates the state machine.

header_type_sm:
PROCESS (clk_50, reset_n, a5_or_c3, byte_assembled, byte_cnt_ps,
header_type ps, header_type_ns)
BEGIN
--clocked part
IF (reset_n ="0") THEN
header_type_ps <= waiting;
ELSIF (clk_50'EVENT AND clk_50 ="1") THEN
header_type ps <= header_type_ns;
END IF;

--combinatorial part
CASE header_type_ps IS
WHEN waiting =>
IF (byte_assembled ='1") AND (byte_cnt_ps = header) AND
(@5_or_c3 ="1") THEN

header_type _ns <=temp_pkt;
ELSE
header_type ns <= waiting;
END IF;
WHEN temp_pkt =>
IF (byte_assembled = '1") AND (byte_cnt_ps = byte4) THEN
header_type ns <= waiting;
ELSE
header_type ns <=temp_pkt;
END IF;
END CASE;
END PROCESS header_type_sm;

First we see that the process label is consistent with the documentation and the
signhal names we have assigned. Also all the signals that may be read are ljsted
In the process sensitivity list for the process.
header_type_sm:

PROCESS (clk_50, reset_n, a5_or_c3, byte_assembled, byte_cnt_ps,
header_type_ps, header_type_ns)

Next the flip flops are created to hold the present state. This is what is
commonly called the clocked or synchronous part since it is controlled by the
clock.

Essential VHDL for ASICs 110

State Machine Process Body (synchronous part)

--clocked part

IF (reset_ n='0") THEN
header_type ps <= waiting;

ELSIF (clk_50EVENT AND clk_50 ="1") THEN
header_type ps <= header_type_ns;

END IF;

Here we see an active low asynchronous reset that forces the present state to
become the state calladiting. It does so without regard to the clock. That is
why it is called an asynchronous reset.

U)

Following the reset clause, the “clock tick event” clause identifies the
following statements to be generating flip flops. The flip flops it creates are
rising edge sensitive and cause the sigealder_type pt take on the value
of header_type nat the rising clock edge.

This concludes the clocked part of the process. We have created the necessary
state flip flops and connected the D inputs to header_type ns and the Q outputs
to header_type ps.

Now we will create the next state steering logic. It consists only of gates, ile.;
combinatorial logic. This part of the process is thus commonly called the
combinatorial part of the process.

Essential VHDL for ASICs 111

State Machine Process Body (combinatorial part)

--combinatorial part
CASE header_type_ps IS
WHEN waiting =>
IF (byte_assembled ="1") AND (byte_cnt_ps = header) AND
(@5_or_c3="1") THEN
header_type ns <=temp_pkt;
ELSE
header_type ns <= waiting;
END IF;
WHEN temp_pkt =>
IF (byte_assembled ='1") AND (byte_cnt_ps = byte4) THEN
header_type ns <= waiting;
ELSE
header_type_ns <=temp_pkt;
END IF;
END CASE;

To clearly make the next state logic, a structure is created whestatements
are tucked under each distilf@ASE state possibility. EacBASE possibility
IS a state in the state machine. Given a present stdté ftatements
determine from the input conditions what the next state is to be.

To further illustrate this:

The CASE statement enumerates each possible present state:

CASE header_type _ps IS
WHEN waiting =>
--bla, bla, bla
WHEN temp_pkt =>
--bla, bla, bla

END CASE

In any given state the IF determines the input conditions to steer the machine to
the next state. For example:

WHEN temp_pkt =>
IF (byte_assembled ='1") AND (byte_cnt_ps = byte4) THEN
header_type ns <= waiting; --go to waiting if IF is true
ELSE
header_type ns <=temp_pkt; --else, stay put
END IF;

Essential VHDL for ASICs 112

State Machine Synthesis

If we synthesize the state machine we see in the transcript:

"Infs/quille/ul/t/traylor/ece574/src/header.vhd”,line 28: Info,
Enumerated type header_type_type with 2 elements encoded as binary.

Encodings for header_type_type values
value header_type_type[O]

waiting 0
temp_pkt 1

This tells us that the synthesis tool selected the value of ‘O’ to represent the
statewaiting, and the value ‘1’ to represent the stat@p pktThis makes
since because we have only two states, thus 0 and 1 can represent them. We
would furthermore expect only one flip flop to be needed. So the schematic
looks like this: (clock and reset wiring omitted)

but e_cht _p=do)

but a_cht _pzd1)= bemder_t ppe_ps

i 3
E1 1k L
MOT (bt e_asserbled) {:}_ _{}
[LH
ab_or_c® [o
NOT bt ea_cnt _psl2h) [A hemdar_tppe_ns
i five
but e_cnt _pednd = Moo
= fiva

but e_cnt _psd 1) [

You might say, “That’s not the way | would do it.” But for the circuit this state
machine was taken from, this was what it considered an optimal realization.
Study the tas design filgtrl_50m.vhdand you can probably figure out some of
the how and why the circuit was built this way.

)

The next state steering logic can be clearly seen to the left of the state storage
(flip flop).

Essential VHDL for ASICs 113

Enumerated Encoding

Using enumerated state encoding allows the synthesis tool to determine the
optimal encoding for the state machine. If speed is the primary concern, a state
machine could be created using one hot encoding. If minimum gate count is the
most important criterion, a binary encoding might be best. For minimum noise
or to minimize decoding glitching in outputs, grey coding might be best. Four
different ways to encode a 2 bit state machine might be like this:

binary 00, 01, 10, 11
one hot 0001, 0010, 0100, 1000
grey 00, 01, 11, 10
random 01, 00, 11,10

While enumerated encoding is the most flexible and readable, there are cases
where we want to create output signals that have no possibility of output
glitches. Asynchronous FIFOs and DRAMSs in patrticular.

As an example of a glitching state machine, lets build a two bit counter that has
an output which is asserted in states “01” or “10” and is deasserted for states
“00” and “11”. We will allow binary encoding of the counter.

Essential VHDL for ASICs 114

Counter State Machine with Decoded Output

The code looks like this:

ARCHITECTURE beh OF sm1 IS
TYPE byte_cnt_type IS (cntl, cnt2, cnt3, cnt4);
SIGNAL byte cnt_ps, byte_cnt_ns:byte cnt_type;
BEGIN
byte cntr:
PROCESS (clk_50, reset_n, enable, byte _cnt_ps, byte_cnt_ns)
BEGIN
--clocked part
IF (reset_n ="0") THEN
byte_cnt_ps <= cntl;
ELSIF (clk_50'EVENT AND clk_50 ='1") THEN
byte _cnt_ps <= byte_cnt_ns;
END IF;
--combinatorial part
decode_out <='0’; --output signal
CASE byte cnt_ps IS
WHEN cntl => --output signal takes default value
IF (enable ='1") THEN
byte_cnt_ns <= cnt2,;

ELSE

byte _cnt_ns <= cntl,
END IF;
WHEN cnt2 =>

decode_out <="1’; --output signal assigned
IF (enable ='1") THEN
byte_cnt_ns <= cnt3;

ELSE

byte cnt_ns <= cnt2;
END IF;
WHEN cnt3 =>

decode_out <="1’; --output signal assigned
IF (enable ='1") THEN
byte _cnt_ns <= cnt4;
ELSE
byte cnt_ns <= cnt3;
END IF;
WHEN cnt4 => --output signal takes default value
IF (enable ='1") THEN
byte _cnt_ns <= cntl,
ELSE
byte cnt_ns <= cnt4;
END IF;
END CASE;
END PROCESS byte_cntr;

Essential VHDL for ASICs

115

Specifying Outputs with Enumerated States

In the proceeding code, we see one way an output other than the present state
may be created. At the beginning of the combinatorial part, before the CASE
statement, the default assignmentdecode_ouis given.

--combinatorial part
decode_out <="0"; --output signal
CASE byte _cnt_ps IS

In this example, the default value for the outppetode outs logic zero. The
synthesis tool sees thadcode_outs to be logic zero unless it is redefined to
be logic one. In state cntl, no value is assigned to decode_out,.

WHEN cntl => --output signal takes default value
IF (enable ='1") THEN
byte_cnt_ns <= cnt2,;
ELSE
byte_cnt_ns <= cntl,
END IF;

| =4

Thus if the present state is cntl, decode_out remains zero. However, if the
present state is cnt2, the value of decode_out is redefined to be logic one.

WHEN cnt2 =>
decode_out <="1"; --output signal assigned
IF (enable ='1") THEN

byte_cnt_ns <= cnt3;

ELSE

byte_cnt_ns <= cnt2;
END IF;
WHEN cnt3 =>

We could have omitted the default assignment before&hEE statement and
specified the value afecode ouin each state. But for state machines with
many outputs, this becomes cumbersome and more difficult to see what is
going on.

Essential VHDL for ASICs 116

Specifying Outputs with Enumerated States

What happens if we have a state machine with an output, yet do not specify the

outputs value in each state. This is similar to the situation of IF without ELSE.
Latches are created on the output signal.

If we specify a “off” or default value for each output signal prior to the case
statement we will never have the possibility for a latch

Essential VHDL for ASICs 117

State Machine with Decoded Outputs

Note the declaration of the enumerated states:
TYPE byte_cnt_type IS (cntl, cnt2, cnt3, cnt4);
SIGNAL byte _cnt_ps, byte_cnt_ns:byte cnt_type;

Typically, (i.e., may change with tool and/or vendor) with binary encoding, the
state assignments will occur following a binary counting sequence in the order
in which the states are named. i.e., cntl =“00”, cnt2 =“01", etc. Surely enough
when the synthesis is done, we see the transcript say:

-- Loading entity sm1 into library work
"Infs/guille/ul/t/traylor/ece574/src/sm1l.vhd" line 23: Info,
Enumerated type byte cnt_type with 4 elements encoded as binary.
Encodings for byte_cnt_type values

value byte cnt_type[1-0]

cntl 00
cnt2 01
cnt3 10
cnt4 11

The circuit we get is shown below:

2=
rezet_n[_= —E:,}: - |

3
4 2 k4 -) - decad t
- ecaode_ou
¥ 0 4
enah |l e A -é}
clk 50 = — T :
E O
%u E—

Note the output decoding created by the XOR and NOT gate. If there are
unequal delays from the flip flop outputs to the XOR gate, glitches will result
at the XOR output. In a “delayless” simulation this would not be seen. In a
fabricated chip however, the glitches are almost a certainty.

Essential VHDL for ASICs 118

Glitches

If we simulate this circuit without delays, we see the following. Note that the
signaldecode_ouhas no glitches.

wave — default

ile Edit Cursor Zoom Format Window

S

fsmlfnot_reset_n
fsmlibyte_cnt_ps_(j0
fsmlin=95 1
b

- o - < -1

When we are first creating a circuit, we usually simulate without delays.
However, when we synthesize, we can specify that a “sdf” file be created. The
sdf (standard delay format) file contains the delay information for the
synthesized circuit.

Once the synthesized circuit is created, we can invoke the vsim simulator with
the sdf switch used to apply the delays to the circuit. More about this process in
the latter part of the class.

So, when we invoke vsim like this:
vsim -sdfmax ./sdfout/sm1.sdf sml

delays are added to the circuit. To make the glitch clearer, | added an additional
1ns delay to one of the flip flops by editing the sdf file. The simulation output
now looks like this:

Essential VHDL for ASICs 119

State machine output with glitches

wave — default

ile Edit Cursor Zoom Format Window

fsmildclk_al
fsmildreset_n
fsml, 'l-'rl -|h|l-'
fEmiit

fsmly rlll’[res I-'t f
mlshyte_cnt_ps_

femlin=9a 1

I 11 | E Y T N O N | | E N T T N O Y | | F T T Y T O I | 111
100 200
9 ns

So using enumerated types when coding state machines is a clear and flexible
coding practice. However,......... the synthesizer gayyour lunch in certain
situations! As folks often say, “It depends.”. If you state machine outputs go to
another state machine as inputs, the glitches won’t make a bit of difference.
The glitches will come only after the clock edge and will be ignored by the flip
flop. But, if the outputs go to edge sensitive devices, BEWARE.

(D

So, lets see how we can make outputs that are always clean, without glitches
for those special cases.

grey coding, choosing states wisely, following flip flops, explicit states

Essential VHDL for ASICs 120

State Encoding for Glitchless Outputs

One solution to creating glitchless outputs is to strategically select the state
encoding such that glitches cannot occur. This comes down to selecting states
such that as the state machine goes through its sequence, the encoded states at
adjacent. You can think of this as the situation in a Karnough map where two
cells are directly next to each other. One of the easiest way of doing this is by
using Grey coding.

If the counter advanced in the sequence “00”, “01”, “11”, “10”, no glitch

would be created between states “01” and “11” as these two states are adjacent.
Most synthesis tools will do grey encoding for state machines simply by
setting a switch in the synthesis script.

Using grey coding in a counter makes an easy way to prevent output decader
glitches. However, in a more general state machine where many sequences
may be possible and arcs extend from most states to other states, it becomes
very difficult to make sure you have correctly encoded all the states to avoid a
glitch in every sequence. In this situation, we can employ a more “bombproof”
methodology.

Essential VHDL for ASICs 121

Glitchless Output State Machine Methodology

The key to making glitchless outputs from our state machines is to make sure
that all outputs come directly from a flip flop output. In the previous example
we could accomplish this by adding an additional flip flop to the circuit.

present_state “cleanup” flip-flop

L output
L next state P Q output—p-pD Q2P

signals
.)
decode logi¢ decodg

INPULS i

e [

relset reset

The “cleanup” flip flop effectively removes the glitches created by the output
decoder logic by “re-registering” the glitchy output signal. This is an effective
solution but it delays the output signal by one clock cycle. It would be better|to
place the flip flop so that somehow the next state logic could create the output
signal one cycle early. This is analogous to placing the output decode inside the
next state decoder and adding one state bit.

The final solution alluded to above is to add one state bit that does not
represent the present state but is representative only of the output signal. For
the counter example we would encode the state bits like this: “000”, “101”,
“1107, “011”. Thus the present state is actually broken into two parts, one

representing the state (two LSB’s) and the other part representing the output
signal (the MSB). This will guarantee that the output signal must come from a
flip flop. An another advantage is that the output signal becomes available| in
the same cycle as the state becomes active and with no decoder delay

Lets see how we can code this style of state machine so that the synthesis tool
gives us what we want

Essential VHDL for ASICs 122

Coding the Glitchless State Machine

Using our two-bit counter as an example here is how we could force an
encoding that would allocate one flip flop output as our glitchless output.

First of all we decide up on our encoding.

present state vector consists of

“output state” bif “present state” bits

0[00

determines the valu 0 keeps track of what
of decode_out 10 state the counter is in in

011

The present state vector we will declare as STD_LOGIC_VECTOR actually
consists of a one bit vector that represents the valude¢batle oushould
have in the state we are in, plus two bits representing the present count state

Now, to create the present and next state vectors and assign their values as we
have just stated, we do the following in the declaration area of our architecture.

--declare the vectors
SIGNAL byte cnt_ns : STD_LOGIC_VECTOR(2 DOWNTO 0);
SIGNAL byte cnt_ps : STD_LOGIC_VECTOR(2 DOWNTO 0);

--state encodings

CONSTANT cntl : STD_LOGIC_VECTOR(4 DOWNTO 0) :

CONSTANT cnt2 : STD_LOGIC_VECTOR(4 DOWNTO 0) :
)
)

W
OI—\I—‘O

CONSTANT cnt3 : STD_LOGIC_VECTOR(4 DOWNTO 0
CONSTANT cnt4 : STD_LOGIC_VECTOR(4 DOWNTO 0

The use of CONSTANT here allows us to use the names instead of bit vectors
like our enumerated example and not be guessing what state “110” is. This
becomes far more important in more complex state machines.

Essential VHDL for ASICs 123

Coding the Glitchless State Machine

The rest of our state machine is coded identically to the enumerated example
given previously with two exceptions.

Remember that the output signal is now really a part of the véxgtier cnt_ps
How do we associate this bit of the bit vector with the output signal? We
simply rip the bus. For this example:

decode_out <= byte_cnt_ps(2); --attach decode_out to bit 2 of _ps

This piece of code can be placed in a concurrent area preferably adjacent to the
process containing this state machine.

Also, since we are not covering every possibility in GASE statement with
our fourCONSTANT definitions, we must take care of this. To do so we
utilize theOTHERS statement as follows:

WHEN OTHERS =>

byte_cnt_ns <= (OTHERS =>"'-");
END CASE; (OTHERS =>"-)

This code segment implies when no other case matches, the next state vector
may be assigned to any value. As we do not expect (outside of catastrophic
circuit failure) any other state to be entered, this is of no concern. By allowing

assignment of the next state vector to any value the synthesis tool can use the
assigned “don’t cares” to minimize the logic.

The mysterious portion of the aboyeTHERS => ")

Really just says that for every how many bits are in the vector (all the others)
assign a don't care value. Its a handy trick that allows you to modify your code
later and add or subtract bits in a vector but never have to chan@ItHERS
case in YouCASE statement.

Lets look at the new and improved state machine code and the synthesized
output.

Essential VHDL for ASICs 124

Code for the Glitchless Output State Machine

ARCHITECTURE beh OF sm1 IS

--declare the vectors and state encodings

SIGNAL byte_cnt_ns : STD_LOGIC_VECTOR(2 DOWNTO 0);
SIGNAL byte_cnt_ps : STD_LOGIC_VECTOR(2 DOWNTO 0);

CONSTANT cntl : STD_LOGIC_VECTOR(2 DOWNTO 0) := "000";
CONSTANT cnt2 : STD_LOGIC_VECTOR(2 DOWNTO 0) :="101";
CONSTANT cnt3 : STD_LOGIC_VECTOR(2 DOWNTO 0) :="110";
CONSTANT cnt4 : STD_LOGIC_VECTOR(2 DOWNTO 0) :="011";
BEGIN

byte cntr:

PROCESS (clk_50, reset_n, enable, byte_cnt_ps, byte_cnt_ns)
BEGIN

--clocked part
IF (reset_n ="0") THEN
byte cnt_ps <= cntl;
ELSIF (clk_50'EVENT AND clk_50 ='1") THEN
byte cnt_ps <= byte_cnt_ns;
END IF;
--combinatorial part
CASE byte_cnt_ps IS
WHEN cntl =>
IF (enable ='1") THEN
byte cnt_ns <= cnt2;

ELSE

byte cnt_ns <= cntl;
END IF ;
WHEN cnt2 =>

IF (enable ='1") THEN
byte cnt_ns <= cnt3;

ELSE
byte cnt_ns <= cnt2;
END IF ;
WHEN cnt3 =>

IF (enable ='1") THEN
byte cnt_ns <= cnt4;

ELSE
byte cnt_ns <= cnt3;
END IF ;
WHEN cnt4 =>

IF (enable ='1") THEN
byte cnt_ns <= cntl;
ELSE
byte cnt_ns <= cnt4;
END IF ;
WHEN OTHERS =>
byte cnt_ns <= (OTHERS =>"-");
END CASE;
END PROCESS byte_cntr;
decode_out <= byte_cnt_ps(2); --output signal assignment

Essential VHDL for ASICs

125

Synthesized Glitchless Output State Machine

Here is the synthesized output for our glitchless output state machine:

i dacods_out.
I:E_

clk 50 =

ragat _n[—E:,)%

Whoa, you say. That’s not what | expected. Here is a case where the syntl
tool did what you “meant” but not what “you said”. We sure enough got an
output from a flip flop that is glitchless but the circuit still only has two flip

flops. What the synthesis tool did what to rearrange the state encoding such

that the bit thatlecode_ouis tied to is one in states cnt2 and cnt3. In other
words, it Grey coded the states to avoid the extra flip flop.

Other tools may or may not behave in the same way. Once again, it pays t

checkout the transcript, take a look at the gates used and take a peek at the

schematic. The synthesis transcript did mention what was done in a vague
of way:
-- Compiling root entity sm1(beh)

"Infs/guille/ul/t/traylor/ece574/src/sml.vhd", line 27:
Info, D-Flipflop reg_byte_cnt_ps(0) is unused, optimizing...

The moral of the story... read the transcripts. Don't trust any tool complete
Double check everything. “The paranoid survive.”...... Andy Grove

nesis

o)

sort

y.

Essential VHDL for ASICs 126

State Machines in VHDL - General Form

As seen in the previous example, most state machines in VHDL
assume the following form:

process_name:
PROCESS(sensitivity_list)
BEGIN
--synchronous portion
IF (reset = ‘1) THEN
present_state <= reset_conditon;
ELSIF (clkEVENT AND clk = ‘1") THEN
present_state <= next_state;
END IF;
--combinatorial part
CASE present_state IS
WHEN statel =>
next_state <= state_value;
other_statements;
WHEN state2 =>
next_state <= state_value;

other _statements;
*

*

WHEN OTHERS => next_state <= reset_state;
END CASE;
END PROCESS;

Essential VHDL for ASICs 127

	Essential VHDL for ASICs
	A brief introduction to design with VHDL for ASIC design.
	Roger Traylor
	9/7/01
	Version 0.1
	All rights reserved. No part of this publication may be reproduced, without the prior written per...
	Copyright „ 2001, Roger Traylor

	Revision Record
	rev 0.1 : Initial rough entry of material. 9/7/01 RLT

	HDL Design
	Traditionally, digital design was done with schematic entry.
	In today’s very competitive business environment, building cost- effective products in an quick f...
	shift_register: PROCESS (clk_50, reset_n, data_ena, serial_data, parallel_data) BEGIN IF (reset_n...

	HDLs - Motivation
	Increased productivity shorter development cycles, more features, but........ still shorter time-...
	Flexible modeling capabilities. can represent designs of gates or systems description can be very...
	Design reuse is enabled. packages, libraries, support reusable, portable code
	Design changes are fast and easily done convert a 8-bit register to 64-bits........ four key stro...
	Use of various design methodologies. top-down, bottom-up, complexity hiding (abstraction)
	Technology and vendor independence. same code can be targeted to CMOS, ECL, GaAs same code for: T...
	Enables use of logic synthesis which allows a investigation of the area and timing space. ripple ...
	HDLs can leverage software design environment tools. source code control, make files
	Using a standard language promotes clear communication of ideas and designs. schematic standards?...

	HDLs - What are they? How do we use them?
	A Hardware Description Language (HDL) is a programming language used to model the intended operat...
	An HDL can facilitate: abstract behavioral modeling -no structural or design aspect involved hard...
	In this class we will use an HDL to describe the structure of a hardware design.
	When we use an HDL, we will do so at what is called the Register Transfer Language level (RTL). A...
	When programming at the RTL level, we are not describing an algorithm which some hardware will ex...
	Without knowing beforehand what the structure is we want to build, use of an HDL will probably pr...
	You must know what you want to build before you describe it in an HDL.
	Knowing an HDL does not relieve you of thoroughly understanding digital design.

	HDL’s- VHDL or Verilog
	We will use VHDL as our HDL.
	VHDL more capable in modeling abstract behavior more difficult to learn strongly typed 85% of FPG...
	Verilog easier and simpler to learn weakly typed 85% of ASIC designs done with Verilog (1993)
	The choice of which to use is not based solely on technical capability, but on: personal preferen...
	We use VHDL because strong typing keeps students from getting into trouble if you know VHDL, Veri...
	The Bottom line...Either language is viable.

	VHDL - Origins
	Roots of VHDL are in the Very High Speed Integrated Circuit (VHSIC) Program launched in 1980 by t...
	The project was successful in that very large, high-speed circuits were able to be fabricated suc...
	Therefore, under the VHSIC program, the DOD launched another program to create a standard hardwar...

	The rest is history...
	In 1983, IBM, TI and Intermetrics were awarded the contract to develop VHDL.
	In 1985, VHDL V7.2 released to government.
	In 1987, VHDL became IEEE Standard 1076-1987.
	In 1993, VHDL restandardized to clarify and enhance the language resulting in VHDL Standard 1076-...
	In 1993, development began on the analog extension to VHDL, (VHDL-AMS). Extends VHDL to non-digit...

	Some Facts of Life (For ASIC designers)
	The majority of costs are determined by decisions made early in the design process. “Hurry up and...
	“Typical” ASIC project: concept to first silicon about 9 months.
	95% of designs work as the specification states.
	60% of designs fail when integrated into the system. The design was not the right one, but it “wo...
	Technology is changing so fast, the only competitive advantage is to learn faster than your compe...
	To design more “stuff” faster, your level of abstraction in design must increase.
	Using HDLs will help to make digital designers successful. (and employed!)

	VHDL Modeling
	A VHDL models consist of an Entity Declaration and a Architecture Body.
	The entity defines the interface, the architecture defines the function.
	The entity declaration names the entity and defines the interface to its environment.
	Entity Declaration Format:
	ENTITY entity_name IS [GENERIC (generic_list);] [PORT (port_list);] END ENTITY [entity_name];

	There is a direct correspondence between a ENTITY and a block diagram symbol. For example:
	ENTITY nand_gate IS PORT(a : in std_logic; b : in std_logic; c : in std_logic; z : out std_logic...

	Port Statement
	The entities port statement identifies the ports used by the entity to communicate with its envir...
	Port Statement Format:
	PORT(name_list : mode type; name_list : mode type; name_list : mode type; name_list : mode type);

	This is legal but poor form:
	ENTITY nand_gate IS PORT (a,d,e,f : in std_logic; b,j,q,l,y,v : in std_logic; w,k : in std_logic;...

	This is much less error prone: Use one line per signal. This allows adequate comments. Capitalize...
	ENTITY nand_gate IS PORT (a : IN STD_LOGIC; --a input b : IN STD_LOGIC; --b input c : IN STD_LOG...

	Port Mode:
	Identifies the direction of data flow through the port.
	The PORT statement is optional. At the top level, none is needed.
	All ports must have an identified mode.
	Allowable Modes:
	• IN Flow is into the entity
	• OUT Flow is out of the entity
	• INOUT Flow may be either in or out
	• BUFFER An OUTPUT that can be read from

	Architecture Body
	The architecture body describes the operation of the component.
	Format:
	ARCHITECTURE body_name OF entity_name IS --this is the ->declarative area<- --declare signals, va...

	The entity_name in the architecture statement must be the same as the entity declaration that des...
	ENTITY entity_name IS ARCHITECTURE body_name OF entity_name IS

	The “body_name” is a user-defined name that should uniquely describe the particular architecture ...
	ARCHITECTURE beh OF nand_gate IS
	ARCHITECTURE struct OF nand_gate IS

	Note: multiple architectures are allowed.

	Commenting Code
	A double hyphen (--) indicates everything from that point on in that line is to be treated as a c...
	ARCHITECTURE example OF xor_gate IS --The following is a silly example of how --to write comments...

	Comments can be put anywhere except in the middle of a line of code.
	Important Note: The tool used to prepare this document sometimes changes the first of a pair of q...

	Entity and Architecture for a NAND gate Model
	-- --the following is a behavioral description of --a three input NAND gate. -- ENTITY nand3 IS P...
	ARCHITECTURE beh OF nand3 IS BEGIN z <= ‘1’ WHEN a=’0’ AND b=‘0’ ELSE ‘1’ WHEN a=’0’ AND b=‘1’ EL...
	You can create VHDL source code in any directory.
	VHDL source code file may be anything......but, Use the name of the design entity with the extens...
	The above example would be in the file: nand3.vhd
	Question: Why the ‘X’ in the above code?

	Signal Assignment
	The assignment operator (<=) is used to assign a waveform value to a signal.
	Format:
	target_object <= waveform;

	Examples:
	my_signal <= ‘0’; --ties my_signal to “ground” his_signal <= my_signal; --connects two wires
	--vector signal assignment
	data_bus <= “0010”; -- note double quote bigger_bus <= X”a5”; -- hexadecimal numbers

	Declaring Objects
	Declaration Format:
	OBJECT_CLASS identifier : TYPE [:= init_val];

	Examples:
	CONSTANT delay : TIME:= 10ns; CONSTANT size : REAL:=5.25; VARIABLE sum : REAL; VARIABLE voltage :...

	Objects in the port statement are classified as signals by default.
	Objects may be initialized at declaration time.
	If an object is not initialized, it assumes the left-most or minimum value for the type

	Naming Objects
	Valid characters:
	• alpha characters (a-z)
	• numeric characters (0-9)
	• underscore (_)

	Names must consist of any number of alpha, numeric, or underline characters.
	Underscore must be proceeded and followed by alpha or numeric characters.
	The underscore can be used to separate adjacent digits in bit strings: CONSTANT big_0 : STD_LOGIC...
	Names are not case sensitive. (be consistent!, use lowercase!)
	Coding hints:
	Use good names that are meaningful to others. If your code is good, somebody else will want to re...
	Name signals by their function. For example, if you have a multiplexor select line that selects a...
	Name blocks by their function. If a block generates control signals for a DRAM controller, call t...

	A Simple Example to Recap
	-- --and-or-invert gate model --Jane Engineer --3/13/01 -...
	ARCHITECTURE data_flow OF aoi4 IS SIGNAL temp1, temp2 : std_logic; BEGIN temp1 <= a AND b; temp2 ...

	Simulating VHDL code
	The Simulator
	The simulator we will be using is the Model Technologies’ ModelSim. It will be referred to as vsi...

	VHDL Libraries
	Before a VHDL design can be simulated, it must be compiled into a machine executable form. The co...

	The Library work
	The library named work has special attributes within vsim; it is predefined in the compiler. It i...

	Creating work
	At the desired location in your directory tree, type:
	vlib work
	You will see a directory work created. You cannot create work with the UNIX mkdir command.

	Simulating VHDL Code (cont.)
	Compile the code
	Suppose our example code is in a file called aoi4.vhd. At the level at which you can see the dire...
	vcom -93 aoi4.vhd
	Then you will see:

	brilthor.ECE.ORST.EDU:vcom -93 src/aoi4.vhd Model Technology ModelSim SE/EE vcom 5.4c Compiler 20...
	If you look in the work directory, you will see a subdirectory in work with the entity name aoi4....
	With a clean compilation, we are ready to simulate.

	Simulating VHDL Code (cont.)
	Simulate the design
	Invoke the simulator by typing vsim at the UNIX prompt. You will see the Load Design window open ...

	Simulating VHDL code (cont.)
	The Design Unit is the name of the entity you want to load into the simulator. In this example, t...
	To load the design, click on aoi4 and then Load. Note that aoi4 this is not the file name, but th...
	The design will then load. To run a simulation, first type view * in the ModelSim window. This wi...
	To observe the signals, in the Signals window select: View > Wave > Signals in Region All the sig...
	To provide stimulation to our model we can just force the input signals and run for a short time....
	force a 0 force b 0 force c 0 force d 0 run 100 force a 1 force b 1 run 100
	According to our model we should see the z output assert to a zero when either a and b or c and d...
	HW: make 2-3 complex algebraic equations and implement them in VHDL. Students simulate and check ...

	Simulating VHDL Code
	The output from the wave window looks like this:
	We will make heavy usage of the vsim simulator. You are encouraged to explore and discover the di...
	For example, the force commands may be applied from a “do file”. This is a text file containing a...
	The documentation for the Model Technology tools may be found at: http://www.ece.orst.edu/comp/do...

	What about this Synthesis thing?
	Simulation is great, but one of the foremost advantages of an HDL is its ability to create gate l...
	We can take the previous example, and synthesize the VHDL code into a gate level design and repre...
	We will not go into the details of how synthesis is done but lets see what happens anyway.
	We usually synthesize VHDL designs using a script to direct the synthesis tool. Using a GUI to do...
	Helpful Hint: Running a CAD tool is not like running a web browser. Learn to use scripts and comm...

	What about this “Synthesis” thing? (cont.)
	Here is a simple synthesis script for elsyn (a synthesis tool) that synthesizes our behavioral d...
	#simple synthesis script set vhdl_write_component_package FALSE set vhdl_write_use_packages {libr...
	load_library ami05_typ
	analyze src/aoi4.vhd -format vhdl -work work elaborate aoi4 -architecture data_flow -work work op...
	write ./edif/aoi4.edf -format edif write ./vhdlout/aoi4.vhd -format vhdl
	#to make a schematic do this in the edif directory #edif2eddm aoi4.edf data_flow

	What’s important to understand here?
	load_library ami05_typ The synthesis tool needs a known library of logic cells (gates) to build t...
	analyze src/aoi4.vhd -format vhdl -work work Analyze (compile) the VHDL code and do initial proce...
	elaborate aoi4 -architecture data_flow -work work Create a generic gate description of the design.
	optimize -ta ami05_typ -effort standard -macro -area Map the generic gates to the “best” ones in ...
	write ./edif/aoi4.edf -format edif write ./vhdlout/aoi4.vhd -format vhdl Write out the results in...

	How is the synthesis invoked?
	The script is saved in a file called script_simple.
	A work directory (if not already created) is created to put the compiled images by typing:
	vlib work

	Create the edif and vhdlout directories where the edif and VHDL netlist will be put.
	mkdir edif mldir vhdlout

	Then, from the command line type:
	elsyn

	Eventually you get the prompt:
	LEONARDO{1}:

	Then type:
	source script_simple

	The tool elsyn reads the script file and executes the commands in the script.

	What does the output look like?
	The synthesis tool puts a synthesized version of the design in two directories, the vhdlout and e...
	-- -- Definition of aoi4 -- -- Wed Jul 18 12:31:05 2001 -- Leonardo Spectrum Level 3, v20001a2.72...
	entity aoi4 is port (a : IN std_logic ; b : IN std_logic ; c : IN std_logic ; d : IN std_logic ;...

	Examine the gate level VHDL
	We see that the synthesized aoi4 looks much like what we initially wrote. The entity is exactly t...
	The architecture description is different. The design aoi4 is now described in a different way.
	Under the architecture declarative section, a gate (aoi22) from the library was declared:
	component aoi22 port (Y : OUT std_logic ; A0 : IN std_logic ; A1 : IN std_logic ; B0 : IN std_lo...

	In the statement area, we see this gate is connected to the ports of the entity with a component ...
	ix13 : aoi22 port map (Y=>z, A0=>a, A1=>b, B0=>c, B1=>d);

	We will study component instantiation in more detail later.
	Note also, the intermediate signals temp1 and temp2 have optimized away.

	Examine the schematic created by synthesis
	The EDIF netlist is converted to a Mentor schematic by executing the command (in the edif directo...
	When design architect is invoked upon the design we see the following:
	Here we can see the direct correspondence between the gate pins and the entity pins in the statem...
	ix13 : aoi22 port map (Y=>z, A0=>a, A1=>b, B0=>c, B1=>d);

	The instance name (ix13) is also evident.

	What you say is not what you get. (sometimes)
	Looking at the VHDL code, one might expect something different.
	BEGIN temp1 <= a AND b; temp2 <= c AND d; z <= temp1 NOR temp2; END data_flow;

	This code seems to imply two AND gates feeding a NOR gate. However this is not the case. This des...
	Two AND gates and a NOR gate would be a fine implementation, except for the fact that it is slowe...
	The synthesis tool finds the “best” implementation by trying most possible implementations and ch...
	What is a “best” implementation? Size, speed?

	Data Types
	Data types identify a set of values an object may assume and the operations that may be performed...
	VHDL data type classifications:
	• Scalar: numeric, enumeration and physical objects
	• Composite: Arrays and records
	• Access: Value sets that point to dynamic variables
	• File: Collection of data objects outside the model

	Certain scalar data types are predefined in a package called “std” (standard) and do not require ...
	Examples:
	• boolean (true, false)
	• bit (‘0’, ‘1’)
	• integer (-2147483648 to 2147483647)
	• real (-1.0E38 to 1.0E38)
	• character (ascii character set)
	• time (-2147483647 to 2147483647)

	Type declarations are used through constructs called packages.
	We will use the package called std_logic_1164 in our class. It contains the common types, procedu...
	A package is a group of related declarations and subprograms that serve a common purpose and can ...

	Using std_logic_1164
	The package std_logic_1164 is the package standardized by the IEEE that represents a nine-state l...
	To use the package we say:
	LIBRARY ieee; USE ieee.std_logic_1164.ALL;

	The library clause makes a selected library containing desired packages “visible” to a model.
	The use clause makes the library packages visible to the model.
	USE clause format:
	USE symbolic_library.pkg_name.elements_to_use

	The name ieee is a symbolic name. It is “mapped” to: /usr/local/apps/mti/current/modeltech/ieee u...
	You can see all the currently active mappings by typing: vmap
	We do not have to declare a library work. Its existence and location “./work” is understood.

	Using std_logic_1164
	The nine states of std_logic_1164: (/usr/local/apps/mti/current/modeltech/vhdl_src/ieee/stdlogic....
	PACKAGE std_logic_1164 IS --- -- logic state system (un...

	Why would we want all these values for signals?

	VHDL Operators
	Object type also identifies the operations that may be performed on an object.
	Operators defined for predefined data types in decreasing order of precedence:
	• Miscellaneous: **, ABS, NOT
	• Multiplying Operators: *, /, MOD, REM
	• Sign: +, -
	• Adding Operators: +, -,&
	• Shift Operators: ROL, ROR, SLA, SLL, SRA, SRL
	• Relational Operators: =, /=, <, <=, >, >=
	• Logical Operators: AND, OR, NAND, NOR, XOR, XNOR

	Not all these operators are synthesizable.

	Overloading
	Overloading allows standard operators to be applied to other user-defined data types.
	An example of overloading is the function “AND”, defined as: (/usr/local/apps/mti/current/modelte...
	FUNCTION “and” (l : std_logic; r : std_logic) RETURN UX01;
	FUNCTION “and” (l, r: std_logic_vector) RETURN std_logic_vector;

	For Examples
	SIGNAL result0, signal1, signal2 : std_logic; SIGNAL result1 : std_logic_vector(31 DOWNTO 0); SIG...

	If we synthesize this code, what gate realization will we get?

	Concurrency
	To model reality, VHDL processes certain statements concurrently.
	Example:
	ARCHITETURE example of concurrent IS BEGIN out1 <= a AND b; out2 <= a NOR b; out3 <= b OR c; out4...

	Statement Activation
	Signals connect concurrent statements.
	Concurrent statements activate or “fire” when there is an event on a signal “entering” the statem...
	Example:
	ARCHITECTURE example OF concurrent IS SIGNAL c : std_logic; BEGIN c <= a NAND b; --nand gate out1...

	The NAND statement is activated by a change on either the a or b inputs.
	The XOR statement is activated by a change on either the b input or signal c.
	Note that additional signals (those not defined in the PORT clause) are defined in the architectu...

	Concurrency Again
	VHDL is inherently a concurrent language.
	All VHDL processes execute concurrently.
	Basic granularity of concurrency is the process.
	Concurrent signal assignments as actually one-line processes.
	c <= a NAND b; --”one line process” out1 <= c XOR b; --”one line process”

	VHDL statements execute sequentially within a process.
	ARCHITECTURE example OF concurrency IS BEGIN hmmm: PROCESS (a,b,c) BEGIN c <= a NAND b; --”do seq...

	How much time did it take to do the stuff in the process statement?

	Concurrency
	The body of the ARCHITECTURE area is composed of one or more concurrent statements. The concurren...
	• Process - the basic unit of concurrency
	• Assertion - a reporting mechanism
	• Signal Assignment - communication between processes
	• Component Instantiations - creating instances
	• Generate Statements - creating structures

	Only concurrent statements may be in the body of the architecture area.
	ARCHITECTURE showoff OF concurrency_stmts IS BEGIN ------concurrent club members only---------- -...

	Concurrent Statements - Signal Assignment
	Signal assignment
	We have seen the simple signal assignment statement
	sig_a <= input_a AND input_b;
	VHDL provides both a concurrent and a sequential signal assignment statement. The two statements ...

	Signal Assignment with Busses
	A bus is a collection of wires related in some way by function or clock domain. Examples would be...
	In VHDL we refer to busses as a vector. For example:
	--8-bit bus consisting of 8 wires carrying signals of -- type std_logic --all these wires may be ...

	This creates:
	When we define a bus as above, the width of the bus is defined by “7 DOWNTO 0”. The position of t...
	The usual convention is to use DOWNTO. We will use this convention. UPTO is seldom used.

	Signal Assignment with Busses (cont.)
	Individual bits of a bus may be referred to like this:
	SIGNAL one_bit : STD_LOGIC; SIGNAL big_bus : STD_LOGIC_VECTOR(7 DOWNTO 0); BEGIN --wire called on...

	Consider the following declarations and how they can be used.
	SIGNAL back_seat, front_seat: STD_LOGIC; SIGNAL red_bus, yellow_bus, shift_bus : STD_LOGIC_VECTOR...

	Bit Vector Usage
	As we have seen the in the following examples VHDL has a convenient way to represent busses. A bi...
	Binary format: B”11111010” B”1111_1010”
	Hexadecimal format: X”FA”
	Octal format: O”372”
	The binary format may include underscores to increase readability. The underscores do not effect ...
	Values of bit string literals are inclosed in double quotes. For example: “1101”
	Values of bit literals are inclosed in single quotes. For example: ‘Z’

	Conditional Concurrent Signal Assignment
	The conditional concurrent signal assignment statement is modeled after the “if statement” in sof...
	The general format for this statement is: target_signal <= value1 WHEN condition1 ELSE value2 WHE...
	When one or more of the signals on the right-hand side change value, the statement executes, eval...
	The conditions must evaluate to a boolean value. i.e, True or False
	Example:
	z_out <= a_input WHEN (select = “00”) ELSE b_input WHEN (select = “01”) ELSE c_input WHEN (select...

	Conditional Concurrent Signal Assignment
	What happens when we don’t completely specify all the choices?
	First, lets do it right.
	--5:1 mux, 1 bit wide LIBRARY ieee; USE ieee.std_logic_1164.ALL;
	ENTITY mux5_1_1wide IS PORT(a_input : IN STD_LOGIC; --input a b_input : IN STD_LOGIC; --input b ...

	When synthesized, we get:

	Conditional Concurrent Signal Assignment
	Now let’s incompletely specify the choices.
	ARCHITECTURE noelse OF mux5_1_1wide IS BEGIN z_out <= a_input WHEN (sel = “000”) ELSE b_input WHE...

	When synthesized:
	What happened?
	- How does a transparent latch operate? - What is the truth table for the decoder to the latch “c...

	Selected Concurrent Signal Assignment
	The selected concurrent signal assignment statement is modeled after the “case statement” in soft...
	The general form of this statement:
	WITH discriminant SELECT target_signal <= value1 WHEN choice1, value2 WHEN choice2, value3 WHEN c...

	This statement executes when any the discriminant, value or choice expressions changes value. Whe...

	Important points for this statement:
	- The discriminant must have finite discrete values. (can be enumerated). ERROR: Expression must ...

	About “OTHERS”
	The keyword OTHERS can be powerfully used in many situations. In general it is used to allow matc...
	We will see several other uses of OTHERS in the future.

	Selected Concurrent Signal Assignment
	An example from “SPAM”
	--- --2:1 mux, 16 bits wide ---...
	ENTITY mux2_1_16wide IS PORT(in_a : IN STD_LOGIC_VECTOR(15 DOWNTO 0); --input a in_b : IN STD_LO...
	ARCHITECTURE beh OF mux2_1_16wide IS BEGIN WITH sel SELECT output <= in_a WHEN ‘0’, in_b WHEN ‘1’...

	OTHERS again
	Here we see OTHERS used to match cases where sel is not ‘1’ or ‘0’ in the WHEN OTHERS clause. i.e...
	OTHERS is also used to provide a shorthand method of saying, “make all the bits of the target sig...

	Why was ‘X ‘assigned to output when sel was neither ‘0’ or ‘1’?

	Selected Concurrent Signal Assignment
	A more simple example with synthesis results.
	--5:1 mux, 1 bit wide LIBRARY ieee; USE ieee.std_logic_1164.ALL;
	ENTITY mux5_1_1wide IS PORT(a_input : IN STD_LOGIC; --input a b_input : IN STD_LOGIC; --input b ...

	How will this circuit react to sel(2:0) values greater than “100”?

	Making Choices
	When we want the same target signal assignment to happen for several discriminant choices how do ...
	ARCHITECTURE beh OF mux5_1_1wide IS BEGIN WITH sel SELECT z_out <= a_input WHEN “000” | “001” | “...
	The signal z_out gets the value of a_input when sel is equal to “000”, “001” or “111”. Signal z_o...
	As you can see, once a model is synthesized it can be hard to figure out how it works.

	Concurrent Statements - Component Instantiation
	Another concurrent statement is known as component instantiation. Component instantiation can be ...
	VHDL written in this form is known as Structural VHDL.
	The instantiation statement connects a declared component to signals in the architecture.
	The instantiation has 3 key parts:
	• Label - Identifies unique instance of component
	• Component Type - Select the desired declared component
	• Port Map - Connect component to signals in the architecture

	Example:
	When instantiating components:
	• Local and actual must be of same data type.
	• Local and actual must be of compatible modes.

	Locally declared signals do not have an associated mode and can connect to a local port of any mode.

	Labels
	Labels are used to provide internal documentation.
	May be used with:
	• Concurrent Assertion Statements
	• Concurrent Signal Assignments
	• Process Statements
	• Loop Statements
	• Generate Statements

	Must be used with:
	• Component Instantiation Statements

	Component Instantiation
	5:1 mux using component instantiaion:
	--5:1 mux, 1 bit wide LIBRARY ieee; USE ieee.std_logic_1164.ALL;
	LIBRARY adk; USE adk.all;
	ENTITY mux5_1_1wide IS PORT(a_input : IN STD_LOGIC; --input a b_input : IN STD_LOGIC; --input b ...
	SIGNAL temp0, temp1, temp2, temp3 : STD_LOGIC;
	COMPONENT mux21 PORT(a0,a1,s0 : IN STD_LOGIC; y : OUT STD_LOGIC); END COMPONENT; COMPONENT inv01...

	The synthesized structural 5:1 mux
	The synthesized mux is a faithful representation of our structural VHDL. (it better be!) Actually...

	Component Instantiation (cont.)
	A few notes about the structural 5:1 mux code:
	The logic cells used here were in a library called adk. To access these cells the declaration of ...
	LIBRARY adk; USE adk.all;

	Before we can use the cells in an instantiation statement, we must declare them. This is seen in ...
	COMPONENT mux21 PORT(a0,a1,s0 : IN STD_LOGIC; y : OUT STD_LOGIC); END COMPONENT; COMPONENT inv01...

	To wire the mux21 cells together, temporary signals, temp0, temp1, temp2 and temp3 were declared.
	SIGNAL temp0, temp1, temp2, temp3 : STD_LOGIC;

	Finally, the component instantiations stitch the design together.
	U1 : mux21 PORT MAP(a0 => a_input, a1 => b_input, s0 => sel(0), y => temp0);

	The PORT MAP statement describes the connections between pins of the cell and the signals. The co...
	The first name is the module pin name, the second is the name of the signal the pin is to be conn...
	With named association, the order of associations is not required to be in the same order as port...

	Named vs. Positional Association
	As previously mentioned, pin/signal pairs used with a PORT MAP may be associated by position. For...
	U1 : mux21 PORT MAP(a_input,b_input,sel(0),temp0);

	This form is not preferred because any change in the port list (it often happens in the design ph...
	For example, some real code.......

	Sample PORT MAP (w/named association)
	dramfifo_0: dramfifo PORT MAP(reg_data => reg_data , dram_state_ps => dram_state_ps , dram_cnt_p...

	Same PORT MAP (w/positional association)
	-- dram fifo address control dramfifo_0: dramfifo PORT MAP(reg_data, dram_state_ps, dram_cnt_ps, ...
	Now, lets say you need to add an extra signal in the module dramfifo. You want to put it just aft...
	The Moral of the Story: Use named association.

	Association lists - Some last items...
	Suppose you have a module that is a four to one mux, but you only need three inputs. What do you ...
	If the module you are instantiating has a defined default port value, the keyword OPEN can be use...
	ENTITY mux41 IS PORT(a0 : IN STD_LOGIC := ‘0’; --input a0 can be left OPEN a1 : IN STD_LOGIC := ...

	The initalization expression “:= ‘0’” in the port declaration states that the input signals a_inp...
	Thus we could instantiate the 4:1 mux as follows:
	U1 : mux41 PORT MAP(a0 => a_input, a1 => b_input, a2 => c_input, a3 => OPEN, --a3 is assigned the...

	Unconnected output ports are also designated by using the keyword OPEN. However, the associated d...
	U17 : adder PORT MAP(a_in => a_data, b_in => b_data, sum => output, carry_out => OPEN);

	Association lists - Some last items...
	What about inputs to a module that are tied constantly high or low?
	As usual with VHDL there are several solutions.
	--four to one mux with one input tied low logic_zero <= ‘0’; --a ground signal U1 : mux41 PORT MA...

	This is a little cleaner:
	--four to one mux with one input tied low logic_zero <= ‘0’; --a ground signal U1 : mux41 PORT MA...

	However, you cannot do this:
	--four to one mux with one input tied low U1 : mux41 PORT MAP(a0 => a_input, a1 => b_input, a2 =>...

	The expressions supplied as connections to the module or cell pins must be constant values only.

	Concurrent Statements - GENERATE
	VHDL provides the GENERATE statement to create well- patterned structures easily.
	Any VHDL concurrent statement can be included in a GENERATE statement, including another GENERATE...
	Two ways to apply
	• FOR scheme
	• IF scheme

	FOR Scheme Format:
	label : FOR identifier IN range GENERATE concurrent_statements; END GENERATE [label];

	Generate Statement - FOR scheme
	ARCHITECTURE test OF test IS COMPONENT and02 PORT(a0 : IN std_logic; a1 : IN std_logic; y : OUT ...
	With the FOR scheme
	• All objects created are similar.
	• The GENERATE parameter must be discrete and is undefined outside the GENERATE statement.
	• Loop cannot be terminated early

	Note: This structure could have been created by: sig3 <= sig1 AND sig2; provided the AND operator...

	Generate Statement - IF scheme
	Allows for conditional creation of components.
	Can’t use ELSE or ELSIF clauses.
	IF Scheme Format:
	label : IF (boolean_expression) GENERATE concurrent_statements; END GENERATE [label];

	The next slide will show how we can use both FOR and IF schemes.

	Use of GENERATE - An example
	Suppose we want to build an 8-bit shift register.
	Suppose furthermore that we had previously defined the following components:
	ENTITY dff IS PORT(d, clk, en : IN std_logic; q, qn : OUT std_logic); END ENTITY dff;
	ENTITY mux21 IS PORT(a, b, sel : IN std_logic; z : OUT std_logic); END ENTITY mux21;

	Using GENERATE
	From the block diagram we know what the entity should look like.
	ENTITY sr8 IS PORT(din : IN std_logic_vector(7 DOWNTO 0); sel : IN std_logic; shift : IN std_log...

	Within the architecture statement we have to declare the components within the declaration region...
	ARCHITECTURE example OF sr8 IS --declare components in declaration area COMPONENT dff IS PORT(d, ...

	Component declarations look just like entity clauses, except COMPONENT replaces ENTITY. Use cut a...

	Using Generate
	After the component declarations, we declare the internal signal.
	SIGNAL mux_out : IN std_logic_vector(7 DOWNTO 0);

	With loop and generate statements, instantiate muxes and dff’s.
	BEGIN OUTERLOOP: FOR i IN 0 TO 7 GENERATE INNERLOOP1: IF (i = 0) GENERATE MUX: mux21 PORT MAP(a =...

	Concurrent Statements - ASSERT
	The assertion statement checks a condition and reports a message with a severity level if the con...
	Format:
	ASSERT condition;
	ASSERT condition REPORT “message”
	ASSERT condition SEVERITY level;
	ASSERT condition REPORT “message” SEVERITY level;

	Example:
	ASSERT signal_input = ‘1’ REPORT “Input signal_input is not 1” SEVERITY WARNING;

	Severity levels are:
	• Note - general information
	• Warning - undesirable condition
	• Error - task completed, result wrong
	• Failure - task not completed

	Simulators stop when the severity level matches or exceeds the specified severity level.
	Simulators generally default to a severity level of “failure”

	Assert Statements
	Assert statements may appear within:
	• concurrent statement areas
	• sequential statement areas
	• statement area of entity declaration

	Example:
	ENTITY rs_flip_flop IS PORT(r, s : IN std_logic; q, qn : OUT std_logic); END rs_flip_flop; ARCHIT...

	Remember, the ASSERT statement triggers when the specified condition is false.

	Concurrent Statements - Process Statement
	The PROCESS statement encloses a set of sequentially executed statements. Statements within the p...
	Format:
	label: PROCESS (sensitivity_list) IS --declarative statements BEGIN -- --sequential activity stat...

	Example:
	ARCHITECTURE example OF nand_gate IS BEGIN nand_gate: PROCESS (a,b) BEGIN IF a = ‘1’ AND b = ‘1’ ...

	Why use a process? Some behavior is easier and more natural to describe in a sequential manner. T...

	Process Sensitivity List
	The process sensitivity list lists the signals that will cause the process statement to be executed.
	Any transition on any of the signals in the signal sensitivity list will cause the process to exe...
	Example:
	ARCHITECTURE example OF nand_gate IS BEGIN bozo: PROCESS (a,b) -- wake up process if a and/or b c...

	Signals to put in the sensitivity list:
	• Signals on the right hand side of assignment statements.
	• Signals used in conditional expressions

	What happens if a signal is left out of the sensitivity list? What does the synthesis tool do wit...
	Avoid problems with sensitivity list omissions by compiling with “sythesis check” on. Like this:
	vcom -93 -check_synthesis test.vhd

	What about Delay?
	Note that so far we haven’t mentioned delay. Why not?
	Both propagation delay and wiring delay is a real-world problem that must be eventually dealt wit...
	However, this does not mean the designer can go about designing with no concern about delay. When...
	VHDL does have statements for representing several different kinds of delay. However, when descri...
	The aspect of delay is added to a synthesized netlist after the functionality has been proven cor...
	The basic idea is to make a model work, and then make it work at the desired speed. Only experien...

	Delay Types
	VHDL signal assignment statements prescribe an amount of time that must transpire before a signal...
	This prescribed delay can be in one of three forms:
	• Transport: propagation delay only
	• Inertial: minimum input pulse width and propagation delay
	• Delta: the default if no delay time is explicitly specified

	Signal assignment is actually a scheduling for a future value to be placed on the signal.
	Signals maintain their original value until the time for the scheduled update to occur.
	Any signal assignment will incur a delay of one of the three types above.

	Delay Types - Transport
	Delay must be explicitly specified by the user by the keyword TRANSPORT.
	The signal will assume the new value after specified delay.
	Example:
	output <= TRANSPORT buffer(input) AFTER 10ns;

	Transport delay is like a infinite bandwidth transmission line.

	Delay Types - Inertial
	Inertial delay is the default in VHDL statements which contain the “AFTER” clause.
	Inertial delay provides for specification of input pulse width, i.e. ‘inertia’ of output, and pro...
	Format:
	target <= [REJECT time_expr] INERTIAL waveform AFTER time

	Example (most common):
	output <= buffer(input) AFTER 10ns;

	When not used, the REJECT clause defaults to the value of the AFTER clause.
	Inertial delay acts like a real gate. It “eats” pulses narrower in width than the propagation delay.

	Delay Types - Inertial
	Example of gate with “inertia” smaller than propagation delay:
	This shows a buffer that has a prop delay of 10ns, but passes pulses greater than 5ns.
	output <= REJECT 5ns INERTIAL buffer(input) AFTER 10ns;

	REJECT can be used only with the keyword INERTIAL.

	Delay Types - Delta Delay
	Delta delay is the signal assignment propagation delay if none is explicitly prescribed.
	A delta time is an infinitesimal, but quantized unit of time.
	An infinite number of delta times equals zero simulator time.
	The delta delay mechanism provides a minimum delay so that the simulation cycle can operate corre...
	• all active processes to execute in the same simulation cycle
	• each active process will suspend at some wait statement
	• when all processes are suspended, simulation is advanced the minimum time step necessary so tha...
	• processes then determine if the new signal values satisfy the conditions to proceed again from ...

	Sequential Operations
	Statements within processes are executed in the order in which they are written.
	The sequential statements we will look at are:
	• Variable Assignment
	• Signal Assignment*
	• If Statement
	• Case Statement
	• Loops
	• Next Statement
	• Exit Statement
	• Return Statement
	• Null Statement
	• Procedure Call
	• Assertion Statement*

	*Have both a sequential and concurrent form.

	Variable Declaration and Assignment
	Variables can be used only within sequential areas.
	Format:
	VARIABLE var_name : type [:= initial_value];

	Example:
	VARIABLE spam : std_logic := ‘0’;
	ARCHITECTURE example OF funny_gate IS SIGNAL c : STD_LOGIC; BEGIN funny: PROCESS (a,b,c) VARIABLE...

	Variables assume value instantly.
	Variables simulate more quickly since they have no time dimension.
	Remember, variables and signals have different assignment operators:
	a <= new_value; --signal assignment a := new_value; --variable assignment

	Sequential Operations - IF Statement
	Provides conditional control of sequential statements.
	Condition in statement must evaluate to a Boolean value.
	Statements execute if boolean evaluates to TRUE.
	Formats:
	IF condition THEN --simple IF (latch) -- sequential statements END IF;
	IF condition THEN --IF-ELSE -- sequential statements ELSE -- sequential statements END IF;
	IF condition THEN --IF-ELSIF-ELSE -- sequential statements ELSIF condition THEN -- sequential sta...

	Sequential Operations - IF Statement
	Examples:
	--enabled latch IF (a = ‘1’ AND b = ‘0’) THEN spud <= potato; END IF;
	--a very simple “gate” IF (lucky = ‘1’) THEN buy_lottery_tickets <= ‘1’; ELSE buy_lottery_tickets...
	--a edge triggered 4-bit counter with enable --and asynchronous reset IF (reset = ‘1’) THEN cnt <...

	A Hint: Only IF..... needs END IF

	Synthesized example from previous page
	IF Implies Priority
	The if statement implies a priority in how signals are assigned to the logic synthesized. See the...
	ARCHITECTURE tuesday OF example IS BEGIN wow: PROCESS (a, b, c, d, potato, carrot, beet, spinach,...

	Note how signal with the smallest gate delay through the logic was the first one listed. You can ...
	Beyond about four levels of IF statement, the CASE statement will typically yield a faster implem...

	Area and delay of nested IF statement
	We can put reporting statements in our synthesis script to tell us the number of gate equivalents...
	report_area -cell area_report.txt report_delay -show_nets delay_report.txt

	In area_report.txt, we see:
	*** Cell: example View: tuesday Library: work...

	The delay_report.txt has the delay information:
	Critical Path Report Critical path #1 spinach to vegatable 3.42ns Critical path #2 radish to vega...

	If implies priority (cont.)
	The order in which the IF’s conditional statement are evaluated also makes a difference in how th...
	If the first check fails, the possibilities narrow. If the second check (b= ‘1’) is true, then an...
	If all prior checks fail, an ending ELSE catches all other possibilities.

	Relational Operators
	The IF statement uses relational operators extensively. Relational operators return Boolean value...
	Operator Operation
	= equal /= not equal < less than <= less than or equal > greater than >= greater than or equal

	The expression for signal assignment and less than or equal are the same. They are distinguished ...

	CASE Statement
	Controls execution of one or more sequential statements.
	Format:
	CASE expression IS WHEN expression_value0 => sequential_stmt; WHEN expression_value1 => sequentia...

	Example:
	--a four to one mux mux: PROCESS (sel, a, b, c, d) BEGIN CASE sel IS WHEN “00” => out <= a; WHEN ...

	Either every possible value of expression_value must be enumerated, or the last choice must conta...

	CASE Implies equal priority
	The CASE statement implies equal priority to how the signals are assigned to the circuit. For exa...
	ARCHITECTURE tuesday OF example IS SIGNAL select_bus : STD_LOGIC_VECTOR(3 DOWNTO 0); BEGIN select...

	With the exception of spinach, the number of gate delays from each signal input to output is four...

	Using CASE more effectively
	In the previous example, there were 5 choices to choose from. We can encode this more fully by us...
	ARCHITECTURE tuesday OF example IS BEGIN wow: PROCESS (select_bus, potato, carrot, beet, spinach,...

	The synthesized circuit looks like this:
	This encoding of the desired function is much cleaner, faster and smaller. Its seldom you get all...
	Be careful however, sometimes CASE may loose depending upon the circumstances! Blanket statements...

	Delay and area report: efficient CASE example
	From area_report.txt:
	*** Cell: example View: tuesday Library: work...
	Total accumulated area : Number of gates: 8

	From delay_report.txt
	Critical Path Report
	Critical path #1, potato to vegatable 1.83
	Critical path #2, beet to vegatable 1.83
	Critical path #3, carrot to vegatable 1.82
	Critical path #4, radish to vegatable 1.81
	Critical path #5, select_bus(0) to vegatable 1.72
	Critical path #6, select_bus(0) to vegatable 1.72
	Critical path #7, select_bus(1) to vegatable 1.19
	Critical path #8, spinach to vegatable 0.74
	Critical path #9, select_bus(2) to vegatable 0.64
	The comparison between IF and CASE for this example:
	IF: area 8 gates, delay 3.42ns (worst path) CASE: area 8 gates, delay 1.83ns (worst path)

	Use of OTHERS in MUXes
	In the former example, the OTHERS clause assigned the output value of ‘X’ for inputs other than t...
	Simulation and debugging
	Remember that we are using the 9 level logic type STD_LOGIC_1164. This type specifies that a sign...
	If a setup violation occurs during the simulation of a circuit, a flip flop’s output will go ‘X’....
	If we chose another valid input for the OTHERS clause, the error (‘X’ output from a flip flop) in...
	The code below is valid and would not propagate the ‘X’ condition. It also represents an “overly ...

	Use of OTHERS (cont.)
	--overly specified mux CASE select_bus IS WHEN "000" => vegatable <= potato; WHEN "001" => vegata...
	If we synthesize this circuit we get the following:
	The gate realization of this overly specified mux is obviously a little messy. This also seen in ...
	The worst case path from the delay_report.txt gives us: Critical path #1, beet to vegatable, 2.17ns
	The gate count from area_report.txt gives us: Number of gates: 11
	This less than optimal solution leads to the second reason for the use of ‘X’ here; logic minimiz...

	Use of OTHERS (cont.)
	Logic minimization
	The synthesis tool must choose from a library of cells to create the circuit described by the HDL...
	The synthesizer treats the ‘X’ in this case as a don’t care. This is just like the don’t care in ...
	In fact, we can use another value in the mux statement; the don’t care value, ‘- ’. So we could h...
	--don’t do this! CASE select_bus IS WHEN "000" => vegatable <= potato; WHEN "001" => vegatable <=...
	This would allow the same optimizations as the ‘X’ for the OTHERS case but the behavior of the si...

	Use of OTHERS (conclusion)
	By using the statement: WHEN OTHERS => vegatable <= ’X’; the synthesizer can create a small, fast...
	One basic premise of how we want to code our designs is that we want the simulation of our code t...
	The proper use of the don’t care operator is found in creating complex combinatorial logic and in...

	Loops
	Sequences of statements that are executed repeatedly.
	Types of loops:
	• For (most common usage)
	• While
	• Loop with exit construct (we skip this)

	General Format:
	[loop_label:] iteration_scheme --FOR, WHILE LOOP --sequence_of_statements; END LOOP[loop_label];

	For Loop
	Statements are executed once for each value in the loop parameter’s range
	Loop parameter is implicitly declared and may not be modified from within loop or used outside loop.
	Format:
	[label:] FOR loop_parameter IN discrete_range LOOP --sequential_statements
	END LOOP[label];

	Example:
	PROCESS (ray_in) BEGIN --connect wires in a two busses label: FOR index IN 0 TO 7 LOOP ray_out(in...

	While Loop
	Execution of statements within loop is controlled by Boolean condition.
	Condition is evaluated before each repetition of loop.
	Format:
	WHILE boolean_expression LOOP --sequential_expressions END LOOP;

	Example:
	p1: PROCESS (ray_in) VARIABLE index : integer := 0; BEGIN from_in_to_out: WHILE index < 8 LOOP ra...

	Attributes
	Attributes specify “extra” information about some aspect of a VHDL model.
	There are a number of predefined attributes provide a way to query arrays, bit, and bit vectors.
	Additional attributes may be defined by the user.
	Format:
	object_name’attribute_designator

	The “ ‘ ” is referred to as “tick”.
	Example:
	ELSIF (clk’EVENT AND clk = ‘1’) THEN

	Predefined Signal Attributes
	signal’EVENT - returns value “TRUE” or “FALSE” if event occurred in present delta time period.
	signal’ACTIVE - returns value “TRUE” or “FALSE” if activity occurred in present delta time period.
	signal’STABLE - returns a signal value “TRUE” or “FALSE” based on event in (t) time units.
	signal’QUIET - returns a signal value “TRUE” or “FALSE” based on activity in (t) time units.
	signal’TRANSACTION - returns an event whenever there is activity on the signal.
	signal’DELAYED(t) - returns a signal delayed (t) time units.
	signal’LAST_EVENT - returns amount of time since last event.
	signal’LAST_ACTIVE - returns amount of time since last activity.
	signal’LAST_VALUE - returns value equal to previous value.

	Using Attributes
	Rising clock edge:
	clk’EVENT and clk = ‘1’

	OR:
	NOT clk’STABLE AND clk =’1’

	Falling clock edge:
	clk’EVENT AND clk = ‘0’

	Checking for too short pulse width:
	ASSERT (reset’LAST_EVENT >= 3ns) REPORT “reset pulse too short!”;

	Checking stability of a signal:
	signal’STABLE(10ns)

	Generic Clause
	Generics may be used for readability, maintenance and configuration.
	They allow a component to be customized by creating a parameter to be passed on to the architecture.
	Format:
	GENERIC (generic_name:type[:= default_value]);

	If default_value is missing, it must be present when the component is instantiated.
	Example:
	ENTITY half_adder IS GENERIC(tpd_result : delay := 4ns; tpd_carry : delay := 3ns); PORT (x IN :...
	ARCHITECTURE dataflow OF half_adder BEGIN I result <= x XOR y AFTER tpd_result; carry <= x AND y ...

	Inferring Storage Elements
	In our designs, we usually use flip-flops as our storage elements. Sometimes we use latches, but ...
	Latches are inferred in VHDL by using the IF statement without its matching ELSE. This causes the...
	The inferred latch is a transparent latch. That is, for as long as enable is high, the q output “...
	--infer 4-bit wide latch LIBRARY ieee; USE ieee.std_logic_1164.ALL; USE ieee.std_logic_vector_ari...
	ENTITY storage IS PORT (data_in : IN STD_LOGIC_VECTOR(3 DOWNTO 0); data_out : OUT STD_LOGIC_VECT...

	When synthesized, we see the following structure:

	Latch Inference
	In our library, the enable is shown as going to the “CLK” input of the latch. This is misleading ...
	The small size of the latches is reflected in the area report:
	Cell Library References Total Area latch ami05_typ 4 x 2 10 gates Number of gates : 10

	This is of course relative to the size of a 2-input NAND gate. In other words, the area of each l...
	When we synthesized, the transcript told of the impending latch inference:
	-- Compiling root entity storage(wed) "/nfs/guille/u1/t/traylor/ece574/src/storage.vhd",line 8: W...

	Always watch tool transcripts. They can be very informative. Sometime they can save your bacon.

	Inferring D-type Flip Flops
	Usually, we want to infer D-type, edge triggered flip flops. Here’s how.
	LIBRARY ieee; USE ieee.std_logic_1164.ALL; USE ieee.std_logic_vector_arith.ALL; ENTITY storage IS...
	Sometime back we stated that IF with ELSE infers a latch. Well... that is usually true. Here is a...
	Therefore, if there is a rising edge, the statement under the IF will be executed and at no other...
	A ELSE clause could be added to the IF statement that explicitly tells the old value to be held. ...
	infer_dff: PROCESS (clock, data_in) BEGIN IF (clock’EVENT AND clock = ‘1’) THEN data_out <= data_...

	Adding an Asynchronous Reset
	We almost never want a flip flop without a reset. Without a reset, how can the simulator determin...
	ARCHITECTURE wed OF storage IS BEGIN infer_dff: PROCESS (reset_n, clock, data_in) BEGIN IF (reset...

	When synthesized, we get:

	How big is a flip flop/latch?
	From the area_report.txt file we see:
	Cell Library References Total Area dffr ami05_typ 4 x 6 24 gates inv02 ami05_typ 1 x 1 1 gates Nu...

	This looks a little fishy. 24 + 1 = 24? At any rate, (assuming round off error) the flip flops ar...
	So to summarize the relative sizes of latches and flip flops : CASE CELL SIZE latch no reset latc...
	These numbers are valid only for our library. Other libraries will vary. However, the relative si...

	State Machines in VHDL
	Implementing state machines in VHDL is fun and easy provided you stick to some fairly well establ...
	The format for coding state machines follows the general structure for a state machine. Lets look...
	The Moore state machine consists of two basic blocks, next state decode (or steering) logic, and ...
	For a first example we will look at the state machine in TAS which holds the state of what type o...

	State Diagram for header_type_sm
	All your state machines should be documented in roughly this fashion. The name of the process hol...
	Every state machine has an arc from “reset”. This indicates what state the state machine goes to ...
	Each state in this example is given a name. In this case we are using a type for the states that ...
	Each possible transition between states is shown via an arc with the condition for the transition...
	It should be understood that all transitions occur on the clock edge.
	Outputs from the state machine should be listed. The only outputs from this state machine are its...

	State Machines (cont.)
	To use the enumerated state types in our example, we need to declare what they are. This would be...
	ARCHITECTURE beh OF ctrl_blk_50m IS --declare signals and enumerated types for state machines --f...

	The TYPE declaration states that we have a type called header_type_type and that the two only sta...
	This style of state machine state coding is called enumerated state encoding. It is flexible in t...
	Now using these state declarations, lets make the process that creates the state machine.

	State Machine Process Body
	Below we see the body of the process that creates the state machine.
	header_type_sm: PROCESS (clk_50, reset_n, a5_or_c3, byte_assembled, byte_cnt_ps, header_type_ps, ...
	--combinatorial part CASE header_type_ps IS WHEN waiting => IF (byte_assembled = ’1’) AND (byte_c...
	header_type_ns <= temp_pkt; ELSE header_type_ns <= waiting; END IF ; WHEN temp_pkt => IF (byte_as...
	First we see that the process label is consistent with the documentation and the signal names we ...
	header_type_sm: PROCESS (clk_50, reset_n, a5_or_c3, byte_assembled, byte_cnt_ps, header_type_ps, ...
	Next the flip flops are created to hold the present state. This is what is commonly called the cl...

	State Machine Process Body (synchronous part)
	--clocked part IF (reset_n = ’0’) THEN header_type_ps <= waiting; ELSIF (clk_50’EVENT AND clk_50 ...
	Here we see an active low asynchronous reset that forces the present state to become the state ca...
	Following the reset clause, the “clock tick event” clause identifies the following statements to ...
	This concludes the clocked part of the process. We have created the necessary state flip flops an...
	Now we will create the next state steering logic. It consists only of gates, i.e.; combinatorial ...

	State Machine Process Body (combinatorial part)
	--combinatorial part CASE header_type_ps IS WHEN waiting => IF (byte_assembled = ’1’) AND (byte_c...
	To clearly make the next state logic, a structure is created where IF statements are tucked under...
	To further illustrate this:
	The CASE statement enumerates each possible present state:
	CASE header_type_ps IS WHEN waiting => --bla, bla, bla WHEN temp_pkt => --bla, bla, bla END CASE
	In any given state the IF determines the input conditions to steer the machine to the next state....
	WHEN temp_pkt => IF (byte_assembled = ’1’) AND (byte_cnt_ps = byte4) THEN header_type_ns <= waiti...

	State Machine Synthesis
	If we synthesize the state machine we see in the transcript:
	"/nfs/guille/u1/t/traylor/ece574/src/header.vhd",line 28: Info, Enumerated type header_type_type ...
	Encodings for header_type_type values value header_type_type[0] =============================== w...

	This tells us that the synthesis tool selected the value of ‘0’ to represent the state waiting, a...
	You might say, “That’s not the way I would do it.” But for the circuit this state machine was tak...
	The next state steering logic can be clearly seen to the left of the state storage (flip flop).

	Enumerated Encoding
	Using enumerated state encoding allows the synthesis tool to determine the optimal encoding for t...
	While enumerated encoding is the most flexible and readable, there are cases where we want to cre...
	As an example of a glitching state machine, lets build a two bit counter that has an output which...

	Counter State Machine with Decoded Output
	The code looks like this:
	ARCHITECTURE beh OF sm1 IS TYPE byte_cnt_type IS (cnt1, cnt2, cnt3, cnt4); SIGNAL byte_cnt_ps, by...

	Specifying Outputs with Enumerated States
	In the proceeding code, we see one way an output other than the present state may be created. At ...
	--combinatorial part decode_out <= ’0’; --output signal CASE byte_cnt_ps IS
	In this example, the default value for the output decode_out is logic zero. The synthesis tool se...
	WHEN cnt1 => --output signal takes default value IF (enable = ’1’) THEN byte_cnt_ns <= cnt2; ELSE...
	Thus if the present state is cnt1, decode_out remains zero. However, if the present state is cnt2...
	WHEN cnt2 => decode_out <= ’1’; --output signal assigned IF (enable = ’1’) THEN byte_cnt_ns <= cn...
	We could have omitted the default assignment before the CASE statement and specified the value of...

	Specifying Outputs with Enumerated States
	What happens if we have a state machine with an output, yet do not specify the outputs value in e...
	If we specify a “off” or default value for each output signal prior to the case statement we will...

	State Machine with Decoded Outputs
	Note the declaration of the enumerated states: TYPE byte_cnt_type IS (cnt1, cnt2, cnt3, cnt4); SI...
	Typically, (i.e., may change with tool and/or vendor) with binary encoding, the state assignments...
	-- Loading entity sm1 into library work "/nfs/guille/u1/t/traylor/ece574/src/sm1.vhd",line 23: In...

	The circuit we get is shown below:
	Note the output decoding created by the XOR and NOT gate. If there are unequal delays from the fl...

	Glitches
	If we simulate this circuit without delays, we see the following. Note that the signal decode_out...
	When we are first creating a circuit, we usually simulate without delays. However, when we synthe...
	Once the synthesized circuit is created, we can invoke the vsim simulator with the sdf switch use...
	So, when we invoke vsim like this:
	vsim -sdfmax ./sdfout/sm1.sdf sm1

	delays are added to the circuit. To make the glitch clearer, I added an additional 1ns delay to o...

	State machine output with glitches
	So using enumerated types when coding state machines is a clear and flexible coding practice. How...
	So, lets see how we can make outputs that are always clean, without glitches for those special ca...
	grey coding, choosing states wisely, following flip flops, explicit states

	State Encoding for Glitchless Outputs
	One solution to creating glitchless outputs is to strategically select the state encoding such th...
	If the counter advanced in the sequence “00”, “01”, “11”, “10”, no glitch would be created betwee...
	Using grey coding in a counter makes an easy way to prevent output decoder glitches. However, in ...

	Glitchless Output State Machine Methodology
	The key to making glitchless outputs from our state machines is to make sure that all outputs com...
	The “cleanup” flip flop effectively removes the glitches created by the output decoder logic by “...
	The final solution alluded to above is to add one state bit that does not represent the present s...
	Lets see how we can code this style of state machine so that the synthesis tool gives us what we ...

	Coding the Glitchless State Machine
	Using our two-bit counter as an example here is how we could force an encoding that would allocat...
	First of all we decide up on our encoding.
	The present state vector we will declare as STD_LOGIC_VECTOR actually consists of a one bit vecto...
	Now, to create the present and next state vectors and assign their values as we have just stated,...
	--declare the vectors SIGNAL byte_cnt_ns : STD_LOGIC_VECTOR(2 DOWNTO 0); SIGNAL byte_cnt_ps : STD...
	--state encodings CONSTANT cnt1 : STD_LOGIC_VECTOR(4 DOWNTO 0) := "000"; CONSTANT cnt2 : STD_LOGI...

	The use of CONSTANT here allows us to use the names instead of bit vectors like our enumerated ex...

	Coding the Glitchless State Machine
	The rest of our state machine is coded identically to the enumerated example given previously wit...
	Remember that the output signal is now really a part of the vector byte_cnt_ps. How do we associa...
	decode_out <= byte_cnt_ps(2); --attach decode_out to bit 2 of _ps

	This piece of code can be placed in a concurrent area preferably adjacent to the process containi...
	Also, since we are not covering every possibility in our CASE statement with our four CONSTANT de...
	WHEN OTHERS => byte_cnt_ns <= (OTHERS => ’-’); END CASE; (OTHERS => ’-’)

	This code segment implies when no other case matches, the next state vector may be assigned to an...
	The mysterious portion of the above: (OTHERS => ’-’)
	Really just says that for every how many bits are in the vector (all the others) assign a don’t c...
	Lets look at the new and improved state machine code and the synthesized output.

	Code for the Glitchless Output State Machine
	ARCHITECTURE beh OF sm1 IS --declare the vectors and state encodings SIGNAL byte_cnt_ns : STD_LOG...

	Synthesized Glitchless Output State Machine
	Here is the synthesized output for our glitchless output state machine:
	Whoa, you say. That’s not what I expected. Here is a case where the synthesis tool did what you “...
	Other tools may or may not behave in the same way. Once again, it pays to checkout the transcript...
	-- Compiling root entity sm1(beh) "/nfs/guille/u1/t/traylor/ece574/src/sm1.vhd", line 27: Info, D...

	The moral of the story... read the transcripts. Don’t trust any tool completely. Double check eve...

	State Machines in VHDL - General Form
	As seen in the previous example, most state machines in VHDL assume the following form:
	process_name: PROCESS(sensitivity_list) BEGIN --synchronous portion IF (reset = ‘1’) THEN present...

