Basic Language Constructs of
VHDL

RTL Hardware Design Chapter 3
by P. Chu

Outline

Basic VHDL program

Lexical elements and program format
Objects

Data type and operators

> w e

RTL Hardware Design Chapter 3
by P. Chu

1. Basic VHDL program

RTL Hardware Design Chapter 3
by P. Chu

Design unit

e Building blocks in a VHDL program

e Each design unit is analyzed and stored
iIndependently

e Types of design unit:
— entity declaration
— architecture body
— package declaration
— package body
— configuration

RTL Hardware Design Chapter 3
by P. Chu

Entity declaration

o Simplified syntax

entity entity_name 18
port (
port_names: mode data_type;
port_names: mode data_type;

port_names: mode data_type
) ;

end entity_name;

RTL Hardware Design Chapter 3
by P. Chu

e mode:

— In: flow Iinto the circuit
— out: flow out of the circuit
— Inout; bi-directional

e E.0.

entity even_detector 1S
port(
a: in std_logic_vector (2 downto O0);
even: out std_logic);
end even_detector;

RTL Hardware Design Chapter 3 6
by P. Chu

e A common mistake with mode VHDL's inferoretation

/ of signal flow
~ =

y

i

library ieee;
use ieee.std_logic_1164. all;
entity mode_demo is
@ port(
a, b: in std_logic;
x, y: out std_logic);
end mode_demo;
architecture wrong_arch of mode_demo is
begin
x <= a and b;
y <= not x;
end wrong_arch;

RTL Hardware Design

Chapter 3
by P. Chu

* Fix: use an internal signal

architecture ok _arch of mode_demo 1is
signal ab: std_logic;

begin
ab <= a and b;
x <= ab;

y <= not ab;
end ok_arch ;

RTL Hardware Design Chapter 3
by P. Chu

Architecture body

o Simplified syntax

architecture arch_name of entity_name 1is
declarations;
begin
concurrent statement;
concurrent statement,;
concurrent statement,;

end arch_name;

e An entity declaration can be associated
with multiple architecture bodies

RTL Hardware Design Chapter 3
by P. Chu

E.g.

architecture sop_arch of even_detector is
signal pl, p2, p3, p4 : std_logic;
begin
even <= (pl or p2) or (p3 or p4);
pl <= (not a(0)) and (mot a(1l)) and (mot a(2));
p2 <= (mot a(0)) and a(l) and a(2);
p3 <= a(0) and (mot a(l)) and a(2);
p4 <= a(0) and a(1l) and (not a(2));
end sop_arch ;

RTL Hardware Design Chapter 3 10
by P. Chu

Other design units

e Package declaration/body:

— collection of commonly used items, such as
data types, subprograms and components

e Configuration:

— specify which architecture body is to be bound
with the entity declaration

RTL Hardware Design Chapter 3 11
by P. Chu

VHDL Library

* A place to store the analyzed design units

 Normally mapped to a directory in host
computer

o Software define the mapping between the
symbolic library and physical location

e Default library: “work”

» Library “ieee” is used for many ieee
packages

RTL Hardware Design Chapter 3 12
by P. Chu

e E.0.

library ieee;
use ieee.std_logic_1164. all;

e Line 1: invoke a library named Ieee

e Line 2: makes std logic 1164 package
visible to the subsequent design units

 The package is normally needed for the
std_logic/std_logic_vector data type

RTL Hardware Design Chapter 3
by P. Chu

13

Processing of VHDL code

e Analysis
— Performed on “design unit” basis

— Check the syntax and translate the unit into an
Intermediate form

— Store it in a library
« Elaboration

— Bind architecture body with entity

— Substitute the instantiated components with
architecture description

— Create a “flattened™ description

e EXxecution
— Simulation or synthesis

RTL Hardware Design Chapter 3
by P. Chu

14

2. Lexical elements and
program format

RTL Hardware Design Chapter 3
by P. Chu

15

L exical elements

e Lexical element:
— Basic syntactical units in a VHDL program

* Types of Lexical elements:
— Comments
— ldentifiers
— Reserved words
— Numbers
— Characters
— Strings

RTL Hardware Design Chapter 3
by P. Chu

16

Comments

o Starts with - -

e Just for clarity

. elgl’

—— sk ok ok ok ok koK Kk ok ko oKk ok ok R Kk ok sk ko oKk ok ok ok sk R ok sk ok ok ok ok oKk ok ok K Kk K X
— example to show the caveat of the out mode

—— 3k kR KK R K KK K ko Kk K KR KK KK Sk ko Kk R K Kk K K R oK K R ok ok sk K Kk K K K K K K K X
architecture arch of mode_demo is

signal ab: std_logic; — ab is the internal signal
begin

ab <= a and b;

x <= ab; —— ab connected to the x output

y <= not ab;
end eg_arch ;

RTL Hardware Design Chapter 3 17
by P. Chu

|dentifier

o |dentifier is the name of an object

e Basic rules:

— Can only contain alphabetic letters, decimal
digits and underscore

The first character must be a letter

"he last character cannot be an underscore

Two successive underscores are not allowed

RTL Hardware Design Chapter 3

by P. Chu

* Valid examples:
Al10, next_state, NextState, mem_addr_enable

 Invalid examples:
sig#3, X10, 7segment, X10 , hi_ _there

e VHDL IS case insensitive:

— Following identifiers are the same:
nextstate, NextState, NEXTSTATE,
NEXTSTATE

RTL Hardware Design Chapter 3
by P. Chu

19

Reserved words

abs access after alias all and architecture array assert
attribute begin block body buffer bus case component
configuration constant disconnect downto else elsif end
entity exit file for function generate generic guarded
if impure in inmertial inout is label library linkage
literal loop map mod nand new next nor not null of on
open or others out package port postponed procedure
process pure range record register reject rem report
return rol ror select severity signal shared sla sll
sra srl subtype then to transport type unaffected wunits
until use variable wait when while with xnor xor

RTL Hardware Design Chapter 3

20
by P. Chu

Numbers, characters and strings

Number:

— Integer: 0, 1234, 98E7

— Real: 0.0, 1.23456 or 9.87EG6
— Base 2: 2#101101#

Character:

— A 2T
Strings

— “Hello”, “101101”

e Note

— 0 and ‘O’ are different
— 2#101101# and “101101” are different

RTL Hardware Design Chapter 3
by P. Chu

21

Program format

 VHDL is “free-format”;. blank space, tab, new-line
can be freely inserted

e e.d., the following are the same

library ieee; use ieee.std_logic_1164. all;entity
even_detector is port(a: in std_logic_vector (2
downto O0);even: out std_logic);end even_detector;
architecture eg_arch of even_detector 1is signal pl,
p2, p3, p4: std_logic; begin even <= (pl or p2) or
(p3 or p4); pl <= (mnot a(0)) and (mnot a(1l)) and
(not a(2)); p2 <= (mot a(0)) and a(l) and a(2);

p3 <= a(0) and (not a(1l)) and a(2); p4 <= a(0) and
a(l) and (mot a(2)); end eg_arch;

RTL Hardware Design Chapter 3 22
by P. Chu

library

leee ;

use ieee.std_logic_1164. all;

entity
port

even_detector 18§

(

a:
even: out std_logic);

in std_logic_vector (2 downto O0);

end even_detector;

architecture eg_arch of even_detector 1is
signal pl, p2, p3, p4 : std_logic;

begin

even <= (pl or p2) or (p3 or p4);

pl <

p4d <

(not a(0)) and (mot a(1)) and (not a(2));
(not a(0)) and a(1l) and a(2);
a(0) and (not a(1l)) and a(2);
a(0) and a(1) and (not a(2));

end eg_arch ;

RTL Hardware Design Chapter 3 23

by P. Chu

A good
“header”

RTL Hardware Design
by P. Chu

—— sk % sk sk ok % sk ok sk 3k s ok ok 3k ok % %k sk ok % %k ok 5k sk 3 ok sk 3k ok % ok oK % % sk oK sk 3k 3 ok sk %k % % ok K %k % K ok % %
— Author: p chu
— File: even_det.vhd

— Design units:

— entity even_detector

— function: check even # of Is from input
— input. a

— output.: even

— architecture sop_arch:

— truth —table based sum—of—products

— implementation

— Library/package:
— ieee . std _logic_1164: to use std_logic

— S}-‘f':r'ﬁiesfswm?d verification :

— Synthesis software:

— Options/script:

— Target technology:

— Test bench: even_detector_th

— Revision history

— Version 1.0:

— Date: 9/2005

— Comments. Original

Dl A A S S A A S S S S R R T G S S S

Chapter 3 24

RTL Hardware Design
by P. Chu

3. Objects

Chapter 3

25

Objects

A named item that hold a value of specific
data type
* Four kinds of objects
— Signal
— Variable
— Constant
— File (cannot be synthesized)

e Related construct
— Allas

RTL Hardware Design Chapter 3
by P. Chu

26

Signal

e Declared in the architecture body's declaration
section

o Signal declaration:
signal signal name, signal name, ... : data_type

e Signal assignment:
signal_name <= projected_ waveform;
e Ports in entity declaration are considered as signals

e Can be interpreted as wires or “wires with memory” (i.e.,
FFs, latches etc.)

RTL Hardware Design Chapter 3 27
by P. Chu

Variable

 Declared and used inside a process

e Variable declaration:
variable variable name, ... : data_type

* Variable assignment:
variable _name := value expression;
e Contains no “timing info” (immediate assignment)

e Used as in traditional PL: a “symbolic memory location”
where a value can be stored and modified

* No direct hardware counterpart

RTL Hardware Design Chapter 3 28
by P. Chu

Constant

e Value cannot be changed

e Constant declaration:

constant const name, data_type :=
value_expression

e Used to enhance readabillity
- E.g,,

constant BUS_WIDTH: 1integer := 32;

constant BUS_BYTES: integer := BUS_WIDTH / 8;

RTL Hardware Design Chapter 3
by P. Chu

29

e |tis a good idea to avoid “hard literals”

architecture behl _arch of even _detector 1is
signal odd: std_logic;

begin
tmp := ’07;
for 1 in 2 downto O loop
tmp := tmp xor a(i);
end loop;

architecture behl _arch of even_detector 1is
signal odd: std_logic;

constant BUS_WIDTH: integer := 3;
begin
tmp := ’07;
for i in (BUS_WIDTH-1) downto O loop
tmp := tmp Xor a(i);
end loop;
RTL Hardware Design Chapter 3 30

by P. Chu

Alias

 Not a object
o Alternative name for an object

e Used to enhance readabillity
- E.g,,

signal : word: std_logic_vector (15 downto 0);

alias op: std_logic_vector (6 downto 0) is word(15 downto 9);
alias regl: std_logic_vector (2 downto 0) is word(8 downto 6);
alias reg2: std_logic_vector (2 downto 0) is word(5 downto 3);
alias reg3: std_logic_vector (2 downto 0) is word(2 downto 0);

RTL Hardware Design Chapter 3 31
by P. Chu

4. Data type and operators

e Standard VHDL
 IEEE1164 std logic package
 IEEE numeric_std package

RTL Hardware Design Chapter 3
by P. Chu

32

Data type

* Definition of data type
— A set of values that an object can assume.

— A set of operations that can be performed on
objects of this data type.
 VHDL Is a strongly-typed language
— an object can only be assigned with a value of
its type
— only the operations defined with the data type
can be performed on the object

RTL Hardware Design Chapter 3 33
by P. Chu

Data types in standard VHDL

* Integer:
— Minimal range: -(2*31-1) to 2*31-1
— Two subtypes: natural, positive
e boolean: (false, true)
e pbit: ('O’, '1")
— Not capable enough
* bit vector: a one-dimensional array of bit

RTL Hardware Design Chapter 3 34
by P. Chu

Operators In standard VHDL

operator description data tyvpe data type data type
of operand a of operand b of result

a ** b exponentiation integer integer integer

abs a absolute value integer integer

not a negation boolean. bit, boolean. bit,
bit_vector bit_vector

a * b multiplication integer integer integer

a/ b division

a mod b modulo

a rem b remainder

+ a identity integer integer

- a negation

a+b addition integer integer integer

a-b subtraction

a&b concatenation 1-D array. 1-D array. 1-D array
element element

RTL Hardware Design Chapter 3 35

by P. Chu

a sll b shift left logical bit_vector integer bit_vector
a srl b shift right logical

a sla b shift left arithmetic

a srl b shift right arithmetic

a rol b rotate left

a ror b rotate right

a=~> equal to any same as a boolean

a /=b not equal to

a <b less than scalar or 1-D array same as a boolean

a <= b less than or equal to

a>bo greater than

a > b greater than or equal to

a and b and boolean. bit, same as a boolean, bit.
a or b or bit_wvector bit_vector
a xor b Xor

a nand b nand

a nor b nor

a xnor b Xnor

RTL Hardware Design

by P. Chu

Chapter 3

36

IEEE std_logic 1164 package

e What's wrong with bit?
 New data type: std_logic, std logic_vector
e std logic:
—9values: ('U', 'X','0, 1", 'Z','W', 'L", '"H'", '-")
« '0', "1": forcing logic 0' and forcing logic 1
« 'Z'. high-impedance, as in a tri-state buffer.
« 'L', 'H': weak logic 0 and weak logic 1, as in wired-
logic
o 'X','W'" *unknown” and “weak unknown”
o 'U": for uninitialized
o - don't-care.

RTL Hardware Design Chapter 3
by P. Chu

37

e std _logic_vector
— an array of elements with std_logic data type
— Imply a bus
- E.g.,
signal a: std_logic_vector(7 downto 0);
— Another form (less desired)
signal a: std_logic_vector(0 to 7);
 Need to invoke package to use the data type:
library Ieee;
use ieee.std logic_1164.all;

RTL Hardware Design Chapter 3 38
by P. Chu

Overloaded operator
IEEE std logic 1164 package

* Which standard VHDL operators can be applied to
std_logic and std_logic_vector?

* Overloading: same operator of different data types
 Overloaded operators in std_logic_1164 package

overloaded data tvpe data tvpe data type

operator of operand a of operand b of result

not a std logic_vector same as a
std _logic

a and b

a or b

a Xor b std_logic_vector same as a same as a

a nand b std_logic

a nor b

a Xnor b

RTL Hardware Design
by P. Chu

Chapter 3

39

e Type conversion function in std_logic_1164

package:
function data type data type
& of operand a of result
to_bit (a) std_logic bit
to_stdulogic(a) bit std_logic

to_bit_vector(a)
to_stdlogicvector(a)

std_logic_vector
bit_vector

bit_vector
std_logic_vector

RTL Hardware Design
by P. Chu

Chapter 3

40

e E.Q.,

signal s1, s2, s3: std_logic_vector (7 downto 0);
signal bl, b2: bit_vector (7 downto 0);

The following statements are wrong because of data £ype mismatch:

sl <= bl; —— bit_vector assigned to std_logic_vector
b2 <= s1 and s2; — std_logic_vector assigned to bit_vector
s3 <= bl or s2; — or is undefined between bit_vector

—— and std_logic_vector

We can use the conversion functions to correct these problems:

sl <= to_stdlogicvector(bl);
b2 <= to_bitvector (sl and s2);
s3 <= to_stdlogicvector(bl) or s2;

The last statement can also be written as:

s3 <= to_stdlogicvector(bl or to_bitvector(s2));

RTL Hardware Design Chapter 3 41
by P. Chu

Operators over an array data type

* Relational operators for array

— operands must have the same element type
but their lengths may differ

— Two arrays are compared element by
element, form the left most element

— All following returns true

+ "011"="011", "011">"010", "011">"00010",
"0110">"011"

RTL Hardware Design Chapter 3 42
by P. Chu

e Concatenation operator (&)
¢ e.g.,
y <="00" & a(7 downto 2);
y <=a(7) &a(7) & a(7 downto 2);
y <= a(l downto 0) & a(7 downto 2);

RTL Hardware Design Chapter 3
by P. Chu

43

Array aggregate

e Aggregate is a VHDL construct to assign a value to
an array-typed object

e E.g.,
a <= "10100000";
a <= (7=>'1", 6=>'0', 0=>'0", 1=>'0', 5=>"1",
4=>'0', 3=>'0", 2=>"1");
a <= (7|5=>"1", 6|4|3|2|1|0=>'0");
a <= (7|5=>'1", others=>'0");
e E.q.,
a <= "00000000"
a <= (others=>'0");

RTL Hardware Design Chapter 3

44
by P. Chu

IEEE numeric_std package

 How to infer arithmetic operators?

 In standard VHDL.:
signhal a, b, sum: integer;

sum <=a + b;
e What's wrong with integer data type?

RTL Hardware Design Chapter 3
by P. Chu

45

 |EEE numeric_std package: define integer as a
an array of elements of std_logic

 Two new data types: unsigned, signed

 The array interpreted as an unsigned or signed
binary number

e E.Q.,
signal x, y: signed(15 downto 0);

 Need invoke package to use the data type
library ieee,;
use ieee.std logic_1164.all;
use ieee.numeric_std.all;

RTL Hardware Design Chapter 3 46
by P. Chu

IEEE numeric_std package

Overloaded operators In

by P. Chu

overloaded description data type data type data type
operator of operand a of operand b of result
abs a absolute value signed signed

- a negation

a *x b

a/ b unsigned unsigned. natural unsigned
a mod b arithmetic unsigned. natural unsigned unsigned
a lem b operation signed signed. integer signed
a+ b signed. integer signed signed
a->b

a=>b

a/=b unsigned unsigned. natural boolean
a<b relational unsigned. natural unsigned boolean
a <=b operation signed signed. integer boolean
a>b signed. integer signed boolean
a > Db

RTL Hardware Design Chapter 3 47

signal a, b, c, d: unsigned(7 downto 0);

a <= b + c¢;
d <= b + 1;
e <= (6 + a + b) - c;
RTL Hardware Design Chapter 3

by P. Chu

New functions In
IEEE numeric_std package

function description data type of data type of data type of
operand a operand b result
shift left(a,b) shift left unsigned, signed natural same as a

shift right(a,b) shift right
rotate_left(a,b) rotate left
rotate_right(a,b) rotate right

resize(a,b) resize array unsigned, signed — natural same as a
std_match(a,b) compare ’-’ unsigned, signed sameasa boolean
std_logic_vector,
std_logic
to_integer(a) data type unsigned, signed integer
to_unsigned(a,b) conversion natural natural unsigned
to_signed(a,b) integer natural signed
RTL Hardware Design Chapter 3 49

by P. Chu

Type conversion

o Std logic_vector, unsigned, signed are
defined as an array of element of std_logic

 They considered as three different data types
in VHDL
» Type conversion between data types:

— type conversion function
— Type casting (for “closely related” data types)

RTL Hardware Design Chapter 3 50
by P. Chu

Type conversion between number-
related data types

data type of a to data type conversion function / type casting
unsigned, signed std_logic_vector std_logic_vector(a)

unsigned, std_logic_vector unsigned unsigned(a)

unsigned. signed std_logic_vector std_logic_vector(a)

unsigned, signed integer to_integer(a)

natural unsigned to_unsigned(a, size)

integer signed to_signed(a, size)

RTL Hardware Design Chapter 3 51

by P. Chu

e E.0.
library ieee;
use ieee.std logic_1164.all;
use ieee.numeric_std.all;

signhal s1, s2, s3, s4, s5, s6: std_logic_vector(3 downto 0);
signal ul, u2, u3, u4, u6, u7: unsigned(3 downto 0);
signal sg: signed(3 downto 0);

RTL Hardware Design Chapter 3 52
by P. Chu

e E.0.
library ieee;
use ieee.std logic_1164.all;
use ieee.numeric_std.all;

signhal s1, s2, s3, s4, s5, s6: std_logic_vector(3 downto 0);
signal ul, u2, u3, u4, u6, u7: unsigned(3 downto 0);
signal sg: signed(3 downto 0);

RTL Hardware Design Chapter 3 53
by P. Chu

— Ok
u3 <= u2 + ul; --- ok, both operands unsigned
ud <=u2 +1; --- ok, operands unsigned and natural

— Wrong

ub <= sg; -- type mismaitch

u6 <=5; --type mismatch

— FIX

ub <= unsigned(sg); -- type casting

u6 <= to_unsigned(5,4); -- conversion function

RTL Hardware Design Chapter 3 54
by P. Chu

— Wrong
u7 <=sg + ul; --+ undefined over the types
— FIX

u7 <= unsigned(sg) + ul; -- ok, but be careful

— Wrong

s3 <= u3; -- type mismatch

s4 <=5; --type mismatch

— Fix

s3 <= std_logic_vector(u3); -- type casting
s4 <= std _logic_vector(to_unsigned(5,4));

RTL Hardware Design Chapter 3 55
by P. Chu

— Wrong

sb <=s2 + sl,; + undefined over std_logic_vector

S6 <=s2 + 1; + undefined

— Fix

s5 <= std_logic_vector(unsigned(s2) + unsigned(sl));
s6 <= std_logic_vector(unsigned(s2) + 1);

RTL Hardware Design Chapter 3 56
by P. Chu

Non-IEEE package

e Packagea by Synopsys
e std logic_arith:
— Similar to numeric_std
— New data types: unsigned, signed
— Detaills are different
e std logic_unsigned/ std_logic_signed
— Treat std_logic_vector as unsigned and signed
numbers

—I.e., overload std _logic_vector with arith
operations

RTL Hardware Design Chapter 3 57
by P. Chu

o Software vendors frequently store them in ieee library:
e E.g.,
library ieee;
use ieee.std logic_1164.all;
use ieee.std_arith_unsigned.all;

signal s1, s2, s3, s4, s5, s6: std_logic_vector(3 downto 0);

s5 <=2 + sl,; -- ok, + overloaded with std_logic_vector
S6 <=s2 + 1; -- ok, + overloaded with std_logic_vector

RTL Hardware Design Chapter 3 58
by P. Chu

 Only one of the std_logic_unsigned and
std_logic_signed packages can be used

 The std_logic_unsigned/std_logic_signed
packages beat the motivation behind a
strongly-typed language

 Numeric_std Is preferred

RTL Hardware Design Chapter 3
by P. Chu

59

