
1

RTL Hardware Design
by P. Chu

Chapter 3 1

Basic Language Constructs of
VHDL

RTL Hardware Design
by P. Chu

Chapter 3 2

Outline

1. Basic VHDL program
2. Lexical elements and program format
3. Objects
4. Data type and operators

RTL Hardware Design
by P. Chu

Chapter 3 3

1. Basic VHDL program

RTL Hardware Design
by P. Chu

Chapter 3 4

Design unit

• Building blocks in a VHDL program
• Each design unit is analyzed and stored

independently
• Types of design unit:

– entity declaration
– architecture body
– package declaration
– package body
– configuration

RTL Hardware Design
by P. Chu

Chapter 3 5

Entity declaration
• Simplified syntax

RTL Hardware Design
by P. Chu

Chapter 3 6

• mode:
– in: flow into the circuit
– out: flow out of the circuit
– inout: bi-directional

• E.g.

2

RTL Hardware Design
by P. Chu

Chapter 3 7

• A common mistake with mode

RTL Hardware Design
by P. Chu

Chapter 3 8

• Fix: use an internal signal

RTL Hardware Design
by P. Chu

Chapter 3 9

Architecture body
• Simplified syntax

• An entity declaration can be associated
with multiple architecture bodies

RTL Hardware Design
by P. Chu

Chapter 3 10

E.g.

RTL Hardware Design
by P. Chu

Chapter 3 11

Other design units

• Package declaration/body:
– collection of commonly used items, such as

data types, subprograms and components
• Configuration:

– specify which architecture body is to be bound
with the entity declaration

RTL Hardware Design
by P. Chu

Chapter 3 12

VHDL Library

• A place to store the analyzed design units
• Normally mapped to a directory in host

computer
• Software define the mapping between the

symbolic library and physical location
• Default library: “work”
• Library “ieee” is used for many ieee

packages

3

RTL Hardware Design
by P. Chu

Chapter 3 13

• E.g.

• Line 1: invoke a library named ieee
• Line 2: makes std_logic_1164 package

visible to the subsequent design units
• The package is normally needed for the

std_logic/std_logic_vector data type

RTL Hardware Design
by P. Chu

Chapter 3 14

Processing of VHDL code
• Analysis

– Performed on “design unit” basis
– Check the syntax and translate the unit into an

intermediate form
– Store it in a library

• Elaboration
– Bind architecture body with entity
– Substitute the instantiated components with

architecture description
– Create a “flattened”' description

• Execution
– Simulation or synthesis

RTL Hardware Design
by P. Chu

Chapter 3 15

2. Lexical elements and
program format

RTL Hardware Design
by P. Chu

Chapter 3 16

Lexical elements
• Lexical element:

– Basic syntactical units in a VHDL program
• Types of Lexical elements:

– Comments
– Identifiers
– Reserved words
– Numbers
– Characters
– Strings

RTL Hardware Design
by P. Chu

Chapter 3 17

Comments
• Starts with - -
• Just for clarity
• e.g.,

RTL Hardware Design
by P. Chu

Chapter 3 18

Identifier
• Identifier is the name of an object
• Basic rules:

– Can only contain alphabetic letters, decimal
digits and underscore

– The first character must be a letter
– The last character cannot be an underscore
– Two successive underscores are not allowed

4

RTL Hardware Design
by P. Chu

Chapter 3 19

• Valid examples:
A10, next_state, NextState, mem_addr_enable

• Invalid examples:
sig#3, _X10, 7segment, X10_, hi_ _there

• VHDL is case insensitive:
– Following identifiers are the same:

nextstate, NextState, NEXTSTATE,
nEXTsTATE

RTL Hardware Design
by P. Chu

Chapter 3 20

Reserved words

RTL Hardware Design
by P. Chu

Chapter 3 21

Numbers, characters and strings
• Number:

– Integer: 0, 1234, 98E7
– Real: 0.0, 1.23456 or 9.87E6
– Base 2: 2#101101#

• Character:
– ‘A’, ‘Z’, ‘1’

• Strings
– “Hello”, “101101”

• Note
– 0 and ‘0’ are different
– 2#101101# and “101101” are different

RTL Hardware Design
by P. Chu

Chapter 3 22

Program format

• VHDL is “free-format”: blank space, tab, new-line
can be freely inserted

• e.g., the following are the same

RTL Hardware Design
by P. Chu

Chapter 3 23 RTL Hardware Design
by P. Chu

Chapter 3 24

• A good
“header”

5

RTL Hardware Design
by P. Chu

Chapter 3 25

3. Objects

RTL Hardware Design
by P. Chu

Chapter 3 26

Objects

• A named item that hold a value of specific
data type

• Four kinds of objects
– Signal
– Variable
– Constant
– File (cannot be synthesized)

• Related construct
– Alias

RTL Hardware Design
by P. Chu

Chapter 3 27

Signal

• Declared in the architecture body's declaration
section

• Signal declaration:
signal signal_name, signal_name, ... : data_type

• Signal assignment:
signal_name <= projected_waveform;

• Ports in entity declaration are considered as signals
• Can be interpreted as wires or “wires with memory” (i.e.,

FFs, latches etc.)

RTL Hardware Design
by P. Chu

Chapter 3 28

Variable

• Declared and used inside a process
• Variable declaration:

variable variable_name, ... : data_type
• Variable assignment:

variable_name := value_expression;
• Contains no “timing info” (immediate assignment)
• Used as in traditional PL: a “symbolic memory location”

where a value can be stored and modified
• No direct hardware counterpart

RTL Hardware Design
by P. Chu

Chapter 3 29

Constant

• Value cannot be changed
• Constant declaration:

constant const_name, ... : data_type :=
value_expression

• Used to enhance readability
– E.g.,

RTL Hardware Design
by P. Chu

Chapter 3 30

• It is a good idea to avoid “hard literals”

6

RTL Hardware Design
by P. Chu

Chapter 3 31

Alias

• Not a object
• Alternative name for an object
• Used to enhance readability

– E.g.,

RTL Hardware Design
by P. Chu

Chapter 3 32

4. Data type and operators

• Standard VHDL
• IEEE1164_std_logic package
• IEEE numeric_std package

RTL Hardware Design
by P. Chu

Chapter 3 33

Data type

• Definition of data type
– A set of values that an object can assume.
– A set of operations that can be performed on

objects of this data type.
• VHDL is a strongly-typed language

– an object can only be assigned with a value of
its type

– only the operations defined with the data type
can be performed on the object

RTL Hardware Design
by P. Chu

Chapter 3 34

Data types in standard VHDL

• integer:
– Minimal range: -(2^31-1) to 2^31-1
– Two subtypes: natural, positive

• boolean: (false, true)
• bit: ('0', '1')

– Not capable enough
• bit_vector: a one-dimensional array of bit

RTL Hardware Design
by P. Chu

Chapter 3 35

Operators in standard VHDL

RTL Hardware Design
by P. Chu

Chapter 3 36

7

RTL Hardware Design
by P. Chu

Chapter 3 37

IEEE std_logic_1164 package
• What’s wrong with bit?
• New data type: std_logic, std_logic_vector
• std_logic:

– 9 values: ('U', 'X', '0', '1', 'Z', 'W', 'L', 'H', '-')
• '0', '1': forcing logic 0' and forcing logic 1
• 'Z': high-impedance, as in a tri-state buffer.
• 'L' , 'H': weak logic 0 and weak logic 1, as in wired-

logic
• 'X', 'W': “unknown” and “weak unknown”
• 'U': for uninitialized
• '-': don't-care.

RTL Hardware Design
by P. Chu

Chapter 3 38

• std_logic_vector
– an array of elements with std_logic data type
– Imply a bus
– E.g.,

signal a: std_logic_vector(7 downto 0);
– Another form (less desired)

signal a: std_logic_vector(0 to 7);
• Need to invoke package to use the data type:

library ieee;
use ieee.std_logic_1164.all;

RTL Hardware Design
by P. Chu

Chapter 3 39

Overloaded operator
IEEE std_logic_1164 package

• Which standard VHDL operators can be applied to
std_logic and std_logic_vector?

• Overloading: same operator of different data types
• Overloaded operators in std_logic_1164 package

RTL Hardware Design
by P. Chu

Chapter 3 40

• Type conversion function in std_logic_1164
package:

RTL Hardware Design
by P. Chu

Chapter 3 41

• E.g.,

RTL Hardware Design
by P. Chu

Chapter 3 42

Operators over an array data type

• Relational operators for array
– operands must have the same element type

but their lengths may differ
– Two arrays are compared element by

element, form the left most element
– All following returns true

• "011"="011", "011">"010", "011">"00010",
"0110">"011"

8

RTL Hardware Design
by P. Chu

Chapter 3 43

• Concatenation operator (&)
• e.g.,

y <= "00" & a(7 downto 2);
y <= a(7) & a(7) & a(7 downto 2);
y <= a(1 downto 0) & a(7 downto 2);

RTL Hardware Design
by P. Chu

Chapter 3 44

Array aggregate
• Aggregate is a VHDL construct to assign a value to

an array-typed object
• E.g.,

a <= "10100000";
a <= (7=>'1', 6=>'0', 0=>'0', 1=>'0', 5=>'1',

4=>'0', 3=>'0', 2=>'1');
a <= (7|5=>'1', 6|4|3|2|1|0=>'0');
a <= (7|5=>'1', others=>'0');

• E.g.,
a <= "00000000"
a <= (others=>'0');

RTL Hardware Design
by P. Chu

Chapter 3 45

IEEE numeric_std package

• How to infer arithmetic operators?
• In standard VHDL:

signal a, b, sum: integer;
. . .
sum <= a + b;

• What’s wrong with integer data type?

RTL Hardware Design
by P. Chu

Chapter 3 46

• IEEE numeric_std package: define integer as a
an array of elements of std_logic

• Two new data types: unsigned, signed
• The array interpreted as an unsigned or signed

binary number
• E.g.,

signal x, y: signed(15 downto 0);
• Need invoke package to use the data type

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

RTL Hardware Design
by P. Chu

Chapter 3 47

Overloaded operators in
IEEE numeric_std package

RTL Hardware Design
by P. Chu

Chapter 3 48

• E.g.,

9

RTL Hardware Design
by P. Chu

Chapter 3 49

New functions in
IEEE numeric_std package

RTL Hardware Design
by P. Chu

Chapter 3 50

Type conversion

• Std_logic_vector, unsigned, signed are
defined as an array of element of std_logic

• They considered as three different data types
in VHDL

• Type conversion between data types:
– type conversion function
– Type casting (for “closely related” data types)

RTL Hardware Design
by P. Chu

Chapter 3 51

Type conversion between number-
related data types

RTL Hardware Design
by P. Chu

Chapter 3 52

• E.g.
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
. . .
signal s1, s2, s3, s4, s5, s6: std_logic_vector(3 downto 0);
signal u1, u2, u3, u4, u6, u7: unsigned(3 downto 0);
signal sg: signed(3 downto 0);

RTL Hardware Design
by P. Chu

Chapter 3 53

• E.g.
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
. . .
signal s1, s2, s3, s4, s5, s6: std_logic_vector(3 downto 0);
signal u1, u2, u3, u4, u6, u7: unsigned(3 downto 0);
signal sg: signed(3 downto 0);

RTL Hardware Design
by P. Chu

Chapter 3 54

– Ok
u3 <= u2 + u1; --- ok, both operands unsigned
u4 <= u2 + 1; --- ok, operands unsigned and natural

– Wrong
u5 <= sg; -- type mismatch
u6 <= 5; -- type mismatch
– Fix
u5 <= unsigned(sg); -- type casting
u6 <= to_unsigned(5,4); -- conversion function

10

RTL Hardware Design
by P. Chu

Chapter 3 55

– Wrong
u7 <= sg + u1; -- + undefined over the types
– Fix
u7 <= unsigned(sg) + u1; -- ok, but be careful

– Wrong
s3 <= u3; -- type mismatch
s4 <= 5; -- type mismatch
– Fix
s3 <= std_logic_vector(u3); -- type casting
s4 <= std_logic_vector(to_unsigned(5,4));

RTL Hardware Design
by P. Chu

Chapter 3 56

– Wrong
s5 <= s2 + s1; + undefined over std_logic_vector
s6 <= s2 + 1; + undefined
– Fix
s5 <= std_logic_vector(unsigned(s2) + unsigned(s1));
s6 <= std_logic_vector(unsigned(s2) + 1);

RTL Hardware Design
by P. Chu

Chapter 3 57

Non-IEEE package
• Packagea by Synopsys
• std_logic_arith:

– Similar to numeric_std
– New data types: unsigned, signed
– Details are different

• std_logic_unsigned/ std_logic_signed
– Treat std_logic_vector as unsigned and signed

numbers
– i.e., overload std_logic_vector with arith

operations

RTL Hardware Design
by P. Chu

Chapter 3 58

• Software vendors frequently store them in ieee library:
• E.g.,

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_arith_unsigned.all;
. . .
signal s1, s2, s3, s4, s5, s6: std_logic_vector(3 downto 0);
. . .
s5 <= s2 + s1; -- ok, + overloaded with std_logic_vector
s6 <= s2 + 1; -- ok, + overloaded with std_logic_vector

RTL Hardware Design
by P. Chu

Chapter 3 59

• Only one of the std_logic_unsigned and
std_logic_signed packages can be used

• The std_logic_unsigned/std_logic_signed
packages beat the motivation behind a
strongly-typed language

• Numeric_std is preferred

