Synthesis Of VHDL Code

RTL Hardware Design Chapter 6

Outline

Fundamental limitation of EDA software
Realization of VHDL operator
Realization of VHDL data type

VHDL synthesis flow

Iming consideration

L A

RTL Hardware Design Chapter 6

1. Fundamental limitation
of EDA software

e Can “C-to-hardware” be done?

 EDA tools:
— Core: optimization algorithms
— Shell: wrapping
 What does theoretical computer science
say?
— Computability
— Computation complexity

RTL Hardware Design Chapter 6 3

Computability

e A problem is computable if an algorithm
exists.

e E.g., “halting problem”:

— can we develop a program that takes any
program and its input, and determines

whether the computation of that program
will eventually halt?

e any attempt to examine the “meaning” of
a program is uncomputable

RTL Hardware Design Chapter 6

Computation complexity

 How fast an algorithm can run (or how
good an algorithm is)?

* “Interferences” in measuring execution
time:
—types of CPU, speed of CPU, compiler etc.

RTL Hardware Design Chapter 6

Big-O notation

+ f(n) is O(g(n))
If n, and ¢ can be found to satisfy:
f(n) < cg(n) for any n, n > n,

 g(n) is simple function: 1, n, log,n, n?, n3, 2"
« Following are O(n?):

e 0.1n°

e n°+5n+9

e 500n* + 1000000

RTL Hardware Design Chapter 6 6

Interpretation of Big-O

e Filter out the “Interference”: constants and
less important terms

* nIs the input size of an algorithm

e The “scaling factor” of an algorithm:
What happens if the input size increases

RTL Hardware Design Chapter 6

E.g.

input size

Big-O function

n n logon mnlogyn n? n? 2m
2 2 us 1 s PANTE 4 1S 8 [1S 4 1S
4 4 1s PANTES 8 LIS 16 pis 64 s 16 s
8 8 1S RIIE 24 s 64 us 512 us 256 s
16 16 f1s 4 1S 64 s 256 s 4 ms 66 ms
32 32 s 5 s 160 18 1 ms 33 ms 71 min
48 48 pus 5.5 s 268 18 2ms 111 ms 9 year
64 64 1S 6 /1S 384 nis 4ms 262 ms 600,000 year
RTL Hardware Design Chapter 6 8

 Intractable problems:
— algorithms with O(2")
— Not realistic for a larger n

— Frequently tractable algorithms for sub-
optimal solution exist

 Many problems encountered In synthesis
are intractable

RTL Hardware Design Chapter 6

Theoretical limitation

e Synthesis software does not know your
Intention

e Synthesis software cannot obtain the
optimal solution

e Synthesis should be treated as
transformation and a “local search” in the
“design space”

 Good VHDL code provides a good starting
point for the local search

RTL Hardware Design Chapter 6 10

 \What is the fuss about:
— “hardware-software” co-design?
— SystemC, HardwareC, SpecC etc.?

RTL Hardware Design Chapter 6

11

2. Realization of VHDL operator

* Logic operator
— Simple, direct mapping
* Relational operator
— =, /= fast, simple implementation exists

— >, < etc: more complex implementation,
arger delay

o Addition operator
e Other arith operators: support varies

RTL Hardware Design Chapter 6 12

e Operator with two constant operands:
— Simplified in preprocessing
—No hardware inferred

—Good for documentation
—E.Q.,
constant OFFSET: integer := 8;
signal boundary: unsigned (8 downto O);
signal overflow: std_logic;
overflow <= ’1’ when boundary > (2%*x0FFSET-1) else
JDJ ;

RTL Hardware Design Chapter 6 13

e Operator with one constant operand:
— Can significantly reduce the hardware
complexity
—E.g., adder vs. incrementor
—E.Q
y <= rotate_right(x, y); -- barrel shifter
y <=rotate_right(x, 3); -- rewiring
y <= X(2 downto 0) & x(7 downto 3);
—E.g., 4-bit comparator: x=y vs. x=0

/ T f T v 1 T / AT v I
(3B y3) - (xoDYy2) - (x1 B Y1) - (ToD Yo)

RTL Hardware Design Chapter 6 14

An example 0.55 um standard-cell
CMOS implementation

width VHDL operator
nand Xor p >4 = +1, +1,4 +, +, Mux

area (gate count)

S 8 22 25 68 26 27 33 51 118 21
16 16 44 52 102 51 55 73 101 265 42
32 32 & 105 211 102 113 153 203 437 83
64 64 171 212 398 204 227 313 405 755 171
delay (ns)
3 0.1 04 4.0 1.9 1.0 2.4 1.5 4.2 3.2 0.3
16 0.1 04 8.6 3.7 1.7 5.5 3.3 8.2 3.5 0.3
32 0.1 04 176 6.7 1.8 11.6 7.5 162 11.1 0.3
04 0.1 04 357 143 22 240 157 322 229 0.3
RTL Hardware Design Chapter 6 15

3. Realization of VHDL data type

e Use and synthesis of ‘Z’
e Use of *-

RTL Hardware Design Chapter 6

16

Use and synthesis of ‘Z’

e Tri-state buffer:
— Output with “high-impedance”
— Not a value in Boolean algebra
— Need special output circuitry (tri-state buffer)

oe y
oe
a_in @ y 0 /
1 a 1n

RTL Hardware Design Chapter 6 17

e Major application:
— Bi-directional I/O pins
— Tri-state bus

 VHDL description:
y <='Z"when oe='1"else
a_in;
e ‘Z’ cannot be used as input or manipulated
f<='Z"and a;
y <= data_a when in_bus='Z' else
data_Db;

RTL Hardware Design Chapter 6 18

e Separate tri-state buffer from regular code:

— Less cleatr:
with sel select i.' :?}?
y <='Z"'when "00", 0 ——10 y
'1'when "01"["11", F—"

'0' when others:

— better: 0 — I

with sel select 1 ——01 [tmp
tmp <="'1'when "01"|"11", 1 —{11
'0' when others; " o ‘
y <="'Z"when sel="00" els¢ = L
tmp;

|
i

RTL Hardware Design Chapter 6 19

Bi-directional 1/0 pins

dir

sig_out — <>
L1

sig_in

RTL Hardware Design Chapter 6

bi

20

entity bi_demo 1is
port(bi: inout std_logic;

begin
sig_out <= output_expression;
<= expression_with_sig_in,

bi <= sig_out when dir=’1’ else ’Z7;
sig_1in <= bi;

RTL Hardware Design Chapter 6 21

dir

sig_out

—— L~
sig_in 5 Y
P AN

sig_1in <=

RTL Hardware Design

bi when dir=’0’

Chapter 6

bi

J'ZJ';

22

src_select

RTL Hardware Design

Tri-state bus

Decoding
clcruit

Chapter 6

data_bu
oed
N
9
L
oel
|\|\ 1
-~ ?
oeld
N
9
L
oed
N
9
L

23

— binary decoder
with src_select select
oe <= "0001" when "OO",

"0010" when "O1",
"0100" when "10",
"1000" when others;

— tri—state buffers

yO <= i0 when o0e(0)=’1’ else

yl <= il when oe(1)=’1’ else

y2 <= i2 when oe(2)=’1’ else

y3 <= i3 when o0e(3)=’1’ else

data_bus <= yO0;

data_bus <= yi;

data_bus <= y2;

data_bus <= y3;

RTL Hardware Design

Chapter 6

J‘ZJ
JZJ
JZJ
JZJ

H]] rr

24

* Problem with tri-state bus
— Difficult to optimize, verify and test
— Somewhat difficult to design: “parking”,

“fighting”

e Alternative to tri-state bus: mux

select

with src _select

data_bus <=

RTL Hardware Design

10
11
12
13

when
when
when
when

Chapter 6

HOOH ,
HO-lH' ,
HlOH ,
others; —

f_FJ j fr

25

Use of ‘-’

* In conventional logic design
—‘-> as input value: shorthand to make table compact

— E.Qg.,

input output input output
req code req code
100 10 1 —— 10
101 10 01— 01
110 10 001 00
111 10 000 00
010 01

011 01

001 00

000 00

RTL Hardware Design Chapter 6 26

— ‘-> as output value: help simplification

— E.Qg.,

‘-"assignedtol:a+b
-’ assigned to 0: a’b + ab’

input
ab

output
f

00
01
10
11

0
1
1

RTL Hardware Design

Chapter 6 27

Use ‘-’ In VHDL

* As input value (against our intuition):

 Wrong:

y <= "10" when req="1--" else
"O1" when req="01-" else

"O0" when req="001" else
HDOH;

RTL Hardware Design Chapter 6

28

e Fix #1:

y <= "{Q"
"o "
"oQ"

H‘OOH .

e FIX #2:

use ileee.

y <= "qQ"
"Oq1"
"OQ"

TTOOH .

RTL Hardware Design

¥

when req(3)=’1’ else
when req(3 downto 2)="01"
when req (3 downto 1)="001"

numeric_std. all;

3

when std_match(req,"1--")
when std_match(req,"01-")
when std_match(req,"001")

Chapter 6

else
else

else
else
else

29

 Wrong:

with req select
y <= "10" when "1--",
"O01" when "O1-",
"00" when "001",
"OO0O" when others;

when
when

e FIX:
with req select
y <= "1Q"
H‘OOH
H‘OOH

RTL Hardware Design

when

”100”'”101”'”110”'”111”

TTOlOTT | TTOllH
others;

Chapter 6

30

e ‘> as an output value in VHDL
 May work with some software

sel <= a & b;
with sel select
y <= 20’ when
’1’ when
’1’ when
’-7 when

HOOH ,
HOiH‘ ,
H101‘1‘ ,
others;

RTL Hardware Design Chapter 6

31

4. VHDL Synthesis Flow

e Synthesis:

— Realize VHDL code using logic cells from the
device’s library

— a refinement process
e Main steps:

— RT level synthesis

— Logic synthesis

— Technology mapping

RTL Hardware Design Chapter 6

32

RT level
code

RT level synthesis and

optiomiztion

v

RT level
netlist

v

maodule generator

-

generic RT
component lib

pre-designed

module library
"--________—_______.--‘

e ——
gate

Logic synthesis <

gate level
netlist

Technology mapping |«

library

cell level
netlist

RTL Hardware Design Chapter 6

cell
library

33

RT level synthesis

 Realize VHDL code using RT-level
components

« Somewhat like the derivation of the
conceptual diagram

e Limited optimization
e Generated netlist includes

— “reqular” logic: e.g., adder, comparator
—“random” logic: e.qg., truth table description

RTL Hardware Design Chapter 6

34

Module generator

e “regular’ logic can be replaced by pre-
designed module

— Pre-designed module is more efficient

— Module can be generated in different levels of
detall

— Reduce the processing time

RTL Hardware Design Chapter 6 35

Logic Synthesis

* Realize the circuit with the optimal number
of “generic” gate level components

* Process the “random” logic

 Two categories:
— Two-level synthesis: sum-of-product format

— Multi-level synthesis

RTL Hardware Design Chapter 6 36

a b c d e

= >

JUUU

(a) Two-level implementation

RTL Hardware Design Chapter 6

) >
D_D_\:I>7y

(b) multi-level implementation

37

Technology mapping

Map “generic” gates to “device-dependent”
logic cells
 The technology library is provided by the

vendors who manufactured (in FPGA) or
will manufacture (in ASIC) the device

RTL Hardware Design Chapter 6 38

E.g., mapping in standard-cell ASIC

* Device
library

RTL Hardware Design

cell name

(cost) symbol nand-not representation

ot (2) > >
@ D I
nd3 (4) E} :}D"LD_
“o Ty D N

) >

i (4) _)j :}Lw

Xor (4) jD— ‘ %__}
el

39

RTL Hardware Di

(b) Better mapping

40

E.g., mapping in FPGA
o With 5-input LUT (Look-Up-Table) cells

(a) Initial mapping (b) Better mapping

RTL Hardware Design Chapter 6 41

Effective use of synthesis software

e Logic operators: software can do a good

job

 Relational/Arith operators: manual
iIntervention needed

 “layout” and “routing structure”:

— Silicon chip is 2-dimensional square

— “rectangular” or “tree-shaped” circuit is easier
to optimize

RTL Hardware Design Chapter 6 42

—

=5 o

(a) Cascading-chain structure

— >—

— >——

%

— (D

h

RTL Hardware Design Chapter 6

43

5. TIming consideration

* Propagation delay

e Synthesis with timing constraint
 Hazards

e Delay-sensitive design

RTL Hardware Design Chapter 6 44

Propagation delay

e Delay: time required to propagate a signal
from an input port to a output port

e Cell level delay: most accurate
e Simplified model:
del ay — d-‘i ntrinsic T T % Cload

 The impact of wire becomes more
dominant

RTL Hardware Design Chapter 6 45

>

RTL Hardware Design

Chapter 6

System delay

 The longest path (critical path) in the
system

e The worst input to output delay

------ critical path

RTL Hardware Design Chapter 6

47

» “False path” may exists:

e
SO

|
Iﬂput—' '--------I
- -y]
’ 40 ns '
]]
" delay '
’ |
] |
] [
l-----------------‘
select ®
—— true critical path
Teweoessww false path

RTL Hardware Design Chapter 6 48

 RT level delay estimation:
— Difficult if the design is mainly “random” logic

— Critical path can be identified if many complex
operators (such adder) are used Iin the
design.

RTL Hardware Design Chapter 6 49

Synthesis with timing constraint

 Multi-level synthesis is flexible

 Itis possible to reduce by delay by
adding extra logic

e Synthesis with timing constraint
1. Obtain the minimal-area implementation
2. ldentify the critical path

3. Reduce the delay by adding extra logic
4. Repeat 2 & 3 until meeting the constraint

RTL Hardware Design Chapter 6

50

(a) Optimized for area

RTL Hardware Design Chapter 6

) 1 y(1)
a(2) T y(2)

I y(3)
a(3)

(b) Optimized for delay

51

o Area-delay trade-off curve

minimal area
Implementation

Ideal implementation
(with minimal area and delay)

delay

minimal delay
implementation

RTL Hardware Design Chapter 6 52

Improvement in “architectural” level design
(better VHDL code to start with)

better RT level design

original design

RT level improvement

delay

Synthesis iterations

area
Chapter 6

RTL Hardware Design

53

Timing Hazards

Propagation delay: time to obtain a stable
output

 Hazards: the fluctuation occurring during
the transient period
— Static hazard: glitch when the signal should
be stable
— Dynamic hazard: a glitch in transition

* Due to the multiple converging paths of an
output port

RTL Hardware Design Chapter 6 54

E.qg., static-hazard (sh=ab’+bc; a=c=1)

bc

a DLUO’E SN\ 00 01 1110
0 1

G

b :
b_not j>75h P
bc

(a) Karnaugh map and schematic

_ L
b N
b _not (k
=
bc \"
a_b not (
N

sh \i-

P

F 3

_Tanc

RTL H (b) Timing diagram

 E.g., dynamic hazard (a=c=d=1)

d

b I > b_not l_

>

C

DT 3— dh

_]DEM

(a) Schematic

sh

d b not

~\

dh

Ny

RTL Hardware Design

(b) Timing diagram
Chapter 6 56

Dealing with hazards

 Some hazards can be eliminated in theory
e E.0.,

b bc
e T @7 . N 00 01 11 10
0 1

R T | S
c T EO N A

D?

(c) Revised Karnaugh map and schematic to eliminate hazards

RTL Hardware Design Chapter 6 57

 Eliminating glitches is very difficult in
reality, and almost impossible for
synthesis

e Multiple inputs can change simultaneously
(e.g., 1111=>0000 in a counter)

 How to deal with it?
Ignore glitches In the transient period and
retrieve the data after the signal Is
stabilized

RTL Hardware Design Chapter 6 58

Delay sensitive design and Its
danger

 Boolean algebra

— the theoretical model for digital design and
most algorithms used in synthesis process

— algebra deals with the stabilized signals
e Delay-sensitive design

— Depend on the transient property (and delay)
of the circuit

— Difficult to design and analyze

RTL Hardware Design Chapter 6 59

 E.g., hazard elimination circuit:
ac term is not needed

 E.g., edge detection circuit (pulse=a a’)

a |
2 ‘ } pulse 2 not \M|\
a_not \, 1L*

- pulse

RTL Hardware Design Chapter 6 60

 What's can go wrong:
_ E_g_, pulse <= a and (not a);

— During logic synthesis, the logic expressions
will be rearranged and optimized.

— During technology mapping, generic gates will
De re-mapped

— During placement & routing, wire delays may
change

— It Is bad for testing verification

o If delay-sensitive design is really needed, it
should be done manually, not by synthesis

RTL Hardware Design Chapter 6 61

