
1

RTL Hardware Design Chapter 6 1

Synthesis Of VHDL Code

RTL Hardware Design Chapter 6 2

Outline

1. Fundamental limitation of EDA software
2. Realization of VHDL operator
3. Realization of VHDL data type
4. VHDL synthesis flow
5. Timing consideration

RTL Hardware Design Chapter 6 3

1. Fundamental limitation
of EDA software

• Can “C-to-hardware” be done?
• EDA tools:

– Core: optimization algorithms
– Shell: wrapping

• What does theoretical computer science
say?
– Computability
– Computation complexity

RTL Hardware Design Chapter 6 4

Computability

• A problem is computable if an algorithm
exists.

• E.g., “halting problem”:
– can we develop a program that takes any

program and its input, and determines
whether the computation of that program
will eventually halt?

• any attempt to examine the “meaning” of
a program is uncomputable

RTL Hardware Design Chapter 6 5

Computation complexity

• How fast an algorithm can run (or how
good an algorithm is)?

• “Interferences” in measuring execution
time:
– types of CPU, speed of CPU, compiler etc.

RTL Hardware Design Chapter 6 6

Big-O notation
• f(n) is O(g(n)):

if n0 and c can be found to satisfy:
f(n) < cg(n) for any n, n > n0

• g(n) is simple function: 1, n, log2n, n2, n3, 2n

• Following are O(n2):

2

RTL Hardware Design Chapter 6 7

Interpretation of Big-O

• Filter out the “interference”: constants and
less important terms

• n is the input size of an algorithm
• The “scaling factor” of an algorithm:

What happens if the input size increases

RTL Hardware Design Chapter 6 8

E.g.,

RTL Hardware Design Chapter 6 9

• Intractable problems:
– algorithms with O(2n)
– Not realistic for a larger n
– Frequently tractable algorithms for sub-

optimal solution exist
• Many problems encountered in synthesis

are intractable

RTL Hardware Design Chapter 6 10

Theoretical limitation

• Synthesis software does not know your
intention

• Synthesis software cannot obtain the
optimal solution

• Synthesis should be treated as
transformation and a “local search” in the
“design space”

• Good VHDL code provides a good starting
point for the local search

RTL Hardware Design Chapter 6 11

• What is the fuss about:
– “hardware-software” co-design?
– SystemC, HardwareC, SpecC etc.?

RTL Hardware Design Chapter 6 12

2. Realization of VHDL operator
• Logic operator

– Simple, direct mapping
• Relational operator

– =, /= fast, simple implementation exists
– >, < etc: more complex implementation,

larger delay
• Addition operator
• Other arith operators: support varies

3

RTL Hardware Design Chapter 6 13

• Operator with two constant operands:
– Simplified in preprocessing
– No hardware inferred
– Good for documentation
– E.g.,

RTL Hardware Design Chapter 6 14

• Operator with one constant operand:
– Can significantly reduce the hardware

complexity
– E.g., adder vs. incrementor
– E.g

y <= rotate_right(x, y); -- barrel shifter
y <= rotate_right(x, 3); -- rewiring
y <= x(2 downto 0) & x(7 downto 3);

– E.g., 4-bit comparator: x=y vs. x=0

RTL Hardware Design Chapter 6 15

An example 0.55 um standard-cell
CMOS implementation

RTL Hardware Design Chapter 6 16

3. Realization of VHDL data type

• Use and synthesis of ‘Z’
• Use of ‘-’

RTL Hardware Design Chapter 6 17

Use and synthesis of ‘Z’
• Tri-state buffer:

– Output with “high-impedance”
– Not a value in Boolean algebra
– Need special output circuitry (tri-state buffer)

RTL Hardware Design Chapter 6 18

• Major application:
– Bi-directional I/O pins
– Tri-state bus

• VHDL description:
y <= 'Z' when oe='1' else

a_in;
• ‘Z’ cannot be used as input or manipulated

f <= 'Z' and a;
y <= data_a when in_bus='Z' else

data_b;

4

RTL Hardware Design Chapter 6 19

• Separate tri-state buffer from regular code:
– Less clear:
with sel select

y <= 'Z' when "00",
'1' when "01"|"11",
'0' when others;

– better:
with sel select

tmp <= '1' when "01"|"11",
'0' when others;

y <= 'Z' when sel="00" else
tmp;

RTL Hardware Design Chapter 6 20

Bi-directional i/o pins

RTL Hardware Design Chapter 6 21 RTL Hardware Design Chapter 6 22

RTL Hardware Design Chapter 6 23

Tri-state bus

RTL Hardware Design Chapter 6 24

5

RTL Hardware Design Chapter 6 25

• Problem with tri-state bus
– Difficult to optimize, verify and test
– Somewhat difficult to design: “parking”,

“fighting”
• Alternative to tri-state bus: mux

RTL Hardware Design Chapter 6 26

Use of ‘-’
• In conventional logic design

– ‘-’ as input value: shorthand to make table compact
– E.g.,

RTL Hardware Design Chapter 6 27

– ‘-’ as output value: help simplification
– E.g.,

‘-’ assigned to 1: a + b
‘-’ assigned to 0: a’b + ab’

RTL Hardware Design Chapter 6 28

Use ‘-’ in VHDL
• As input value (against our intuition):
• Wrong:

RTL Hardware Design Chapter 6 29

• Fix #1:

• Fix #2:

RTL Hardware Design Chapter 6 30

• Wrong:

• Fix:

6

RTL Hardware Design Chapter 6 31

• ‘-’ as an output value in VHDL
• May work with some software

RTL Hardware Design Chapter 6 32

4. VHDL Synthesis Flow

• Synthesis:
– Realize VHDL code using logic cells from the

device’s library
– a refinement process

• Main steps:
– RT level synthesis
– Logic synthesis
– Technology mapping

RTL Hardware Design Chapter 6 33 RTL Hardware Design Chapter 6 34

RT level synthesis

• Realize VHDL code using RT-level
components

• Somewhat like the derivation of the
conceptual diagram

• Limited optimization
• Generated netlist includes

– “regular” logic: e.g., adder, comparator
– “random” logic: e.g., truth table description

RTL Hardware Design Chapter 6 35

Module generator

• “regular” logic can be replaced by pre-
designed module
– Pre-designed module is more efficient
– Module can be generated in different levels of

detail
– Reduce the processing time

RTL Hardware Design Chapter 6 36

Logic Synthesis

• Realize the circuit with the optimal number
of “generic” gate level components

• Process the “random” logic
• Two categories:

– Two-level synthesis: sum-of-product format
– Multi-level synthesis

7

RTL Hardware Design Chapter 6 37

• E.g.,

RTL Hardware Design Chapter 6 38

Technology mapping

• Map “generic” gates to “device-dependent”
logic cells

• The technology library is provided by the
vendors who manufactured (in FPGA) or
will manufacture (in ASIC) the device

RTL Hardware Design Chapter 6 39

E.g., mapping in standard-cell ASIC
• Device

library

RTL Hardware Design Chapter 6 40

• Cost: 31 vs. 17

RTL Hardware Design Chapter 6 41

E.g., mapping in FPGA
• With 5-input LUT (Look-Up-Table) cells

RTL Hardware Design Chapter 6 42

Effective use of synthesis software

• Logic operators: software can do a good
job

• Relational/Arith operators: manual
intervention needed

• “layout” and “routing structure”:
– Silicon chip is 2-dimensional square
– “rectangular” or “tree-shaped” circuit is easier

to optimize

8

RTL Hardware Design Chapter 6 43 RTL Hardware Design Chapter 6 44

5. Timing consideration

• Propagation delay
• Synthesis with timing constraint
• Hazards
• Delay-sensitive design

RTL Hardware Design Chapter 6 45

Propagation delay

• Delay: time required to propagate a signal
from an input port to a output port

• Cell level delay: most accurate
• Simplified model:

• The impact of wire becomes more
dominant

RTL Hardware Design Chapter 6 46

• E.g.

RTL Hardware Design Chapter 6 47

System delay
• The longest path (critical path) in the

system
• The worst input to output delay
• E.g.,

RTL Hardware Design Chapter 6 48

• “False path” may exists:

9

RTL Hardware Design Chapter 6 49

• RT level delay estimation:
– Difficult if the design is mainly “random” logic
– Critical path can be identified if many complex

operators (such adder) are used in the
design.

RTL Hardware Design Chapter 6 50

Synthesis with timing constraint

• Multi-level synthesis is flexible
• It is possible to reduce by delay by

adding extra logic
• Synthesis with timing constraint

1. Obtain the minimal-area implementation
2. Identify the critical path
3. Reduce the delay by adding extra logic
4. Repeat 2 & 3 until meeting the constraint

RTL Hardware Design Chapter 6 51

• E.g.,

RTL Hardware Design Chapter 6 52

• Area-delay trade-off curve

RTL Hardware Design Chapter 6 53

• Improvement in “architectural” level design
(better VHDL code to start with)

RTL Hardware Design Chapter 6 54

Timing Hazards

• Propagation delay: time to obtain a stable
output

• Hazards: the fluctuation occurring during
the transient period
– Static hazard: glitch when the signal should

be stable
– Dynamic hazard: a glitch in transition

• Due to the multiple converging paths of an
output port

10

RTL Hardware Design Chapter 6 55

• E.g., static-hazard (sh=ab’+bc; a=c=1)

RTL Hardware Design Chapter 6 56

• E.g., dynamic hazard (a=c=d=1)

RTL Hardware Design Chapter 6 57

Dealing with hazards
• Some hazards can be eliminated in theory
• E.g.,

RTL Hardware Design Chapter 6 58

• Eliminating glitches is very difficult in
reality, and almost impossible for
synthesis

• Multiple inputs can change simultaneously
(e.g., 1111=>0000 in a counter)

• How to deal with it?
Ignore glitches in the transient period and
retrieve the data after the signal is
stabilized

RTL Hardware Design Chapter 6 59

Delay sensitive design and its
danger

• Boolean algebra
– the theoretical model for digital design and

most algorithms used in synthesis process
– algebra deals with the stabilized signals

• Delay-sensitive design
– Depend on the transient property (and delay)

of the circuit
– Difficult to design and analyze

RTL Hardware Design Chapter 6 60

• E.g., hazard elimination circuit:
ac term is not needed

• E.g., edge detection circuit (pulse=a a’)

11

RTL Hardware Design Chapter 6 61

• What’s can go wrong:
– E.g., pulse <= a and (not a);
– During logic synthesis, the logic expressions

will be rearranged and optimized.
– During technology mapping, generic gates will

be re-mapped
– During placement & routing, wire delays may

change
– It is bad for testing verification

• If delay-sensitive design is really needed, it
should be done manually, not by synthesis

