Synthesis Of VHDL Code

RTL Hardware Design Chapter 6 1

1. Fundamental limitation
of EDA software

» Can “C-to-hardware” be done?
» EDA tools:
— Core: optimization algorithms
— Shell: wrapping
» What does theoretical computer science
say?
— Computability
— Computation complexity

RTL Hardware Design Chapter 6 3

Computation complexity

» How fast an algorithm can run (or how
good an algorithm is)?

* “Interferences” in measuring execution
time:
—types of CPU, speed of CPU, compiler etc.

RTL Hardware Design Chapter 6 5

Outline

Fundamental limitation of EDA software
Realization of VHDL operator
Realization of VHDL data type

VHDL synthesis flow

Timing consideration

o rMwbdPe

RTL Hardware Design Chapter 6 2

Computability

» A problem is computable if an algorithm
exists.

» E.g., “halting problem”:

— can we develop a program that takes any
program and its input, and determines
whether the computation of that program
will eventually halt?

 any attempt to examine the “meaning” of
a program is uncomputable

RTL Hardware Design Chapter 6 4

Big-O notation

+ () is O(g(n)):
if nyg and ¢ can be found to satisfy:
f(n) <cg(n) foranyn, n>n,

* g(n) is simple function: 1, n, log,n, n?, n3, 2"
« Following are O(n?):

e 0.1n?

e 24+ 5n+9

e 50012 + 1000000

RTL Hardware Design Chapter 6 6

Interpretation of Big-O

* Filter out the “interference”: constants and
less important terms

* nis the input size of an algorithm

» The “scaling factor” of an algorithm:
What happens if the input size increases

RTL Hardware Design Chapter 6

* Intractable problems:
— algorithms with O(2")
— Not realistic for a larger n
— Frequently tractable algorithms for sub-
optimal solution exist

» Many problems encountered in synthesis
are intractable

RTL Hardware Design Chapter 6

* What is the fuss about:
— “hardware-software” co-design?
— SystemC, HardwareC, SpecC etc.?

RTL Hardware Design Chapter 6

input size
mn mn
2 2 s
4 4 s
8 8 s
16 16 jis
32 32 ps
48 48 jis
64 64 s
7 RTL Hardware Design

Theoretical limitation

n

1 ps
2 s
3 s
4 s
5 ps
5.5 s
6 s

E.g.

Big-() function

1 log, n

: lff\

8 s
24 s
64 jis
160 pis
268 jis
384 s

Chapter 6

n-

4 IH.H
16 ps
64 jis

256 s

1 ins

2ims

4 imns

nd

S IHH
64 s
512 s
4 ms
33 s
111 s

262 ms

an

4 IH.H

16 ps

256 jis

66 ms

71 min

9 year
600,000 year

» Synthesis software does not know your

intention

» Synthesis software cannot obtain the

optimal solution

» Synthesis should be treated as
transformation and a “local search” in the

“design space”

» Good VHDL code provides a good starting
point for the local search

9 RTL Hardware Design

Chapter 6

10

2. Realization of VHDL operator

Logic operator

— Simple, direct mapping
Relational operator
— =, /= fast, simple implementation exists

— >, < etc: more complex implementation,
larger delay

Addition operator
Other arith operators: support varies

11 RTL Hardware Design

Chapter 6

12

» Operator with two constant operands:
—Simplified in preprocessing
—No hardware inferred
—Good for documentation
-E.g.,
constant OFFSET: integer := &;

signal boundary: unsigned(2 downte 0);
signal overflow: std_logic;

overflow <= '1' when boundary > (2**0FFSET-1) else
g

RTL Hardware Design Chapter 6 13

An example 0.55 um standard-cell
CMOS implementation

width VHDL operator
nand xor >a >q =+l g *a +4 X

area (gate count)

8 8 22 25 68 26 27 33 51 118 21
16 16 44 52 102 51 35 73101 265 42
32 32 & 105 211 102 113 153 203 437 85
64 64 171 212 398 204 227 313 405 755 171
delay (ns)
8 01 04 40 19 10 24 1.5 42 312 03
16 061 04 86 37 LT 55 33 81 55 03
32 01 04 176 67 18 116 75 162 111 0.3
64 01 04 357 143 22 40 157 322 229 03
RTL Hardware Design Chapter 6 15

Use and synthesis of ‘Z’

* Tri-state buffer:
— Output with “high-impedance”
— Not a value in Boolean algebra
— Need special output circuitry (tri-state buffer)

oe ¥
oe
g vz
I a_in

RTL Hardware Design Chapter 6 17

» Operator with one constant operand:

—Can significantly reduce the hardware
complexity

—E.g., adder vs. incrementor

—-E.g
y <= rotate_right(x, y); -- barrel shifter
y <= rotate_right(x, 3); -- rewiring
y <= x(2 downto 0) & x(7 downto 3);

—E.g., 4-bit comparator: x=y vs. x=0
(g @ ys) - (2o B ya) - (or B) - (o &)

!

A R
B R T R

RTL Hardware Design Chapter 6 14

3. Realization of VHDL data type

» Use and synthesis of ‘Z’
» Use of "’

RTL Hardware Design Chapter 6 16

» Major application:
— Bi-directional 1/0 pins
— Tri-state bus
» VHDL description:
y <='Z'when oe="1"else
a_in;
 ‘Z’ cannot be used as input or manipulated
f<='Z"'and a;
y <= data_a when in_bus="Z' else
data_b;

RTL Hardware Design Chapter 6 18

» Separate tri-state buffer from regular code:

Bi-directional i/o pins

— Less clear:
with sel select Z —0
1 1] .
y <='Z'when "00", 0 —Ji y Ll
'1' when "01"|"11", 11— o
'0' when others; sig_out N o
l/
. —
— better: 0 5
with sel select ; ':; iy -
tmp <='1'when "01"]"11", 1 —J11 S
'0' when others; o -
y <='Z'when sel="00" els¢ 00
tmp;
RTL Hardware Design Chapter 6 19 RTL Hardware Design Chapter 6 20
entity bi_demo is dir
port{bi: inout std_logic;
. sig_out — T -—
1> bi
begin
sig_out <= output_expression;
<= expression_with_sig_in;
sig_in
bi <= sig_out when dir="1" else 'Z27; :
sig_in <= bi;
sig_in <= bi when dir=’0’ else ’Z7;
RTL Hardware Design Chapter 6 21 RTL Hardware Design Chapter 6 22
Tri-state bus _
— binary decoder
s with src_select select
ce <= "0001" when "0O",
"0010" when "O1",
"0100" when "10",
"1000" when others; "
— tri—state buffers
y0 <= i0 when oe(0)=’1" else 'Z7;
y1 <= il when ce(1)="1" else 'Z7;
y2 <= i2 when ce(2)="1" else 'Z7;
y3 <= i3 when ce(3)="1" else 'Z7;
data_bus <= y0;
data_bus <= yi;
data_bus <= y2;
data_bus <= y3;
Chapter 6 24

RTL Hardware Design Chapter 6 23 RTL Hardware Design

« Problem with tri-state bus Use of ‘-

— Difficult to optimize, verify and test

— Somewhat difficult to design: “parking”,
“fighting”

« In conventional logic design
— ‘-’ as input value: shorthand to make table compact

-E.g,
« Alternative to tri-state bus: mux input output input output
i req code req code
with src_select select 100 10 1 10
data_bus <= i0 when "00", 101 10 01 01
i1 when "O1", 110 10 001 00
12 when "10", 111 10 ano 00
i3 when others; — "I[" 010 01
011 0l
001 14}
000 14}
RTL Hardware Design Chapter 6 25 RTL Hardware Design Chapter 6 26
— ‘-’ as output value: help simplification Use ‘-’ in VHDL
-Eg.,
L i a4+
“assignedtol:at+b « As input value (against our intuition):
-" assigned to 0: a’'b + ab
* Wrong:
'“p‘l“' "“'!I_’“' y <= "10" when req="1--" else
ab
- - "01" when req="01-" else
00 0 "00" when req="001" else
01 1
n 00 " ;
10 1
11 -
RTL Hardware Design Chapter 6 27 RTL Hardware Design Chapter 6 28
o Fix #1:
* Wrong:
y <= "10" when req(3)='1' else
"01" when req(3 downte 2)="01" else with req select
"00" when req(3 downto 1)="001" else y <= "10" when "1--",
"oon; "01" when "01-",
. "00" when "001",
* Fix #2: "00" when others;
- * Fix:
use ieee.numeric_std. all;
L with req select
y <= "{10" when stdfmatc,h(req,"i——”) else y <= "10" when "100"|"101"|"110"["111",
"01" when std_match(req,"01-") else "00" when "010"1"011",
"00" when std_match(req,"001") else 00" when others;
oo
RTL Hardware Design Chapter 6 29 RTL Hardware Design Chapter 6 30

« -’ as an output value in VHDL
» May work with some software

sel <= a & b;
with =zel select
y <= 0’ when "00",
1’ when "O01",
1" when "10",
’-? when others;

RTL Hardware Design Chapter 6 31

RTL Hardware Design Chapter 6 33

Module generator

* “regular” logic can be replaced by pre-
designed module

— Pre-designed module is more efficient

— Module can be generated in different levels of
detail

— Reduce the processing time

RTL Hardware Design Chapter 6 35

4. VHDL Synthesis Flow

» Synthesis:

— Realize VHDL code using logic cells from the
device’s library

— a refinement process
* Main steps:

— RT level synthesis

— Logic synthesis

— Technology mapping

RTL Hardware Design Chapter 6 32

RT level synthesis

» Realize VHDL code using RT-level
components

» Somewhat like the derivation of the
conceptual diagram

* Limited optimization

» Generated netlist includes
—“regular” logic: e.g., adder, comparator
—“random” logic: e.g., truth table description

RTL Hardware Design Chapter 6 34

Logic Synthesis

 Realize the circuit with the optimal number
of “generic” gate level components

» Process the “random” logic

» Two categories:

— Two-level synthesis: sum-of-product format
— Multi-level synthesis

RTL Hardware Design Chapter 6 36

. Eg, Technology mapping

Bl o allpilgtighy » Map “generic” gates to “device-dependent”
| logic cells

|) » The technology library is provided by the

| v y vendors who manufactured (in FPGA) or
will manufacture (in ASIC) the device

(a) Two-level implementation (b) multi-level implementation

RTL Hardware Design Chapter 6 37 RTL Hardware Design Chapter 6 38
E.g., mapping in standard-cell ASIC * Cost: 31vs. 17
H rhge=
» Device A aosnprvuariten] L1
e [s ~ulf
library wa > . = | 'L_""\'lr}—
- D D D
) {4 3) [R"_ ~ [& |
a5 Z:) [M= O . _L}—-—L

1 1
[mi—, -+ L
Y 1
. 3> =1
RTL Hardware Design :::::-_- o 39 RTL Hardware Dt 40

E.g., mapping in FPGA

Effective use of synthesis software
» With 5-input LUT (Look-Up-Table) cells

« Logic operators: software can do a good
job

 Relational/Arith operators: manual
intervention needed

* “layout” and “routing structure”:
— Silicon chip is 2-dimensional square

— “rectangular” or “tree-shaped” circuit is easier
(@) Initial mapping (b) Better mapping to optimize

RTL Hardware Design Chapter 6 41 RTL Hardware Design Chapter 6 42

5. Timing consideration

» Propagation delay
 Synthesis with timing constraint
* Hazards

{a) Cascading-chain stracnuse
: Delay-sensitive design
i
¥
i
f
RTL Hardware Design Chapter 6 43 RTL Hardware Design Chapter 6 44
. * E.Q.
Propagation delay
« Delay: time required to propagate a signal O
from an input port to a output port :D
« Cell level delay: most accurate a
» Simplified model: _ o y I
”’f'-'l”,f)’ = f!mrmmc- + 1o (-?fnmf
» The impact of wire becomes more
dominant
Cu Cy
RTL Hardware Design Chapter 6 45 RTL Hardware Design Chapter 6 46
System delay « “False path” may exists:
« The longest path (critical path) in the
system
« The worst input to output delay
A Eg cutpul

afZ)

ad)

—— U CrScal path

....... false path

------ crscal path

RTL Hardware Design Chapter 6 47 RTL Hardware Design Chapter 6 48

* RT level delay estimation:
— Difficult if the design is mainly “random” logic

— Critical path can be identified if many complex
operators (such adder) are used in the
design.

RTL Hardware Design Chapter 6 49

* E.g,

| "~ a(0) .
a ¥i1) H=I> ¥it)
al2) ¥iz) a(2) —e '_}D—— 2)
al3) ¥(3)

a3

(a) Optimized for area (b) Optimized for delay

RTL Hardware Design Chapter 6 51

* Improvement in “architectural” level design
(better VHDL code to start with)

bettor RT v deesign

original design

RT level improvement

diay

Sy terabors

ama
RTL Hardware Design Chapter 6 53

Synthesis with timing constraint

e Multi-level synthesis is flexible

» ltis possible to reduce by delay by
adding extra logic

» Synthesis with timing constraint

Obtain the minimal-area implementation

Identify the critical path

Reduce the delay by adding extra logic

Repeat 2 & 3 until meeting the constraint

R

RTL Hardware Design Chapter 6 50

« Area-delay trade-off curve

minimal area
implementation

Ideal implementation
{with miremal area and delay)

minimal delay
implementation

RTL Hardware Design Chapter 6

Timing Hazards

» Propagation delay: time to obtain a stable
output

» Hazards: the fluctuation occurring during
the transient period

— Static hazard: glitch when the signal should
be stable
— Dynamic hazard: a glitch in transition

52

» Due to the multiple converging paths of an

output port

RTL Hardware Design Chapter 6

54

» E.g., static-hazard (sh=ab’+bc; a=c=1)

e

RTLH 55

(1) Timing diagram

Dealing with hazards
* Some hazards can be eliminated in theory
* E.g,

4DD»—' X)

b

e - S\ 00 01 11 10

ac

(€] Revised Kamaugh map and schemartic o eluninate hazards

RTL Hardware Design Chapter 6 57

Delay sensitive design and its
danger

» Boolean algebra

— the theoretical model for digital design and
most algorithms used in synthesis process

— algebra deals with the stabilized signals
» Delay-sensitive design

— Depend on the transient property (and delay)
of the circuit

— Difficult to design and analyze

RTL Hardware Design Chapter 6 59

a lse
L a_nat
a_not

* E.g., dynamic hazard (a=c=d=1)

(a) Schematc

(b) Timing diagram
RTL Hardware Design Chapter 6 56

« Eliminating glitches is very difficult in
reality, and almost impossible for
synthesis

» Multiple inputs can change simultaneously
(e.g., 1111=>0000 in a counter)

* How to deal with it?

Ignore glitches in the transient period and
retrieve the data after the signal is
stabilized

RTL Hardware Design Chapter 6 58

« E.g., hazard elimination circuit:
ac term is not needed

« E.g., edge detection circuit (pulse=a a’)

N N

pulse II\“i f]

RTL Hardware Design Chapter 6 60

10

* What's can go wrong:
— E.g., pulse <= a and (not a);
— During logic synthesis, the logic expressions
will be rearranged and optimized.

— During technology mapping, generic gates will
be re-mapped

— During placement & routing, wire delays may
change

— It is bad for testing verification

« If delay-sensitive design is really needed, it
should be done manually, not by synthesis

RTL Hardware Design Chapter 6 61

11

